Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Sajid B, Abu-Halimeh A and Jakoet N. (2024). Pre-trained models for linking process in data washing machine. Computing and Artificial Intelligence. 10.59400/cai.v3i1.1450. (1450).

    https://ojs.acad-pub.com/index.php/CAI/article/view/1450

  • Xu Z and Wang N. (2024). Low-resource entity resolution with domain generalization and active learning. Neurocomputing. 10.1016/j.neucom.2024.128131. 599. (128131). Online publication date: 1-Sep-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0925231224009020

  • Nananukul N, Sisaengsuwanchai K and Kejriwal M. (2024). Cost-efficient prompt engineering for unsupervised entity resolution in the product matching domain. Discover Artificial Intelligence. 10.1007/s44163-024-00159-8. 4:1.

    https://link.springer.com/10.1007/s44163-024-00159-8

  • Zhang Z, Yang Y and Chen B. (2024). Relation-aware heterogeneous graph neural network for entity alignment. Neurocomputing. 10.1016/j.neucom.2024.127797. 592. (127797). Online publication date: 1-Aug-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S092523122400568X

  • Yang X, Rajbahadur G, Lin D, Wang S and Jiang Z. (2024). SimClone: Detecting Tabular Data Clones using Value Similarity. ACM Transactions on Software Engineering and Methodology. 10.1145/3676961.

    https://dl.acm.org/doi/10.1145/3676961

  • Li H, Li S, Hao F, Zhang C, Song Y and Chen L. BoostER: Leveraging Large Language Models for Enhancing Entity Resolution. Companion Proceedings of the ACM Web Conference 2024. (1043-1046).

    https://doi.org/10.1145/3589335.3651245

  • Nguyen-Trang T, Nguyen-Hoang Y and Vo-Van T. (2024). A new semi-supervised clustering algorithm for probability density functions and applications. Neural Computing and Applications. 10.1007/s00521-023-09404-0. 36:11. (5965-5980). Online publication date: 1-Apr-2024.

    https://link.springer.com/10.1007/s00521-023-09404-0

  • Sun R, Guo S, Guo J, Li W, Zhang X, Guo X and Pan Z. (2024). GraphMoCo. Neurocomputing. 575:C. Online publication date: 28-Mar-2024.

    https://doi.org/10.1016/j.neucom.2024.127273

  • Luca T, Paes A and Zaverucha G. (2023). Word embeddings-based transfer learning for boosted relational dependency networks. Machine Language. 113:3. (1269-1302). Online publication date: 1-Mar-2024.

    https://doi.org/10.1007/s10994-023-06404-y

  • Wu H and Li S. (2023). MixER: linear interpolation of latent space for entity resolution. Complex & Intelligent Systems. 10.1007/s40747-023-01018-2. 10:1. (3-22). Online publication date: 1-Feb-2024.

    https://link.springer.com/10.1007/s40747-023-01018-2

  • Rass S, König S, Ahmad S and Goman M. (2024). Metricizing the Euclidean Space Toward Desired Distance Relations in Point Clouds. IEEE Transactions on Information Forensics and Security. 19. (7304-7319). Online publication date: 1-Jan-2024.

    https://doi.org/10.1109/TIFS.2024.3420246

  • Foua B, Wang X, Talburt J and Xu X. (2023). Train Once, Match Everywhere: Harnessing Generative Language Models for Entity Matching 2023 International Conference on Computational Science and Computational Intelligence (CSCI). 10.1109/CSCI62032.2023.00012. 979-8-3503-6151-3. (30-36).

    https://ieeexplore.ieee.org/document/10590347/

  • Genossar B, Gal A and Shraga R. (2023). The Battleship Approach to the Low Resource Entity Matching Problem. Proceedings of the ACM on Management of Data. 1:4. (1-25). Online publication date: 8-Dec-2023.

    https://doi.org/10.1145/3626711

  • Rabiei Zadeh A and Amirkhani H. (2023). A survey on short text similarity measurement methods. Signal and Data Processing. 10.61186/jsdp.20.3.103. 20:3. (103-126).

    https://jsdp.rcisp.ac.ir/article-1-1307-en.html

  • Li Y, Li J, Suhara Y, Doan A and Tan W. (2023). Effective entity matching with transformers. The VLDB Journal. 10.1007/s00778-023-00779-z. 32:6. (1215-1235). Online publication date: 1-Nov-2023.

    https://link.springer.com/10.1007/s00778-023-00779-z

  • Naeim abadi A, Nayeem M and Rafiei D. Product Entity Matching via Tabular Data. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. (4215-4219).

    https://doi.org/10.1145/3583780.3615172

  • Li S and Wu H. (2023). Transformer-based Denoising Adversarial Variational Entity Resolution. Journal of Intelligent Information Systems. 10.1007/s10844-022-00773-x. 61:2. (631-650). Online publication date: 1-Oct-2023.

    https://link.springer.com/10.1007/s10844-022-00773-x

  • Bai H, Shen D, Dou W, Nie T and Kou Y. (2023). Domain-Generic Pre-Training for Low-Cost Entity Matching via Domain Alignment and Domain Antagonism 2023 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN54540.2023.10191296. 978-1-6654-8867-9. (1-7).

    https://ieeexplore.ieee.org/document/10191296/

  • Guo J, Jami A, Kröll M, Schweizer L, Paramonov S, Aichinger E, Sferrazza S, Scaccia M, Reissfelder S, Cicek E, Grasso G and Gottlob G. (2023). When Automatic Filtering Comes to the Rescue: Pre-Computing Company Competitor Pairs in Owler. Proceedings of the ACM on Management of Data. 1:2. (1-23). Online publication date: 13-Jun-2023.

    https://doi.org/10.1145/3589787

  • Long Y, Li H, Wan Z and Tian P. (2023). Data Redundancy Detection Algorithm based on Multidimensional Similarity 2023 International Conference on Frontiers of Robotics and Software Engineering (FRSE). 10.1109/FRSE58934.2023.00032. 979-8-3503-0111-3. (180-187).

    https://ieeexplore.ieee.org/document/10242736/

  • Zhong X, Zhang N, Hu H, Li L, Cen J and Wu Q. (2023). Densely packed object detection with transformer-based head and EM-merger. Service Oriented Computing and Applications. 10.1007/s11761-023-00361-z. 17:2. (109-117). Online publication date: 1-Jun-2023.

    https://link.springer.com/10.1007/s11761-023-00361-z

  • Genossar B, Shraga R and Gal A. (2023). FlexER: Flexible Entity Resolution for Multiple Intents. Proceedings of the ACM on Management of Data. 1:1. (1-27). Online publication date: 26-May-2023.

    https://doi.org/10.1145/3588722

  • Khojah R, Chao C and de Oliveira Neto F. (2023). Evaluating the Trade-offs of Text-based Diversity in Test Prioritisation 2023 IEEE/ACM International Conference on Automation of Software Test (AST). 10.1109/AST58925.2023.00021. 979-8-3503-2402-0. (168-178).

    https://ieeexplore.ieee.org/document/10174012/

  • Maheshwary S and Sohoney S. Learning Geolocation by Accurately Matching Customer Addresses via Graph based Active Learning. Companion Proceedings of the ACM Web Conference 2023. (457-463).

    https://doi.org/10.1145/3543873.3584647

  • Gözükara F and Özel S. (2021). An Incremental Hierarchical Clustering Based System For Record Linkage In E-Commerce Domain. The Computer Journal. 10.1093/comjnl/bxab179. 66:3. (581-602). Online publication date: 15-Mar-2023.

    https://academic.oup.com/comjnl/article/66/3/581/6425234

  • Luca T, Paes A and Zaverucha G. (2023). Select First, Transfer Later: Choosing Proper Datasets for Statistical Relational Transfer Learning. Inductive Logic Programming. 10.1007/978-3-031-49299-0_5. (62-76).

    https://link.springer.com/10.1007/978-3-031-49299-0_5

  • Jabrane M, Hafidi I and Rochd Y. (2023). An Improved Active Machine Learning Query Strategy for Entity Matching Problem. Advances in Machine Intelligence and Computer Science Applications. 10.1007/978-3-031-29313-9_28. (317-327).

    https://link.springer.com/10.1007/978-3-031-29313-9_28

  • Carvalho M, Mangaravite V, Ponce L, Cantelli L, Campoi B, Nunes G, Miranda de Paiva B, Laender A and Goncalves M. (2022). Deduplicating Large Volumes of Data from Natural and Legal Entities in the Governmental Field 2022 IEEE International Conference on Big Data (Big Data). 10.1109/BigData55660.2022.10020407. 978-1-6654-8045-1. (2206-2213).

    https://ieeexplore.ieee.org/document/10020407/

  • Zhang D, Li Z, Wang X, Tan K and Chen G. Towards One-Size-Fits-Many: Multi-Context Attention Network for Diversity of Entity Resolution Tasks. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2021.3060790. 34:12. (6018-6032).

    https://ieeexplore.ieee.org/document/9360523/

  • Varde A. (2022). Computational Estimation by Scientific Data Mining with Classical Methods to Automate Learning Strategies of Scientists. ACM Transactions on Knowledge Discovery from Data. 10.1145/3502736. 16:5. (1-52). Online publication date: 31-Oct-2022.

    https://dl.acm.org/doi/10.1145/3502736

  • Akbarian Rastaghi M, Kamalloo E and Rafiei D. Probing the Robustness of Pre-trained Language Models for Entity Matching. Proceedings of the 31st ACM International Conference on Information & Knowledge Management. (3786-3790).

    https://doi.org/10.1145/3511808.3557673

  • Wang P, Zeng X, Chen L, Ye F, Mao Y, Zhu J and Gao Y. (2022). PromptEM. Proceedings of the VLDB Endowment. 16:2. (369-378). Online publication date: 1-Oct-2022.

    https://doi.org/10.14778/3565816.3565836

  • Luca T, Paes A and Zaverucha G. Combining Word Embeddings-Based Similarity Measures for Transfer Learning Across Relational Domains. Inductive Logic Programming. (84-99).

    https://doi.org/10.1007/978-3-031-55630-2_7

  • Ye C, Jiang S, Zhang H, Wu Y, Shi J, Wang H and Dai G. (2022). JointMatcher: Numerically-aware entity matching using pre-trained language models with attention concentration. Knowledge-Based Systems. 10.1016/j.knosys.2022.109033. 251. (109033). Online publication date: 1-Sep-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S0950705122005044

  • Tu J, Han X, Fan J, Tang N, Chai C, Li G and Du X. (2022). DADER. Proceedings of the VLDB Endowment. 15:12. (3666-3669). Online publication date: 1-Aug-2022.

    https://doi.org/10.14778/3554821.3554870

  • Song Y, Zhang D, Li X, Luo K and Liao J. (2022). A Novel Data Cleaning Framework Based on Knowledge Graph 2022 8th International Conference on Big Data Computing and Communications (BigCom). 10.1109/BigCom57025.2022.00050. 978-1-6654-7384-2. (350-355).

    https://ieeexplore.ieee.org/document/10064422/

  • Estrada-Valenciano R, Muñiz-Sánchez V and De-la-Torre-Gutiérrez H. (2022). An Entity-Matching System Based on Multimodal Data for Two Major E-Commerce Stores in Mexico. Mathematics. 10.3390/math10152564. 10:15. (2564).

    https://www.mdpi.com/2227-7390/10/15/2564

  • Tan K, Zantedeschi D, Kumar A and Gaspar A. Genetic algorithm cleaning in sequential data mining. Proceedings of the Genetic and Evolutionary Computation Conference Companion. (2330-2333).

    https://doi.org/10.1145/3520304.3534025

  • Ilyas I, Rekatsinas T, Konda V, Pound J, Qi X and Soliman M. Saga: A Platform for Continuous Construction and Serving of Knowledge at Scale. Proceedings of the 2022 International Conference on Management of Data. (2259-2272).

    https://doi.org/10.1145/3514221.3526049

  • Yao D, Gu Y, Cong G, Jin H and Lv X. Entity Resolution with Hierarchical Graph Attention Networks. Proceedings of the 2022 International Conference on Management of Data. (429-442).

    https://doi.org/10.1145/3514221.3517872

  • Tu J, Fan J, Tang N, Wang P, Chai C, Li G, Fan R and Du X. Domain Adaptation for Deep Entity Resolution. Proceedings of the 2022 International Conference on Management of Data. (443-457).

    https://doi.org/10.1145/3514221.3517870

  • Binette O and Steorts R. (2022). (Almost) all of entity resolution. Science Advances. 10.1126/sciadv.abi8021. 8:12. Online publication date: 25-Mar-2022.

    https://www.science.org/doi/10.1126/sciadv.abi8021

  • Daneshpour N and Barzegari A. (2022). A New Method for Duplicate Detection Using Hierarchical Clustering of Records. Signal and Data Processing. 10.52547/jsdp.18.4.3. 18:4. (3-22).

    http://jsdp.rcisp.ac.ir/article-1-1039-en.html

  • Zhang D, Li D, Guo L and Tan K. Unsupervised Entity Resolution With Blocking and Graph Algorithms. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2020.2991063. 34:3. (1501-1515).

    https://ieeexplore.ieee.org/document/9079896/

  • Manzoor A, Asghar S and Amjad T. Toward a New Paradigm for Author Name Disambiguation. IEEE Access. 10.1109/ACCESS.2022.3190088. 10. (76055-76068).

    https://ieeexplore.ieee.org/document/9826729/

  • Cvetkov-Iliev A, Allauzen A and Varoquaux G. Analytics on Non-Normalized Data Sources: More Learning, Rather Than More Cleaning. IEEE Access. 10.1109/ACCESS.2022.3168013. 10. (42420-42431).

    https://ieeexplore.ieee.org/document/9758752/

  • Albayrak O, Aytekin T and Kalaycı T. (2022). Duplicate product record detection engine for e-commerce platforms. Expert Systems with Applications. 10.1016/j.eswa.2021.116420. (116420). Online publication date: 1-Jan-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417421017073

  • Liu K and El-Gohary N. (2022). Improved similarity assessment and spectral clustering for unsupervised linking of data extracted from bridge inspection reports. Advanced Engineering Informatics. 10.1016/j.aei.2021.101496. 51. (101496). Online publication date: 1-Jan-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S1474034621002457

  • Bhattacharjee K, Garg C, Shivakarthik S, Mehta S, Kumar A, Bhide S, Kulkarni K, Ratnaparkhi S, Agarwal K and Naik V. (2022). A Novel Approach of Deduplication on Indian Demographic Variation for Large Structured Data. Intelligent Sustainable Systems. 10.1007/978-981-16-6369-7_30. (343-355).

    https://link.springer.com/10.1007/978-981-16-6369-7_30

  • Wrembel R. (2022). Data Integration, Cleaning, and Deduplication: Research Versus Industrial Projects. Information Integration and Web Intelligence. 10.1007/978-3-031-21047-1_1. (3-17).

    https://link.springer.com/10.1007/978-3-031-21047-1_1

  • Luca T, Paes A and Zaverucha G. (2022). Mapping Across Relational Domains for Transfer Learning with Word Embeddings-Based Similarity. Inductive Logic Programming. 10.1007/978-3-030-97454-1_12. (167-182).

    https://link.springer.com/10.1007/978-3-030-97454-1_12

  • Sakai K, Dong Y, Oyamada M, Takeoka K and Okadome T. (2022). Entity Matching with String Transformation and Similarity-Based Features. Software Foundations for Data Interoperability. 10.1007/978-3-030-93849-9_5. (76-87).

    https://link.springer.com/10.1007/978-3-030-93849-9_5

  • Huaman E and Fensel D. Knowledge Graph Curation: A Practical Framework. Proceedings of the 10th International Joint Conference on Knowledge Graphs. (166-171).

    https://doi.org/10.1145/3502223.3502247

  • Christophides V, Efthymiou V, Palpanas T, Papadakis G and Stefanidis K. (2020). An Overview of End-to-End Entity Resolution for Big Data. ACM Computing Surveys. 53:6. (1-42). Online publication date: 30-Nov-2021.

    https://doi.org/10.1145/3418896

  • Jin D, Sisman B, Wei H, Dong X and Koutra D. (2021). Deep transfer learning for multi-source entity linkage via domain adaptation. Proceedings of the VLDB Endowment. 15:3. (465-477). Online publication date: 1-Nov-2021.

    https://doi.org/10.14778/3494124.3494131

  • de Figueiredo L, Paes A and Zaverucha G. Transfer Learning for Boosted Relational Dependency Networks Through Genetic Algorithm. Inductive Logic Programming. (125-139).

    https://doi.org/10.1007/978-3-030-97454-1_9

  • Everson D and Cheng L. (2021). Compressing Network Attack Surfaces for Practical Security Analysis 2021 IEEE Secure Development Conference (SecDev). 10.1109/SecDev51306.2021.00020. 978-1-6654-3170-5. (23-29).

    https://ieeexplore.ieee.org/document/9652650/

  • Nowak R, Franus W, Zhang J, Zhu Y, Tian X, Zhang Z, Chen X and Liu X. (2021). Record Linkage of Chinese Patent Inventors and Authors of Scientific Articles. Applied Sciences. 10.3390/app11188417. 11:18. (8417).

    https://www.mdpi.com/2076-3417/11/18/8417

  • Chen J, Chen J, She X, Mao J and Chen G. (2021). Deep Contrast Learning Approach for Address Semantic Matching. Applied Sciences. 10.3390/app11167608. 11:16. (7608).

    https://www.mdpi.com/2076-3417/11/16/7608

  • Valstar N, Frasincar F and Brauwers G. (2021). APFA: Automated product feature alignment for duplicate detection. Expert Systems with Applications. 10.1016/j.eswa.2021.114759. 174. (114759). Online publication date: 1-Jul-2021.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417421002001

  • Zhao J and Tao Y. (2021). Minimum vertex augmentation. Proceedings of the VLDB Endowment. 14:9. (1454-1466). Online publication date: 1-May-2021.

    https://doi.org/10.14778/3461535.3461536

  • Marchant N, Kaplan A, Elazar D, Rubinstein B and Steorts R. (2021). d-blink: Distributed End-to-End Bayesian Entity Resolution. Journal of Computational and Graphical Statistics. 10.1080/10618600.2020.1825451. 30:2. (406-421). Online publication date: 3-Apr-2021.

    https://www.tandfonline.com/doi/full/10.1080/10618600.2020.1825451

  • Joshi S, Somani A and Roy S. (2021). ReLink: Complete-Link Industrial Record Linkage Over Hybrid Feature Spaces 2021 IEEE 37th International Conference on Data Engineering (ICDE). 10.1109/ICDE51399.2021.00293. 978-1-7281-9184-3. (2625-2636).

    https://ieeexplore.ieee.org/document/9458710/

  • Bogatu A, Paton N, Douthwaite M, Davie S and Freitas A. (2021). Cost–effective Variational Active Entity Resolution 2021 IEEE 37th International Conference on Data Engineering (ICDE). 10.1109/ICDE51399.2021.00114. 978-1-7281-9184-3. (1272-1283).

    https://ieeexplore.ieee.org/document/9458760/

  • Li N, Zhu R, Zhou X, He X, Cai W, Gao M and Zhou A. (2021). On Disambiguating Authors: Collaboration Network Reconstruction in a Bottom-up Manner 2021 IEEE 37th International Conference on Data Engineering (ICDE). 10.1109/ICDE51399.2021.00082. 978-1-7281-9184-3. (888-899).

    https://ieeexplore.ieee.org/document/9458811/

  • Park S, Lee S and Woo S. BertLoc. Proceedings of the 36th Annual ACM Symposium on Applied Computing. (942-951).

    https://doi.org/10.1145/3412841.3441969

  • Papadakis G, Ioannou E, Thanos E and Palpanas T. (2021). The Four Generations of Entity Resolution. Synthesis Lectures on Data Management. 10.2200/S01067ED1V01Y202012DTM064. 16:2. (1-170). Online publication date: 15-Mar-2021.

    https://www.morganclaypool.com/doi/10.2200/S01067ED1V01Y202012DTM064

  • Hao S, Tang N, Li G, Feng J and Wang N. (2021). Mis-categorized entities detection. The VLDB Journal. 10.1007/s00778-021-00653-w.

    http://link.springer.com/10.1007/s00778-021-00653-w

  • Singh A and Sharan A. (2021). Genetic-Fuzzy Programming Based Linkage Rule Miner (GFPLR-Miner) for Entity Linking in Semantic Web. Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms. 10.4018/978-1-7998-8048-6.ch023. (447-481).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-8048-6.ch023

  • Corcho O, Regino A, dos Reis J, Bonacin R, Morshed A and Sellis T. (2021). Link maintenance for integrity in linked open data evolution. Semantic Web. 12:3. (517-541). Online publication date: 1-Jan-2021.

    https://doi.org/10.3233/SW-200398

  • 褚 良. (2021). Entity Resolution Based on Boolean Matching Rules. Hans Journal of Data Mining. 10.12677/HJDM.2021.112012. 11:02. (121-133).

