Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Localization Uncertainty in Time-Amplitude Stereophonic Reproduction

Published: 31 March 2020 Publication History

Abstract

This article studies the effects of inter-channel time and level differences in stereophonic reproduction on perceived localization uncertainty, which is defined as how difficult it is for a listener to tell where a sound source is located. Towards this end, a computational model of localization uncertainty is proposed first. The model calculates inter-aural time and level difference cues, and compares them to those associated to free-field point-like sources. The comparison is carried out using a particular distance functional that replicates the increased uncertainty observed experimentally with inconsistent inter-aural time and level difference cues. The model is validated by formal listening tests, achieving a Pearson correlation of 0.99. The model is then used to predict localization uncertainty for stereophonic setups and a listener in central and off-central positions. Results show that amplitude methods achieve a slightly lower localization uncertainty for a listener positioned exactly in the center of the sweet spot. As soon as the listener moves away from that position, the situation reverses, with time-amplitude methods achieving a lower localization uncertainty.

References

[1]
E. De Sena and Z. Cvetković, “A computational model for the estimation of localisation uncertainty,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Vancouver, Canada, May 2013, pp. 388–392.
[2]
E. De Sena, “Analysis, design and implementation of multichannel audio systems,” Ph.D. dissertation, King's College London, 2013.
[3]
E. De Sena, H. Hacıhabiboğlu, and Z. Cvetković, “Design of a circular microphone array for panoramic audio recording and reproduction: Array radius,” presented at the AES 128th Audio Eng. Soc. Conv., London, U.K., May 2010.
[4]
H. Hacıhabiboglu, E. De Sena, Z. Cvetkovic, J. Johnston, and J. Smith, “Perceptual spatial audio recording, simulation, and rendering: An overview of spatial-audio techniques based on psychoacoustics,” IEEE Signal Process. Mag., vol. 34, no. , pp. 36–54, May 2017.
[5]
J. Blauert, Spatial Hearing: The Psychophysics of Human Sound Localization. Cambridge, MA, USA: MIT Press, 1997.
[6]
F. Rumsey, Spatial Audio. Massachusetts, USA: Focal Press, 2001.
[7]
V. Pulkki, “Virtual sound source positioning using vector-base amplitude panning,” J. Audio Eng. Soc., vol. 45, no. 6, pp. 456–466, Jun. 1997.
[8]
J. Eargle, The Microphone Book. Massachusetts, USA: Focal Press, 2004.
[9]
J. Daniel, J. Rault, and J. Polack, “Ambisonics encoding of other audio formats for multiple listening conditions,” presented at the 105th Audio Eng. Soc. Conv., San Francisco, CA, USA, Sep. 1998. Paper #4795.
[10]
S. Tervo, J. Pätynen, A. Kuusinen, and T. Lokki, “Spatial decomposition method for room impulse responses,” J. Audio Eng. Soc., vol. 61, no. 1/2, pp. 17–28, 2013.
[11]
H. Lee and F. Rumsey, “Level and time panning of phantom images for musical sources,” J. Audio Eng. Soc., vol. 61, no. 12, pp. 978–988, 2013.
[12]
S. P. Lipshitz, “Stereo microphone techniques: Are the purists wrong?” J. Audio Eng. Soc, vol. 34, no. 9, pp. 716–744, May 1986.
[13]
F. Rumsey and T. McCormick, Sound and Recording: Applications and Theory. Massachusetts, USA: Focal Press, 2014.
[14]
M. Plewa and P. Kleczkowski, “Choosing and configuring a stereo microphone technique based on localisation curves,” Arch. Acoust., vol. 36, no. 2, pp. 347–363, 2011.
[15]
