Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

AI on the edge: a comprehensive review

Published: 01 December 2022 Publication History

Abstract

With the advent of the Internet of Everything, the proliferation of data has put a huge burden on data centers and network bandwidth. To ease the pressure on data centers, edge computing, a new computing paradigm, is gradually gaining attention. Meanwhile, artificial intelligence services based on deep learning are also thriving. However, such intelligent services are usually deployed in data centers, which cause high latency. The combination of edge computing and artificial intelligence provides an effective solution to this problem. This new intelligence paradigm is called edge intelligence. In this paper, we focus on edge training and edge inference, the prior training models using local data at the resource-constrained edge devices. The latter deploying models at the edge devices through model compression and inference acceleration. This paper provides a comprehensive survey of existing architectures, technologies, frameworks and implementations in these two areas, and discusses existing challenges, possible solutions and future directions. We believe that this survey will make more researchers aware of edge intelligence.

References

[1]
AbdulRahman S, Tout H, Mourad A, et al. Fedmccs: multicriteria client selection model for optimal iot federated learning IEEE Internet Things J 2020 8 6 4723-4735
[2]
Aji AF, Heafield K (2017) Sparse communication for distributed gradient descent. ArXiv preprint arXiv:1704.05021
[3]
Almaslukh B, Al-Muhtadi J, and Artoli AM A robust convolutional neural network for online smartphone-based human activity recognition J Intell Fuzzy Syst 2018 35 2 1609-1620
[4]
Anwar S, Sung W (2016) Compact deep convolutional neural networks with coarse pruning. ArXiv preprint arXiv:1610.09639
[5]
Anwar S, Hwang K, and Sung W Structured pruning of deep convolutional neural networks ACM J Emerging Technol Comput Syst (JETC) 2017 13 3 1-18
[6]
Aono Y, Hayashi T, Wang L, et al. Privacy-preserving deep learning via additively homomorphic encryption IEEE Trans Inf Forensics Secur 2017 13 5 1333-1345
[7]
Apicharttrisorn K, Ran X, Chen J, et al (2019) Frugal following: Power thrifty object detection and tracking for mobile augmented reality. In: Proceedings of the 17th conference on embedded networked sensor systems, pp 96–109.
[8]
Astrid M, Lee SI (2017) Cp-decomposition with tensor power method for convolutional neural networks compression. In: 2017 IEEE international conference on big data and smart computing (BigComp). IEEE, pp 115–118.
[9]
Ba LJ, Caruana R (2013) Do deep nets really need to be deep? ArXiv preprint arXiv:1312.6184
[10]
Bagdasaryan E, Veit A, Hua Y, et al (2020) How to backdoor federated learning. In: International conference on artificial intelligence and statistics. PMLR, pp 2938–2948. http://proceedings.mlr.press/v108/bagdasaryan20a.html
[11]
Banbury CR, Reddi VJ, Lam M, et al (2020) Benchmarking tinyml systems: challenges and direction. ArXiv preprint arXiv:2003.04821
[12]
Bao X, Su C, Xiong Y, et al (2019) Flchain: a blockchain for auditable federated learning with trust and incentive. In: 2019 5th international conference on big data computing and communications (BIGCOM). IEEE, pp 151–159.
[13]
Bellman R (1953) An introduction to the theory of dynamic programming. Rand Corporation, Santa Monica. https://apps.dtic.mil/sti/pdfs/AD0074903.pdf
[14]
Bengio Y, Ducharme R, Vincent P, et al (2003) A neural probabilistic language model. J Mach Learn Res 3:1137–1155. http://jmlr.org/papers/v3/bengio03a.html
[15]
Bhattacharya S, Lane ND (2016) From smart to deep: robust activity recognition on smartwatches using deep learning. In: 2016 IEEE international conference on pervasive computing and communication workshops (PerCom Workshops), pp 1–6.
[16]
Blot M, Picard D, Cord M, et al (2016) Gossip training for deep learning. ArXiv preprint arXiv:1611.09726
[17]
Bolukbasi T, Wang J, Dekel O, et al (2017) Adaptive neural networks for efficient inference. In: Precup D, Teh YW (eds) Proceedings of the 34th international conference on machine learning, proceedings of machine learning research, vol 70. PMLR, pp 527–536. https://proceedings.mlr.press/v70/bolukbasi17a.html
[18]
Bonawitz K, Ivanov V, Kreuter B, et al (2017) Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pp 1175–1191.
[19]
Bonomi F, Milito RA, Zhu J, et al (2012) Fog computing and its role in the internet of things. In: Gerla M, Huang D (eds) Proceedings of the first edition of the MCC workshop on mobile cloud computing, MCC@SIGCOMM 2012, Helsinki, Finland, August 17, 2012. ACM, pp 13–16.
[20]
Buciluǎ C, Caruana R, Niculescu-Mizil A (2006) Model compression. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 535–541.
[21]
Bulat A, Tzimiropoulos G (2019) Xnor-net++: improved binary neural networks. ArXiv preprint arXiv:1909.13863
[22]
Caldas S, Konečny J, McMahan HB, et al (2018) Expanding the reach of federated learning by reducing client resource requirements. ArXiv preprint arXiv:1812.07210
[23]
Canel C, Kim T, Zhou G, et al (2019) Scaling video analytics on constrained edge nodes. ArXiv preprint arXiv:1905.13536. https://proceedings.mlsys.org/book/273.pdf
[24]
Chen PY, Hsieh JW, Gochoo M, et al (2019a) Smaller object detection for real-time embedded traffic flow estimation using fish-eye cameras. In: 2019 IEEE international conference on image processing (ICIP), pp 2956–2960.
[25]
Chen TYH, Ravindranath L, Deng S, et al (2015a) Glimpse: Continuous, real-time object recognition on mobile devices. In: Proceedings of the 13th ACM conference on embedded networked sensor systems, pp 155–168.
[26]
Chen W, Wilson J, Tyree S, et al (2015b) Compressing neural networks with the hashing trick. In: International conference on machine learning. PMLR, pp 2285–2294. http://arxiv.org/abs/1504.04788