    https://www.HansPub.org/journal/doi.aspx?DOI=10.12677/HJDM.2021.112012

  • 褚 良. (2021). An Entity Resolution Algorithm Based on Attribute Salience. Hans Journal of Data Mining. 10.12677/HJDM.2021.112004. 11:02. (27-37).

    https://www.HansPub.org/journal/doi.aspx?DOI=10.12677/HJDM.2021.112004

  • Sheneamer A, Roy S and Kalita J. An Effective Semantic Code Clone Detection Framework Using Pairwise Feature Fusion. IEEE Access. 10.1109/ACCESS.2021.3079156. 9. (84828-84844).

    https://ieeexplore.ieee.org/document/9427518/

  • Xu W, Sun C, Xu L, Chen W and Hou Z. (2021). Unsupervised Entity Resolution Method Based on Random Forest. Web Information Systems and Applications. 10.1007/978-3-030-87571-8_32. (372-382).

    https://link.springer.com/10.1007/978-3-030-87571-8_32

  • Wang Z, Hu S, Mei F and Jing W. (2020). Research on Construction and Application of Knowledge Mapping of Intelligent Transportation Inspection 2020 7th International Conference on Information Science and Control Engineering (ICISCE). 10.1109/ICISCE50968.2020.00227. 978-1-7281-6406-9. (1114-1119).

    https://ieeexplore.ieee.org/document/9532292/

  • Hládek D, Staš J and Pleva M. (2020). Survey of Automatic Spelling Correction. Electronics. 10.3390/electronics9101670. 9:10. (1670).

    https://www.mdpi.com/2079-9292/9/10/1670

  • Alvarez-Rodríguez J, Mendieta R, Moreno V, Sánchez-Puebla M and Llorens J. (2020). Semantic Recovery of Traceability Links between System Artifacts. International Journal of Software Engineering and Knowledge Engineering. 10.1142/S0218194020400197. 30:10. (1415-1442). Online publication date: 1-Oct-2020.

    https://www.worldscientific.com/doi/abs/10.1142/S0218194020400197

  • Li Y, Li J, Suhara Y, Doan A and Tan W. (2020). Deep entity matching with pre-trained language models. Proceedings of the VLDB Endowment. 14:1. (50-60). Online publication date: 1-Sep-2020.

    https://doi.org/10.14778/3421424.3421431

  • Dutta A, Deb T and Pathak S. (2020). Automated Data Harmonization (ADH) using Artificial Intelligence (AI). OPSEARCH. 10.1007/s12597-020-00467-4.

    http://link.springer.com/10.1007/s12597-020-00467-4

  • Kang N, Kim J, On B and Lee I. (2020). A node resistance-based probability model for resolving duplicate named entities. Scientometrics. 10.1007/s11192-020-03585-4.

    http://link.springer.com/10.1007/s11192-020-03585-4

  • Li B, Liu Y, Zhang A, Wang W and Wan S. (2020). A Survey on Blocking Technology of Entity Resolution. Journal of Computer Science and Technology. 10.1007/s11390-020-0350-4. 35:4. (769-793). Online publication date: 1-Jul-2020.

    http://link.springer.com/10.1007/s11390-020-0350-4

  • Kong C, Chen B and Zhang L. (2020). DEM: Deep Entity Matching Across Heterogeneous Information Networks. Journal of Computer Science and Technology. 10.1007/s11390-020-0139-5. 35:4. (739-750). Online publication date: 1-Jul-2020.

    http://link.springer.com/10.1007/s11390-020-0139-5

  • Wu R, Chaba S, Sawlani S, Chu X and Thirumuruganathan S. ZeroER: Entity Resolution using Zero Labeled Examples. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. (1149-1164).

    https://doi.org/10.1145/3318464.3389743

  • Azevedo Santos R, Paes A and Zaverucha G. (2020). Transfer learning by mapping and revising boosted relational dependency networks. Machine Learning. 10.1007/s10994-020-05871-x.

    http://link.springer.com/10.1007/s10994-020-05871-x

  • Kumaraswamy R, Ramanan N, Odom P and Natarajan S. (2020). Interactive Transfer Learning in Relational Domains. KI - Künstliche Intelligenz. 10.1007/s13218-020-00659-6.

    http://link.springer.com/10.1007/s13218-020-00659-6

  • Prateek A, Khan A, Goyal A and Ranu S. (2020). Mining Top-k pairs of correlated subgraphs in a large network. Proceedings of the VLDB Endowment. 13:9. (1511-1524). Online publication date: 1-May-2020.

    https://doi.org/10.14778/3397230.3397245

  • Fernandes de Araújo D, Santos Pires C and Cassimiro Nascimento D. (2019). Leveraging active learning to reduce human effort in the generation of ground‐truth for entity resolution. Computational Intelligence. 10.1111/coin.12268. 36:2. (743-772). Online publication date: 1-May-2020.

    https://onlinelibrary.wiley.com/doi/10.1111/coin.12268

  • Giannopoulos G, Kaffes V and Kostoulas G. Learning Advanced Similarities and Training Features for Toponym Interlinking. Advances in Information Retrieval. (111-125).

    https://doi.org/10.1007/978-3-030-45439-5_8

  • Akritidis L, Fevgas A, Bozanis P and Makris C. (2020). A self-verifying clustering approach to unsupervised matching of product titles. Artificial Intelligence Review. 10.1007/s10462-020-09807-8.

    http://link.springer.com/10.1007/s10462-020-09807-8

  • Melnykov I and Melnykov V. (2020). A Note on the Formal Implementation of the K-means Algorithm with Hard Positive and Negative Constraints. Journal of Classification. 10.1007/s00357-019-09349-x.

    http://link.springer.com/10.1007/s00357-019-09349-x

  • Griffiths M, Hamutoğlu N, Topal M, Samur Y and Gezgin D. (2020). The Development of the Online Player Type Scale. International Journal of Cyber Behavior, Psychology and Learning. 10:1. (15-31). Online publication date: 1-Jan-2020.

    https://doi.org/10.4018/IJCBPL.2020010102

  • Kumar V and Ogunmola G. (2020). Web Analytics for Knowledge Creation. International Journal of Cyber Behavior, Psychology and Learning. 10:1. (1-14). Online publication date: 1-Jan-2020.

    https://doi.org/10.4018/IJCBPL.2020010101

  • Euzenat J, Petrovski P and Bizer C. (2020). Learning expressive linkage rules from sparse data. Semantic Web. 11:3. (549-567). Online publication date: 1-Jan-2020.

    https://doi.org/10.3233/SW-190356

  • Koumarelas l, Papenbrock T and Naumann F. (2020). MDedup. Proceedings of the VLDB Endowment. 13:5. (712-725). Online publication date: 1-Jan-2020.

    https://doi.org/10.14778/3377369.3377379

  • Narayanan S, Samuel P and Chacko M. Product Pre-Launch Prediction From Resilient Distributed e-WOM Data. IEEE Access. 10.1109/ACCESS.2020.3023346. 8. (167887-167899).

    https://ieeexplore.ieee.org/document/9193954/

  • Shobha K and Nickolas S. (2020). Integration and Rule-Based Pre-processing of Scientific Publication Records from Multiple Data Sources. Smart Intelligent Computing and Applications. 10.1007/978-981-13-9282-5_61. (647-655).

    http://link.springer.com/10.1007/978-981-13-9282-5_61

  • Aghaebrahimian A and Cieliebak M. (2020). Named Entity Disambiguation at Scale. Artificial Neural Networks in Pattern Recognition. 10.1007/978-3-030-58309-5_8. (102-110).

    http://link.springer.com/10.1007/978-3-030-58309-5_8

  • Jeter S, Rock C, Benyo B, Adler A, Yaman F, Beckerle M, Mulvehill A and Hoh R. (2020). Semantic Links Across Distributed Heterogeneous Data. Distributed Computing and Artificial Intelligence, 16th International Conference. 10.1007/978-3-030-23887-2_13. (107-115).

    http://link.springer.com/10.1007/978-3-030-23887-2_13

  • Gançarski P, Dao T, Crémilleux B, Forestier G and Lampert T. (2020). Constrained Clustering: Current and New Trends. A Guided Tour of Artificial Intelligence Research. 10.1007/978-3-030-06167-8_14. (447-484).

    http://link.springer.com/10.1007/978-3-030-06167-8_14

  • Singh A and Sharan A. (2019). Unsupervised genetic programming based linkage rule (UGPLR) Miner for entity linking in semantic web. Evolutionary Intelligence. 10.1007/s12065-019-00263-0. 12:4. (609-632). Online publication date: 1-Dec-2019.

    http://link.springer.com/10.1007/s12065-019-00263-0

  • Nie H, Han X, He B, Sun L, Chen B, Zhang W, Wu S and Kong H. Deep Sequence-to-Sequence Entity Matching for Heterogeneous Entity Resolution. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. (629-638).

    https://doi.org/10.1145/3357384.3358018

  • Leeka J and Rajan K. (2019). Incorporating super-operators in big-data query optimizers. Proceedings of the VLDB Endowment. 13:3. (348-361). Online publication date: 1-Nov-2019.

    https://doi.org/10.14778/3368289.3368299

  • Lampert T, Lafabregue B, Dao T, Serrette N, Vrain C and Gancarski P. Constrained Distance-Based Clustering for Satellite Image Time-Series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 10.1109/JSTARS.2019.2950406. 12:11. (4606-4621).

    https://ieeexplore.ieee.org/document/8903311/

  • Sun B, Li Y, Hu X, Cheng G, Chen C and Liu Z. (2019). Incremental Learning for Transductive SVMs 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). 10.1109/ISKE47853.2019.9170294. 978-1-7281-2348-6. (622-629).

    https://ieeexplore.ieee.org/document/9170294/

  • Wu X, Wu J, Fu X, Li J, Zhou P and Jiang X. (2019). Automatic Knowledge Graph Construction: A Report on the 2019 ICDM/ICBK Contest 2019 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM.2019.00204. 978-1-7281-4604-1. (1540-1545).

    https://ieeexplore.ieee.org/document/8970862/

  • Xu H, Li X, Shen C, Hui S and Grannis S. Incorporating conditional dependence in latent class models for probabilistic record linkage: Does it matter?. The Annals of Applied Statistics. 10.1214/19-AOAS1256. 13:3.

    https://projecteuclid.org\journals\annals-of-applied-statistics\volume-13\issue-3\Incorporating-conditional-dependence-in-latent-class-models-for-probabilistic-record\10.1214/19-AOAS1256.full

  • Varma S, Sameer N and Chowdary C. (2019). ReLiC: entity profiling using random forest and trustworthiness of a source. Sādhanā. 10.1007/s12046-019-1178-x. 44:9. Online publication date: 1-Sep-2019.

    http://link.springer.com/10.1007/s12046-019-1178-x

  • Barbosa L. (2019). Learning representations of Web entities for entity resolution. International Journal of Web Information Systems. 10.1108/IJWIS-07-2018-0059. 15:3. (346-358). Online publication date: 19-Aug-2019.

    https://www.emerald.com/insight/content/doi/10.1108/IJWIS-07-2018-0059/full/html

  • Shu K and Liu H. (2019). Detecting Fake News on Social Media. Synthesis Lectures on Data Mining and Knowledge Discovery. 10.2200/S00926ED1V01Y201906DMK018. 11:3. (1-129). Online publication date: 3-Jul-2019.

    https://www.morganclaypool.com/doi/10.2200/S00926ED1V01Y201906DMK018

  • Xu P and Lu J. (2019). Towards a unified framework for string similarity joins. Proceedings of the VLDB Endowment. 12:11. (1289-1302). Online publication date: 1-Jul-2019.

    https://doi.org/10.14778/3342263.3342268

  • Primpeli A and Bizer C. Robust Active Learning of Expressive Linkage Rules. Proceedings of the 9th International Conference on Web Intelligence, Mining and Semantics. (1-7).

    https://doi.org/10.1145/3326467.3326484

  • Obraczka D and Ngomo A. Dragon: Decision Tree Learning for Link Discovery. Web Engineering. (441-456).

    https://doi.org/10.1007/978-3-030-19274-7_31

  • Nagaraja A and Uma B. A generalized research study on distance measures, learning algorithms and datasets. Proceedings of the 5th International Conference on Engineering and MIS. (1-7).

    https://doi.org/10.1145/3330431.3330466

  • Qiao S, Nicoara A, Sun J, Friedman M, Patel H and Ekanayake J. (2019). Hyper dimension shuffle. Proceedings of the VLDB Endowment. 12:10. (1113-1125). Online publication date: 1-Jun-2019.

    https://doi.org/10.14778/3339490.3339495

  • Lai L, Qing Z, Yang Z, Jin X, Lai Z, Wang R, Hao K, Lin X, Qin L, Zhang W, Zhang Y, Qian Z and Zhou J. (2019). Distributed subgraph matching on timely dataflow. Proceedings of the VLDB Endowment. 12:10. (1099-1112). Online publication date: 1-Jun-2019.

    https://doi.org/10.14778/3339490.3339494

  • Zhao C and He Y. Auto-EM: End-to-end Fuzzy Entity-Matching using Pre-trained Deep Models and Transfer Learning. The World Wide Web Conference. (2413-2424).

    https://doi.org/10.1145/3308558.3313578

  • Orescanin D, Tan R and Ao J. (2019). Conceptual Framework for entity integration from multiple data sources 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). 10.23919/MIPRO.2019.8756935. 978-953-233-098-4. (1232-1237).

    https://ieeexplore.ieee.org/document/8756935/

  • Guan S, Jin X, Wang Y, Jia Y, Shen H, Li Z and Cheng X. (2019). Self-learning and embedding based entity alignment. Knowledge and Information Systems. 59:2. (361-386). Online publication date: 1-May-2019.

    https://doi.org/10.1007/s10115-018-1191-0

  • Asmaa A, El Abbassia D, Hassan B and Djilali B. (2019). Model-Based Application Deployment on Cloud Computing. International Journal of Distributed Systems and Technologies. 10:2. (110-127). Online publication date: 1-Apr-2019.

    https://doi.org/10.4018/IJDST.2019040106

  • Rabiya M and Ramalakshmi R. (2019). Replica Reduced Routing Protocol for Intermittent Connected Networks in Emergency Scenarios. International Journal of Distributed Systems and Technologies. 10:2. (84-109). Online publication date: 1-Apr-2019.

    https://doi.org/10.4018/IJDST.2019040105

  • Bogoiavlenskaia O, Vdovenko A, Korzun D and Kashevnik A. (2019). Individual Client Strategies for Active Control of Information-Driven Service Construction in IoT-enabled Smart Spaces. International Journal of Distributed Systems and Technologies. 10:2. (20-36). Online publication date: 1-Apr-2019.

    https://doi.org/10.4018/IJDST.2019040102

  • Banerjee S and Kumar N. (2019). Exploring Visual Analytics to Measure Reliability for IoT Oriented Pollution Detection Software Perspectives. International Journal of Distributed Systems and Technologies. 10:2. (1-19). Online publication date: 1-Apr-2019.

    https://doi.org/10.4018/IJDST.2019040101

  • Ball P and Price M. (2019). Using Statistics to Assess Lethal Violence in Civil and Inter-State War. Annual Review of Statistics and Its Application. 10.1146/annurev-statistics-030718-105222. 6:1. (63-84). Online publication date: 7-Mar-2019.

    https://www.annualreviews.org/doi/10.1146/annurev-statistics-030718-105222

  • Tran S, Ngo S and Garcez A. (2019). Probabilistic approaches for music similarity using restricted Boltzmann machines. Neural Computing and Applications. 10.1007/s00521-019-04106-y.

    http://link.springer.com/10.1007/s00521-019-04106-y

  • Kong C, Gao M, Xu C, Fu Y, Qian W and Zhou A. (2019). EnAli. Frontiers of Computer Science: Selected Publications from Chinese Universities. 13:1. (157-169). Online publication date: 1-Feb-2019.

    https://doi.org/10.1007/s11704-017-6561-3

  • Hassanian-esfahani R and Kargar M. (2019). A pruning strategy to improve pairwise comparison-based near-duplicate detection. Knowledge and Information Systems. 10.1007/s10115-018-1299-2.

    http://link.springer.com/10.1007/s10115-018-1299-2

  • Zhao P, Ding Z, Wang M and Cao R. Behavior Analysis for Electronic Commerce Trading Systems: A Survey. IEEE Access. 10.1109/ACCESS.2019.2933247. 7. (108703-108728).

    https://ieeexplore.ieee.org/document/8788542/

  • Kejriwal M. (2019). Advanced Topic: Knowledge Graph Completion. Domain-Specific Knowledge Graph Construction. 10.1007/978-3-030-12375-8_4. (59-74).

    http://link.springer.com/10.1007/978-3-030-12375-8_4

  • Kejriwal M. (2019). Entity Resolution. Domain-Specific Knowledge Graph Construction. 10.1007/978-3-030-12375-8_3. (33-57).

    http://link.springer.com/10.1007/978-3-030-12375-8_3

  • Kejriwal M. (2019). Information Extraction. Domain-Specific Knowledge Graph Construction. 10.1007/978-3-030-12375-8_2. (9-31).

    http://link.springer.com/10.1007/978-3-030-12375-8_2

  • Zhang J, Jin D and Gong Y. (2018). File Similarity Determination Based on Function Call Graph 2018 IEEE International Conference on Electronics and Communication Engineering (ICECE). 10.1109/ICECOME.2018.8644900. 978-1-7281-1304-3. (55-59).

    https://ieeexplore.ieee.org/document/8644900/

  • Ghane’i-Ostad M, Vahdat-Nejad H and Abdolrazzagh-Nezhad M. (2018). Detecting overlapping communities in LBSNs by fuzzy subtractive clustering. Social Network Analysis and Mining. 10.1007/s13278-018-0502-5. 8:1. Online publication date: 1-Dec-2018.

    http://link.springer.com/10.1007/s13278-018-0502-5

  • Chai C, Li G, Li J, Deng D and Feng J. (2018). A partial-order-based framework for cost-effective crowdsourced entity resolution. The VLDB Journal — The International Journal on Very Large Data Bases. 27:6. (745-770). Online publication date: 1-Dec-2018.

    https://doi.org/10.1007/s00778-018-0509-6

  • Song G, Zhang L and Wang P. (2018). Entity Matching Using Different Level Similarity for Different Attributes 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). 10.1109/ICSESS.2018.8663906. 978-1-5386-6565-7. (779-782).

    https://ieeexplore.ieee.org/document/8663906/

  • Buchan J, Bano M, Zowghi D and Volabouth P. (2018). Semi-Automated Extraction of New Requirements from Online Reviews for Software Product Evolution 2018 25th Australasian Software Engineering Conference (ASWEC). 10.1109/ASWEC.2018.00013. 978-1-7281-1241-1. (31-40).

    https://ieeexplore.ieee.org/document/8587284/

  • Li P, Dai C and Wang W. Inconsistent Data Detection based on Maximum Dependency Set. Proceedings of the 2nd International Conference on Computer Science and Application Engineering. (1-8).

    https://doi.org/10.1145/3207677.3277983

  • Lin Y, Chen J, Lin C, Su B and Lee P. SensingGO. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. (765-767).

    https://doi.org/10.1145/3241539.3267733

  • van Gennip Y, Hunter B, Ma A, Moyer D, de Vera R and Bertozzi A. (2018). Unsupervised record matching with noisy and incomplete data. International Journal of Data Science and Analytics. 10.1007/s41060-018-0129-7. 6:2. (109-129). Online publication date: 1-Sep-2018.

    http://link.springer.com/10.1007/s41060-018-0129-7

  • Abu Ahmad H and Wang H. (2018). An effective weighted rule-based method for entity resolution. Distributed and Parallel Databases. 36:3. (593-612). Online publication date: 1-Sep-2018.

    https://doi.org/10.1007/s10619-018-7240-6

  • Xin S, Yang H, Xian W, Ester M, Bu J, Wang Z and Wang C. Mobile Access Record Resolution on Large-Scale Identifier-Linkage Graphs. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (886-894).

    https://doi.org/10.1145/3219819.3219916

  • Ebraheem M, Thirumuruganathan S, Joty S, Ouzzani M and Tang N. (2018). Distributed representations of tuples for entity resolution. Proceedings of the VLDB Endowment. 11:11. (1454-1467). Online publication date: 1-Jul-2018.

