Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Composable Modular Models for Synthetic Biology

Published: 30 December 2014 Publication History

Abstract

Modelling and computational simulation are crucial for the large-scale engineering of biological circuits since they allow the system under design to be simulated prior to implementation in vivo. To support automated, model-driven design it is desirable that in silico models are modular, composable and use standard formats. The synthetic biology design process typically involves the composition of genetic circuits from individual parts. At the most basic level, these parts are representations of genetic features such as promoters, ribosome binding sites (RBSs), and coding sequences (CDSs). However, it is also desirable to model the biological molecules and behaviour that arise when these parts are combined in vivo. Modular models of parts can be composed and their associated systems simulated, facilitating the process of model-centred design. The availability of databases of modular models is essential to support software tools used in the model-driven design process. In this article, we present an approach to support the development of composable, modular models for synthetic biology, termed Standard Virtual Parts. We then describe a programmatically accessible and publicly available database of these models to allow their use by computational design tools.

References

[1]
U. Alon. 2006. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC.
[2]
U. Alon. 2007. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450--461.
[3]
K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema. 2006. Developing applications using model-driven design environments. Computer 39, 33--40.
[4]
J. Beal, T. Lu, and R. Weiss. 2011. Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks. PLoS ONE 6, e22490.
[5]
S. Bhatia and D. Densmore. 2013. Pigeon: A design visualizer for synthetic biology. ACS Synthet. Biol. 2, 348--350.
[6]
L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kondev, and R. Phillips. 2005. Transcriptional regulation by the numbers: Models. Curr. Opin. Genet. Develop. 15, 116--124.
[7]
R. S. Bongers, J.-W. Veening, M. Van Wieringen, O. P. Kuipers, and M. Kleerebezem. 2005. Development and characterization of a subtilin-regulated expression system in Bacillus subtilis: Strict control of gene expression by addition of subtilin. Appl. Environ. Microbiol. 71, 8818--8824.
[8]
J. C. Braff, C. M. Conboy, and D. Endy. 2005. Definitions and measures of performance for standard biological parts. In Proceedings of the International Conference Systems Biology (ICSB'05).
[9]
D. Bray, R. B. Bourret, and M. I. Simon. 1993. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Molec. Biol. Cell 4, 469--482.
[10]
N. E. Buchler, U. Gerland, and T. Hwa. 2003. On schemes of combinatorial transcription logic. Proc. Nat. Acad. Sci. 100, 5136--5141.
[11]
Y. Cai, B. Hartnett, C. Gustafsson, and J. Peccoud. 2007. A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts. Bioinformatics 23, 2760--2767.
[12]
A. A. Cuellar, C. M. Lloyd, P. F. Nielsen, D. P. Bullivant, D. P. Nickerson, and P. J. Hunter. 2003. An overview of CellML 1.1, a biological model description language. Simulation 79, 740--747.
[13]
D. Chandran, F. T. Bergmann, and H. M. Sauro. 2009. TinkerCell: Modular CAD tool for synthetic biology. J. Biol. Eng. 3, 19.
[14]
K. Clancy and C. A. Voigt. 2010. Programming cells: Towards an automated ‘Genetic Compiler’. Curr. Opin. Biotechnol. 21, 572--581.
[15]
M. T. Cooling, V. Rouilly, G. Misirli, J. Lawson, T. Yu, J. Hallinan, and A. Wipat. 2010. Standard virtual biological parts: A repository of modular modeling components for synthetic biology. Bioinformatics 26, 925--931.
[16]
F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. 2002. Unraveling the Web services web: An introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput. 6, 86--93.
[17]
M. Dasika and C. Maranas. 2008. OptCircuit: An optimization based method for computational design of genetic circuits. BMC Syst. Biol. 2, 24.
[18]
J. H. Davis, A. J. Rubin, and R. T. Sauer. 2010. Design, construction and characterization of a set of insulated bacterial promoters. Nucl. Acids Res. 39, 1131--1141.
[19]
A. De Las Heras, C. A. Carreño, E. Martínez-García, and V. De Lorenzo. 2010. Engineering input/output nodes in prokaryotic regulatory circuits. FEMS Microbiol. Rev. 34, 842--865.
[20]
D. Del Vecchio, A. J. Ninfa, and E. D. Sontag. 2008. Modular cell biology: Retroactivity and insulation. Molec. Syst. Biol. 4, 161.