[27]
Chen W, Wilson J, Tyree S, et al (2016) Compressing convolutional neural networks in the frequency domain. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1475–1484.
[28]
Chen Y, Luo T, Liu S, et al (2014) Dadiannao: a machine-learning supercomputer. In: 2014 47th annual IEEE/ACM International symposium on microarchitecture. IEEE, pp 609–622.
[29]
Chen Y, Sun X, and Jin Y Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation IEEE Trans Neural Netw Learn Syst 2019 31 10 4229-4238
[30]
Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258.
[31]
Courbariaux M, Bengio Y, David JP (2015) Binaryconnect: training deep neural networks with binary weights during propagations. In: Advances in neural information processing systems, pp 3123–3131. http://arxiv.org/abs/1511.00363
[32]
Courbariaux M, Hubara I, Soudry D, et al (2016) Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or -1. ArXiv preprint arXiv:1602.02830
[33]
Deng S, Zhao H, Fang W, et al. Edge intelligence: the confluence of edge computing and artificial intelligence IEEE Internet Things J 2020 7 8 7457-7469
[34]
Denil M, Shakibi B, Dinh L, et al (2013) Predicting parameters in deep learning. ArXiv preprint arXiv:1306.0543. https://proceedings.neurips.cc/paper/2013/hash/7fec306d1e665bc9c748b5d2b99a6e97-Abstract.html
[35]
Denton EL, Zaremba W, Bruna J, et al (2014) Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in neural information processing systems, pp 1269–1277. https://proceedings.neurips.cc/paper/2014/hash/2afe4567e1bf64d32a5527244d104cea-Abstract.html
[36]
Diethe T, Twomey N, Flach PA (2016) Active transfer learning for activity recognition. In: 24th European symposium on artificial neural networks, ESANN 2016, Bruges, Belgium, April 27–29, 2016. http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-99.pdf
[37]
Dosovitskiy A, Beyer L, Kolesnikov A, et al (2020) An image is worth 16x16 words: transformers for image recognition at scale. ArXiv preprint arXiv:2010.11929
[38]
Drolia U, Guo K, Narasimhan P (2017a) Precog: prefetching for image recognition applications at the edge. In: Proceedings of the 2nd ACM/IEEE symposium on edge computing, pp 1–13.
[39]
Drolia U, Guo K, Tan J, et al (2017b) Cachier: edge-caching for recognition applications. In: 2017 IEEE 37th international conference on distributed computing systems (ICDCS). IEEE, pp 276–286.
[40]
Du G, Zhang J, Luo Z, et al. Joint imbalanced classification and feature selection for hospital readmissions Knowl-Based Syst 2020 200 106 020
[41]
Du G, Zhang J, Ma F, et al. Towards graph-based class-imbalance learning for hospital readmission Expert Syst Appl 2021 176 114 791
[42]
Du K, Pervaiz A, Yuan X, et al (2020b) Server-driven video streaming for deep learning inference. In: Proceedings of the annual conference of the ACM special interest group on data communication on the applications, technologies, architectures, and protocols for computer communication. association for computing machinery, New York, NY, USA, pp 557–570.
[43]
Duan M, Liu D, Chen X, et al (2019) Astraea: self-balancing federated learning for improving classification accuracy of mobile deep learning applications. In: 2019 IEEE 37th international conference on computer design (ICCD). IEEE, pp 246–254.
[44]
Duan M, Liu D, Chen X, et al. Self-balancing federated learning with global imbalanced data in mobile systems IEEE Trans Parallel Distrib Syst 2020 32 1 59-71
[45]
Dwisnanto Putro M, Nguyen DL, Jo KH (2020) Fast eye detector using CPU based lightweight convolutional neural network. In: 2020 20th international conference on control, automation and systems (ICCAS), pp 12–16.
[46]
Elsken T, Metzen JH, Hutter F (2019) Neural architecture search: a survey. J Mach Learn Res 20(1):1997–2017. http://jmlr.org/papers/v20/18-598.html
[47]
Geyer RC, Klein T, Nabi M (2017) Differentially private federated learning: a client level perspective. ArXiv preprint arXiv:1712.07557
[48]
Gibiansky A (2017) Bringing HPC techniques to deep learning. Baidu Research, Tech Rep. http://research.baidu.com/bringing-hpc-techniques-deep-learning
[49]
Gong Y, Liu L, Yang M, et al (2014) Compressing deep convolutional networks using vector quantization. ArXiv preprint arXiv:1412.6115
[50]
Group OCAW, et al (2017) Openfog reference architecture for fog computing. OPFRA001 20817:162. https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
[51]
Guo J, Li Y, Lin W, et al (2018a) Network decoupling: From regular to depthwise separable convolutions. ArXiv preprint arXiv:1808.05517
[52]
Guo P, Hu B, Li R, et al (2018b) Foggycache: cross-device approximate computation reuse. In: Proceedings of the 24th annual international conference on mobile computing and networking, pp 19–34.
[53]
Guo Y, Yao A, Chen Y (2016) Dynamic network surgery for efficient DNNs. ArXiv preprint arXiv:1608.04493
[54]
Gupta S, Agrawal A, Gopalakrishnan K, et al (2015) Deep learning with limited numerical precision. In: International conference on machine learning. PMLR, pp 1737–1746. http://proceedings.mlr.press/v37/gupta15.html
[55]
Han S, Mao H, Dally WJ (2015a) Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. ArXiv preprint arXiv:1510.00149
[56]
Han S, Pool J, Tran J, et al (2015b) Learning both weights and connections for efficient neural networks. ArXiv preprint arXiv:1506.02626
[57]
Han S, Liu X, Mao H, et al (2016) EIE: efficient inference engine on compressed deep neural network. In: 43rd ACM/IEEE annual international symposium on computer architecture, ISCA 2016, Seoul, South Korea, June 18–22, 2016. IEEE Computer Society, pp 243–254.
[58]
Hartmann F, Suh S, Komarzewski A, et al (2019) Federated learning for ranking browser history suggestions. CoRR. http://arxiv.org/abs/1911.11807
[59]
Hassibi B, Stork DG, Wolff GJ (1993) Optimal brain surgeon and general network pruning. In: IEEE international conference on neural networks. IEEE, pp 293–299.