    /doi/10.5555/3236187.3269461

  • Sharan A and Singh A. (2018). Genetic-Fuzzy Programming Based Linkage Rule Miner GFPLR-Miner for Entity Linking in Semantic Web. International Journal on Semantic Web & Information Systems. 14:3. (134-166). Online publication date: 1-Jul-2018.

    https://doi.org/10.4018/IJSWIS.2018070107

  • Ali M and Miah S. (2018). Identifying Organizational Factors for Successful Business Intelligence Implementation. International Journal of Business Intelligence Research. 9:2. (47-63). Online publication date: 1-Jul-2018.

    https://doi.org/10.4018/IJBIR.2018070103

  • Eder F and Koch S. (2018). Critical Success Factors for the Implementation of Business Intelligence Systems. International Journal of Business Intelligence Research. 9:2. (27-46). Online publication date: 1-Jul-2018.

    https://doi.org/10.4018/IJBIR.2018070102

  • Ebraheem M, Thirumuruganathan S, Joty S, Ouzzani M and Tang N. (2019). Distributed representations of tuples for entity resolution. Proceedings of the VLDB Endowment. 11:11. (1454-1467). Online publication date: 1-Jul-2018.

    https://doi.org/10.14778/3236187.3269461

  • Tong Y, Zeng Y, Zhou Z, Chen L, Ye J and Xu K. (2018). A unified approach to route planning for shared mobility. Proceedings of the VLDB Endowment. 11:11. (1633-1646). Online publication date: 1-Jul-2018.

    https://doi.org/10.14778/3236187.3236211

  • Didona D, Guerraoui R, Wang J and Zwaenepoel W. (2018). Causal consistency and latency optimality. Proceedings of the VLDB Endowment. 11:11. (1618-1632). Online publication date: 1-Jul-2018.

    https://doi.org/10.14778/3236187.3236210

  • Ebraheem M, Thirumuruganathan S, Joty S, Ouzzani M and Tang N. (2018). Distributed representations of tuples for entity resolution. Proceedings of the VLDB Endowment. 11:11. (1454-1467). Online publication date: 1-Jul-2018.

    https://doi.org/10.14778/3236187.3236198

  • Akritidis L and Bozanis P. (2018). Effective Unsupervised Matching of Product Titles with k-Combinations and Permutations 2018 Innovations in Intelligent Systems and Applications (INISTA). 10.1109/INISTA.2018.8466294. 978-1-5386-5150-6. (1-10).

    https://ieeexplore.ieee.org/document/8466294/

  • Sen A, Agarwal A, Guru A, Choudhuri A, Singh G, Mohammed I, Goyal J, Mittal K, Singh M, Goel M, Gupta S, Pathak S, Madapur V and Seth A. Leveraging Web Data to Monitor Changes in Corporate-Government Interlocks in India. Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies. (1-11).

    https://doi.org/10.1145/3209811.3209822

  • Balaji J, Min C, Javed F and Zhu Y. Avatar. Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning. (1-10).

    https://doi.org/10.1145/3209889.3209892

  • Mudgal S, Li H, Rekatsinas T, Doan A, Park Y, Krishnan G, Deep R, Arcaute E and Raghavendra V. Deep Learning for Entity Matching. Proceedings of the 2018 International Conference on Management of Data. (19-34).

    https://doi.org/10.1145/3183713.3196926

  • Gal A, Senderovich A and Weidlich M. (2018). Challenge Paper. Journal of Data and Information Quality. 9:4. (1-5). Online publication date: 22-May-2018.

    https://doi.org/10.1145/3165712

  • Altowim Y, Kalashnikov D and Mehrotra S. (2018). ProgressER. ACM Transactions on Knowledge Discovery from Data. 12:3. (1-45). Online publication date: 27-Apr-2018.

    https://doi.org/10.1145/3154410

  • Zhang D, Guo L, He X, Shao J, Wu S and Shen H. (2018). A Graph-Theoretic Fusion Framework for Unsupervised Entity Resolution 2018 IEEE 34th International Conference on Data Engineering (ICDE). 10.1109/ICDE.2018.00070. 978-1-5386-5520-7. (713-724).

    https://ieeexplore.ieee.org/document/8509291/

  • Hao S, Tang N, Li G and Feng J. (2018). Discovering Mis-Categorized Entities 2018 IEEE 34th International Conference on Data Engineering (ICDE). 10.1109/ICDE.2018.00045. 978-1-5386-5520-7. (413-424).

    https://ieeexplore.ieee.org/document/8509266/

  • Majhi S and Dhal S. (2018). Formal Analysis of Virtual Machine Migration and Identification of Faults. International Journal of Knowledge-Based Organizations. 8:1. (16-28). Online publication date: 1-Jan-2018.

    https://doi.org/10.4018/IJKBO.2018010102

  • Li L, Shang X, Li J and Hu J. Learning Distance Metrics for Entity Resolution. IEEE Access. 10.1109/ACCESS.2018.2871168. 6. (54900-54909).

    https://ieeexplore.ieee.org/document/8468162/

  • Xu Y, Li Z and Qi W. (2018). An Importance-and-Semantics-Aware Approach for Entity Resolution Using MLP. Data Science. 10.1007/978-981-13-2203-7_8. (88-100).

    http://link.springer.com/10.1007/978-981-13-2203-7_8

  • Kirubakaran A and Murugaiyan A. (2018). Partition Aware Duplicate Records Detection (PADRD) Methodology in Big Data - Decision Support Systems. Data Science Analytics and Applications. 10.1007/978-981-10-8603-8_8. (86-98).

    http://link.springer.com/10.1007/978-981-10-8603-8_8

  • Lv Y, Qi L, Huo J, Wang H and Gao Y. (2018). Joint Multi-field Siamese Recurrent Neural Network for Entity Resolution. PRICAI 2018: Trends in Artificial Intelligence. 10.1007/978-3-319-97310-4_55. (482-490).

    https://link.springer.com/10.1007/978-3-319-97310-4_55

  • Wurl A, Falkner A, Haselböck A and Mazak A. (2018). Advanced Data Integration with Signifiers: Case Studies for Rail Automation. Data Management Technologies and Applications. 10.1007/978-3-319-94809-6_5. (87-110).

    http://link.springer.com/10.1007/978-3-319-94809-6_5

  • Toujani R, Chaabani Y, Dhouioui Z and Bouali H. (2018). The Next Generation of Disaster Management and Relief Planning: Immersive Analytics Based Approach. Immersive Learning Research Network. 10.1007/978-3-319-93596-6_6. (80-93).

    http://link.springer.com/10.1007/978-3-319-93596-6_6

  • Kooli N, Allesiardo R and Pigneul E. (2018). Deep Learning Based Approach for Entity Resolution in Databases. Intelligent Information and Database Systems. 10.1007/978-3-319-75420-8_1. (3-12).

    https://link.springer.com/10.1007/978-3-319-75420-8_1

  • Alami L, Hafidi I and Metrane A. (2018). Entity Resolution in NoSQL Data Warehouse. International Conference on Information Technology and Communication Systems. 10.1007/978-3-319-64719-7_5. (51-59).

    http://link.springer.com/10.1007/978-3-319-64719-7_5

  • Minnetti V and De Leone R. (2018). Electre Tri Machine Learning Approach to the Record Linkage. Classification, (Big) Data Analysis and Statistical Learning. 10.1007/978-3-319-55708-3_4. (31-39).

    http://link.springer.com/10.1007/978-3-319-55708-3_4

  • Arasu A and Domingo-Ferrer J. (2018). Record Matching. Encyclopedia of Database Systems. 10.1007/978-1-4614-8265-9_594. (3129-3135).

    http://link.springer.com/10.1007/978-1-4614-8265-9_594

  • Demartini G, Difallah D, Gadiraju U and Catasta M. (2017). An Introduction to Hybrid Human-Machine Information Systems. Foundations and Trends in Web Science. 7:1. (1-87). Online publication date: 20-Dec-2017.

    https://doi.org/10.1561/1800000025

  • Duboc A, Paes A and Zaverucha G. (2017). On the formal characterization of the FORTE_MBC theory revision operators. Journal of Logic and Computation. 10.1093/logcom/exx015. 27:8. (2551-2580). Online publication date: 1-Dec-2017.

    https://academic.oup.com/logcom/article/27/8/2551/3854922

  • Vidhya K and Geetha T. (2017). Resolving Entity on A Large scale. Distributed and Parallel Databases. 35:3-4. (303-332). Online publication date: 1-Dec-2017.

    https://doi.org/10.1007/s10619-017-7205-1

  • Anindya I, Roy H, Kantarcioglu M and Malin B. Building a Dossier on the Cheap. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. (1549-1558).

    https://doi.org/10.1145/3132847.3132951

  • Zhang H, Liu G, Zhao W and Ni M. (2017). Incomplete relation revision method based on template 2017 4th International Conference on Systems and Informatics (ICSAI). 10.1109/ICSAI.2017.8248534. 978-1-5386-1107-4. (1563-1567).

    http://ieeexplore.ieee.org/document/8248534/

  • Hládek D, Staš J, Ondáš S, Juhár J and Kovács L. (2017). Learning string distance with smoothing for OCR spelling correction. Multimedia Tools and Applications. 76:22. (24549-24567). Online publication date: 1-Nov-2017.

    https://doi.org/10.1007/s11042-016-4185-5

  • Fernández-Álvarez D, Gayo J, Gayo-Avello D and Ordóñez de Pablos P. (2017). MERA. International Journal on Semantic Web & Information Systems. 13:4. (42-67). Online publication date: 1-Oct-2017.

    https://doi.org/10.4018/IJSWIS.2017100103

  • Sadek M, Derdour M and Abdelkrim B. (2017). Personalized Online Analytical Processing in Big Data Context Using User Profile and Search Context. International Journal of Strategic Information Technology and Applications. 8:4. (67-80). Online publication date: 1-Oct-2017.

    https://doi.org/10.4018/IJSITA.2017100106

  • Bouougada B, Bouchiha D, Bouziane A and Malki M. (2017). Ontology Authoring and Linked Data Generation from Web Applications. International Journal of Strategic Information Technology and Applications. 8:4. (52-66). Online publication date: 1-Oct-2017.

    https://doi.org/10.4018/IJSITA.2017100105

  • Kouidri S and Yagoubi B. (2017). Dynamic Data Replication Based on Tasks scheduling for Cloud Computing Environment. International Journal of Strategic Information Technology and Applications. 8:4. (40-51). Online publication date: 1-Oct-2017.

    https://doi.org/10.4018/IJSITA.2017100104

  • Abdelkrim OUHAB , Mimoun MALKI , Djamel BERRABAH and Faouzi BOUFARES . (2017). An Unsupervised Entity Resolution Framework for English and Arabic Datasets. International Journal of Strategic Information Technology and Applications. 8:4. (16-29). Online publication date: 1-Oct-2017.

    https://doi.org/10.4018/IJSITA.2017100102

  • Appuswamy R, Anadiotis A, Porobic D, Iman M and Ailamaki A. (2017). Analyzing the impact of system architecture on the scalability of OLTP engines for high-contention workloads. Proceedings of the VLDB Endowment. 11:2. (121-134). Online publication date: 1-Oct-2017.

    https://doi.org/10.14778/3167892.3167893

  • He L, Shao B, Li Y, Xia H, Xiao Y, Chen E and Chen L. (2017). Stylus. Proceedings of the VLDB Endowment. 11:2. (203-216). Online publication date: 1-Oct-2017.

    https://doi.org/10.14778/3149193.3149200

  • Singh R, Meduri V, Elmagarmid A, Madden S, Papotti P, Quiané-Ruiz J, Solar-Lezama A and Tang N. (2017). Synthesizing entity matching rules by examples. Proceedings of the VLDB Endowment. 11:2. (189-202). Online publication date: 1-Oct-2017.

    https://doi.org/10.14778/3149193.3149199

  • Jin C, Chen J and Liu H. (2017). MapReduce-based entity matching with multiple blocking functions. Frontiers of Computer Science: Selected Publications from Chinese Universities. 11:5. (895-911). Online publication date: 1-Oct-2017.

    https://doi.org/10.1007/s11704-016-5346-4

  • Cai D, He J, Wu G and Hu X. (2017). Synonymous Entity Recognition Based on Feature Fusion 2017 IEEE International Conference on Big Knowledge (ICBK). 10.1109/ICBK.2017.56. 978-1-5386-3120-1. (161-166).

    http://ieeexplore.ieee.org/document/8023409/

  • Guan S, Jin X, Jia Y, Wang Y, Shen H and Cheng X. (2017). Self-Learning and Embedding Based Entity Alignment 2017 IEEE International Conference on Big Knowledge (ICBK). 10.1109/ICBK.2017.15. 978-1-5386-3120-1. (33-40).

    http://ieeexplore.ieee.org/document/8023392/

  • Valaei N and Baroto M. (2017). Modelling continuance intention of citizens in government Facebook page. Computers in Human Behavior. 73:C. (224-237). Online publication date: 1-Aug-2017.

    https://doi.org/10.1016/j.chb.2017.03.047

  • Zaghian A and Noorbehbahani F. (2017). A novel supervised cluster adjustment method using a fast exact nearest neighbor search algorithm. Pattern Analysis & Applications. 20:3. (701-715). Online publication date: 1-Aug-2017.

    https://doi.org/10.1007/s10044-015-0527-6

  • Chen Z and Li W. (2017). Topic-Independent Chinese Sentiment Identification from Online News. International Journal of Knowledge and Systems Science. 8:3. (34-44). Online publication date: 1-Jul-2017.

    https://doi.org/10.4018/IJKSS.2017070103

  • Li F, Lee M and Hsu W. Profiling Entities over Time in the Presence of Unreliable Sources. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2017.2684804. 29:7. (1522-1535).

    http://ieeexplore.ieee.org/document/7882658/

  • Kreimeyer K, Menschik D, Winiecki S, Paul W, Barash F, Woo E, Alimchandani M, Arya D, Zinderman C, Forshee R and Botsis T. (2017). Using Probabilistic Record Linkage of Structured and Unstructured Data to Identify Duplicate Cases in Spontaneous Adverse Event Reporting Systems. Drug Safety. 10.1007/s40264-017-0523-4. 40:7. (571-582). Online publication date: 1-Jul-2017.

    http://link.springer.com/10.1007/s40264-017-0523-4

  • Mishra S, Saha S and Mondal S. (2017). GAEMTBD. Applied Intelligence. 47:1. (197-230). Online publication date: 1-Jul-2017.

    https://doi.org/10.1007/s10489-016-0874-z

  • Dou C, Sun D, Li G and Wong R. Active Learning with Density-Initialized Decision Tree for Record Matching. Proceedings of the 29th International Conference on Scientific and Statistical Database Management. (1-12).

    https://doi.org/10.1145/3085504.3085518

  • Nguyen K and Ichise R. (2017). ScLink. Journal of Intelligent Information Systems. 48:3. (519-551). Online publication date: 1-Jun-2017.

    https://doi.org/10.1007/s10844-016-0426-3

  • Singh R, Meduri V, Elmagarmid A, Madden S, Papotti P, Quiané-Ruiz J, Solar-Lezama A and Tang N. Generating Concise Entity Matching Rules. Proceedings of the 2017 ACM International Conference on Management of Data. (1635-1638).

    https://doi.org/10.1145/3035918.3058739

  • Nogueira B, Benevides Tomas Y and Marcacini R. (2017). Integrating distance metric learning and cluster-level constraints in semi-supervised clustering 2017 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2017.7966376. 978-1-5090-6182-2. (4118-4125).

    http://ieeexplore.ieee.org/document/7966376/

  • Singh A and Sharan A. (2017). Adaptive genetic programming based linkage rule miner for entity linking in Semantic Web 2017 International Conference on Computing, Communication and Automation (ICCCA). 10.1109/CCAA.2017.8229829. 978-1-5090-6471-7. (373-378).

    http://ieeexplore.ieee.org/document/8229829/

  • Sagi T, Gal A, Barkol O, Bergman R and Avram A. (2017). Multi-source uncertain entity resolution: Transforming holocaust victim reports into people. Information Systems. 10.1016/j.is.2016.12.003. 65. (124-136). Online publication date: 1-Apr-2017.

    https://linkinghub.elsevier.com/retrieve/pii/S0306437916306275

  • Shu K, Wang S, Tang J, Zafarani R and Liu H. (2017). User Identity Linkage across Online Social Networks. ACM SIGKDD Explorations Newsletter. 18:2. (5-17). Online publication date: 22-Mar-2017.

    https://doi.org/10.1145/3068777.3068781

  • Sun C, Shen D, Kou Y, Nie T and Yu G. (2017). A genetic algorithm based entity resolution approach with active learning. Frontiers of Computer Science: Selected Publications from Chinese Universities. 11:1. (147-159). Online publication date: 1-Feb-2017.

    https://doi.org/10.1007/s11704-015-5276-6

  • Srinivasan A and Bain M. (2017). An empirical study of on-line models for relational data streams. Machine Language. 106:2. (243-276). Online publication date: 1-Feb-2017.

    https://doi.org/10.1007/s10994-016-5596-2

  • (2017). Para-Join. International Journal of High Performance Computing and Networking. 10:4-5. (381-390). Online publication date: 1-Jan-2017.

    /doi/10.5555/3141079.3141093

  • Cheatham M, Cruz I, Euzenat J, Pesquita C, Dreßler K, Ngonga Ngomo A, Cheatham M, Cruz I, Euzenat J and Pesquita C. (2017). On the efficient execution of bounded Jaro-Winkler distances. Semantic Web. 8:2. (185-196). Online publication date: 1-Jan-2017.

    https://doi.org/10.3233/SW-150209

  • Gu B, Li Z, Zhang X, Liu A, Liu G, Zheng K, Zhao L and Zhou X. (2017). The Interaction Between Schema Matching and Record Matching in Data Integration. IEEE Transactions on Knowledge and Data Engineering. 29:1. (186-199). Online publication date: 1-Jan-2017.

    https://doi.org/10.1109/TKDE.2016.2611577

  • Song D, Luo Y and Heflin J. (2017). Linking Heterogeneous Data in the Semantic Web Using Scalable and Domain-Independent Candidate Selection. IEEE Transactions on Knowledge and Data Engineering. 29:1. (143-156). Online publication date: 1-Jan-2017.

    https://doi.org/10.1109/TKDE.2016.2606399

  • Arif T and Ali R. (2017). Bibliographic Data Extraction from the Web Using Fuzzy-Based Techniques. Applications of Soft Computing for the Web. 10.1007/978-981-10-7098-3_7. (101-117).

    http://link.springer.com/10.1007/978-981-10-7098-3_7

  • Alserafi A, Calders T, Abelló A and Romero O. (2017). DS-Prox: Dataset Proximity Mining for Governing the Data Lake. Similarity Search and Applications. 10.1007/978-3-319-68474-1_20. (284-299).

    http://link.springer.com/10.1007/978-3-319-68474-1_20

  • Knoblock C, Szekely P, Fink E, Degler D, Newbury D, Sanderson R, Blanch K, Snyder S, Chheda N, Jain N, Raju Krishna R, Begur Sreekanth N and Yao Y. (2017). Lessons Learned in Building Linked Data for the American Art Collaborative. The Semantic Web – ISWC 2017. 10.1007/978-3-319-68204-4_26. (263-279).

    https://link.springer.com/10.1007/978-3-319-68204-4_26

  • Singh K, Gupta G, Shroff G and Agarwal P. (2017). Automated Product-Attribute Mapping. Trends and Applications in Knowledge Discovery and Data Mining. 10.1007/978-3-319-67274-8_15. (163-175).

    http://link.springer.com/10.1007/978-3-319-67274-8_15

  • Odom P, Kumaraswamy R, Kersting K and Natarajan S. (2017). Learning Through Advice-Seeking via Transfer. Inductive Logic Programming. 10.1007/978-3-319-63342-8_4. (40-51).

    http://link.springer.com/10.1007/978-3-319-63342-8_4

  • Malec M, Khot T, Nagy J, Blask E and Natarajan S. (2017). Inductive Logic Programming Meets Relational Databases: Efficient Learning of Markov Logic Networks. Inductive Logic Programming. 10.1007/978-3-319-63342-8_2. (14-26).

    http://link.springer.com/10.1007/978-3-319-63342-8_2

  • Atarashi K, Oyama S, Kurihara M and Furudo K. (2017). A Deep Neural Network for Pairwise Classification: Enabling Feature Conjunctions and Ensuring Symmetry. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-57454-7_7. (83-95).

    https://link.springer.com/10.1007/978-3-319-57454-7_7

  • Oliveira J, Fernandes E, Vale G and Figueiredo E. (2017). Identification and Prioritization of Reuse Opportunities with JReuse. Mastering Scale and Complexity in Software Reuse. 10.1007/978-3-319-56856-0_13. (184-191).

    http://link.springer.com/10.1007/978-3-319-56856-0_13

  • Bhattacharya I and Getoor L. (2017). Entity Resolution. Encyclopedia of Machine Learning and Data Mining. 10.1007/978-1-4899-7687-1_81. (402-408).

    http://link.springer.com/10.1007/978-1-4899-7687-1_81

  • Cheng T, Lin K, Gong X, Liu K and Wu S. Learning user perceived clusters with feature-level supervision. Proceedings of the 30th International Conference on Neural Information Processing Systems. (532-540).