[21]
D. Densmore and S. Hassoun. 2012. Design automation for synthetic biological systems. Des. Test Comput. IEEE 1--1.
[22]
D. Densmore, J. T. Kittleson, L. Bilitchenko, A. Liu, and J. C. Anderson. 2010. Rule based constraints for the construction of genetic devices. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS'10). 557--560.
[23]
A. Dräger, N. Rodriguez, M. Dumousseau, A. Dörr, C. Wrzodek, N. Le Novère, A. Zell, and M. Hucka. 2011. JSBML: A flexible Java library for working with SBML. Bioinformatics 27, 2167--2168.
[24]
K. Eilbeck, S. Lewis, C. Mungall, M. Yandell, L. Stein, R. Durbin, and M. Ashburner. 2005. The sequence ontology: A tool for the unification of genome annotations. Genome Biol. 6, R44.
[25]
M. B. Elowitz and S. Leibler. 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335--338.
[26]
L. Endler, N. Rodriguez, N. Juty, V. Chelliah, C. Laibe, C. Li, and N. Le Novere. 2009. Designing and encoding models for synthetic biology. J. Roy. Soc. Interf. 6, S405--S417.
[27]
P. H. Feiler, B. Lewis, S. Vestal, and E. Colbert. 2005. An overview of the SAE architecture analysis & design language (AADL) standard: A basis for model-based architecture-driven embedded systems engineering. In Architecture Description Languages, Springer, 3--15.
[28]
B. R. Fritz, L. E. Timmerman, N. M. Daringer, J. N. Leonard, and M. C. Jewett. 2010. Biology by design: From top to bottom and back. BioMed Res. Int. 2010.
[29]
A. Funahashi, M. Morohashi, H. Kitano, and N. Tanimura. 2003. CellDesigner: A process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1, 159--162.
[30]
M. Galdzicki, K. P. Clancy, E. Oberortner, M. Pocock, J. Y. Quinn, C. A. Rodriguez, N. Roehner, M. L. Wilson, L. Adam, J. C. Anderson, B. A. Bartley, J. Beal, D. Chandran, J. Chen, D. Densmore, D. Endy, R. Grunberg, J. Hallinan, N. J. Hillson, J. D. Johnson, A. Kuchinsky, M. Lux, G. Misirli, J. Peccoud, H. A. Plahar, E. Sirin, G.-B. Stan, A. Villalobos, A. Wipat, J. H. Gennari, C. J. Myers, and H. M. Sauro. 2014. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat. Biotech. 32, 545--550.
[31]
The Gene Ontology Consortium. 2001. Creating the gene ontology resource: Design and implementation. Gen. Res. 11, 1425--1433. http://genome.cshlp.org/citmgr?gca=genome%3B11%2F8%2F1425.
[32]
J. Hallinan, O. Gilfellon, G. Misirli, and A. Wipat. 2014. Tuning receiver characteristics in bacterial quorum communication: An evolutionary approach using standard virtual biological parts. In Proceedings of the IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology.
[33]
J. Hallinan, G. Misirli, and A. Wipat. 2010. Evolutionary computation for the design of a stochastic switch for synthetic genetic circuits. In Proceedings of the 32nd IEEE Annual International Conference on Engineering in Medicine and Biology Society (EMBC'10) (Buenos Ares, Argentina).
[34]
J. Hallinan, S. Park, and A. Wipat. 2012. Bridging the gap between design and reality - A dual evolutionary strategy for the design of synthetic genetic circuits. In Proceedings of the (Bioinformatics'12) - International Conference on Bioinformatics Models, Methods and Algorithms, February 1--4, J. Schier, C. M. B. A. Correia, A. L. N. Fred, and H. Gamboa, Eds., SciTePress, 263--268.
[35]
T. A. Henzinger and J. Sifakis. 2006. The embedded systems design challenge. In Proceedings of the International Symposium on Formal Methods (FM'06). Springer, 1--15.
[36]
A. D. Hill, J. R. Tomshine, E. M. B. Weeding, V. Sotiropoulos, and Y. N. Kaznessis. 2008. SynBioSS: The synthetic biology modeling suite. Bioinformatics 24, 2551--2553.
[37]
S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and U. Kummer. 2006. COPASI—a COmplex PAthway SImulator. Bioinformatics 22, 3067--3074.
[38]
M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J. H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le Novere, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and W. J. 2003. The Systems Biology Markup Language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524--531.
[39]
L. Huynh, A. Tsoukalas, M. Köppe, and I. Tagkopoulos. 2013. SBROME: A scalable optimization and module matching framework for automated biosystems design. ACS Synthet. Biol. 2, 263--273.
[40]
Y. Kaznessis. 2007. Models for synthetic biology. BMC Syst. Biol. 1, 47.
[41]
Kyung H. Kim and Herbert M. Sauro. 2011. Measuring retroactivity from noise in gene regulatory networks. Biophys. J. 100, 1167--1177.
[42]
C. Klein, C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59, 296--303.