[60]
He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778.
[61]
He Y, Zhang X, Sun J (2017) Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE international conference on computer vision, pp 1389–1397.
[62]
Hegedűs I, Danner G, Jelasity M (2019) Gossip learning as a decentralized alternative to federated learning. In: IFIP international conference on distributed applications and interoperable systems. Springer, pp 74–90.
[63]
Heo B, Lee M, Yun S, et al (2019) Knowledge distillation with adversarial samples supporting decision boundary. In: Proceedings of the AAAI conference on artificial intelligence, pp 3771–3778. http://arxiv.org/abs/1805.05532
[64]
Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. ArXiv preprint arXiv:1503.02531.
[65]
Hinton GE, Osindero S, and Teh YW A fast learning algorithm for deep belief nets Neural Comput 2006 18 7 1527-1554
[66]
Hitaj B, Ateniese G, Perez-Cruz F (2017) Deep models under the GAN: information leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pp 603–618.
[67]
Hochreiter S and Schmidhuber J Long short-term memory Neural Comput 1997 9 8 1735-1780
[68]
Holi JL and Hwang JN Finite precision error analysis of neural network hardware implementations IEEE Trans Comput 1993 42 3 281-290
[69]
Howard A, Sandler M, Chu G, et al (2019) Searching for mobilenetv3. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 1314–1324. http://arxiv.org/abs/1905.02244
[70]
Howard AG, Zhu M, Chen B, et al (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. ArXiv preprint arXiv:1704.04861
[71]
Hsieh K, Ananthanarayanan G, Bodik P, et al (2018) Focus: querying large video datasets with low latency and low cost. In: 13th USENIX symposium on operating systems design and implementation (OSDI 18). USENIX Association, Carlsbad, CA, pp 269–286. https://www.usenix.org/conference/osdi18/presentation/hsieh
[72]
Hu C, Jiang J, Wang Z (2019) Decentralized federated learning: a segmented gossip approach. ArXiv preprint arXiv:1908.07782
[73]
Hu J, Shen L, Sun G (2018a) Squeeze-and-excitation networks. In: 2018 IEEE conference on computer vision and pattern recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018. Computer Vision Foundation/IEEE Computer Society, pp 7132–7141.
[74]
Hu Q, Wang P, Cheng J (2018b) From hashing to CNNs: training binary weight networks via hashing. In: 32nd AAAI conference on artificial intelligence. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16466
[75]
Huang G, Sun Y, Liu Z, et al (2016) Deep networks with stochastic depth. In: European conference on computer vision. Springer, pp 646–661.
[76]
Huang Y, Wang F, Wang F, et al (2019) Deepar: a hybrid device-edge-cloud execution framework for mobile deep learning applications. In: IEEE INFOCOM 2019-IEEE conference on computer communications workshops (INFOCOM WKSHPS). IEEE, pp 892–897.
[77]
Iandola FN, Han S, Moskewicz MW, et al (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5 MB model size. ArXiv preprint arXiv:1602.07360
[78]
Jaderberg M, Vedaldi A, Zisserman A (2014) Speeding up convolutional neural networks with low rank expansions. ArXiv preprint arXiv:1405.3866
[79]
Jain S, Zhang X, Zhou Y, et al (2018) Rexcam: Resource-efficient, cross-camera video analytics at scale. ArXiv preprint arXiv:1811.01268
[80]
Jain S, Zhang X, Zhou Y, et al (2020) Spatula: efficient cross-camera video analytics on large camera networks. In: 2020 IEEE/ACM symposium on edge computing (SEC). IEEE, pp 110–124.
[81]
Janjua ZH, Vecchio M, Antonini M, et al. IRESE: an intelligent rare-event detection system using unsupervised learning on the IOT edge Eng Appl Artif Intell 2019 84 41-50
[82]
Jiang Y, Wang S, Valls V, et al (2019) Model pruning enables efficient federated learning on edge devices. ArXiv preprint arXiv:1909.12326
[83]
Kang D, Emmons J, Abuzaid F, et al (2017a) Noscope: optimizing neural network queries over video at scale. ArXiv preprint arXiv:1703.02529.
[84]
Kang Y, Hauswald J, Gao C, et al. Neurosurgeon: collaborative intelligence between the cloud and mobile edge ACM SIGARCH Comput Arch News 2017 45 1 615-629
[85]
Kholod I, Yanaki E, Fomichev D, et al. Open-source federated learning frameworks for IOT: a comparative review and analysis Sensors 2021 21 1 167
[86]
Kim H, Park J, Bennis M, et al. Blockchained on-device federated learning IEEE Commun Lett 2019 24 6 1279-1283
[87]
Kim J, Park S, Kwak N (2018) Paraphrasing complex network: network compression via factor transfer. ArXiv preprint arXiv:1802.04977
[88]
Kim YD, Park E, Yoo S, et al (2015) Compression of deep convolutional neural networks for fast and low power mobile applications. ArXiv preprint arXiv:1511.06530.
[89]
Ko JH, Na T, Amir MF, et al (2018) Edge-host partitioning of deep neural networks with feature space encoding for resource-constrained internet-of-things platforms. In: 2018 15th IEEE international conference on advanced video and signal based surveillance (AVSS). IEEE, pp 1–6. http://arxiv.org/abs/1802.03835
[90]
Konečnỳ J, McMahan HB, Yu FX, et al (2016) Federated learning: strategies for improving communication efficiency. ArXiv preprint arXiv:1610.05492
[91]
Krizhevsky A, Sutskever I, and Hinton GE Imagenet classification with deep convolutional neural networks Adv Neural Inf Process Syst 2012 25 1097-1105
[92]
Lalitha A, Kilinc OC, Javidi T, et al (2019) Peer-to-peer federated learning on graphs. ArXiv preprint arXiv:1901.11173
[93]
Lane ND, Bhattacharya S, Georgiev P, et al (2016) Deepx: a software accelerator for low-power deep learning inference on mobile devices. In: 2016 15th ACM/IEEE international conference on information processing in sensor networks (IPSN). IEEE, pp 1–12.
[94]
Laskaridis S, Venieris SI, Almeida M, et al (2020) Spinn: synergistic progressive inference of neural networks over device and cloud. In: Proceedings of the 26th annual international conference on mobile computing and networking, pp 1–15.