    /doi/10.5555/3157096.3157156

  • Liu T, Wang H and He Y. (2016). Intelligent knowledge recommending approach for new product development based on workflow context matching. Concurrent Engineering. 10.1177/1063293X16640319. 24:4. (318-329). Online publication date: 1-Dec-2016.

    http://journals.sagepub.com/doi/10.1177/1063293X16640319

  • Samiei A and Naumann F. (2016). Cluster-Based Sorted Neighborhood for Efficient Duplicate Detection 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). 10.1109/ICDMW.2016.0036. 978-1-5090-5910-2. (202-209).

    http://ieeexplore.ieee.org/document/7836667/

  • Dou C, Sun D and Wong R. Unsupervised Blocking of Imbalanced Datasets for Record Matching. Proceedings of the 17th International Conference on Web Information Systems Engineering - Volume 10042. (172-186).

    https://doi.org/10.1007/978-3-319-48743-4_14

  • Dau H, Begum N and Keogh E. Semi-Supervision Dramatically Improves Time Series Clustering under Dynamic Time Warping. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. (999-1008).

    https://doi.org/10.1145/2983323.2983855

  • Bhoskar U and Manjaramkar A. (2016). Generalized classification rules for entity identification 2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). 10.1109/ICRITO.2016.7784951. 978-1-5090-1489-7. (193-199).

    http://ieeexplore.ieee.org/document/7784951/

  • Hema M and Guptha M. (2016). Data fusion in data federation using modified discriminative Markov logic networks. International Journal of ADVANCED AND APPLIED SCIENCES. 10.21833/ijaas.2016.08.013. 3:8. (78-84). Online publication date: 1-Aug-2016.

    http://www.science-gate.com/IJAAS/V3I8/Hema.html

  • Patrini G, Nock R, Hardy S and Caetano T. Fast learning from distributed datasets without entity matching. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. (1909-1917).

    /doi/10.5555/3060832.3060888

  • Boudjeloud-Assala L, Pinheiro P, Blansché A, Tamisier T and Otjacques B. (2016). Interactive and iterative visual clustering. Information Visualization. 15:3. (181-197). Online publication date: 1-Jul-2016.

    https://doi.org/10.1177/1473871615571951

  • Zehtaban L, Elazhary O and Roller D. (2016). A framework for similarity recognition of CAD models. Journal of Computational Design and Engineering. 10.1016/j.jcde.2016.04.002. 3:3. (274-285). Online publication date: 1-Jul-2016.

    https://linkinghub.elsevier.com/retrieve/pii/S228843001530035X

  • Gao F, Song S, Chen L and Wang J. (2016). Efficient Set-Correlation Operator Inside Databases. Journal of Computer Science and Technology. 10.1007/s11390-016-1657-z. 31:4. (683-701). Online publication date: 1-Jul-2016.

    http://link.springer.com/10.1007/s11390-016-1657-z

  • Sagi T, Gal A, Barkol O, Bergman R and Avram A. Multi-Source Uncertain Entity Resolution at Yad Vashem. Proceedings of the 2016 International Conference on Management of Data. (807-819).

    https://doi.org/10.1145/2882903.2903737

  • Zheng Y, Guo Q, Tung A and Wu S. LazyLSH. Proceedings of the 2016 International Conference on Management of Data. (2023-2037).

    https://doi.org/10.1145/2882903.2882930

  • Machado R, Pinheiro R, Machado K and Borges E. Contacts Deduplication in Mobile Devices Using Textual Similarity and Machine Learning. Proceedings of the XII Brazilian Symposium on Information Systems on Brazilian Symposium on Information Systems: Information Systems in the Cloud Computing Era - Volume 1. (160-167).

    /doi/10.5555/3021955.3021983

  • Zhang X, Mangal R, Nori A and Naik M. (2016). Query-guided maximum satisfiability. ACM SIGPLAN Notices. 51:1. (109-122). Online publication date: 8-Apr-2016.

    https://doi.org/10.1145/2914770.2837658

  • Subasic I, Gvozdenovic N and Jack K. (2016). (2016). De-duplicating a large crowd-sourced catalogue of bibliographic records. Program. 10.1108/PROG-02-2015-0021. 50:2. (138-156). Online publication date: 4-Apr-2016.. Online publication date: 4-Apr-2016.

    https://www.emerald.com/insight/content/doi/10.1108/PROG-02-2015-0021/full/html

  • Kılınç D. (2016). An accurate toponym-matching measure based on approximate string matching. Journal of Information Science. 42:2. (138-149). Online publication date: 1-Apr-2016.

    https://doi.org/10.1177/0165551515590097

  • Kate R. (2015). Normalizing clinical terms using learned edit distance patterns. Journal of the American Medical Informatics Association. 10.1093/jamia/ocv108. 23:2. (380-386). Online publication date: 1-Mar-2016.

    https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocv108

  • Namata G, London B and Getoor L. (2016). Collective Graph Identification. ACM Transactions on Knowledge Discovery from Data. 10:3. (1-36). Online publication date: 24-Feb-2016.

    https://doi.org/10.1145/2818378

  • Li L, Li J and Gao H. (2016). Evaluating entity-description conflict on duplicated data. Journal of Combinatorial Optimization. 31:2. (918-941). Online publication date: 1-Feb-2016.

    https://doi.org/10.1007/s10878-014-9801-6

  • Zhang X, Mangal R, Nori A and Naik M. Query-guided maximum satisfiability. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. (109-122).

    https://doi.org/10.1145/2837614.2837658

  • Dharavath R and Singh A. (2016). Entity Resolution-Based Jaccard Similarity Coefficient for Heterogeneous Distributed Databases. Proceedings of the Second International Conference on Computer and Communication Technologies. 10.1007/978-81-322-2517-1_48. (497-507).

    https://link.springer.com/10.1007/978-81-322-2517-1_48

  • van Rooij G, Sewnarain R, Skogholt M, van der Zaan T, Frasincar F and Schouten K. (2016). A Data Type-Driven Property Alignment Framework for Product Duplicate Detection on the Web. Web Information Systems Engineering – WISE 2016. 10.1007/978-3-319-48740-3_28. (380-395).

    http://link.springer.com/10.1007/978-3-319-48740-3_28

  • Middleton A, Bayliss D and Foreman B. (2016). Scalable Automated Linking Technology for Big Data Computing. Big Data Technologies and Applications. 10.1007/978-3-319-44550-2_7. (185-223).

    http://link.springer.com/10.1007/978-3-319-44550-2_7

  • Batini C and Scannapieco M. (2016). Recent Advances in Object Identification. Data and Information Quality. 10.1007/978-3-319-24106-7_9. (217-277).

    http://link.springer.com/10.1007/978-3-319-24106-7_9

  • Arasu A and Domingo-Ferrer J. (2016). Record Matching. Encyclopedia of Database Systems. 10.1007/978-1-4899-7993-3_594-2. (1-6).

    https://link.springer.com/10.1007/978-1-4899-7993-3_594-2

  • Branco A, Sant’anna F, Ierusalimschy R, Rodriguez N and Rossetto S. (2015). Terra. ACM Transactions on Sensor Networks. 11:4. (1-27). Online publication date: 23-Dec-2015.

    https://doi.org/10.1145/2811267

  • França M, D'Avila Garcez A and Zaverucha G. Relational knowledge extraction from neural networks. Proceedings of the 2015th International Conference on Cognitive Computation: Integrating Neural and Symbolic Approaches - Volume 1583. (146-154).

    /doi/10.5555/2996831.2996849

  • Mori T, Takasu A, Jansson J, Jaewook Hwang , Tamura T and Akutsu T. (2015). Similar Subtree Search Using Extended Tree Inclusion. IEEE Transactions on Knowledge and Data Engineering. 27:12. (3360-3373). Online publication date: 1-Dec-2015.

    https://doi.org/10.1109/TKDE.2015.2457922

  • Kejriwal M and Miranker D. (2015). An unsupervised instance matcher for schema-free RDF data. Web Semantics: Science, Services and Agents on the World Wide Web. 35:P2. (102-123). Online publication date: 1-Dec-2015.

    https://doi.org/10.1016/j.websem.2015.07.002

  • Christen P and Gayler R. Context-Aware Approximate String Matching for Large-Scale Real-Time Entity Resolution. Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW). (211-217).

    https://doi.org/10.1109/ICDMW.2015.152

  • Kumaraswamy R, Odom P, Kersting K, Leake D and Natarajan S. Transfer Learning via Relational Type Matching. Proceedings of the 2015 IEEE International Conference on Data Mining (ICDM). (811-816).

    https://doi.org/10.1109/ICDM.2015.138

  • Kejriwal M, Liu Q, Jacob F and Javed F. A pipeline for extracting and deduplicating domain-specific knowledge bases. Proceedings of the 2015 IEEE International Conference on Big Data (Big Data). (1144-1153).

    https://doi.org/10.1109/BigData.2015.7363868

  • Kathiravelu P, Galhardas H and Veiga L. $$\partial u\partial u$$ Multi-Tenanted Framework. Proceedings of the Confederated International Conferences on On the Move to Meaningful Internet Systems: OTM 2015 Conferences - Volume 9415. (237-256).

    https://doi.org/10.1007/978-3-319-26148-5_14

  • Lu J, Lin C, Wang W, Li C and Xiao X. (2015). Boosting the Quality of Approximate String Matching by Synonyms. ACM Transactions on Database Systems. 40:3. (1-42). Online publication date: 23-Oct-2015.

    https://doi.org/10.1145/2818177

  • Ilyas I and Chu X. (2015). Trends in Cleaning Relational Data. Foundations and Trends in Databases. 5:4. (281-393). Online publication date: 1-Oct-2015.

    https://doi.org/10.1561/1900000045

  • Duo Zhang , Rubinstein B and Gemmell J. (2015). Principled Graph Matching Algorithms for Integrating Multiple Data Sources. IEEE Transactions on Knowledge and Data Engineering. 27:10. (2784-2796). Online publication date: 1-Oct-2015.

    https://doi.org/10.1109/TKDE.2015.2426714

  • Boongoen T and Iam-On N. (2015). Discovering identity in intelligence data using weighted link based similarities: A case study of Thailand 2015 International Carnahan Conference on Security Technology (ICCST). 10.1109/CCST.2015.7389705. 978-1-4799-8690-3. (327-332).

    http://ieeexplore.ieee.org/document/7389705/

  • Arif T, Asger M, Majid Bashir Malik and Ali R. Extracting academic social networks among conference participants. Proceedings of the 2015 Eighth International Conference on Contemporary Computing (IC3). (42-47).

    https://doi.org/10.1109/IC3.2015.7346650

  • Yi J, Zhang L, Yang T, Liu W and Wang J. An Efficient Semi-Supervised Clustering Algorithm with Sequential Constraints. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (1405-1414).

    https://doi.org/10.1145/2783258.2783389

  • Christophides V, Efthymiou V and Stefanidis K. (2015). Entity Resolution in the Web of Data. Synthesis Lectures on the Semantic Web: Theory and Technology. 10.2200/S00655ED1V01Y201507WBE013. 5:3. (1-122). Online publication date: 7-Aug-2015.

    http://www.morganclaypool.com/doi/10.2200/S00655ED1V01Y201507WBE013

  • Koshley D and Halder R. (2015). Data cleaning: An abstraction-based approach 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). 10.1109/ICACCI.2015.7275695. 978-1-4799-8790-0. (713-719).

    http://ieeexplore.ieee.org/document/7275695/

  • Xin J, Cui Z, Zhao P and He T. (2015). Active transfer learning of matching query results across multiple sources. Frontiers of Computer Science: Selected Publications from Chinese Universities. 9:4. (595-607). Online publication date: 1-Aug-2015.

    https://doi.org/10.1007/s11704-015-4068-3

  • Lin D, Lin Z, Sothiharan S, Lei L and Zhang J. (2015). An SVM based scoring evaluation system for fluorescence microscopic image classification 2015 IEEE International Conference on Digital Signal Processing (DSP). 10.1109/ICDSP.2015.7251932. 978-1-4799-8058-1. (543-547).

    http://ieeexplore.ieee.org/document/7251932/

  • Kejriwal M and Miranker D. Semi-supervised Instance Matching Using Boosted Classifiers. Proceedings of the 12th European Semantic Web Conference on The Semantic Web. Latest Advances and New Domains - Volume 9088. (388-402).

    https://doi.org/10.1007/978-3-319-18818-8_24

  • Li F, Lee M, Hsu W and Tan W. Linking Temporal Records for Profiling Entities. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. (593-605).

    https://doi.org/10.1145/2723372.2737789

  • Bergman M, Milo T, Novgorodov S and Tan W. Query-Oriented Data Cleaning with Oracles. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. (1199-1214).

    https://doi.org/10.1145/2723372.2737786

  • Wang P, Wu B, Li X, Wang L and Wang B. A Simhash-Based Generalized Framework for Citation Matching in MapReduce. Revised Selected Papers of the PAKDD 2015 Workshops on Trends and Applications in Knowledge Discovery and Data Mining - Volume 9441. (78-90).

    https://doi.org/10.1007/978-3-319-25660-3_7

  • van Bezu R, Borst S, Rijkse R, Verhagen J, Vandic D and Frasincar F. Multi-component similarity method for web product duplicate detection. Proceedings of the 30th Annual ACM Symposium on Applied Computing. (761-768).

    https://doi.org/10.1145/2695664.2695818

  • Bandara H and Jayasumana A. (2015). P2P-Based, Multi-Attribute Resource Discovery under Real-World Resources and Queries. ACM Transactions on Internet Technology. 15:1. (1-35). Online publication date: 12-Mar-2015.

    https://doi.org/10.1145/2729139

  • Kourtellis N, Blackburn J, Borcea C and Iamnitchi A. (2015). Special Issue on Foundations of Social Computing. ACM Transactions on Internet Technology. 15:1. (1-26). Online publication date: 12-Mar-2015.

    https://doi.org/10.1145/2700057

  • Loh C and Sheng Y. (2015). Measuring the (dis-)similarity between expert and novice behaviors as serious games analytics. Education and Information Technologies. 20:1. (5-19). Online publication date: 1-Mar-2015.

    https://doi.org/10.1007/s10639-013-9263-y

  • Dembele S and Lo G. (2015). Probabilistic, Statistical and Algorithmic Aspects of the Similarity of Texts and Application to Gospels Comparison. Journal of Data Analysis and Information Processing. 10.4236/jdaip.2015.34012. 03:04. (112-127).

    http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jdaip.2015.34012

  • Li L, Li J and Gao H. Rule-Based Method for Entity Resolution. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2014.2320713. 27:1. (250-263).

    http://ieeexplore.ieee.org/document/6807749/

  • Zhou J, Li Z, Yang Q, Jiang J, Zhu J, Liu A, Liu G and Zhao L. (2015). HouseIn: A Housing Rental Platform with Non-redundant Information Integrated from Multiple Sources. Web Technologies and Applications. 10.1007/978-3-319-25255-1_71. (859-862).

    http://link.springer.com/10.1007/978-3-319-25255-1_71

  • Hajra A, Radevski V and Tochtermann K. (2015). Author Profile Enrichment for Cross-Linking Digital Libraries. Research and Advanced Technology for Digital Libraries. 10.1007/978-3-319-24592-8_10. (124-136).

    http://link.springer.com/10.1007/978-3-319-24592-8_10

  • Jiang J, Li Z, Yang Q, Zhao P, Liu G and Zhao L. (2015). SmartInt: A Demonstration System for the Interaction Between Schema Mapping and Record Matching. Web-Age Information Management. 10.1007/978-3-319-21042-1_69. (587-589).

    https://link.springer.com/10.1007/978-3-319-21042-1_69

  • Wang Q, Vatsalan D and Christen P. (2015). Efficient Interactive Training Selection for Large-Scale Entity Resolution. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-18032-8_44. (562-573).

    https://link.springer.com/10.1007/978-3-319-18032-8_44

  • Song S, Zhu H and Chen L. (2014). Probabilistic correlation-based similarity measure on text records. Information Sciences. 10.1016/j.ins.2014.08.007. 289. (8-24). Online publication date: 1-Dec-2014.

    https://linkinghub.elsevier.com/retrieve/pii/S0020025514007968

  • Guo L, Sun H and Liu X. Using clustering and transitivity to reduce the costs of crowdsourced entity resolution. Proceedings of the 1st International Workshop on Crowd-based Software Development Methods and Technologies. (13-18).

    https://doi.org/10.1145/2666539.2666568

  • Dragut E, Dasgupta B, Beirne B, Neyestani A, Atassi B, Yu C and Meng W. (2014). Merging Query Results From Local Search Engines for Georeferenced Objects. ACM Transactions on the Web. 8:4. (1-29). Online publication date: 6-Nov-2014.

    https://doi.org/10.1145/2656344

  • Papadakis G, Papastefanatos G and Koutrika G. (2014). Supervised meta-blocking. Proceedings of the VLDB Endowment. 7:14. (1929-1940). Online publication date: 1-Oct-2014.

    https://doi.org/10.14778/2733085.2733098

  • Chapke N and Bharne P. (2014). Alias extraction by giving entity name using lexical pattern based approach 2014 International Conference on Power Automation and Communication (INPAC). 10.1109/INPAC.2014.6981151. 978-1-4799-7169-5. (141-145).

    http://ieeexplore.ieee.org/document/6981151/

  • Qi Gu , Yan Zhang , Jian Cao , Guandong Xu and Cuzzocrea A. (2014). A confidence-based entity resolution approach with incomplete information 2014 International Conference on Data Science and Advanced Analytics (DSAA). 10.1109/DSAA.2014.7058058. 978-1-4799-6991-3. (97-103).

    http://ieeexplore.ieee.org/document/7058058/

  • Wang X, Sun A, Kardes H, Agrawal S, Chen L and Borthwick A. (2014). Probabilistic estimates of attribute statistics and match likelihood for people entity resolution 2014 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2014.7004459. 978-1-4799-5666-1. (92-99).

    http://ieeexplore.ieee.org/document/7004459/

  • Sun C, Shen D, Kou Y, Nie T and Yu G. ERGP. Proceedings of the 2014 11th Web Information System and Application Conference. (215-220).

    https://doi.org/10.1109/WISA.2014.46

  • Soru T and Ngomo A. A comparison of supervised learning classifiers for link discovery. Proceedings of the 10th International Conference on Semantic Systems. (41-44).

    https://doi.org/10.1145/2660517.2660532

  • Vogel T, Heise A, Draisbach U, Lange D and Naumann F. (2014). Reach for gold. Journal of Data and Information Quality. 5:1-2. (1-25). Online publication date: 4-Sep-2014.

    https://doi.org/10.1145/2629687

  • Ayat N, Akbarinia R, Afsarmanesh H and Valduriez P. (2014). Entity resolution for probabilistic data. Information Sciences. 10.1016/j.ins.2014.02.135. 277. (492-511). Online publication date: 1-Sep-2014.

    https://linkinghub.elsevier.com/retrieve/pii/S0020025514002485

  • Ling Z, Tran Q, Fan J, Koh G, Nguyen T, Tan C, Yip J and Zhang M. (2014). GEMINI. Proceedings of the VLDB Endowment. 7:13. (1766-1771). Online publication date: 1-Aug-2014.

    https://doi.org/10.14778/2733004.2733081

  • Zhang S, Yang Y, Fan W and Winslett M. (2014). Design and implementation of a real-time interactive analytics system for large spatio-temporal data. Proceedings of the VLDB Endowment. 7:13. (1754-1759). Online publication date: 1-Aug-2014.

    https://doi.org/10.14778/2733004.2733079

  • Guizol L and Croitoru M. (2014). Investigating the quality of a bibliographic knowledge base using partitioning semantics 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 10.1109/FUZZ-IEEE.2014.6891541. 978-1-4799-2072-3. (948-955).

    http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6891541

  • Tierney M and Subramanian L. Realizing privacy by definition in social networks. Proceedings of 5th Asia-Pacific Workshop on Systems. (1-7).

    https://doi.org/10.1145/2637166.2637232

  • Dutta S and Narang A. (2014). Advanced Algorithms for Efficient Approximate Duplicate Detection in Data Streams Using Bloom Filters. Large Scale and Big Data. 10.1201/b17112-14. (409-434). Online publication date: 24-Jun-2014.

    http://www.crcnetbase.com/doi/abs/10.1201/b17112-14

  • Wang J, Krishnan S, Franklin M, Goldberg K, Kraska T and Milo T. A sample-and-clean framework for fast and accurate query processing on dirty data. Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. (469-480).

    https://doi.org/10.1145/2588555.2610505

  • Gruenheid A, Dong X and Srivastava D. (2014). Incremental record linkage. Proceedings of the VLDB Endowment. 7:9. (697-708). Online publication date: 1-May-2014.

    https://doi.org/10.14778/2732939.2732943

  • Barioni M, Razente H, Marcelino A, Traina A and Traina C. (2014). Open issues for partitioning clustering methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 4:3. (161-177). Online publication date: 1-May-2014.

    https://doi.org/10.1002/widm.1127

  • Caragea C, Wu J, Ciobanu A, Williams K, Fernández-Ramírez J, Chen H, Wu Z and Giles L. CiteSeerx. Proceedings of the 36th European Conference on IR Research on Advances in Information Retrieval - Volume 8416. (311-322).