H. Wittek and G. Theile, “Development and application of a stereophonic multichannel recording technique for 3D audio and VR,” presented at the 143rd Audio Eng. Soc. Conv., New York, USA. Audio Engineering Society, 2017. Paper 9869.
[16]
L. Riitano, M. Victoria, and J. Enrique, “Comparison between different microphone arrays for 3d-audio,” presented at the 144th Audio Eng. Soc. Conv., Milan, Italy, 2018. Paper #9980.
[17]
M. Williams, Microphone Array Analysis for Stereo and Multichannel Sound Recording. Segrate MI, Italy: Editrice Il Rostro, 2004, vol. 1.
[18]
H. Lee, “Capturing 360 audio using an equal segment microphone array (ESMA),” J. Audio Eng. Soc., vol. 67, no. 1/2, pp. 13–26, 2019.
[19]
C. Millns and H. Lee, “An investigation into spatial attributes of 360 \(^{\circ }\) microphone techniques for virtual reality,” presented at the 144th Audio Eng. Soc. Conv., Milan, Italy, 2018.
[20]
H. Lee, D. Johnson, and M. Mironovs, “An interactive and intelligent tool for microphone array design,” presented at the 143rd Audio Eng. Soc. Conv., New York, USA, 2017. Paper #390.
[21]
E. De Sena, H. Hacıhabiboğlu, and Z. Cvetković, “Analysis and design of multichannel systems for perceptual sound field reconstruction,” IEEE Trans. Audio, Speech Lang. Process., vol. 21, no. 8, pp. 1653–1665, Aug. 2013.
[22]
J. D. Johnston and Y. H. Lam, “Perceptual soundfield reconstruction,” presented at the 109th Audio Eng. Soc. Conv., Los Angeles, CA, USA, Sep. 2000. Paper #2399.
[23]
H. Hacıhabiboğlu and Z. Cvetković, “Panoramic recording and reproduction of multichannel audio using a circular microphone array,” in Proc. IEEE Workshop Appl. Signal Process. Audio Acoust., Oct. 2009, pp. 117–120.
[24]
G. W. Elko, “Differential microphone arrays,” in Audio Signal Processing for Next-Generation Multimedia Communication Systems, Y. Huang and J. Benesty, Eds. Berlin, Germany: Kluwer Academic Publishers, 2004.
[25]
E. De Sena, H. Hacıhabiboğlu, and Z. Cvetković, “On the design and implementation of higher order differential microphones,” IEEE Trans. Audio, Speech Lang. Process., vol. 20, no. 1, pp. 162–174, Jan. 2012.
[26]
S. Bech and N. Zacharov, Perceptual Audio Evaluation: Theory, Method and Application. Hoboken, NJ, USA: John Wiley & Sons, 2006.
[27]
R. Y. Litovsky, H. S. Colburn, W. A. Yost, and S. J. Guzman, “The precedence effect,” J. Acoust. Soc. Amer., vol. 106, no. 4, pp. 1633–1654, Oct. 1999.
[28]
M. B. Gardner, “Historical background of the haas and/or precedence effect,” J. Acoust. Soc. Amer., vol. 43, no. 6, pp. 1243–1248, 1968.
[29]
M. Williams and G. Le Du, “Microphone array analysis for multichannel sound recording,” presented at the 107th Audio Eng. Soc. Conv., New York, USA, Sep. 1999. Paper 390.
[30]
N. V. Franssen, Stereophony. Eindhoven Netherlands: Philips Research Laboratories, 1964.
[31]
L. Simon and R. Mason, “Time and level localization curves for a regularly-spaced octagon loudspeaker array,” presented at the 128th Audio Eng. Soc. Conv., London, UK, May 2010. Paper 8079.
[32]
H. Hacıhabiboğlu, E. De Sena, and Z. Cvetković, “Design of a circular microphone array for panoramic audio recording and reproduction: Microphone directivity,” presented at the 128th Audio Eng. Soc. Conv., London, UK, May 2010. Paper #8063.
[33]
L. A. Jeffress, “A place theory of sound localization,” J. Comparative Physiological Psychol., vol. 41, no. 1, Feb. 1948, Art. no.
[34]
W. Lindemann, “Extension of a binaural cross-correlation model by contralateral inhibition. i. simulation of lateralization for stationary signals,” J. Acoust. Soc. Amer., vol. 80, pp. 1608–1622, Jul. 1986.
[35]