[95]
Lebedev V, Ganin Y, Rakhuba M, et al (2014) Speeding-up convolutional neural networks using fine-tuned CP-decomposition. ArXiv preprint arXiv:1412.6553
[96]
LeCun Y, Boser BE, Denker JS, et al. Backpropagation applied to handwritten zip code recognition Neural Comput 1989 1 4 541-551
[97]
LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In: Advances in neural information processing systems, pp 598–605. http://papers.nips.cc/paper/250-optimal-brain-damage
[98]
Lee C, Hong S, Hong S, et al. Performance analysis of local exit for distributed deep neural networks over cloud and edge computing ETRI J 2020 42 5 658-668
[99]
Lee R, Venieris SI, Dudziak L, et al (2019) Mobisr: Efficient on-device super-resolution through heterogeneous mobile processors. In: The 25th annual international conference on mobile computing and networking, pp 1–16.
[100]
Lee S, Kim H, Jeong B, et al. A training method for low rank convolutional neural networks based on alternating tensor compose-decompose method Appl Sci 2021 11 2 643
[101]
Li D, Wang X, Kong D (2018a) Deeprebirth: accelerating deep neural network execution on mobile devices. In: Proceedings of the AAAI conference on artificial intelligence. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16652
[102]
Li D, Tasci S, Ghosh S, et al (2019a) RILOD: near real-time incremental learning for object detection at the edge. In: Chen S, Onishi R, Ananthanarayanan G, et al (eds) Proceedings of the 4th ACM/IEEE symposium on edge computing, SEC 2019, Arlington, Virginia, USA, November 7–9, 2019. ACM, pp 113–126.
[103]
Li E, Zeng L, Zhou Z, et al. Edge AI: on-demand accelerating deep neural network inference via edge computing IEEE Trans Wirel Commun 2019 19 1 447-457
[104]
Li F, Zhang B, Liu B (2016a) Ternary weight networks. ArXiv preprint arXiv:1605.04711
[105]
Li H, Kadav A, Durdanovic I, et al (2016b) Pruning filters for efficient convnets. ArXiv preprint arXiv:1608.08710
[106]
Li H, Hu C, Jiang J, et al (2018b) Jalad: joint accuracy-and latency-aware deep structure decoupling for edge-cloud execution. In: 2018 IEEE 24th international conference on parallel and distributed systems (ICPADS). IEEE, pp 671–678.
[107]
Li L, Ota K, and Dong M Deep learning for smart industry: efficient manufacture inspection system with fog computing IEEE Trans Industr Inf 2018 14 10 4665-4673
[108]
Li M, Xie L, Lv Z, et al (2020) Multistep deep system for multimodal emotion detection with invalid data in the internet of things. IEEE Access 8:187,208–187,221.
[109]
Li X, Huang K, Yang W, et al (2019c) On the convergence of fedavg on non-iid data. ArXiv preprint arXiv:1907.02189
[110]
Li Y, Lin S, Zhang B, et al (2019d) Exploiting kernel sparsity and entropy for interpretable CNN compression. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2800–2809.
[111]
Lin C, Zhong Z, Wu W, et al (2018a) Synaptic strength for convolutional neural network. ArXiv preprint arXiv:1811.02454
[112]
Lin M, Chen Q, Yan S (2013) Network in network. ArXiv preprint arXiv:1312.4400
[113]
Lin S, Ji R, Chen C, et al. Holistic CNN compression via low-rank decomposition with knowledge transfer IEEE Trans Pattern Anal Mach Intell 2018 41 12 2889-2905
[114]
Lin X, Zhao C, Pan W (2017a) Towards accurate binary convolutional neural network. ArXiv preprint arXiv:1711.11294
[115]
Lin Y, Han S, Mao H, et al (2017b) Deep gradient compression: reducing the communication bandwidth for distributed training. ArXiv preprint arXiv:1712.01887
[116]
Ling S, Pastor A, Li J, et al (2020) Few-shot pill recognition. In: 2020 IEEE/CVF conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020. Computer Vision Foundation/IEEE, pp 9786–9795.
[117]
Liu L, Li H, Gruteser M (2019) Edge assisted real-time object detection for mobile augmented reality. In: The 25th annual international conference on mobile computing and networking, pp 1–16.
[118]
Liu M, Ding X, Du W (2020) Continuous, real-time object detection on mobile devices without offloading. In: 2020 IEEE 40th international conference on distributed computing systems (ICDCS). IEEE, pp 976–986.
[119]
Liu Y, Garg S, Nie J, et al. Deep anomaly detection for time-series data in industrial IOT: a communication-efficient on-device federated learning approach IEEE Internet Things J 2021 8 8 6348-6358
[120]
Liu Z, Li J, Shen Z, et al (2017) Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE international conference on computer vision, pp 2736–2744.
[121]
Lo C, Su YY, Lee CY, et al (2017) A dynamic deep neural network design for efficient workload allocation in edge computing. In: 2017 IEEE international conference on computer design (ICCD). IEEE, pp 273–280.
[122]
Lu S, Zhang Y, Wang Y (2020) Decentralized federated learning for electronic health records. In: 2020 54th annual conference on information sciences and systems (CISS). IEEE, pp 1–5.
[123]
Lu Y, Huang X, Dai Y, et al. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT IEEE Trans Industr Inf 2019 16 6 4177-4186
[124]
Lungu I, Aimar A, Hu Y, et al. Siamese networks for few-shot learning on edge embedded devices IEEE J Emerg Sel Topics Circuits Syst 2020 10 4 488-497
[125]
Luo JH and Wu J Autopruner: an end-to-end trainable filter pruning method for efficient deep model inference Pattern Recogn 2020 107 107 461
[126]
Luo JH, Wu J, Lin W (2017) Thinet: a filter level pruning method for deep neural network compression. In: Proceedings of the IEEE international conference on computer vision, pp 5058–5066.
[127]
Luo Y and Yu S AILC: accelerate on-chip incremental learning with compute-in-memory technology IEEE Trans Comput 2021 70 8 1225-1238
[128]
Ma N, Zhang X, Zheng HT, et al (2018) Shufflenet v2: Practical guidelines for efficient CNN architecture design. In: Proceedings of the European conference on computer vision (ECCV), pp 116–131.
[129]
Manessi F, Rozza A, Bianco S, et al (2018) Automated pruning for deep neural network compression. In: 2018 24th international conference on pattern recognition (ICPR). IEEE, pp 657–664.