    /doi/10.5555/2964060.2964181

  • Dalvi N, Olteanu M, Raghavan M and Bohannon P. Deduplicating a places database. Proceedings of the 23rd international conference on World wide web. (409-418).

    https://doi.org/10.1145/2566486.2568034

  • Alkhatib B, Alnahhas A and Albadawi F. (2014). A New Method for Measuring Text Similarity in Learning Management Systems Using WordNet. International Journal of Web-Based Learning and Teaching Technologies. 9:2. (1-13). Online publication date: 1-Apr-2014.

    https://doi.org/10.4018/ijwltt.2014040101

  • McKenzie G, Janowicz K and Adams B. (2014). A weighted multi-attribute method for matching user-generated Points of Interest. Cartography and Geographic Information Science. 10.1080/15230406.2014.880327. 41:2. (125-137). Online publication date: 15-Mar-2014.

    http://www.tandfonline.com/doi/abs/10.1080/15230406.2014.880327

  • Kum H, Krishnamurthy A, Machanavajjhala A, Reiter M and Ahalt S. (2014). Privacy preserving interactive record linkage (PPIRL). Journal of the American Medical Informatics Association. 10.1136/amiajnl-2013-002165. 21:2. (212-220). Online publication date: 1-Mar-2014.

    https://academic.oup.com/jamia/article-lookup/doi/10.1136/amiajnl-2013-002165

  • Sharma D and Jain S. (2014). Content sharing in information storage and retrieval system using tree representation of documents 2014 Conference on IT in Business, Industry and Government (CSIBIG). 10.1109/CSIBIG.2014.7056941. 978-1-4799-3063-0. (1-4).

    http://ieeexplore.ieee.org/document/7056941/

  • Revathy M and Saravanan R. (2014). Implementation of a low power LDPC decoder using bit serial architecture 2014 International Conference on Information Communication and Embedded Systems (ICICES). 10.1109/ICICES.2014.7034089. 978-1-4799-3834-6. (1-4).

    http://ieeexplore.ieee.org/document/7034089/

  • Revathy A and Suresh R. (2014). An evolutional approach for record deduplication and improving accuracy level in large repositories 2014 International Conference on Information Communication and Embedded Systems (ICICES). 10.1109/ICICES.2014.7033864. 978-1-4799-3834-6. (1-4).

    http://ieeexplore.ieee.org/document/7033864/

  • Danger R, Pla F, Molina A and Rosso P. (2014). Towards a Protein-Protein Interaction information extraction system. Knowledge-Based Systems. 57. (104-118). Online publication date: 1-Feb-2014.

    https://doi.org/10.1016/j.knosys.2013.12.010

  • Wang J, Oyama S, Kurihara M and Kashima H. Learning an accurate entity resolution model from crowdsourced labels. Proceedings of the 8th International Conference on Ubiquitous Information Management and Communication. (1-8).

    https://doi.org/10.1145/2557977.2558060

  • Salem A, Boufares F and Correia S. (2014). Semantic Recognition of a Data Structure in Big-Data. Journal of Computer and Communications. 10.4236/jcc.2014.29013. 02:09. (93-102).

    http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jcc.2014.29013

  • Duplicate Record Detection for Data Integration. Innovative Techniques and Applications of Entity Resolution. 10.4018/978-1-4666-5198-2.ch014. (339-358).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-5198-2.ch014

  • Measures of Entity Resolution Result. Innovative Techniques and Applications of Entity Resolution. 10.4018/978-1-4666-5198-2.ch002. (15-39).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-5198-2.ch002

  • Caragea C, Wu J, Ciobanu A, Williams K, Fernández-Ramírez J, Chen H, Wu Z and Giles L. (2014). CiteSeer x : A Scholarly Big Dataset. Advances in Information Retrieval. 10.1007/978-3-319-06028-6_26. (311-322).

    http://link.springer.com/10.1007/978-3-319-06028-6_26

  • Bhattacharya I and Getoor L. (2014). Entity Resolution. Encyclopedia of Machine Learning and Data Mining. 10.1007/978-1-4899-7502-7_81-1. (1-8).

    http://link.springer.com/10.1007/978-1-4899-7502-7_81-1

  • Zhu Y, Li Q and Zhu Y. Enhancing Object Distinction Utilizing Probabilistic Topic Model. Proceedings of the 2013 International Conference on Cloud Computing and Big Data. (177-182).

    https://doi.org/10.1109/CLOUDCOM-ASIA.2013.61

  • Oliveira-Neto F, Han L and Jeong M. (2013). An Online Self-Learning Algorithm for License Plate Matching. IEEE Transactions on Intelligent Transportation Systems. 14:4. (1806-1816). Online publication date: 1-Dec-2013.

    https://doi.org/10.1109/TITS.2013.2270107

  • Isele R and Bizer C. (2013). Active learning of expressive linkage rules using genetic programming. Web Semantics: Science, Services and Agents on the World Wide Web. 23. (2-15). Online publication date: 1-Dec-2013.

    https://doi.org/10.1016/j.websem.2013.06.001

  • Whang S and Garcia-Molina H. (2013). Joint entity resolution on multiple datasets. The VLDB Journal — The International Journal on Very Large Data Bases. 22:6. (773-795). Online publication date: 1-Dec-2013.

    https://doi.org/10.1007/s00778-013-0308-z

  • Cugler D, Medeiros C, Shekhar S and Toledo L. A Geographical Approach for Metadata Quality Improvement in Biological Observation Databases. Proceedings of the 2013 IEEE 9th International Conference on e-Science. (212-220).

    https://doi.org/10.1109/eScience.2013.14

  • Demartini G, Difallah D and Cudré-Mauroux P. (2013). Large-scale linked data integration using probabilistic reasoning and crowdsourcing. The VLDB Journal — The International Journal on Very Large Data Bases. 22:5. (665-687). Online publication date: 1-Oct-2013.

    https://doi.org/10.1007/s00778-013-0324-z

  • Li J, Wang Z, Zhang X and Tang J. (2013). Large scale instance matching via multiple indexes and candidate selection. Knowledge-Based Systems. 50:C. (112-120). Online publication date: 1-Sep-2013.

    /doi/10.5555/2770959.2771062

  • Bellare K, Iyengar S, Parameswaran A and Rastogi V. (2013). Active Sampling for Entity Matching with Guarantees. ACM Transactions on Knowledge Discovery from Data. 7:3. (1-24). Online publication date: 1-Sep-2013.

    https://doi.org/10.1145/2500490

  • Li J, Wang Z, Zhang X and Tang J. (2013). Large scale instance matching via multiple indexes and candidate selection. Knowledge-Based Systems. 10.1016/j.knosys.2013.06.004. 50. (112-120). Online publication date: 1-Sep-2013.

    https://linkinghub.elsevier.com/retrieve/pii/S0950705113001809

  • Vatsalan D, Christen P and Verykios V. (2013). A taxonomy of privacy-preserving record linkage techniques. Information Systems. 38:6. (946-969). Online publication date: 1-Sep-2013.

    https://doi.org/10.1016/j.is.2012.11.005

  • Bair E. (2013). Semi-supervised clustering methods. WIREs Computational Statistics. 5:5. (349-361). Online publication date: 1-Sep-2013.

    https://doi.org/10.1002/wics.1270

  • Razniewski S, Montali M and Nutt W. Verification of query completeness over processes. Proceedings of the 11th international conference on Business Process Management. (155-170).

    https://doi.org/10.1007/978-3-642-40176-3_13

  • Jung J and Lee D. (2013). Inferring disease association using clinical factors in a combinatorial manner and their use in drug repositioning. Bioinformatics. 10.1093/bioinformatics/btt327. 29:16. (2017-2023). Online publication date: 15-Aug-2013.

    https://academic.oup.com/bioinformatics/article/29/16/2017/200070

  • Bai X, Junqueira F and Sengamedu S. Exploiting user clicks for automatic seed set generation for entity matching. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. (980-988).

    https://doi.org/10.1145/2487575.2487662

  • Ferrara A, Nikolov A, Noessner J and Scharffe F. (2013). Evaluation of instance matching tools. Web Semantics: Science, Services and Agents on the World Wide Web. 21. (49-60). Online publication date: 1-Aug-2013.

    https://doi.org/10.1016/j.websem.2013.05.004

  • Dal Bianco G, Galante R, Heuser C and Gonçalves M. Tuning large scale deduplication with reduced effort. Proceedings of the 25th International Conference on Scientific and Statistical Database Management. (1-12).

    https://doi.org/10.1145/2484838.2484873

  • Chaganty A, Lal A, Nori A and Rajamani S. Combining Relational Learning with SMT Solvers Using CEGAR. Proceedings of the 25th International Conference on Computer Aided Verification - Volume 8044. (447-462).

    /doi/10.5555/2958031.2958109

  • Yu Q, Jiang H, Liu C and Wu M. (2013). The application of data mining in multi-supplier Points of Interest processing 2013 9th International Conference on Natural Computation (ICNC). 10.1109/ICNC.2013.6818119. 978-1-4673-4714-3. (984-989).

    http://ieeexplore.ieee.org/document/6818119/

  • Agarwal P, Shroff G and Malhotra P. Approximate Incremental Big-Data Harmonization. Proceedings of the 2013 IEEE International Congress on Big Data. (118-125).

    https://doi.org/10.1109/BigData.Congress.2013.24

  • Lu J, Lin C, Wang W, Li C and Wang H. String similarity measures and joins with synonyms. Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. (373-384).

    https://doi.org/10.1145/2463676.2465313

  • Moustafa W, Miao H, Deshpande A and Getoor L. GRDB. Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. (1085-1088).

    https://doi.org/10.1145/2463676.2465257

  • de Bakker M, Frasincar F and Vandic D. A hybrid model words-driven approach for web product duplicate detection. Proceedings of the 25th international conference on Advanced Information Systems Engineering. (149-161).

    https://doi.org/10.1007/978-3-642-38709-8_10

  • Lange D and Naumann F. (2013). Cost-aware query planning for similarity search. Information Systems. 38:4. (455-469). Online publication date: 1-Jun-2013.

    https://doi.org/10.1016/j.is.2012.11.009

  • Boufares F, Ben Salem A, Rehab M and Correia S. (2013). Similar data elimination: MFB algorithm 2013 International Conference on Control, Decision and Information Technologies (CoDIT). 10.1109/CoDIT.2013.6689559. 978-1-4673-5549-0. (289-293).

    http://ieeexplore.ieee.org/document/6689559/

  • De Carvalho M, Laender A, GonçAlves M and Da Silva A. (2013). An evolutionary approach to complex schema matching. Information Systems. 38:3. (302-316). Online publication date: 1-May-2013.

    https://doi.org/10.1016/j.is.2012.10.002

  • de Bakker M, Vandic D, Frasincar F and Kaymak U. Model words-driven approaches for duplicate detection on the web. Proceedings of the 28th Annual ACM Symposium on Applied Computing. (717-723).

    https://doi.org/10.1145/2480362.2480500

  • Nuray-Turan R, Kalashnikov D and Mehrotra S. (2013). Adaptive Connection Strength Models for Relationship-Based Entity Resolution. Journal of Data and Information Quality. 4:2. (1-22). Online publication date: 1-Mar-2013.

    https://doi.org/10.1145/2435221.2435224

  • Song D and Heflin J. (2013). Domain-Independent Entity Coreference for Linking Ontology Instances. Journal of Data and Information Quality. 4:2. (1-29). Online publication date: 1-Mar-2013.

    https://doi.org/10.1145/2435221.2435223

  • Ioannou E, Rassadko N and Velegrakis Y. (2012). On Generating Benchmark Data for Entity Matching. Journal on Data Semantics. 10.1007/s13740-012-0015-8. 2:1. (37-56). Online publication date: 1-Mar-2013.

    http://link.springer.com/10.1007/s13740-012-0015-8

  • Ma Y and Tran T. TYPiMatch. Proceedings of the sixth ACM international conference on Web search and data mining. (325-334).

    https://doi.org/10.1145/2433396.2433439

  • Kim K, Chung B, Jung J and Park J. (2013). Revenue maximizing itemset construction for online shopping services. Industrial Management & Data Systems. 10.1108/02635571311289683. 113:1. (96-116). Online publication date: 25-Jan-2013.

    https://www.emerald.com/insight/content/doi/10.1108/02635571311289683/full/html

  • Li Y, Kamousi P, Han F, Yang S, Yan X and Suri S. (2013). Memory efficient minimum substring partitioning. Proceedings of the VLDB Endowment. 6:3. (169-180). Online publication date: 1-Jan-2013.

    https://doi.org/10.14778/2535569.2448951

  • Chaganty A, Lal A, Nori A and Rajamani S. (2013). Combining Relational Learning with SMT Solvers Using CEGAR. Computer Aided Verification. 10.1007/978-3-642-39799-8_30. (447-462).

    http://link.springer.com/10.1007/978-3-642-39799-8_30

  • Wang L, Zhang R, Sha C, He X and Zhou A. (2013). A Hybrid Framework for Product Normalization in Online Shopping. Database Systems for Advanced Applications. 10.1007/978-3-642-37450-0_28. (370-384).

    http://link.springer.com/10.1007/978-3-642-37450-0_28

  • Mani I, Yeh A and Condon S. (2013). Learning to Match Names Across Languages. Multi-source, Multilingual Information Extraction and Summarization. 10.1007/978-3-642-28569-1_3. (53-71).

    http://link.springer.com/10.1007/978-3-642-28569-1_3

  • Ryu S and Benatallah B. Integrating feature analysis and background knowledge to recommend similarity functions. Proceedings of the 13th international conference on Web Information Systems Engineering. (673-680).

    https://doi.org/10.1007/978-3-642-35063-4_52

  • Rizoiu M, Velcin J and Lallich S. Structuring Typical Evolutions Using Temporal-Driven Constrained Clustering. Proceedings of the 2012 IEEE 24th International Conference on Tools with Artificial Intelligence - Volume 01. (610-617).

    https://doi.org/10.1109/ICTAI.2012.88

  • Banerjee S, Cukic B and Adjeroh D. Automated Duplicate Bug Report Classification Using Subsequence Matching. Proceedings of the 2012 IEEE 14th International Symposium on High-Assurance Systems Engineering. (74-81).

    https://doi.org/10.1109/HASE.2012.38

  • Sariyar M, Borg A and Pommerening K. (2012). Active learning strategies for the deduplication of electronic patient data using classification trees. Journal of Biomedical Informatics. 45:5. (893-900). Online publication date: 1-Oct-2012.

    https://doi.org/10.1016/j.jbi.2012.02.002

  • Bellet A, Habrard A and Sebban M. (2012). Good edit similarity learning by loss minimization. Machine Language. 89:1-2. (5-35). Online publication date: 1-Oct-2012.

    https://doi.org/10.1007/s10994-012-5293-8

  • Redl C, Breskovic I, Brandic I and Dustdar S. Automatic SLA Matching and Provider Selection in Grid and Cloud Computing Markets. Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid Computing. (85-94).

    https://doi.org/10.1109/Grid.2012.18

  • Bellare K, Iyengar S, Parameswaran A and Rastogi V. Active sampling for entity matching. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. (1131-1139).

    https://doi.org/10.1145/2339530.2339707

  • Shu L, Lin C, Meng W, Han Y, Yu C and Smalheiser N. (2012). A framework for entity resolution with efficient blocking 2012 IEEE 13th International Conference on Information Reuse & Integration (IRI). 10.1109/IRI.2012.6303041. 978-1-4673-2284-3. (431-440).

    http://ieeexplore.ieee.org/document/6303041/

  • Andrews N, Eisner J and Dredze M. Name phylogeny. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. (344-355).

    /doi/10.5555/2390948.2390991

  • Isele R and Bizer C. (2012). Learning expressive linkage rules using genetic programming. Proceedings of the VLDB Endowment. 5:11. (1638-1649). Online publication date: 1-Jul-2012.

    https://doi.org/10.14778/2350229.2350276

  • Wang J, Kraska T, Franklin M and Feng J. (2012). CrowdER. Proceedings of the VLDB Endowment. 5:11. (1483-1494). Online publication date: 1-Jul-2012.

    https://doi.org/10.14778/2350229.2350263

  • Bhattacharya I, Godbole S, Joshi S and Verma A. (2012). Cross-Guided Clustering. ACM Transactions on Knowledge Discovery from Data. 6:2. (1-28). Online publication date: 1-Jul-2012.

    https://doi.org/10.1145/2297456.2297461

  • Galal A, Hasan H and Imam I. (2012). Learnable hyperspectral measures. Egyptian Informatics Journal. 10.1016/j.eij.2012.04.004. 13:2. (85-94). Online publication date: 1-Jul-2012.

    http://linkinghub.elsevier.com/retrieve/pii/S1110866512000205

  • Hammerton J, Granitzer M, Harvey D, Hristakeva M and Jack K. On generating large-scale ground truth datasets for the deduplication of bibliographic records. Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics. (1-12).

    https://doi.org/10.1145/2254129.2254153

  • Movshovitz-Attias D and Cohen W. Alignment-HMM-based extraction of abbreviations from biomedical text. Proceedings of the 2012 Workshop on Biomedical Natural Language Processing. (47-55).

    /doi/10.5555/2391123.2391130

  • Jimenez S, Becerra C and Gelbukh A. Soft cardinality + ML. Proceedings of the First Joint Conference on Lexical and Computational Semantics - Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation. (684-688).

    /doi/10.5555/2387636.2387752

  • Jimenez S, Becerra C and Gelbukh A. Soft cardinality. Proceedings of the First Joint Conference on Lexical and Computational Semantics - Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation. (449-453).

    /doi/10.5555/2387636.2387709

  • Wong T. (2012). Learning to adapt cross language information extraction wrapper. Applied Intelligence. 36:4. (918-931). Online publication date: 1-Jun-2012.

    https://doi.org/10.1007/s10489-011-0305-0

  • Fu Z, Zhou J, Christen P and Boot M. Multiple instance learning for group record linkage. Proceedings of the 16th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining - Volume Part I. (171-182).

    https://doi.org/10.1007/978-3-642-30217-6_15

  • Ngonga Ngomo A and Lyko K. EAGLE. Proceedings of the 9th international conference on The Semantic Web: research and applications. (149-163).

    https://doi.org/10.1007/978-3-642-30284-8_17

  • Hawashin B, Fotouhi F, Truta T and Grosky W. (2012). Efficient Privacy Preserving Protocols for Similarity Join. Transactions on Data Privacy. 5:1. (297-331). Online publication date: 1-Apr-2012.

    /doi/10.5555/2207141.2207146

  • Shen Q and Boongoen T. (2012). Fuzzy Orders-of-Magnitude-Based Link Analysis for Qualitative Alias Detection. IEEE Transactions on Knowledge and Data Engineering. 24:4. (649-664). Online publication date: 1-Apr-2012.

    https://doi.org/10.1109/TKDE.2010.255

  • Draisbach U, Naumann F, Szott S and Wonneberg O. Adaptive Windows for Duplicate Detection. Proceedings of the 2012 IEEE 28th International Conference on Data Engineering. (1073-1083).

    https://doi.org/10.1109/ICDE.2012.20

  • Hua M and Pei J. Aggregate queries on probabilistic record linkages. Proceedings of the 15th International Conference on Extending Database Technology. (360-371).

    https://doi.org/10.1145/2247596.2247639

  • Dutta S, Bhattacherjee S and Narang A. Towards "intelligent compression" in streams. Proceedings of the 15th International Conference on Extending Database Technology. (228-238).

    https://doi.org/10.1145/2247596.2247624

  • Molnár A, Benczúr A and Sidló C. Flexible and efficient distributed resolution of large entities. Proceedings of the 7th international conference on Foundations of Information and Knowledge Systems. (244-263).

    https://doi.org/10.1007/978-3-642-28472-4_14

  • de Carvalho M, Laender A, Goncalves M and da Silva A. (2012). A Genetic Programming Approach to Record Deduplication. IEEE Transactions on Knowledge and Data Engineering. 24:3. (399-412). Online publication date: 1-Mar-2012.

    https://doi.org/10.1109/TKDE.2010.234

  • Boufares F and Ben Salem A. (2012). Heterogeneous data-integration and data quality: Overview of conflicts 2012 6th International Conference on Sciences of Electronic, Technologies of Information and Telecommunications (SETIT). 10.1109/SETIT.2012.6482029. 978-1-4673-1658-3. (867-874).

    http://ieeexplore.ieee.org/document/6482029/

  • Schifanella C, Sapino M and Candan K. (2012). On context-aware co-clustering with metadata support. Journal of Intelligent Information Systems. 38:1. (209-239). Online publication date: 1-Feb-2012.

    https://doi.org/10.1007/s10844-011-0151-x

  • OYAMA S, HAYASHI K and KASHIMA H. (2012). Link Prediction Across Time via Cross-Temporal Locality Preserving Projections. IEICE Transactions on Information and Systems. 10.1587/transinf.E95.D.2664. E95.D:11. (2664-2673).

    https://www.jstage.jst.go.jp/article/transinf/E95.D/11/E95.D_2664/_article

  • Nguyen H and Cao T. (2012). NAMED ENTITY DISAMBIGUATION: A HYBRID APPROACH. International Journal of Computational Intelligence Systems. 10.1080/18756891.2012.747661. 5:6. (1052).

    https://www.atlantis-press.com/article/25868036

  • Niu L, Wu J and Shi Y. (2012). Entity Disambiguation with Textual and Connection Information. Procedia Computer Science. 10.1016/j.procs.2012.04.136. 9. (1249-1255).

    http://linkinghub.elsevier.com/retrieve/pii/S1877050912002578

  • Zhang L, Liu Q and Lu J. (2012). Effective Keyword Search with Synonym Rules over XML Document. Web-Age Information Management. 10.1007/978-3-642-33050-6_28. (289-298).

    http://link.springer.com/10.1007/978-3-642-33050-6_28

  • Zhu J, Xie Q and Chin E. (2012). A Hybrid Time-Series Link Prediction Framework for Large Social Network. Database and Expert Systems Applications. 10.1007/978-3-642-32597-7_30. (345-359).

    http://link.springer.com/10.1007/978-3-642-32597-7_30

  • Niu L, Wu J and Shi Y. Entity Resolution with Attribute and Connection Graph. Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops. (267-271).

    https://doi.org/10.1109/ICDMW.2011.75

  • Khot T, Natarajan S, Kersting K and Shavlik J. Learning Markov Logic Networks via Functional Gradient Boosting. Proceedings of the 2011 IEEE 11th International Conference on Data Mining. (320-329).

    https://doi.org/10.1109/ICDM.2011.87

  • Ryu S, Benatallah B, Paik H, Kim Y and Compton P. Similarity function recommender service using incremental user knowledge acquisition. Proceedings of the 9th international conference on Service-Oriented Computing. (219-234).

    https://doi.org/10.1007/978-3-642-25535-9_15

  • Fu Z, Christen P and Boot M. A supervised learning and group linking method for historical census household linkage. Proceedings of the Ninth Australasian Data Mining Conference - Volume 121. (153-162).

