Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Optimal Superconvergent One Step Nodal Cubic Spline Collocation Methods

Published: 01 January 2005 Publication History

Abstract

We formulate new optimal (fourth) order one step nodal cubic spline collocation methods for the solution of various elliptic boundary value problems in the unit square. These methods are constructed so that the respective collocation equations can be solved using matrix decomposition algorithms (MDAs). MDAs are fast, direct methods which employ fast Fourier transforms and require O(N2 log N) operations on an $N \times N$ uniform partition of the unit square. The results of numerical experiments exhibit expected global optimal orders of convergence as well as desired superconvergence phenomena.

References

[1]
D. Archer, Some Collocation Methods for Differential Equations, Ph.D. thesis, Rice University, Houston, TX, 1973.
[2]
David Archer, An O(h4) cubic spline collocation method for quasilinear parabolic equations, SIAM J. Numer. Anal., 14 (1977), 620–637
[3]
A. Averbuch, M. Israeli, L. Vozovoi, A fast Poisson solver of arbitrary order accuracy in rectangular regions, SIAM J. Sci. Comput., 19 (1998), 933–952
[4]
Bernard Bialecki, Graeme Fairweather, Matrix decomposition algorithms for separable elliptic boundary value problems in two space dimensions, J. Comput. Appl. Math., 46 (1993), 369–386
[5]
B. Bialecki, G. Fairweather, Orthogonal spline collocation methods for partial differential equations, J. Comput. Appl. Math., 128 (2001), 55–82, Numerical analysis 2000, Vol. VII, Partial differential equations
[6]
Bernard Bialecki, Graeme Fairweather, Andreas Karageorghis, Matrix decomposition algorithms for modified spline collocation for Helmholtz problems, SIAM J. Sci. Comput., 24 (2003), 1733–1753
[7]
B. Bialecki, G. Fairweather, and A. Karageorghis, Optimal Superconvergent One Step Nodal Cubic Spline Collocation Methods, Technical Report TR/04/2004, Department of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus.
[8]
Bernard Bialecki, Andreas Karageorghis, Legendre Gauss spectral collocation for the Helmholtz equation on a rectangle, Numer. Algorithms, 36 (2004), 203–227
[9]
E. Braverman, M. Israeli, A. Averbuch, L. Vozovoi, A fast 3D Poisson solver of arbitrary order accuracy, J. Comput. Phys., 144 (1998), 109–136
[10]
R. Carlson, C. Hall, Error bounds for bicubic spline interpolation, J. Approximation Theory, 7 (1973), 41–47
[11]
Christina Christara, Kit Ng, Fast Fourier transform solvers and preconditioners for quadratic spline collocation, BIT, 42 (2002), 702–739
[12]
A. Constas, Fast Fourier Transform Solvers for Quadratic Spline Collocation, M.Sc. thesis, Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, 1996.
[13]
J. Daniel, B. Swartz, Extrapolated collocation for two‐point boundary‐value problems using cubic splines, J. Inst. Math. Appl., 16 (1975), 161–174
[14]
D. Fyfe, The use of cubic splines in the solution of two‐point boundary value problems, Comput. J., 12 (1969/1970), 188–192
[15]
Bertil Gustafsson, Lina Hemmingsson‐Frändén, A fast domain decomposition high order Poisson solver, J. Sci. Comput., 14 (1999), 223–243
[16]
A. Hadjidimos, E. Houstis, J. Rice, E. Vavalis, Analysis of iterative line spline collocation methods for elliptic partial differential equations, SIAM J. Matrix Anal. Appl., 21 (1999), 508–521
[17]
E. Houstis, E. Vavalis, J. Rice, Convergence of O(h4) cubic spline collocation methods for elliptic partial differential equations, SIAM J. Numer. Anal., 25 (1988), 54–74
[18]
D. B. Knudson, A Piecewise Hermite Bicubic Finite Element Galerkin Method for the Biharmonic Dirichlet Problem, Ph.D. thesis, Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO, 1997.
[19]
Ming‐Chih Lai, Wei‐Cheng Wang, Fast direct solvers for Poisson equation on 2D polar and spherical geometries, Numer. Methods Partial Differential Equations, 18 (2002), 56–68
[20]
A. Lyashko, S. Solov’yev, Fourier method of solution of FE systems with Hermite elements for Poisson equation, Soviet J. Numer. Anal. Math. Modelling, 6 (1991), 121–129
[21]
Janne Martikainen, Tuomo Rossi, Jari Toivanen, A fast direct solver for elliptic problems with a divergence constraint, Numer. Linear Algebra Appl., 9 (2002), 629–652
[22]
W. Pickering, P. Harley, On Robbins boundary conditions, elliptic equations, and FFT methods, J. Comput. Phys., 122 (1995), 380–383
[23]
A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations, Volume I, Direct Methods, Birkhäuser Verlag, Basel, Switzerland, 1989.
[24]
Jie Shen, Efficient spectral‐Galerkin method. I. Direct solvers of second‐ and fourth‐order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489–1505
[25]
Jie Shen, Efficient spectral‐Galerkin method. II. Direct solvers of second‐ and fourth‐order equations using Chebyshev polynomials, SIAM J. Sci. Comput., 16 (1995), 74–87
[26]
Jie Shen, A new fast Chebyshev‐Fourier algorithm for Poisson‐type equations in polar geometries, Proceedings of the Fourth International Conference on Spectral and High Order Methods (ICOSAHOM 1998) (Herzliya), Vol. 33, 2000, 183–190
[27]
P. N. Swarztrauber, FFTPACK, NCAR, Boulder, CO, 1985, also available from [email protected].
[28]
D. Trunec, J. Dřímal, M. Vičar, A subprogram for direct solution of Poisson equation in cylindrically symmetric geometry, Comput. Phys. Comm., 98 (1996), 339–345
[29]
Charles Van Loan, Computational frameworks for the fast Fourier transform, Frontiers in Applied Mathematics, Vol. 10, Society for Industrial and Applied Mathematics (SIAM), 1992xiv+273

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 27, Issue 2
2005
371 pages

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2005

Author Tags

  1. 65N35
  2. 65N22

Author Tags

  1. elliptic boundary value problems
  2. nodal spline collocation
  3. matrix decomposition
  4. fast Fourier transforms
  5. optimal convergence rates
  6. superconvergence

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Matrix decomposition algorithms for the C 0-quadratic finite element Galerkin methodBIT10.1007/s10543-009-0233-049:3(509-526)Online publication date: 11-Mar-2022
  • (2022)Optimal superconvergent one step quadratic spline collocation methods BIT10.1007/s10543-008-0188-648:3(449-472)Online publication date: 11-Mar-2022
  • (2019)A quadratic spline collocation method for the Dirichlet biharmonic problemNumerical Algorithms10.1007/s11075-019-00676-z83:1(165-199)Online publication date: 19-Feb-2019
  • (2013)Modified nodal cubic spline collocation for three-dimensional variable coefficient second order partial differential equationsNumerical Algorithms10.1007/s11075-012-9669-464:2(349-383)Online publication date: 1-Oct-2013
  • (2011)Compact optimal quadratic spline collocation methods for the Helmholtz equationJournal of Computational Physics10.1016/j.jcp.2010.12.041230:8(2880-2895)Online publication date: 1-Apr-2011
  • (2011)Matrix decomposition algorithms for elliptic boundary value problemsNumerical Algorithms10.1007/s11075-010-9384-y56:2(253-295)Online publication date: 1-Feb-2011

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media