[130]
Mao J, Chen X, Nixon KW, et al (2017a) Modnn: Local distributed mobile computing system for deep neural network. In: Design, automation & test in Europe conference & exhibition (DATE). IEEE, pp 1396–1401.
[131]
Mao J, Yang Z, Wen W, et al (2017b) Mednn: a distributed mobile system with enhanced partition and deployment for large-scale DNNs. In: 2017 IEEE/ACM international conference on computer-aided design (ICCAD). IEEE, pp 751–756.
[132]
Marco VS, Taylor B, Wang Z, et al (2019) Optimizing deep learning inference on embedded systems through adaptive model selection. CoRR. http://arxiv.org/abs/1911.04946
[133]
Martinez B, Yang J, Bulat A, et al (2020) Training binary neural networks with real-to-binary convolutions. ArXiv preprint arXiv:2003.11535
[134]
Mathur A, Zhang T, Bhattacharya S, et al (2018) Using deep data augmentation training to address software and hardware heterogeneities in wearable and smartphone sensing devices. In: Mottola L, Gao J, Zhang P (eds) Proceedings of the 17th ACM/IEEE international conference on information processing in sensor networks, IPSN 2018, Porto, Portugal, April 11–13, 2018. IEEE/ACM, pp 200–211.
[135]
McCulloch WS and Pitts W A logical calculus of the ideas immanent in nervous activity Bull Math Biophys 1943 5 4 115-133
[136]
McMahan B, Moore E, Ramage D, et al (2017) Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics. PMLR, pp 1273–1282. http://proceedings.mlr.press/v54/mcmahan17a.html
[137]
Melis L, Song C, De Cristofaro E, et al (2019) Exploiting unintended feature leakage in collaborative learning. In: 2019 IEEE symposium on security and privacy (SP). IEEE, pp 691–706.
[138]
Mell P, Grance T et al (2011) The NIST definition of cloud computing.
[139]
Mirzadeh SI, Farajtabar M, Li A, et al (2020) Improved knowledge distillation via teacher assistant. In: Proceedings of the AAAI conference on artificial intelligence, pp 5191–5198. https://aaai.org/ojs/index.php/AAAI/article/view/5963
[140]
Mishra A, Marr D (2017) Apprentice: using knowledge distillation techniques to improve low-precision network accuracy. ArXiv preprint arXiv:1711.05852
[141]
Mishra A, Nurvitadhi E, Cook JJ, et al (2017) WRPN: wide reduced-precision networks. ArXiv preprint arXiv:1709.01134
[142]
Mnih V, Kavukcuoglu K, Silver D, et al (2013) Playing atari with deep reinforcement learning. CoRR. http://arxiv.org/abs/1312.5602
[143]
Molchanov P, Tyree S, Karras T, et al (2016) Pruning convolutional neural networks for resource efficient inference. ArXiv preprint arXiv:1611.06440. https://openreview.net/forum?id=SJGCiw5gl
[144]
Novikov A, Podoprikhin D, Osokin A, et al (2015) Tensorizing neural networks. ArXiv preprint arXiv:1509.06569
[145]
Pakha C, Chowdhery A, Jiang J (2018) Reinventing video streaming for distributed vision analytics. In: 10th USENIX workshop on hot topics in cloud computing (HotCloud 18). USENIX Association, Boston. https://www.usenix.org/conference/hotcloud18/presentation/pakha
[146]
Panda P, Ankit A, Wijesinghe P, et al (2016) Falcon: feature driven selective classification for energy-efficient image recognition. IEEE Trans Comput-Aided Des Integr Circuits Syst.
[147]
Panda P, Sengupta A, and Roy K Energy-efficient and improved image recognition with conditional deep learning ACM J Emerging Technol Comput Syst (JETC) 2017 13 3 1-21
[148]
Park E, Kim D, Kim S, et al (2015) Big/little deep neural network for ultra low power inference. In: 2015 international conference on hardware/software codesign and system synthesis (CODES+ISSS).
[149]
Patarasuk P and Yuan X Bandwidth optimal all-reduce algorithms for clusters of workstations J Parallel Distrib Comput 2009 69 2 117-124
[150]
Qi T, Wu F, Wu C, et al (2020) Privacy-preserving news recommendation model training via federated learning. CoRR. https://arxiv.org/abs/2003.09592
[151]
Radu V, Henne M (2019) Vision2sensor: knowledge transfer across sensing modalities for human activity recognition. Proc ACM Interact Mob Wearable Ubiquitous Technol 3(3):84:1–84:21.
[152]
Rastegari M, Ordonez V, Redmon J, et al (2016) Xnor-net: imagenet classification using binary convolutional neural networks. In: European conference on computer vision. Springer, pp 525–542.
[153]
Reisizadeh A, Mokhtari A, Hassani H, et al (2020) Fedpaq: a communication-efficient federated learning method with periodic averaging and quantization. In: International conference on artificial intelligence and statistics. PMLR, pp 2021–2031. http://proceedings.mlr.press/v108/reisizadeh20a.html
[154]
Rigamonti R, Sironi A, Lepetit V, et al (2013) Learning separable filters. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2754–2761.
[155]
Romero A, Ballas N, Kahou SE, et al (2014) Fitnets: hints for thin deep nets. ArXiv preprint arXiv:1412.6550
[156]
Roy AG, Siddiqui S, Pölsterl S, et al (2019) Braintorrent: a peer-to-peer environment for decentralized federated learning. ArXiv preprint arXiv:1905.06731
[157]
Sainath TN, Kingsbury B, Sindhwani V, et al (2013) Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In: 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, pp 6655–6659.
[158]
Samarakoon S, Bennis M, Saad W, et al. Distributed federated learning for ultra-reliable low-latency vehicular communications IEEE Trans Commun 2020 68 2 1146-1159
[159]
Sanchez-Iborra R and Skarmeta AF Tinyml-enabled frugal smart objects: Challenges and opportunities IEEE Circuits Syst Mag 2020 20 3 4-18
[160]
Sandler M, Howard A, Zhu M, et al (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4510–4520.
[161]
Sau BB, Balasubramanian VN (2016) Deep model compression: distilling knowledge from noisy teachers. ArXiv preprint arXiv:1610.09650
[162]
Savazzi S, Nicoli M, and Rampa V Federated learning with cooperating devices: a consensus approach for massive IoT networks IEEE Internet Things J 2020 7 5 4641-4654