W. Gaik, “Combined evaluation of interaural time and intensity differences: Psychoacoustic results and computer modeling,” J. Acoust. Soc. Amer., vol. 94, no. 1, pp. 98–110, Jul. 1993.
[36]
V. Pulkki and T. Hirvonen, “Localization of virtual sources in multichannel audio reproduction,” IEEE Trans. Audio, Speech Lang. Process., vol. 13, no. 1, pp. 105–119, Jan. 2005.
[37]
C. Faller and J. Merimaa, “Source localization in complex listening situations: Selection of binaural cues based on interaural coherence,” J. Acoust. Soc. Amer., vol. 116, Jul. 2004, Art. no.
[38]
V. R. Algazi, R. O. Duda, D. M. Thompson, and C. Avendano, “The CIPIC HRTF database,” in Proc. IEEE Workshop Appl. Signal Proc. Audio Acoust., New Paltz, NY, USA, 2001, pp. 99–102.
[39]
M. Slaney, “An efficient implementation of the Patterson-Holdsworth auditory filter bank,” Apple, Cupertino, Caifornia, Perception Group, Tech. Rep., 1993.
[40]
B. R. Glasberg and B. C. J. Moore, “Derivation of auditory filter shapes from notched-noise data,” Hearing Res., vol. 47, no. 1, pp. 103–138, Aug. 1990.
[41]
A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis. New York, NY, USA: Dover Publications, 1999.
[42]
B. Supper, “An onset-guided spatial analyser for binaural audio,” Ph.D. dissertation, Univ. of Surrey, Guilford, UK, 2005.
[43]
S. S. Stevens, “On the psychophysical law,” Psychol. Rev., vol. 64, no. 3, pp. 153–181, 1957.
[44]
I. R. Goodman and S. Kotz, “Multivariate \(\theta\) -generalized normal distributions,” J. Multivariate Anal., vol. 3, no. 2, pp. 204–219, 1973.
[45]
E. De Sena, M. Brookes, P. A. Naylor, and T. V. Waterschoot, “Localization experiments with reporting by head orientation: statistical framework and case study,” J. Audio Eng. Soc., vol. 65, no. 12, pp. 982–996, 2017.
[46]
K. V. Mardia and P. E. Jupp, Directional Statistics. Hoboken, New Jersey: John Wiley & Sons, 2009.
[47]
Various, Recomm. BS.1534-1, Method for the Subjective Assessment of Intermediate Quality Level of Coding Systems. Geneva, Switzerland: ITU-R, 2003.
[48]
B. Bernfeld, “Attempts for better understanding of the directional stereophonic listening mechanism,” presented at the 44th Audio Eng. Soc. Conv., Rotterdam, The Netherlands, Mar. 1973. Paper #C-4.
[49]
J. Daniel, “Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, new ambisonic format,” in Proc. 23rd Audio Eng. Soc. Int. Conf., Copenhagen, Denmark, May 2003, pp. 1–16.
[50]
M. Poletti, “A unified theory of horizontal holographic sound systems,” J. Audio Eng. Soc., vol. 48, no. 12, pp. 1155–1182, Dec. 2000.
[51]
J. Daniel, “Représentation de champs acoustiques, application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimédia,” Ph.D. dissertationUniv. of Paris VI, France, Jul. 2000.
[52]
D. M. Leakey, “Some measurements on the effects of interchannel intensity and time differences in two channel sound systems,” J. Acoust. Soc. Amer., vol. 31, no. 7, pp. 977–986, 1959.
[53]
J. Rose, P. Nelson, B. Rafaely, and T. Takeuchi, “Sweet spot size of virtual acoustic imaging systems at asymmetric listener locations,” J. Acoust. Soc. Amer., vol. 112, no. 5, pp. 1992–2002, 2002.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE/ACM Transactions on Audio, Speech and Language Processing
IEEE/ACM Transactions on Audio, Speech and Language Processing  Volume 28, Issue
2020
3123 pages
ISSN:2329-9290
EISSN:2329-9304
Issue’s Table of Contents

Publisher

IEEE Press

Publication History

Published: 31 March 2020
Published in TASLP Volume 28

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 17
    Total Downloads
  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Sep 2024

Other Metrics

Citations

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media