[43]
C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah, L. Li, E. He, A. Henry, M. Stefan, J. Snoep, M. Hucka, N. Le Novere, and C. Laibe. 2010. BioModels database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst. Biol. 4, 92.
[44]
J. Liang, Y. Luo, and H. Zhao. 2011. Synthetic biology: Putting synthesis into biology. Wiley Interdisciplinary Reviews: Syst. Bio. Med. 3, 7--20.
[45]
A. Lister, P. Lord, M. Pocock, and A. Wipat. 2010. Annotation of SBML models through rule-based semantic integration. J. Biomed. Semant. 1, S3.
[46]
D. MacMillen, R. Camposano, D. Hill, and T. W. Williams. 2000. An industrial view of electronic design automation. IEEE Trans. Comput.-Aided Des. Integ. Circ. Syst. 19, 1428--1448.
[47]
M. A. Marchisio and J. Stelling. 2008. Computational design of synthetic gene circuits with composable parts. Bioinformatics 24, 1903--1910.
[48]
M. A. Marchisio and J. Stelling. 2009. Computational design tools for synthetic biology. Curr. Opin. Biotechnol. 20, 479--485.
[49]
G. Misirli. 2013. Data integration strategies for informing computational design in synthetic biology. Ph.D. dissertation. School of Computing Science, Newcastle University, UK.
[50]
G. Misirli, J. S. Hallinan, T. Yu, J. R. Lawson, S. M. Wimalaratne, M. T. Cooling, and A. Wipat. 2011. Model annotation for synthetic biology: Automating model to nucleotide sequence conversion. Bioinformatics 27, 973--979.
[51]
G. Misirli, A. Wipat, J. Mullen, K. James, M. Pocock, W. Smith, N. Allenby, and J. Hallinan. 2013. BacillOndex: An integrated data resource for systems and synthetic biology. J. Integrat. Bioinf. 10, 224.
[52]
C. J. Myers, N. Barker, K. Jones, H. Kuwahara, C. Madsen, and N.-P. D. Nguyen. 2009. iBioSim: A tool for the analysis and design of genetic circuits. Bioinformatics 25, 2848--2849.
[53]
D. Na and D. Lee. 2010. RBSDesigner: Software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26, 2633--2634.
[54]
D. Na, S. Lee, and D. Lee. 2010. Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes. BMC Syst. Biol. 4, 71.
[55]
E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. van Oudenaarden. 2002. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69--73.
[56]
M. Pedersen and A. Phillips. 2009. Towards programming languages for genetic engineering of living cells. J. Roy. Soc. Interf. 6, S437--S450.
[57]
G. Rodrigo, J. Carrera, and A. Jaramillo. 2007a. Asmparts: Assembly of biological model parts. Syst. Synthet. Biol. 1, 167--170.
[58]
G. Rodrigo, J. Carrera, and A. Jaramillo. 2007b. Genetdes: Automatic design of transcriptional networks. Bioinformatics 23, 1857--1858.
[59]
G. Rodrigo, J. Carrera, and A. Jaramillo. 2011. Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors. Nucl. Acids Res. 39, e138.
[60]
H. M. Salis, E. A. Mirsky, and C. A. Voigt. 2009. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946--950.
[61]
R. Silva-Rocha and V. de Lorenzo. 2010. Noise and robustness in prokaryotic regulatory networks. Ann. Rev. Microbiol. 64, 257--275.
[62]
C. D. Smolke and P. A. Silver. 2011. Informing biological design by integration of systems and synthetic biology. Cell 144, 855--859.
[63]
D. G. Spiller, C. D. Wood, D. A. Rand, and M. R. H. White. 2010. Measurement of single-cell dynamics. Nat. 465, 736--745.
[64]
J. Stelling. 2004. Mathematical models in microbial systems biology. Curr. Opin. Microbiol. 7, 513--518.
[65]
G. M. Süel, J. Garcia-Ojalvo, L. M. Liberman, and M. B. Elowitz. 2006. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545--550.
[66]
R. L. Tatusov, D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, U. T. Shankavaram, B. S. Rao, B. Kiryutin, M. Y. Galperin, N. D. Fedorova, and E. V. Koonin. 2001. The COG database: New developments in phylogenetic classification of proteins from complete genomes. Nucl. Acids Res. 29, 22--28.
[67]
C. A. Voigt, D. M. Wolf, and A. P. Arkin. 2005. The bacillus subtilis sin operon: An evolvable network. Motif. Genet. 169, 1187--1202.
[68]
H. V. Westerhoff and B. O. Palsson. 2004. The evolution of molecular biology into systems biology. Nat. Biotechnol. 22, 1249--1252.
[69]
F. Yaman, S. Bhatia, A. Adler, D. Densmore, and J. Beal. 2012. Automated selection of synthetic biology parts for genetic regulatory networks. ACS Synthet. Biol. 1, 332--344.
[70]
E. Young and H. Alper. 2010. Synthetic biology: Tools to design, build, and optimize cellular processes. J. Biomed. Biotechnol.
[71]
A. R. Zomorrodi and C. D. Maranas. 2014. Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits. Europ. J. Oper. Res.