[163]
Seide F, Fu H, Droppo J, et al (2014) 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs. In: 15th annual conference of the international speech communication association. http://www.isca-speech.org/archive/interspeech_2014/i14_1058.html
[164]
Shahmohammadi F, Hosseini A, King CE, et al (2017) Smartwatch based activity recognition using active learning. In: Bonato P, Wang H (eds) Proceedings of the 2nd IEEE/ACM international conference on connected health: applications, systems and engineering technologies, CHASE 2017, Philadelphia, PA, USA, July 17–19, 2017. IEEE Computer Society/ACM, pp 321–329.
[165]
Sheller MJ, Reina GA, Edwards B, et al (2018) Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation. In: International MICCAI Brainlesion workshop. Springer, pp 92–104.
[166]
Shi W, Cao J, Zhang Q, et al. Edge computing: vision and challenges IEEE Internet Things J 2016 3 5 637-646
[167]
Shokri R, Shmatikov V (2015) Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC conference on computer and communications security, pp 1310–1321.
[168]
Silver D, Huang A, Maddison CJ, et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489.
[169]
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ArXiv preprint ArXiv:1409.1556
[170]
Smola A, Narayanamurthy S (2010) An architecture for parallel topic models. Proc VLDB Endow 3(1-2):703–710.
[171]
Soudry D, Hubara I, Meir R (2014) Expectation backpropagation: parameter-free training of multilayer neural networks with continuous or discrete weights. In: NIPS, p 2. https://proceedings.neurips.cc/paper/2014/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
[172]
Srivastava N, Hinton G, Krizhevsky A, et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958. http://dl.acm.org/citation.cfm?id=2670313
[173]
Stahl R, Hoffman A, Mueller-Gritschneder D, et al (2021) Deeperthings: fully distributed CNN inference on resource-constrained edge devices. Int J Parallel Progr.
[174]
Stamoulis D, Chin T, Prakash AK, et al (2019) Designing adaptive neural networks for energy-constrained image classification. In: 2018 IEEE/ACM international conference on computer-aided design (ICCAD).
[175]
Swaminathan S, Garg D, Kannan R, et al. Sparse low rank factorization for deep neural network compression Neurocomputing 2020 398 185-196
[176]
Szegedy C, Liu W, Jia Y, et al (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9.
[177]
Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. In: International conference on machine learning. PMLR, pp 6105–6114. http://proceedings.mlr.press/v97/tan19a.html
[178]
Tan M, Le QV (2021) Efficientnetv2: smaller models and faster training. ArXiv preprint arXiv:2104.00298
[179]
Tang Z, Shi S, Chu X, et al (2020) Communication-efficient distributed deep learning: a comprehensive survey. CoRR. https://arxiv.org/abs/2003.06307
[180]
Tann H, Hashemi S, Bahar RI et al (2016) Runtime configurable deep neural networks for energy-accuracy trade-off. ACM.
[181]
Taylor B, Marco VS, Wolff W, et al. Adaptive deep learning model selection on embedded systems ACM SIGPLAN Notices 2018 53 6 31-43
[182]
Teerapittayanon S, McDanel B, Kung HT (2016) Branchynet: fast inference via early exiting from deep neural networks. In: 2016 23rd international conference on pattern recognition (ICPR). IEEE, pp 2464–2469.
[183]
Tian X, Zhu J, Xu T, et al. Mobility-included DNN partition offloading from mobile devices to edge clouds Sensors 2021 21 1 229
[184]
Touvron H, Cord M, Douze M, et al (2020) Training data-efficient image transformers & distillation through attention. ArXiv preprint arXiv:2012.12877
[185]
Truex S, Baracaldo N, Anwar A, et al (2019) A hybrid approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop on artificial intelligence and security, pp 1–11.
[186]
Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
[187]
Wang J, Feng Z, Chen Z, et al (2018a) Bandwidth-efficient live video analytics for drones via edge computing. In: 2018 IEEE/ACM symposium on edge computing (SEC). IEEE, pp 159–173.
[188]
Wang P, Cheng J (2016) Accelerating convolutional neural networks for mobile applications. In: Proceedings of the 24th ACM international conference on multimedia, pp 541–545.
[189]
Wang S, Tuor T, Salonidis T, et al. Adaptive federated learning in resource constrained edge computing systems IEEE J Sel Areas Commun 2019 37 6 1205-1221
[190]
Wang X, Yu F, Dou ZY, et al (2018b) Skipnet: learning dynamic routing in convolutional networks. In: Proceedings of the European conference on computer vision (ECCV), pp 409–424,
[191]
Wang X, Han Y, Leung V, et al. Convergence of edge computing and deep learning: a comprehensive survey IEEE Commun Surv Tutor 2020 22 99 869-904
[192]
Wang X, Yang Z, Wu J, et al (2021) Edgeduet: Tiling small object detection for edge assisted autonomous mobile vision. In: IEEE INFOCOM 2021—IEEE conference on computer communications, pp 1–10.
[193]
Wei K, Li J, Ding M, et al. Federated learning with differential privacy: algorithms and performance analysis IEEE Trans Inf Forensics Secur 2020 15 3454-3469
[194]
Wen W, Wu C, Wang Y, et al (2016) Learning structured sparsity in deep neural networks. Adv Neural Inf Process Syst 29:2074–2082. https://proceedings.neurips.cc/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
[195]
Weng J, Weng J, Zhang J, et al. Deepchain: auditable and privacy-preserving deep learning with blockchain-based incentive IEEE Trans Dependable Secur Comput 2021 18 5 2438-2455
[196]
Wistuba M, Rawat A, Pedapati T (2019) A survey on neural architecture search. ArXiv preprint arXiv:1905.01392
[197]
Wu J, Leng C, Wang Y, et al (2016) Quantized convolutional neural networks for mobile devices. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4820–4828.
[198]
Xie S, Girshick R, Dollár P, et al (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1492–1500.
[199]