    /doi/10.5555/2483628.2483646

  • Meged A and Gelbard R. (2011). Adjusting Fuzzy Similarity Functions for use with standard data mining tools. Journal of Systems and Software. 84:12. (2374-2383). Online publication date: 1-Dec-2011.

    https://doi.org/10.1016/j.jss.2011.07.009

  • Borges E, Becker K, Heuser C and Galante R. An Automatic Approach for Duplicate Bibliographic Metadata Identification Using Classification. Proceedings of the 2011 30th International Conference of the Chilean Computer Science Society. (47-53).

    https://doi.org/10.1109/SCCC.2011.8

  • Bellet A, Sebban M and Habrard A. An Experimental Study on Learning with Good Edit Similarity Functions. Proceedings of the 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence. (126-133).

    https://doi.org/10.1109/ICTAI.2011.27

  • Rasooli M, Kahefi O and Minaei-Bidgoli B. (2011). Effect of adaptive spell checking in Persian 2011 7th International Conference on Natural Language Processing and Knowledge Engineering (NLPKE). 10.1109/NLPKE.2011.6138186. . (161-164).

    http://ieeexplore.ieee.org/document/6138186/

  • Kolb L, Köpcke H, Thor A and Rahm E. Learning-based entity resolution with MapReduce. Proceedings of the third international workshop on Cloud data management. (1-6).

    https://doi.org/10.1145/2064085.2064087

  • Kiseleva J, Agichtein E and Billsus D. Mining query structure from click data. Proceedings of the 20th ACM international conference on Information and knowledge management. (2217-2220).

    https://doi.org/10.1145/2063576.2063930

  • Lange D and Naumann F. Efficient similarity search. Proceedings of the 20th ACM international conference on Information and knowledge management. (1679-1688).

    https://doi.org/10.1145/2063576.2063819

  • Leitão L and Calado P. Duplicate detection through structure optimization. Proceedings of the 20th ACM international conference on Information and knowledge management. (443-452).

    https://doi.org/10.1145/2063576.2063644

  • Lange D and Naumann F. Frequency-aware similarity measures. Proceedings of the 20th ACM international conference on Information and knowledge management. (243-248).

    https://doi.org/10.1145/2063576.2063616

  • Song D and Heflin J. Automatically generating data linkages using a domain-independent candidate selection approach. Proceedings of the 10th international conference on The semantic web - Volume Part I. (649-664).

    /doi/10.5555/2063016.2063058

  • Li W, Hayes D, Baran J, Porter C and Schweiger T. (2011). A Grid and Cloud Based System for Data Grouping Computation and Online Service. International Journal of Grid and High Performance Computing. 10.4018/jghpc.2011100104. 3:4. (39-52). Online publication date: 1-Oct-2011.

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jghpc.2011100104

  • Bellet A, Habrard A and Sebban M. Learning good edit similarities with generalization guarantees. Proceedings of the 2011 European conference on Machine learning and knowledge discovery in databases - Volume Part I. (188-203).

    /doi/10.5555/2034063.2034088

  • Bellet A, Habrard A and Sebban M. Learning good edit similarities with generalization guarantees. Proceedings of the 2011th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part I. (188-203).

    https://doi.org/10.1007/978-3-642-23780-5_22

  • Ektefa M, Jabar M, Sidi F, Memar S, Ibrahim H and Ramli A. (2011). A threshold-based similarity measure for duplicate detection 2011 IEEE Conference on Open Systems (ICOS). 10.1109/ICOS.2011.6079233. 978-1-61284-931-7. (37-41).

    http://ieeexplore.ieee.org/document/6079233/

  • Borges E, de Carvalho M, Galante R, Gonçalves M and Laender A. (2011). An unsupervised heuristic-based approach for bibliographic metadata deduplication. Information Processing and Management: an International Journal. 47:5. (706-718). Online publication date: 1-Sep-2011.

    https://doi.org/10.1016/j.ipm.2011.01.009

  • Buche P, Dibie-Barthélemy J, Khefifi R and Saïs F. An ontology-based method for duplicate detection in web data tables. Proceedings of the 22nd international conference on Database and expert systems applications - Volume Part I. (511-525).

    /doi/10.5555/2035368.2035417

  • Patro S and Wang W. Learning top-k transformation rules. Proceedings of the 22nd international conference on Database and expert systems applications - Volume Part I. (172-186).

    /doi/10.5555/2035368.2035384

  • Yang K and Wu Y. Author Name Disambiguation in Citations. Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Volume 03. (335-338).

    https://doi.org/10.1109/WI-IAT.2011.181

  • Kannan A, Givoni I, Agrawal R and Fuxman A. Matching unstructured product offers to structured product specifications. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. (404-412).

    https://doi.org/10.1145/2020408.2020474

  • Elhadad M, Gabay D and Netzer Y. (2011). Automatic Evaluation of Search Ontologies in the Entertainment Domain Using Natural Language Processing. Applied Semantic Web Technologies. 10.1201/b11085-14. (275-295). Online publication date: 10-Aug-2011.

    http://www.crcnetbase.com/doi/10.1201/b11085-14

  • Lee T, Wang Z, Wang H and Hwang S. (2020). Web scale taxonomy cleansing. Proceedings of the VLDB Endowment. 4:12. (1295-1306). Online publication date: 1-Aug-2011.

    https://doi.org/10.14778/3402755.3402763

  • Liu X, Dong X, Ooi B and Srivastava D. (2011). Online data fusion. Proceedings of the VLDB Endowment. 4:11. (932-943). Online publication date: 1-Aug-2011.

    https://doi.org/10.14778/3402707.3402731

  • Ataullah A and Tompa F. (2011). Business policy modeling and enforcement in databases. Proceedings of the VLDB Endowment. 4:11. (921-931). Online publication date: 1-Aug-2011.

    https://doi.org/10.14778/3402707.3402730

  • Levandoski J, Ekstrand M, Ludwig M, Eldawy A, Mokbel M and Riedl J. (2011). RecBench. Proceedings of the VLDB Endowment. 4:11. (911-920). Online publication date: 1-Aug-2011.

    https://doi.org/10.14778/3402707.3402729

  • Sun L, Cheng R, Li X, Cheung D and Han J. (2011). On link-based similarity join. Proceedings of the VLDB Endowment. 4:11. (714-725). Online publication date: 1-Aug-2011.

    https://doi.org/10.14778/3402707.3402712

  • Chen G, Vo H, Wu S, Ooi B and Özsu M. (2020). A Framework for supporting DBMS-like indexes in the cloud. Proceedings of the VLDB Endowment. 4:11. (702-713). Online publication date: 1-Aug-2011.

    https://doi.org/10.14778/3402707.3402711

  • Bernstein P, Madhavan J and Rahm E. (2020). Generic schema matching, ten years later. Proceedings of the VLDB Endowment. 4:11. (695-701). Online publication date: 1-Aug-2011.

    https://doi.org/10.14778/3402707.3402710

  • Ku C and Leroy G. (2011). A crime reports analysis system to identify related crimes. Journal of the American Society for Information Science and Technology. 62:8. (1533-1547). Online publication date: 1-Aug-2011.

    https://doi.org/10.1002/asi.21552

  • Wang J, Li G, Yu J and Feng J. (2011). Entity matching. Proceedings of the VLDB Endowment. 4:10. (622-633). Online publication date: 1-Jul-2011.

    https://doi.org/10.14778/2021017.2021020

  • Alemany L and Carrascosa R. A system for adaptive information extraction from highly informal text. Proceedings of the 16th international conference on Natural language processing and information systems. (145-152).

    /doi/10.5555/2026011.2026027

  • Hsu C, Kuo C, Cai C, Pendergrass S, Ritchie M and Ambite J. Learning phenotype mapping for integrating large genetic data. Proceedings of BioNLP 2011 Workshop. (19-27).

    /doi/10.5555/2002902.2002906

  • Bollegala D, Matsuo Y and Ishizuka M. (2011). Automatic Discovery of Personal Name Aliases from the Web. IEEE Transactions on Knowledge and Data Engineering. 23:6. (831-844). Online publication date: 1-Jun-2011.

    https://doi.org/10.1109/TKDE.2010.162

  • Martins B. A supervised machine learning approach for duplicate detection over gazetteer records. Proceedings of the 4th international conference on GeoSpatial semantics. (34-51).

    /doi/10.5555/2008664.2008669

  • Chanhom K and Natwichai J. (2011). An efficient approach for data-duplication detection based on RDBMS 2011 International Joint Conference on Computer Science and Software Engineering (JCSSE). 10.1109/JCSSE.2011.5930142. 978-1-4577-0686-8. (325-330).

    http://ieeexplore.ieee.org/document/5930142/

  • Shu L, Chen A, Xiong M and Meng W. Efficient SPectrAl Neighborhood blocking for entity resolution. Proceedings of the 2011 IEEE 27th International Conference on Data Engineering. (1067-1078).

    https://doi.org/10.1109/ICDE.2011.5767835

  • Dorneles C, Gonçalves R and dos Santos Mello R. (2011). Approximate data instance matching: a survey. Knowledge and Information Systems. 27:1. (1-21). Online publication date: 1-Apr-2011.

    https://doi.org/10.1007/s10115-010-0285-0

  • Fan X, Wang J, Pu X, Zhou L and Lv B. (2011). On Graph-Based Name Disambiguation. Journal of Data and Information Quality. 2:2. (1-23). Online publication date: 1-Feb-2011.

    https://doi.org/10.1145/1891879.1891883

  • Creamer G. (2010). Linking Entity Resolution and Risk. Eastern Economic Journal. 10.1057/eej.2010.63. 37:1. (150-164). Online publication date: 1-Jan-2011.

    http://link.springer.com/10.1057/eej.2010.63

  • Song D and Heflin J. (2011). Automatically Generating Data Linkages Using a Domain-Independent Candidate Selection Approach. The Semantic Web – ISWC 2011. 10.1007/978-3-642-25073-6_41. (649-664).

    http://link.springer.com/10.1007/978-3-642-25073-6_41

  • Buche P, Dibie-Barthélemy J, Khefifi R and Saïs F. (2011). An Ontology-Based Method for Duplicate Detection in Web Data Tables. Database and Expert Systems Applications. 10.1007/978-3-642-23088-2_38. (511-525).

    http://link.springer.com/10.1007/978-3-642-23088-2_38

  • Patro S and Wang W. (2011). Learning Top-k Transformation Rules. Database and Expert Systems Applications. 10.1007/978-3-642-23088-2_12. (172-186).

    http://link.springer.com/10.1007/978-3-642-23088-2_12

  • Costa G, Cuzzocrea A, Manco G and Ortale R. (2011). Data De-duplication: A Review. Learning Structure and Schemas from Documents. 10.1007/978-3-642-22913-8_18. (385-412).

    http://link.springer.com/10.1007/978-3-642-22913-8_18

  • Alonso i Alemany L and Carrascosa R. (2011). A System for Adaptive Information Extraction from Highly Informal Text. Natural Language Processing and Information Systems. 10.1007/978-3-642-22327-3_14. (145-152).

    http://link.springer.com/10.1007/978-3-642-22327-3_14

  • Middleton A and Bayliss D. (2011). Salt: Scalable Automated Linking Technology for Data-Intensive Computing. Handbook of Data Intensive Computing. 10.1007/978-1-4614-1415-5_8. (189-234).

    https://link.springer.com/10.1007/978-1-4614-1415-5_8

  • Bhattacharya I and Getoor L. (2011). Entity Resolution. Encyclopedia of Machine Learning. 10.1007/978-0-387-30164-8_254. (321-326).

    https://link.springer.com/10.1007/978-0-387-30164-8_254

  • Hawashin B, Fotouhi F and Grosky W. Diffusion Maps. Proceedings of the 2010 IEEE International Conference on Data Mining Workshops. (9-16).

    https://doi.org/10.1109/ICDMW.2010.77

  • Ruiz C, Spiliopoulou M and Menasalvas E. (2010). Density-based semi-supervised clustering. Data Mining and Knowledge Discovery. 21:3. (345-370). Online publication date: 1-Nov-2010.

    https://doi.org/10.1007/s10618-009-0157-y

  • Song S and Chen L. Efficient set-correlation operator inside databases. Proceedings of the 19th ACM international conference on Information and knowledge management. (139-148).

    https://doi.org/10.1145/1871437.1871459

  • Gulhane P, Rastogi R, Sengamedu S and Tengli A. (2010). Exploiting content redundancy for web information extraction. Proceedings of the VLDB Endowment. 3:1-2. (578-587). Online publication date: 1-Sep-2010.

    https://doi.org/10.14778/1920841.1920915

  • Köpcke H, Thor A and Rahm E. (2010). Evaluation of entity resolution approaches on real-world match problems. Proceedings of the VLDB Endowment. 3:1-2. (484-493). Online publication date: 1-Sep-2010.

    https://doi.org/10.14778/1920841.1920904

  • Guo S, Dong X, Srivastava D and Zajac R. (2010). Record linkage with uniqueness constraints and erroneous values. Proceedings of the VLDB Endowment. 3:1-2. (417-428). Online publication date: 1-Sep-2010.

    https://doi.org/10.14778/1920841.1920897

  • Menestrina D, Whang S and Garcia-Molina H. (2010). Evaluating entity resolution results. Proceedings of the VLDB Endowment. 3:1-2. (208-219). Online publication date: 1-Sep-2010.

    https://doi.org/10.14778/1920841.1920871

  • Zhang J. An Efficient and Effective Duplication Detection Method in Large Database Applications. Proceedings of the 2010 Fourth International Conference on Network and System Security. (494-501).

    https://doi.org/10.1109/NSS.2010.78

  • Jiampojamarn S, Dwyer K, Bergsma S, Bhargava A, Dou Q, Kim M and Kondrak G. Transliteration generation and mining with limited training resources. Proceedings of the 2010 Named Entities Workshop. (39-47).

    /doi/10.5555/1870457.1870462

  • Li M, Wang H, Li J and Gao H. Efficient duplicate record detection based on similarity estimation. Proceedings of the 11th international conference on Web-age information management. (595-607).

    /doi/10.5555/1884017.1884090

  • Shah G, Lertwachara K and Ayanso A. (2010). Record Linkage in Healthcare. International Journal of Healthcare Delivery Reform Initiatives. 10.4018/jhdri.2010070104. 2:3. (29-47). Online publication date: 1-Jul-2010.

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jhdri.2010070104

  • Jiang N and Chen Z. (2010). Model-driven data cleaning for signal processing system in sensor networks 2010 2nd International Conference on Signal Processing Systems (ICSPS). 10.1109/ICSPS.2010.5555772. 978-1-4244-6892-8. (V1-237-V1-242).

    http://ieeexplore.ieee.org/document/5555772/

  • Chan K, Wong T and Lam W. (2010). Adapting relational logic models using unlabeled data 2010 International Conference on Machine Learning and Cybernetics (ICMLC). 10.1109/ICMLC.2010.5581072. 978-1-4244-6526-2. (167-172).

    http://ieeexplore.ieee.org/document/5581072/

  • Xiujun Wang and Hong Shen . (2010). Improved Decaying Bloom Filter for duplicate detection in data streams over sliding windows 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT 2010). 10.1109/ICCSIT.2010.5564586. 978-1-4244-5537-9. (348-353).

    http://ieeexplore.ieee.org/document/5564586/

  • de Freitas J, Pappa G, da Silva A, Gonccalves M, Moura E, Veloso A, Laender A and de Carvalho M. (2010). Active Learning Genetic programming for record deduplication 2010 IEEE Congress on Evolutionary Computation (CEC). 10.1109/CEC.2010.5586104. 978-1-4244-6909-3. (1-8).

    http://ieeexplore.ieee.org/document/5586104/

  • Yang T, Jin R and Jain A. Learning from noisy side information by generalized maximum entropy model. Proceedings of the 27th International Conference on International Conference on Machine Learning. (1199-1206).

    /doi/10.5555/3104322.3104474

  • i Alemany L and Infante-Lopez G. Data-driven computational linguistics at FaMAF-UNC, Argentina. Proceedings of the NAACL HLT 2010 Young Investigators Workshop on Computational Approaches to Languages of the Americas. (8-14).

    /doi/10.5555/1868701.1868703

  • Arasu A, Götz M and Kaushik R. On active learning of record matching packages. Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. (783-794).

    https://doi.org/10.1145/1807167.1807252

  • Bellet A, Bernard M, Murgue T and Sebban M. (2010). Learning state machine-based string edit kernels. Pattern Recognition. 43:6. (2330-2339). Online publication date: 1-Jun-2010.

    https://doi.org/10.1016/j.patcog.2009.12.008

  • Yongqing Z, Qing K and Guoqing D. A graphical method for reference reconciliation. Proceedings of the 15th international conference on Database systems for advanced applications. (156-167).