Cited By

View all
  • (2024)Evaluating the Contribution of Model Complexity in Predicting Robustness in Synthetic Genetic CircuitsACS Synthetic Biology10.1021/acssynbio.3c00708Online publication date: 12-Sep-2024
  • (2021)BioMaster: An Integrated Database and Analytic Platform to Provide Comprehensive Information About BioBrick PartsFrontiers in Microbiology10.3389/fmicb.2021.59397912Online publication date: 21-Jan-2021
  • (2021)Stochastic Hazard Analysis of Genetic Circuits in iBioSim and STAMINAACS Synthetic Biology10.1021/acssynbio.1c0015910:10(2532-2540)Online publication date: 4-Oct-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems  Volume 11, Issue 3
Special Issue on Computational Synthetic Biology and Regular Papers
December 2014
219 pages
ISSN:1550-4832
EISSN:1550-4840
DOI:10.1145/2711453
Issue’s Table of Contents
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 30 December 2014
Accepted: 01 May 2014
Revised: 01 April 2014
Received: 01 January 2014
Published in JETC Volume 11, Issue 3

Check for updates

Author Tags

  1. Synthetic biology
  2. composable models
  3. database of models
  4. model annotation
  5. model-driven design
  6. standard virtual parts

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)76
  • Downloads (Last 6 weeks)22
Reflects downloads up to 22 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Evaluating the Contribution of Model Complexity in Predicting Robustness in Synthetic Genetic CircuitsACS Synthetic Biology10.1021/acssynbio.3c00708Online publication date: 12-Sep-2024
  • (2021)BioMaster: An Integrated Database and Analytic Platform to Provide Comprehensive Information About BioBrick PartsFrontiers in Microbiology10.3389/fmicb.2021.59397912Online publication date: 21-Jan-2021
  • (2021)Stochastic Hazard Analysis of Genetic Circuits in iBioSim and STAMINAACS Synthetic Biology10.1021/acssynbio.1c0015910:10(2532-2540)Online publication date: 4-Oct-2021
  • (2021)Virtual Parts Repository 2: Model-Driven Design of Genetic Regulatory CircuitsACS Synthetic Biology10.1021/acssynbio.1c0015710:12(3304-3315)Online publication date: 11-Nov-2021
  • (2020)The Synthetic Biology Open Language (SBOL) Version 3: Simplified Data Exchange for BioengineeringFrontiers in Bioengineering and Biotechnology10.3389/fbioe.2020.010098Online publication date: 11-Sep-2020
  • (2020) SBML Level 3: an extensible format for the exchange and reuse of biological models Molecular Systems Biology10.15252/msb.2019911016:8Online publication date: 26-Aug-2020
  • (2019)SBOL-OWL: An Ontological Approach for Formal and Semantic Representation of Synthetic Biology InformationACS Synthetic Biology10.1021/acssynbio.8b005328:7(1498-1514)Online publication date: 6-May-2019
  • (2018)Harmonizing semantic annotations for computational models in biologyBriefings in Bioinformatics10.1093/bib/bby087Online publication date: 21-Nov-2018
  • (2018)A Genetic Circuit Compiler: Generating Combinatorial Genetic Circuits with Web Semantics and InferenceACS Synthetic Biology10.1021/acssynbio.8b002017:12(2812-2823)Online publication date: 8-Nov-2018
  • (2018)A Computational Workflow for the Automated Generation of Models of Genetic DesignsACS Synthetic Biology10.1021/acssynbio.7b004598:7(1548-1559)Online publication date: 21-May-2018
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media