Xu D, Li T, Li Y, et al (2020) Edge intelligence: architectures, challenges, and applications. ArXiv preprint arXiv:2003.12172
[200]
Xu M, Zhu M, Liu Y, et al (2018) Deepcache: principled cache for mobile deep vision. In: Proceedings of the 24th annual international conference on mobile computing and networking, pp 129–144.
[201]
Xue J, Li J, Gong Y (2013) Restructuring of deep neural network acoustic models with singular value decomposition. In: Interspeech, pp 2365–2369. http://www.isca-speech.org/archive/interspeech_2013/i13_2365.html
[202]
Yang L, Chen X, Perlaza SM, et al. Special issue on artificial-intelligence-powered edge computing for internet of things IEEE Internet Things J 2020 7 10 9224-9226
[203]
Yang L, Han Y, Chen X, et al (2020b) Resolution adaptive networks for efficient inference. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2369–2378.
[204]
Yang Q, Liu Y, Chen T, et al. Federated machine learning: concept and applications ACM Trans Intell Syst Technol 2019 10 2 1-19
[205]
Yang TJ, Chen YH, Sze V (2017) Designing energy-efficient convolutional neural networks using energy-aware pruning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5687–5695.
[206]
Yi J, Choi S, Lee Y (2020) Eagleeye: wearable camera-based person identification in crowded urban spaces. In: MobiCom ’20: The 26th annual international conference on mobile computing and networking, London, United Kingdom, September 21–25, 2020. ACM, pp 4:1–4:14.
[207]
Yim J, Joo D, Bae J, et al (2017) A gift from knowledge distillation: Fast optimization, network minimization and transfer learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4133–4141.
[208]
Yoshida N, Nishio T, Morikura M, et al (2020) Hybrid-fl for wireless networks: cooperative learning mechanism using non-IID data. In: ICC 2020-2020 IEEE international conference on communications (ICC). IEEE, pp 1–7.
[209]
You Z, Yan K, Ye J, et al (2019) Gate decorator: global filter pruning method for accelerating deep convolutional neural networks. ArXiv preprint arXiv:1909.08174
[210]
Yu R, Li A, Chen CF, et al (2018) Nisp: pruning networks using neuron importance score propagation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9194–9203.
[211]
Zagoruyko S, Komodakis N (2016a) Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. ArXiv preprint arXiv:1612.03928
[212]
Zagoruyko S, Komodakis N (2016b) Wide residual networks. ArXiv preprint arXiv:1605.07146
[213]
Zeng L, Li E, Zhou Z, et al. Boomerang: on-demand cooperative deep neural network inference for edge intelligence on the industrial internet of things IEEE Netw 2019 33 5 96-103
[214]
Zeng X, Cao K, Zhang M (2017) MobileDeepPill: a small-footprint mobile deep learning system for recognizing unconstrained pill images. In: Choudhury T, Ko SY, Campbell A, et al (eds) Proceedings of the 15th annual international conference on mobile systems, applications, and services, MobiSys’17, Niagara Falls, NY, USA, June 19–23, 2017. ACM, pp 56–67.
[215]
Zhang C, Cao Q, Jiang H, et al (2018a) Ffs-va: a fast filtering system for large-scale video analytics. In: Proceedings of the 47th international conference on parallel processing, pp 1–10.
[216]
Zhang C, Cao Q, Jiang H, et al. A fast filtering mechanism to improve efficiency of large-scale video analytics IEEE Trans Comput 2020 69 6 914-928
[217]
Zhang L, Song J, Gao A, et al (2019) Be your own teacher: improve the performance of convolutional neural networks via self distillation. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3713–3722.
[218]
Zhang W, Li X, Ma H, et al. Federated learning for machinery fault diagnosis with dynamic validation and self-supervision Knowl Based Syst 2021 213 106 679
[219]
Zhang W, Wang X, Zhou P, et al (2021b) Client selection for federated learning with non-IID data in mobile edge computing. IEEE Access 9:24,462–24,474.
[220]
Zhang X, Zou J, He K, et al. Accelerating very deep convolutional networks for classification and detection IEEE Trans Pattern Anal Mach Intell 2015 38 10 1943-1955
[221]
Zhang X, Zhou X, Lin M, et al (2018b) Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6848–6856.
[222]
Zhang Y, Wallace B (2015) A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. ArXiv preprint arXiv:1510.03820
[223]
Zhang Y, Xiang T, Hospedales TM, et al (2018c) Deep mutual learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4320–4328. http://arxiv.org/abs/1706.00384
[224]
Zhao Y, Li M, Lai L, et al (2018a) Federated learning with non-IID data. ArXiv preprint arXiv:1806.00582
[225]
Zhao Y, Zhao J, Jiang L, et al. Privacy-preserving blockchain-based federated learning for IoT devices IEEE Internet Things J 2020 8 3 1817-1829
[226]
Zhao Z, Barijough KM, and Gerstlauer A Deepthings: distributed adaptive deep learning inference on resource-constrained IoT edge clusters IEEE Trans Comput Aided Des Integr Circuits Syst 2018 37 11 2348-2359
[227]
Zhou A, Yao A, Guo Y, et al (2017) Incremental network quantization: towards lossless CNNs with low-precision weights. ArXiv preprint arXiv:1702.03044
[228]
Zhou G, Fan Y, Cui R, et al (2018) Rocket launching: a universal and efficient framework for training well-performing light net. In: 32nd AAAI conference on artificial intelligence. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16090
[229]
Zhou J, Wang Y, Ota K, et al. Aaiot: accelerating artificial intelligence in IoT systems IEEE Wirel Commun Lett 2019 8 3 825-828
[230]
Zhou S, Wu Y, Ni Z, et al (2016) Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients. ArXiv preprint arXiv:1606.06160
[231]
Zhou Z, Chen X, Li E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing Proc IEEE 2019 107 8 1738-1762
[232]
Zhu J, Zhao Y, Pei J (2021) Progressive kernel pruning based on the information mapping sparse index for CNN compression. IEEE Access 9:10,974–10,987.
[233]
Zuo Y, Chen B, Shi T, et al (2020) Filter pruning without damaging networks capacity. IEEE Access 8:90,924–90,930.