    /doi/10.5555/1880853.1880872

  • Su W, Wang J and Lochovsky F. (2010). Record Matching over Query Results from Multiple Web Databases. IEEE Transactions on Knowledge and Data Engineering. 22:4. (578-589). Online publication date: 1-Apr-2010.

    https://doi.org/10.1109/TKDE.2009.90

  • Bronselaer A and De Tré G. (2010). Properties of possibilistic string comparison. IEEE Transactions on Fuzzy Systems. 18:2. (312-325). Online publication date: 1-Apr-2010.

    https://doi.org/10.1109/TFUZZ.2010.2041353

  • Deng K, Wang L, Zhou X, Sadiq S and Fung G. Active duplicate detection. Proceedings of the 15th international conference on Database Systems for Advanced Applications - Volume Part I. (565-579).

    https://doi.org/10.1007/978-3-642-12026-8_43

  • Lwin T and Nyunt T. An Efficient Duplicate Detection System for XML Documents. Proceedings of the 2010 Second International Conference on Computer Engineering and Applications - Volume 02. (178-182).

    https://doi.org/10.1109/ICCEA.2010.189

  • Boongoen T, Shen Q and Price C. (2010). Disclosing false identity through hybrid link analysis. Artificial Intelligence and Law. 18:1. (77-102). Online publication date: 1-Mar-2010.

    https://doi.org/10.1007/s10506-010-9085-9

  • Becker H, Naaman M and Gravano L. Learning similarity metrics for event identification in social media. Proceedings of the third ACM international conference on Web search and data mining. (291-300).

    https://doi.org/10.1145/1718487.1718524

  • Köpcke H and Rahm E. (2010). Frameworks for entity matching. Data & Knowledge Engineering. 69:2. (197-210). Online publication date: 1-Feb-2010.

    https://doi.org/10.1016/j.datak.2009.10.003

  • Naumann F and Herschel M. (2010). An Introduction to Duplicate Detection. Synthesis Lectures on Data Management. 10.2200/S00262ED1V01Y201003DTM003. 2:1. (1-87). Online publication date: 1-Jan-2010.

    http://www.morganclaypool.com/doi/abs/10.2200/S00262ED1V01Y201003DTM003

  • Costa G, Manco G and Ortale R. (2010). An incremental clustering scheme for data de-duplication. Data Mining and Knowledge Discovery. 20:1. (152-187). Online publication date: 1-Jan-2010.

    https://doi.org/10.1007/s10618-009-0155-0

  • Richardson G. (2010). Automated Country Name Disambiguation for Code Set Alignment. Research and Advanced Technology for Digital Libraries. 10.1007/978-3-642-15464-5_66. (498-501).

    http://link.springer.com/10.1007/978-3-642-15464-5_66

  • Yongqing Z, Qing K and Guoqing D. (2010). A Graphical Method for Reference Reconciliation. Database Systems for Advanced Applications. 10.1007/978-3-642-14589-6_16. (156-167).

    http://link.springer.com/10.1007/978-3-642-14589-6_16

  • Li M, Wang H, Li J and Gao H. (2010). Efficient Duplicate Record Detection Based on Similarity Estimation. Web-Age Information Management. 10.1007/978-3-642-14246-8_58. (595-607).

    http://link.springer.com/10.1007/978-3-642-14246-8_58

  • Calado P, Herschel M and Leitão L. (2010). An Overview of XML Duplicate Detection Algorithms. Soft Computing in XML Data Management. 10.1007/978-3-642-14010-5_8. (193-224).

    http://link.springer.com/10.1007/978-3-642-14010-5_8

  • Namata G, Sharara H and Getoor L. (2010). A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks. Link Mining: Models, Algorithms, and Applications. 10.1007/978-1-4419-6515-8_4. (107-133).

    http://link.springer.com/10.1007/978-1-4419-6515-8_4

  • Yin X, Han J and Yu P. (2010). Veracity Analysis and Object Distinction. Link Mining: Models, Algorithms, and Applications. 10.1007/978-1-4419-6515-8_11. (283-304).

    http://link.springer.com/10.1007/978-1-4419-6515-8_11

  • Wang Y and Li Y. Deep Web Entity Identification Method Based on Improved Jaccard Coefficients. Proceedings of the 2009 International Conference on Research Challenges in Computer Science. (112-115).

    https://doi.org/10.1109/ICRCCS.2009.36

  • Lopez V, Nikolov A, Fernandez M, Sabou M, Uren V and Motta E. Merging and Ranking Answers in the Semantic Web. Proceedings of the 4th Asian Conference on The Semantic Web. (135-152).

    https://doi.org/10.1007/978-3-642-10871-6_10

  • Bhattacharya I, Godbole S, Joshi S and Verma A. Cross-Guided Clustering. Proceedings of the 2009 Ninth IEEE International Conference on Data Mining. (41-50).

    https://doi.org/10.1109/ICDM.2009.33

  • Zhang Yongxin , Li Qingzhong and Bian Ji . (2009). Enhancing collective entity resolution utilizing Quasi-Clique similarity measure 2009 Joint Conferences on Pervasive Computing (JCPC). 10.1109/JCPC.2009.5420180. 978-1-4244-5227-9. (263-266).

    http://ieeexplore.ieee.org/document/5420180/

  • Boyer L, Gandrillon O, Habrard A, Pellerin M and Sebban M. Learning Constrained Edit State Machines. Proceedings of the 2009 21st IEEE International Conference on Tools with Artificial Intelligence. (734-741).

    https://doi.org/10.1109/ICTAI.2009.27

  • Jin H, Huang L and Yuan P. Name Disambiguation Using Semantic Association Clustering. Proceedings of the 2009 IEEE International Conference on e-Business Engineering. (42-48).

    https://doi.org/10.1109/ICEBE.2009.16

  • Takasu A, Fukagawa D and Akutsu T. Latent Topic Extraction from Relational Table for Record Matching. Proceedings of the 12th International Conference on Discovery Science. (449-456).

    https://doi.org/10.1007/978-3-642-04747-3_38

  • Natschlager C and Kopetzky T. (2009). Classifying and Resolving Unique Constraint Violations during Synchronization Processes 2009 2nd International Symposium on Logistics and Industrial Informatics (LINDI 2009). 10.1109/LINDI.2009.5258757. . (1-6).

    http://ieeexplore.ieee.org/document/5258757/

  • Sidló C. Generic Entity Resolution in Relational Databases. Proceedings of the 13th East European Conference on Advances in Databases and Information Systems. (59-73).

    https://doi.org/10.1007/978-3-642-03973-7_6

  • Yih W. Learning term-weighting functions for similarity measures. Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2 - Volume 2. (793-802).

    /doi/10.5555/1699571.1699616

  • Takasu A. Bayesian Similarity Model Estimation for Approximate Recognized Text Search. Proceedings of the 2009 10th International Conference on Document Analysis and Recognition. (611-615).

    https://doi.org/10.1109/ICDAR.2009.193

  • Kong Q and Li Q. Object Distinction Based on Decision Tree. Proceedings of the 2009 International Conference on Information Technology and Computer Science - Volume 01. (421-424).

    https://doi.org/10.1109/ITCS.2009.91

  • Shavlik J and Natarajan S. Speeding up inference in Markov logic networks by preprocessing to reduce the size of the resulting grounded network. Proceedings of the 21st International Joint Conference on Artificial Intelligence. (1951-1956).

    /doi/10.5555/1661445.1661757

  • Arasu A and Kaushik R. A grammar-based entity representation framework for data cleaning. Proceedings of the 2009 ACM SIGMOD International Conference on Management of data. (233-244).

    https://doi.org/10.1145/1559845.1559871

  • Chen Z, Kalashnikov D and Mehrotra S. Exploiting context analysis for combining multiple entity resolution systems. Proceedings of the 2009 ACM SIGMOD International Conference on Management of data. (207-218).

    https://doi.org/10.1145/1559845.1559869

  • Gupta S, Bilenko M and Richardson M. Catching the drift. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. (1165-1174).

    https://doi.org/10.1145/1557019.1557145

  • Ciszak L. A Method for Automatic Discovery of Reference Data. Proceedings of the 22nd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems: Next-Generation Applied Intelligence. (797-805).

    https://doi.org/10.1007/978-3-642-02568-6_81

  • Wang C, Lu J and Zhang G. (2009). Web ontology data matching for integration: method and framework. International Journal of Web Information Systems. 10.1108/17440080910968463. 5:2. (220-238). Online publication date: 19-Jun-2009.

    https://www.emerald.com/insight/content/doi/10.1108/17440080910968463/full/html

  • Li K, Cao Z, Cao L and Zhao R. A novel semi-supervised fuzzy C-means clustering method. Proceedings of the 21st annual international conference on Chinese control and decision conference. (3804-3808).

    /doi/10.5555/1714810.1714850

  • Saïs F, Pernelle N and Rousset M. Combining a Logical and a Numerical Method for Data Reconciliation. Journal on Data Semantics XII. (66-94).

    https://doi.org/10.1007/978-3-642-00685-2_3

  • Boongoen T and Shen Q. Intelligent hybrid approach to false identity detection. Proceedings of the 12th International Conference on Artificial Intelligence and Law. (147-156).

    https://doi.org/10.1145/1568234.1568251

  • Kunlun Li , Zheng Cao , Liping Cao and Rui Zhao . (2009). A novel semi-supervised fuzzy c-means clustering method 2009 Chinese Control and Decision Conference (CCDC). 10.1109/CCDC.2009.5191706. 978-1-4244-2722-2. (3761-3765).

    http://ieeexplore.ieee.org/document/5191706/

  • Piskorski J, Wieloch K and Sydow M. (2009). On knowledge-poor methods for person name matching and lemmatization for highly inflectional languages. Information Retrieval. 10.1007/s10791-008-9085-5. 12:3. (275-299). Online publication date: 1-Jun-2009.

    http://link.springer.com/10.1007/s10791-008-9085-5

  • Rendle S, Preisach C and Schmidt-Thieme L. Learning to Extract Relations for Relational Classification. Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. (1062-1071).

    https://doi.org/10.1007/978-3-642-01307-2_114

  • Arasu A, Ré C and Suciu D. Large-Scale Deduplication with Constraints Using Dedupalog. Proceedings of the 2009 IEEE International Conference on Data Engineering. (952-963).

    https://doi.org/10.1109/ICDE.2009.43

  • Ho V, Compton P, Benatallah B, Vayssière J, Menzel L and Vogler H. An Incremental Knowledge Acquisition Method for Improving Duplicate Invoices Detection. Proceedings of the 2009 IEEE International Conference on Data Engineering. (1415-1418).

    https://doi.org/10.1109/ICDE.2009.38

  • Kraus J, Palm G, Schwenker F and Kestler H. (2009). Semi‐Supervised Clustering in Functional Genomics. Mathematical Analysis of Evolution, Information, and Complexity. 10.1002/9783527628025.ch9. (243-271). Online publication date: 18-Mar-2009.

    https://onlinelibrary.wiley.com/doi/10.1002/9783527628025.ch9

  • Ahuja A and Ng Y. (2009). A dynamic attribute-based data filtering and recovery scheme for web information processing. Knowledge and Information Systems. 18:3. (263-291). Online publication date: 1-Mar-2009.

    /doi/10.5555/3225670.3226021

  • Ahuja A and Ng Y. (2008). A dynamic attribute-based data filtering and recovery scheme for web information processing. Knowledge and Information Systems. 10.1007/s10115-008-0140-8. 18:3. (263-291). Online publication date: 1-Mar-2009.

    http://link.springer.com/10.1007/s10115-008-0140-8

  • Jimenez S, Becerra C, Gelbukh A and Gonzalez F. Generalized Mongue-Elkan Method for Approximate Text String Comparison. Proceedings of the 10th International Conference on Computational Linguistics and Intelligent Text Processing. (559-570).

    https://doi.org/10.1007/978-3-642-00382-0_45

  • Gopalan P and Radhakrishnan J. Finding duplicates in a data stream. Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms. (402-411).

    /doi/10.5555/1496770.1496815

  • Singh S, Schultz K and McCallum A. (2009). Bi-directional Joint Inference for Entity Resolution and Segmentation Using Imperatively-Defined Factor Graphs. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-642-04174-7_27. (414-429).

    http://link.springer.com/10.1007/978-3-642-04174-7_27

  • Vu Q, Takasu A and Adachi J. (2009). A Versatile Record Linkage Method by Term Matching Model Using CRF. Database and Expert Systems Applications. 10.1007/978-3-642-03573-9_46. (547-560).

    http://link.springer.com/10.1007/978-3-642-03573-9_46

  • Ciszak Ł. (2009). A Method for Automatic Standardization of Text Attributes without Reference Data Sets. Man-Machine Interactions. 10.1007/978-3-642-00563-3_51. (489-496).

    http://link.springer.com/10.1007/978-3-642-00563-3_51

  • Arasu A and Domingo-Ferrer J. (2009). Record Matching. Encyclopedia of Database Systems. 10.1007/978-0-387-39940-9_594. (2354-2358).

    http://link.springer.com/10.1007/978-0-387-39940-9_594

  • Dinerstein J, Dinerstein S, Egbert P and Clyde S. Learning-Based Fusion for Data Deduplication. Proceedings of the 2008 Seventh International Conference on Machine Learning and Applications. (66-71).

    https://doi.org/10.1109/ICMLA.2008.83

  • Nikolov A, Uren V, Motta E and Roeck A. Refining Instance Coreferencing Results Using Belief Propagation. Proceedings of the 3rd Asian Semantic Web Conference on The Semantic Web. (405-419).

    https://doi.org/10.1007/978-3-540-89704-0_28

  • Guo H and Viktor H. (2008). Multirelational classification: a multiple view approach. Knowledge and Information Systems. 10.1007/s10115-008-0127-5. 17:3. (287-312). Online publication date: 1-Dec-2008.

    http://link.springer.com/10.1007/s10115-008-0127-5

  • Wang C, Lu J and Zhang G. An ontology data matching method for web information integration. Proceedings of the 10th International Conference on Information Integration and Web-based Applications & Services. (208-213).

    https://doi.org/10.1145/1497308.1497349

  • Shen H and Zhang Y. (2008). Improved approximate detection of duplicates for data streams over sliding windows. Journal of Computer Science and Technology. 23:6. (973-987). Online publication date: 1-Nov-2008.

    https://doi.org/10.1007/s11390-008-9192-1

  • Aleixo P and Pardo T. Finding related sentences in multiple documents for multidocument discourse parsing of Brazilian Portuguese texts. Companion Proceedings of the XIV Brazilian Symposium on Multimedia and the Web. (298-303).

    https://doi.org/10.1145/1809980.1810055

  • Herschel M and Naumann F. Scaling up duplicate detection in graph data. Proceedings of the 17th ACM conference on Information and knowledge management. (1325-1326).

    https://doi.org/10.1145/1458082.1458259

  • Okazaki N, Tsuruoka Y, Ananiadou S and Tsujii J. A discriminative candidate generator for string transformations. Proceedings of the Conference on Empirical Methods in Natural Language Processing. (447-456).

    /doi/10.5555/1613715.1613772

  • de Carvalho M, Laender A, Gonçalves M and Porto T. The impact of parameter setup on a genetic programming approach to record deduplication. Proceedings of the 23rd Brazilian symposium on Databases. (91-105).

    /doi/10.5555/1498932.1498942

  • Borges E, Galante R and Gonçalves M. Uma abordagem efetiva e eficiente para deduplicação de metadados bibliográficos de objetos digitais. Proceedings of the 23rd Brazilian symposium on Databases. (76-90).

    /doi/10.5555/1498932.1498941

  • Ciszak L. (2008). Application of clustering and association methods in data cleaning 2008 International Multiconference on Computer Science and Information Technology (IMCSIT). 10.1109/IMCSIT.2008.4747224. 978-83-60810-14-9. (97-103).

    http://ieeexplore.ieee.org/document/4747224/

  • Kang H, Getoor L, Shneiderman B, Bilgic M and Licamele L. (2008). Interactive Entity Resolution in Relational Data. IEEE Transactions on Visualization and Computer Graphics. 14:5. (999-1014). Online publication date: 1-Sep-2008.

    https://doi.org/10.1109/TVCG.2008.55

  • Paskalev P and Nikolov V. (2008). Evaluation of records similarity in a duplication search engine using neural network 2008 4th International IEEE Conference "Intelligent Systems" (IS). 10.1109/IS.2008.4670510. 978-1-4244-1739-1. (11-59-11-63).

    http://ieeexplore.ieee.org/document/4670510/

  • Zhao H and Ram S. (2008). Entity matching across heterogeneous data sources. Data & Knowledge Engineering. 66:3. (368-381). Online publication date: 1-Sep-2008.

    https://doi.org/10.1016/j.datak.2008.04.007

  • Varde A, Bique S, Rundensteiner E, Brown D, Liang J, Sisson R, Sheybani E and Sayre B. Component Selection to Optimize Distance Function Learning in Complex Scientific Data Sets. Proceedings of the 19th international conference on Database and Expert Systems Applications. (269-282).

    https://doi.org/10.1007/978-3-540-85654-2_27

  • Christen P. Automatic record linkage using seeded nearest neighbour and support vector machine classification. Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. (151-159).

    https://doi.org/10.1145/1401890.1401913

  • Mani I, Yeh A and Condon S. Learning to match names across languages. Proceedings of the Workshop on Multi-source Multilingual Information Extraction and Summarization. (2-9).

    /doi/10.5555/1613172.1613176

  • Weis M, Naumann F, Jehle U, Lufter J and Schuster H. (2008). Industry-scale duplicate detection. Proceedings of the VLDB Endowment. 1:2. (1253-1264). Online publication date: 1-Aug-2008.

    https://doi.org/10.14778/1454159.1454165

  • Wong T, Lam W and Wong T. An unsupervised framework for extracting and normalizing product attributes from multiple web sites. Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. (35-42).

    https://doi.org/10.1145/1390334.1390343

  • Wong T, Wong T and Lam W. An unsupervised approach for product record normalization across different web sites. Proceedings of the 23rd national conference on Artificial intelligence - Volume 2. (1249-1254).

    /doi/10.5555/1620163.1620267

  • Golbeck J and Rothstein M. Linking social networks on the web with FOAF. Proceedings of the 23rd national conference on Artificial intelligence - Volume 2. (1138-1143).

    /doi/10.5555/1620163.1620249

  • Oyama S, Shirasuna K and Tanaka K. Identification of time-varying objects on the web. Proceedings of the 8th ACM/IEEE-CS joint conference on Digital libraries. (285-294).

    https://doi.org/10.1145/1378889.1378939

  • Doerr M and Iorizzo D. (2008). The dream of a global knowledge network—A new approach. Journal on Computing and Cultural Heritage . 1:1. (1-23). Online publication date: 1-Jun-2008.

    https://doi.org/10.1145/1367080.1367085

  • Christen P. Automatic training example selection for scalable unsupervised record linkage. Proceedings of the 12th Pacific-Asia conference on Advances in knowledge discovery and data mining. (511-518).

    /doi/10.5555/1786574.1786623

  • Rendle S and Schmidt-Thieme L. Scaling record linkage to non-uniform distributed class sizes. Proceedings of the 12th Pacific-Asia conference on Advances in knowledge discovery and data mining. (308-319).

    /doi/10.5555/1786574.1786605

  • Grira N, Crucianu M and Boujemaa N. (2008). Active semi-supervised fuzzy clustering. Pattern Recognition. 41:5. (1834-1844). Online publication date: 1-May-2008.

    /doi/10.5555/1340786.1343138

  • Arasu A, Chaudhuri S and Kaushik R. Transformation-based Framework for Record Matching. Proceedings of the 2008 IEEE 24th International Conference on Data Engineering. (40-49).

    https://doi.org/10.1109/ICDE.2008.4497412

  • Dursun B and Sonmez A. (2008). Türkçe metin benzerlik hesaplamasi için yeni bir yöntem 2008 IEEE 16th Signal Processing, Communication and Applications Conference (SIU). 10.1109/SIU.2008.4632581. 978-1-4244-1998-2. (1-4).

    http://ieeexplore.ieee.org/document/4632581/

  • Kou Y. Improving the accuracy of entity identification through refinement. Proceedings of the 2008 EDBT Ph.D. workshop. (39-48).

    https://doi.org/10.1145/1387150.1387157

  • Carvalho M, Laender A, Gonçalves M and da Silva A. Replica identification using genetic programming. Proceedings of the 2008 ACM symposium on Applied computing. (1801-1806).

    https://doi.org/10.1145/1363686.1364118

  • Kan M and Tan Y. (2008). Record matching in digital library metadata. Communications of the ACM. 51:2. (91-94). Online publication date: 1-Feb-2008.

    https://doi.org/10.1145/1314215.1314231

  • Michelson M and Knoblock C. (2008). Creating relational data from unstructured and ungrammatical data sources. Journal of Artificial Intelligence Research. 31:1. (543-590). Online publication date: 1-Jan-2008.

    /doi/10.5555/1622655.1622671

  • Nikolov A, Uren V, Motta E and de Roeck A. (2008). Integration of Semantically Annotated Data by the KnoFuss Architecture. Knowledge Engineering: Practice and Patterns. 10.1007/978-3-540-87696-0_24. (265-274).

    http://link.springer.com/10.1007/978-3-540-87696-0_24

  • Christen P. Automatic Training Example Selection for Scalable Unsupervised Record Linkage. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-540-68125-0_45. (511-518).

    http://link.springer.com/10.1007/978-3-540-68125-0_45

  • Rendle S and Schmidt-Thieme L. Scaling Record Linkage to Non-uniform Distributed Class Sizes. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-540-68125-0_28. (308-319).

    http://link.springer.com/10.1007/978-3-540-68125-0_28

  • Christen P. A two-step classification approach to unsupervised record linkage. Proceedings of the sixth Australasian conference on Data mining and analytics - Volume 70. (111-119).

    /doi/10.5555/1378245.1378260

  • Michelson M and Knoblock C. (2007). Unsupervised information extraction from unstructured, ungrammatical data sources on the World Wide Web. International Journal on Document Analysis and Recognition. 10:3-4. (211-226). Online publication date: 1-Dec-2007.

    /doi/10.5555/2722906.2723125

  • Michelson M and Knoblock C. (2007). Unsupervised information extraction from unstructured, ungrammatical data sources on the World Wide Web. International Journal of Document Analysis and Recognition (IJDAR). 10.1007/s10032-007-0052-2. 10:3-4. (211-226). Online publication date: 1-Dec-2007.

    http://link.springer.com/10.1007/s10032-007-0052-2

  • Leitão L, Calado P and Weis M. Structure-based inference of xml similarity for fuzzy duplicate detection. Proceedings of the sixteenth ACM conference on Conference on information and knowledge management. (293-302).

    https://doi.org/10.1145/1321440.1321483

  • Takasu A, Fukagawa D and Akutsu T. Statistical Learning Algorithm for Tree Similarity. Proceedings of the 2007 Seventh IEEE International Conference on Data Mining. (667-672).

    https://doi.org/10.1109/ICDM.2007.38

  • Santos W, Teixeira T, Machado C, Meira Jr. W, Ferreira R, Guedes D and Da Silva A. (2007). A Scalable Parallel Deduplication Algorithm 19th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'07). 10.1109/SBAC-PAD.2007.32. 0-7695-3014-1. (79-86).

    http://ieeexplore.ieee.org/document/4384045/

  • Jian Y and Chen C. (2007). Two-View Motion Segmentation by Mixtures of Dirichlet Process with Model Selection and Outlier Removal 2007 IEEE 11th International Conference on Computer Vision. 10.1109/ICCV.2007.4408974. 978-1-4244-1630-1. (1-8).

    http://ieeexplore.ieee.org/document/4408974/

  • Jian B and Vemuri B. (2007). Metric Learning Using Iwasawa Decomposition 2007 IEEE 11th International Conference on Computer Vision. 10.1109/ICCV.2007.4408846. 978-1-4244-1630-1. (1-6).

    http://ieeexplore.ieee.org/document/4408846/

  • Chaudhuri S, Chen B, Ganti V and Kaushik R. Example-driven design of efficient record matching queries. Proceedings of the 33rd international conference on Very large data bases. (327-338).

    /doi/10.5555/1325851.1325891

  • Bhattacharya I and Getoor L. (2007). Query-time entity resolution. Journal of Artificial Intelligence Research. 30:1. (621-657). Online publication date: 1-Sep-2007.

    /doi/10.5555/1622637.1622653

  • Phua C, Lee V, Smith-Miles K and Gayler R. Adaptive communal detection in search of adversarial identity crime. Proceedings of the 2007 international workshop on Domain driven data mining. (1-10).

    https://doi.org/10.1145/1288552.1288553

  • Doerr M and Papagelis M. (2007). A Method for Estimating the Precision of Placename Matching. IEEE Transactions on Knowledge and Data Engineering. 19:8. (1089-1101). Online publication date: 1-Aug-2007.

    https://doi.org/10.1109/TKDE.2007.1033

  • Kang H, Sehgal V and Getoor L. GeoDDupe. Proceedings of the 11th International Conference Information Visualization. (489-496).

    https://doi.org/10.1109/IV.2007.55

  • Egert B, Neumann S and Hinneburg A. Fast approximate duplicate detection for 2D-NMR spectra. Proceedings of the 4th international conference on Data integration in the life sciences. (139-155).

    /doi/10.5555/1768933.1768950

  • Chen Z, Kalashnikov D and Mehrotra S. Adaptive graphical approach to entity resolution. Proceedings of the 7th ACM/IEEE-CS joint conference on Digital libraries. (204-213).

    https://doi.org/10.1145/1255175.1255215

  • Wang C, Lu J and Zhang G. Generation and matching of ontology data for the semantic web in a peer-to-peer framework. Proceedings of the joint 9th Asia-Pacific web and 8th international conference on web-age information management conference on Advances in data and web management. (136-143).

    /doi/10.5555/1769708.1769730

  • Paskalev P and Antonov A. Increasing the performance of an application for duplication detection. Proceedings of the 2007 international conference on Computer systems and technologies. (1-8).

    https://doi.org/10.1145/1330598.1330725

  • Wang C, Lu J and Zhang G. A constrained clustering approach to duplicate detection among relational data. Proceedings of the 11th Pacific-Asia conference on Advances in knowledge discovery and data mining. (308-319).

    /doi/10.5555/1764441.1764474

  • Nuray-Turan R, Kalashnikov D and Mehrotra S. Self-tuning in graph-based reference disambiguation. Proceedings of the 12th international conference on Database systems for advanced applications. (325-336).

    /doi/10.5555/1783823.1783862

  • Yin X, Han J and Yu P. (2007). Object Distinction: Distinguishing Objects with Identical Names 2007 IEEE 23rd International Conference on Data Engineering. 10.1109/ICDE.2007.368983. 1-4244-0802-4. (1242-1246).

    http://ieeexplore.ieee.org/document/4221773/

  • Bhattacharya I and Getoor L. (2007). Collective entity resolution in relational data. ACM Transactions on Knowledge Discovery from Data. 1:1. (5-es). Online publication date: 1-Mar-2007.

    https://doi.org/10.1145/1217299.1217304

  • Berti-Équille L. (2006). Data quality awareness: a case study for cost optimal association rule mining. Knowledge and Information Systems. 10.1007/s10115-006-0006-x. 11:2. (191-215). Online publication date: 8-Feb-2007.

    http://link.springer.com/10.1007/s10115-006-0006-x

  • Wong T and Lam W. (2007). Adapting Web information extraction knowledge via mining site-invariant and site-dependent features. ACM Transactions on Internet Technology. 7:1. (6-es). Online publication date: 1-Feb-2007.

    https://doi.org/10.1145/1189740.1189746

  • Egert B, Neumann S and Hinneburg A. Fast Approximate Duplicate Detection for 2D-NMR Spectra. Data Integration in the Life Sciences. 10.1007/978-3-540-73255-6_13. (139-155).

    http://link.springer.com/10.1007/978-3-540-73255-6_13

  • Wang C, Lu J and Zhang G. (2007). Generation and Matching of Ontology Data for the Semantic Web in a Peer-to-Peer Framework. Advances in Data and Web Management. 10.1007/978-3-540-72524-4_17. (136-143).

    http://link.springer.com/10.1007/978-3-540-72524-4_17

  • Nuray-Turan R, Kalashnikov D and Mehrotra S. Self-tuning in Graph-Based Reference Disambiguation. Advances in Databases: Concepts, Systems and Applications. 10.1007/978-3-540-71703-4_29. (325-336).

    http://link.springer.com/10.1007/978-3-540-71703-4_29

  • Wang C, Lu J and Zhang G. A Constrained Clustering Approach to Duplicate Detection Among Relational Data. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-540-71701-0_31. (308-319).

    http://link.springer.com/10.1007/978-3-540-71701-0_31

  • Christen P and Goiser K. (2007). Quality and Complexity Measures for Data Linkage and Deduplication. Quality Measures in Data Mining. 10.1007/978-3-540-44918-8_6. (127-151).

    http://link.springer.com/10.1007/978-3-540-44918-8_6

  • Berti-Équille L. (2007). Measuring and Modelling Data Quality for Quality-Awareness in Data Mining. Quality Measures in Data Mining. 10.1007/978-3-540-44918-8_5. (101-126).

    http://link.springer.com/10.1007/978-3-540-44918-8_5

  • Wang C, Lu J and Zhang G. Integration of Ontology Data through Learning Instance Matching. Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence. (536-539).

    https://doi.org/10.1109/WI.2006.100

  • Singla P and Domingos P. Entity Resolution with Markov Logic. Proceedings of the Sixth International Conference on Data Mining. (572-582).

    https://doi.org/10.1109/ICDM.2006.65

  • Bilenko M, Kamath B and Mooney R. Adaptive Blocking. Proceedings of the Sixth International Conference on Data Mining. (87-96).

    https://doi.org/10.1109/ICDM.2006.13

  • Rendle S and Schmidt-Thieme L. Object Identification with Constraints. Proceedings of the Sixth International Conference on Data Mining. (1026-1031).

    https://doi.org/10.1109/ICDM.2006.117

  • Bilgic M, Licamele L, Getoor L and Shneiderman B. (2006). D-Dupe: An Interactive Tool for Entity Resolution in Social Networks 2006 IEEE Symposium On Visual Analytics And Technology. 10.1109/VAST.2006.261429. 1-4244-0591-2. (43-50).

    http://ieeexplore.ieee.org/document/4035746/

  • Varde A, Rundensteiner E, Ruiz C, Brown D, Maniruzzaman M and Sisson R. Designing semantics-preserving cluster representatives for scientific input conditions. Proceedings of the 15th ACM international conference on Information and knowledge management. (708-717).

    https://doi.org/10.1145/1183614.1183715

  • Goiser K and Christen P. Towards automated record linkage. Proceedings of the fifth Australasian conference on Data mining and analystics - Volume 61. (23-31).

    /doi/10.5555/1273808.1273812

  • Huo Y, Azuaje F, McCullagh P and Harper R. (2006). Semi-Supervised Clustering Models for Clinical Risk Assessment 2006 IEEE Symposium on Bioinformatics and Bioengineering. 10.1109/BIBE.2006.253341. 0-7695-2727-2. (243-250).

    http://ieeexplore.ieee.org/document/4019666/

  • Bernard M, Janodet J and Sebban M. A discriminative model of stochastic edit distance in the form of a conditional transducer. Proceedings of the 8th international conference on Grammatical Inference: algorithms and applications. (240-252).

    https://doi.org/10.1007/11872436_20

  • Shahri H and Shahri S. (2006). Eliminating Duplicates in Information Integration. IEEE Intelligent Systems. 21:5. (63-71). Online publication date: 1-Sep-2006.

    https://doi.org/10.1109/MIS.2006.90

  • Kestler H, Kraus J, Palm G and Schwenker F. On the effects of constraints in semi-supervised hierarchical clustering. Proceedings of the Second international conference on Artificial Neural Networks in Pattern Recognition. (57-66).

    https://doi.org/10.1007/11829898_6

  • Singla P and Domingos P. Memory-efficient inference in relational domains. Proceedings of the 21st national conference on Artificial intelligence - Volume 1. (488-493).

    /doi/10.5555/1597538.1597617

  • Michelson M and Knoblock C. Learning blocking schemes for record linkage. Proceedings of the 21st national conference on Artificial intelligence - Volume 1. (440-445).

    /doi/10.5555/1597538.1597609

  • Assfalg J, Kriegel H, Kroger P, Kunath P, Pryakhin A and Renz M. Time Series Analysis Using the Concept of Adaptable Threshold Similarity. Proceedings of the 18th International Conference on Scientific and Statistical Database Management. (251-260).

    https://doi.org/10.1109/SSDBM.2006.53

  • Deng F and Rafiei D. Approximately detecting duplicates for streaming data using stable bloom filters. Proceedings of the 2006 ACM SIGMOD international conference on Management of data. (25-36).

    https://doi.org/10.1145/1142473.1142477

  • de Carvalho M, Gonçalves M, Laender A and da Silva A. Learning to deduplicate. Proceedings of the 6th ACM/IEEE-CS joint conference on Digital libraries. (41-50).

    https://doi.org/10.1145/1141753.1141760

  • Kalashnikov D and Mehrotra S. (2006). Domain-independent data cleaning via analysis of entity-relationship graph. ACM Transactions on Database Systems. 31:2. (716-767). Online publication date: 1-Jun-2006.

    https://doi.org/10.1145/1138394.1138401

  • Andritsos P, Fuxman A and Miller R. Clean Answers over Dirty Databases. Proceedings of the 22nd International Conference on Data Engineering.

    https://doi.org/10.1109/ICDE.2006.35

  • Broder A, Eiron N, Fontoura M, Herscovici M, Lempel R, McPherson J, Qi R and Shekita E. Indexing shared content in information retrieval systems. Proceedings of the 10th international conference on Advances in Database Technology. (313-330).

    https://doi.org/10.1007/11687238_21

  • Gu L and Baxter R. Decision models for record linkage. Data Mining. (146-160).

    /doi/10.5555/2124128.2124142

  • Handl J and Knowles J. (2006). Semi-supervised feature selection via multiobjective optimization The 2006 IEEE International Joint Conference on Neural Network Proceedings. 10.1109/IJCNN.2006.247330. 0-7803-9490-9. (3319-3326).

    http://ieeexplore.ieee.org/document/1716552/

  • Neiling M. Identification of Real-world Objects in Multiple Databases. From Data and Information Analysis to Knowledge Engineering. 10.1007/3-540-31314-1_7. (63-74).

    http://link.springer.com/10.1007/3-540-31314-1_7

  • Oyama S and Tanaka K. (2006). Learning a Distance Metric for Object Identification Without Human Supervision. Knowledge Discovery in Databases: PKDD 2006. 10.1007/11871637_62. (609-616).

    http://link.springer.com/10.1007/11871637_62

  • Gu L and Baxter R. (2006). Decision Models for Record Linkage. Data Mining. 10.1007/11677437_12. (146-160).

    http://link.springer.com/10.1007/11677437_12

  • Minton S, Nanjo C, Knoblock C, Michalowski M and Michelson M. A Heterogeneous Field Matching Method for Record Linkage. Proceedings of the Fifth IEEE International Conference on Data Mining. (314-321).

    https://doi.org/10.1109/ICDM.2005.7

  • Bilenko M, Basu S and Sahami M. Adaptive Product Normalization. Proceedings of the Fifth IEEE International Conference on Data Mining. (58-65).

    https://doi.org/10.1109/ICDM.2005.18

  • Kang J, Lee D and Mitra P. Identifying value mappings for data integration. Proceedings of the 6th international conference on Web Information Systems Engineering. (544-551).

    https://doi.org/10.1007/11581062_46

  • Kang J, Han T, Lee D and Mitra P. Establishing value mappings using statistical models and user feedback. Proceedings of the 14th ACM international conference on Information and knowledge management. (68-75).

    https://doi.org/10.1145/1099554.1099569

  • Takasu A. A sequence labeling method using syntactical and textual patterns for record linkage. Proceedings of the Third international conference on Advances in Pattern Recognition - Volume Part I. (199-208).

    https://doi.org/10.1007/11551188_22

  • Bhattacharya I and Getoor L. Relational clustering for multi-type entity resolution. Proceedings of the 4th international workshop on Multi-relational mining. (3-12).

    https://doi.org/10.1145/1090193.1090195

  • Norén G, Orre R and Bate A. A hit-miss model for duplicate detection in the WHO drug safety database. Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. (459-468).

    https://doi.org/10.1145/1081870.1081923

  • Kok S and Domingos P. Learning the structure of Markov logic networks. Proceedings of the 22nd international conference on Machine learning. (441-448).

    https://doi.org/10.1145/1102351.1102407

  • Michelson M and Knoblock C. Semantic annotation of unstructured and ungrammatical text. Proceedings of the 19th international joint conference on Artificial intelligence. (1091-1098).

    /doi/10.5555/1642293.1642468

  • Cesario E, Folino F, Manco G and Pontieri L. An Incremental Clustering Scheme for Duplicate Detection in Large Databases. Proceedings of the 9th International Database Engineering & Application Symposium. (89-95).

    https://doi.org/10.1109/IDEAS.2005.10

  • Singla P and Domingos P. Discriminative training of Markov logic networks. Proceedings of the 20th national conference on Artificial intelligence - Volume 2. (868-873).

    /doi/10.5555/1619410.1619472

  • Shen W, Li X and Doan A. Constraint-based entity matching. Proceedings of the 20th national conference on Artificial intelligence - Volume 2. (862-867).

    /doi/10.5555/1619410.1619471

  • Christen P. Probabilistic data generation for deduplication and data linkage. Proceedings of the 6th international conference on Intelligent Data Engineering and Automated Learning. (109-116).

    https://doi.org/10.1007/11508069_15

  • Wellner B, Castaño J and Pustejovsky J. Adaptive string similarity metrics for biomedical reference resolution. Proceedings of the ACL-ISMB Workshop on Linking Biological Literature, Ontologies and Databases: Mining Biological Semantics. (9-16).

    /doi/10.5555/1641484.1641486

  • Chen Z, Kalashnikov D and Mehrotra S. Exploiting relationships for object consolidation. Proceedings of the 2nd international workshop on Information quality in information systems. (47-58).

    https://doi.org/10.1145/1077501.1077512

  • Weis M and Naumann F. DogmatiX tracks down duplicates in XML. Proceedings of the 2005 ACM SIGMOD international conference on Management of data. (431-442).

    https://doi.org/10.1145/1066157.1066207

  • Dong X, Halevy A and Madhavan J. Reference reconciliation in complex information spaces. Proceedings of the 2005 ACM SIGMOD international conference on Management of data. (85-96).

    https://doi.org/10.1145/1066157.1066168

  • Mooney R and Bunescu R. (2005). Mining knowledge from text using information extraction. ACM SIGKDD Explorations Newsletter. 7:1. (3-10). Online publication date: 1-Jun-2005.

    https://doi.org/10.1145/1089815.1089817

  • Yang H and Callan J. Near-duplicate detection for eRulemaking. Proceedings of the 2005 national conference on Digital government research. (78-86).

    /doi/10.5555/1065226.1065247

  • Metwally A, Agrawal D and El Abbadi A. Duplicate detection in click streams. Proceedings of the 14th international conference on World Wide Web. (12-21).

    https://doi.org/10.1145/1060745.1060753

  • Bilke A and Naumann F. Schema Matching Using Duplicates. Proceedings of the 21st International Conference on Data Engineering. (69-80).

    https://doi.org/10.1109/ICDE.2005.126

  • Chaudhuri S, Ganti V and Motwani R. Robust Identification of Fuzzy Duplicates. Proceedings of the 21st International Conference on Data Engineering. (865-876).

    https://doi.org/10.1109/ICDE.2005.125

  • Doan A and Halevy A. (2005). Semantic‐Integration Research in the Database Community. AI Magazine. 26:1. (83-94). Online publication date: 1-Mar-2005.

    https://doi.org/10.1609/aimag.v26i1.1801

  • Li X, Morie P and Roth D. (2005). Semantic Integration in Text. AI Magazine. 26:1. (45-58). Online publication date: 1-Mar-2005.

    https://doi.org/10.1609/aimag.v26i1.1798

  • Michalowski M, Thakkar S and Knoblock C. (2005). Automatically Utilizing Secondary Sources to Align Information Across Sources. AI Magazine. 26:1. (33-44). Online publication date: 1-Mar-2005.

    https://doi.org/10.1609/aimag.v26i1.1797

  • Oyama S and Manning C. (2005). Using Feature Conjunctions across Examples for Learning Pairwise Classifiers. Transactions of the Japanese Society for Artificial Intelligence. 10.1527/tjsai.20.105. 20. (105-116).

    http://joi.jlc.jst.go.jp/JST.JSTAGE/tjsai/20.105?from=CrossRef

  • Aizawa A and Oyama K. A Fast Linkage Detection Scheme for Multi-Source Information Integration International Workshop on Challenges in Web Information Retrieval and Integration. 10.1109/WIRI.2005.2. 0-7695-2414-1. (30-39).

    http://ieeexplore.ieee.org/document/1552993/

  • Singla P and Domingos P. (2005). Object Identification with Attribute-Mediated Dependences. Knowledge Discovery in Databases: PKDD 2005. 10.1007/11564126_31. (297-308).

    http://link.springer.com/10.1007/11564126_31

  • Oyama S and Manning C. Using feature conjunctions across examples for learning pairwise classifiers. Proceedings of the 15th European Conference on Machine Learning. (322-333).

    https://doi.org/10.1007/978-3-540-30115-8_31

  • Basu S, Bilenko M and Mooney R. A probabilistic framework for semi-supervised clustering. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. (59-68).

    https://doi.org/10.1145/1014052.1014062

  • Bilenko M, Basu S and Mooney R. Integrating constraints and metric learning in semi-supervised clustering. Proceedings of the twenty-first international conference on Machine learning.

    https://doi.org/10.1145/1015330.1015360

  • Weis M and Naumann F. Detecting duplicate objects in XML documents. Proceedings of the 2004 international workshop on Information quality in information systems. (10-19).

    https://doi.org/10.1145/1012453.1012456

  • Bhattacharya I and Getoor L. Iterative record linkage for cleaning and integration. Proceedings of the 9th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery. (11-18).

    https://doi.org/10.1145/1008694.1008697

  • Michalowski M, Ambite J, Thakkar S, Tuchinda R, Knoblock C and Minton S. (2004). Retrieving and Semantically Integrating Heterogeneous Data from the Web. IEEE Intelligent Systems. 19:3. (72-79). Online publication date: 1-May-2004.

    https://doi.org/10.1109/MIS.2004.16

  • Shahri H and Barforush A. (2004). Data mining for removing fuzzy duplicates using fuzzy inference IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04.. 10.1109/NAFIPS.2004.1336319. 0-7803-8376-1. (419-424 Vol.1).

    http://ieeexplore.ieee.org/document/1336319/

  • Okada T, Takasu A and Adachi J. (2004). Bibliographic Component Extraction Using Support Vector Machines and Hidden Markov Models. Research and Advanced Technology for Digital Libraries. 10.1007/978-3-540-30230-8_46. (501-512).

    http://link.springer.com/10.1007/978-3-540-30230-8_46

  • Shahri H and Barforush A. (2004). A Flexible Fuzzy Expert System for Fuzzy Duplicate Elimination in Data Cleaning. Database and Expert Systems Applications. 10.1007/978-3-540-30075-5_16. (161-170).

    http://link.springer.com/10.1007/978-3-540-30075-5_16

  • Bilenko M, Mooney R, Cohen W, Ravikumar P and Fienberg S. (2003). Adaptive Name Matching in Information Integration. IEEE Intelligent Systems. 18:5. (16-23). Online publication date: 1-Sep-2003.

    https://doi.org/10.1109/MIS.2003.1234765

  • Ferrara A, Nikolov A, Noessner J and Scharffe F. Evaluation of Instance Matching Tools: The Experience of OAEI. SSRN Electronic Journal. 10.2139/ssrn.3199068.

    https://www.ssrn.com/abstract=3199068