Cited By

View all

Index Terms

  1. AI on the edge: a comprehensive review
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image Artificial Intelligence Review
            Artificial Intelligence Review  Volume 55, Issue 8
            Dec 2022
            783 pages

            Publisher

            Kluwer Academic Publishers

            United States

            Publication History

            Published: 01 December 2022

            Author Tags

            1. Edge computing
            2. Deep learning
            3. Edge intelligence
            4. Artificial intelligence
            5. Edge devices

            Qualifiers

            • Research-article

            Funding Sources

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 22 Sep 2024

            Other Metrics

            Citations

            Cited By

            View all
            • (2024)YOLO-DCNetInternational Journal on Semantic Web & Information Systems10.4018/IJSWIS.33900020:1(1-23)Online publication date: 27-Feb-2024
            • (2024)Edge AI for Internet of Medical ThingsComputers and Electrical Engineering10.1016/j.compeleceng.2024.109202116:COnline publication date: 1-May-2024
            • (2023)AI-Enhanced Cloud-Edge-Terminal Collaborative Network: Survey, Applications, and Future DirectionsIEEE Communications Surveys & Tutorials10.1109/COMST.2023.333815326:2(1322-1385)Online publication date: 1-Dec-2023
            • (2023)Deep neural network pruning method based on sensitive layers and reinforcement learningArtificial Intelligence Review10.1007/s10462-023-10566-556:Suppl 2(1897-1917)Online publication date: 1-Nov-2023
            • (2023)Artificial intelligence‐based blockchain solutions for intelligent healthcareTransactions on Emerging Telecommunications Technologies10.1002/ett.482434:9Online publication date: 13-Sep-2023

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media