Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

High-Performance Computing with Quantum Processing Units

Published: 17 March 2017 Publication History

Abstract

The prospects of quantum computing have driven efforts to realize fully functional quantum processing units (QPUs). Recent success in developing proof-of-principle QPUs has prompted the question of how to integrate these emerging processors into modern high-performance computing (HPC) systems. We examine how QPUs can be integrated into current and future HPC system architectures by accounting for functional and physical design requirements. We identify two integration pathways that are differentiated by infrastructure constraints on the QPU and the use cases expected for the HPC system. This includes a tight integration that assumes infrastructure bottlenecks can be overcome as well as a loose integration that assumes they cannot. We find that the performance of both approaches is likely to depend on the quantum interconnect that serves to entangle multiple QPUs. We also identify several challenges in assessing QPU performance for HPC, and we consider new metrics that capture the interplay between system architecture and the quantum parallelism underlying computational performance.

References

[1]
Ali Javadi Abhari, Arvin Faruque, Mohammad Javad Dousti, Lukas Svec, Oana Catu, Amlan Chakrabati, Chen-Fu Chiang, Seth Vanderwilt, John Black, Fred Chong, Margaret Martonosi, Martin Suchara andKen Brown, Massoud Pedram, and Todd Brun. 2012. Scaffold: Quantum Programming Language. Technical Report. Retrieved from ftp://ftp.cs.princeton.edu/techreports/2012/934.pdf
[2]
Daniel S. Abrams and Seth Lloyd. 1997. Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 13 (Sep. 1997), 2586--2589.
[3]
James Ang, Keren Bergman, Shekhar Borkar, William Carlson, Laura Carrington, George Chiu, Robert Colwell, William Dally, Jack Dongarra, Al Geist, Gary Grider, Rud Haring, Jeffrey Hittinger, Adolfy Hoisie, Dean Klein, Peter Kogge, Richard Lethin, Vivek Sarkar, Robert Schreiber, John Shalf, Thomas Sterling, and Rick Stevens. 2010. Top Ten Exascale Research Challenges. Technical Report. DOE ASCAC Subcommittee Report.
[4]
Steve Ashby, Pete Beckman, Jackie Chen, Phil Colella, Bill Collins, Dona Crawford, Jack Dongarra, Doug Kothe, Rusty Lusk, Paul Messina, Tony Mezzacappa, Parviz Moin, Mike Norman, Robert Rosner, Vivek Sarkar, Andrew Siegel, Fred Streitz, Andy White, and Margaret Wright. 2010. The Opportunities and Challenges of Exascale Computing. Technical Report. Summary Report of the Advanced Scientific Computing Advisory Committee Subcommittee.
[5]
Bela Bauer, Dave Wecker, Andrew J. Millis, Matthew B. Hastings, and Matthias Troyer. 2016. Hybrid quantum-classical approach to correlated materials. Phys. Rev. X 6, 3 (Sep. 2016), 39.
[6]
A. Broadbent, J. Fitzsimons, and E. Kashefi. 2009. Universal blind quantum computation. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science. 517--526.
[7]
Jacques Carolan, Christopher Harrold, Chris Sparrow, Enrique Martn-Lpez, Nicholas J. Russell, Joshua W. Silverstone, Peter J. Shadbolt, Nobuyuki Matsuda, Manabu Oguma, Mikitaka Itoh, Graham D. Marshall, Mark G. Thompson, Jonathan C. F. Matthews, Toshikazu Hashimoto, Jeremy L. OBrien, and Anthony Laing. 2015. Universal linear optics. Science 349, 6249 (2015), 711--716.
[8]
Andrew M. Childs and Wim van Dam. 2010. Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1 (Jan 2010), 1--52.
[9]
Venkat R. Dasari, Ronald J. Sadlier, Ryan Prout, Brian P. Williams, and Travis S. Humble. 2016. Programmable Multi-Node Quantum Network Design and Simulation. Proc. SPIE 9873, Quantum Information and Computation IX, 98730B (May 19, 2016).
[10]
D. Deutsch. 1985. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. Ser. A 400 (July 1985), 97--117.
[11]
M. H. Devoret and R. J. Schoelkopf. 2013. Superconducting circuits for quantum information: An outlook. Science 339, 6124 (2013), 1169--1174.
[12]
D. P. DiVincenzo. 2000. The physical implementation of quantum computation. Fortschr. Phys. 48 (2000), 771783.
[13]
A. Geist and R. Lucas. 2009. Major computer science challenges at exascale. Int. J. High. Perform. Comput. Appl. 23 (2009), 427436. Issue 4.
[14]
Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: A scalable quantum programming language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’13). ACM, New York, NY, 333--342.
[15]
Charles D. Hill, Eldad Peretz, Samuel J. Hile, Matthew G. House, Martin Fuechsle, Sven Rogge, Michelle Y. Simmons, and Lloyd C. L. Hollenberg. 2015. A surface code quantum computer in silicon. Sci. Adv. 1, 9 (2015), e1500707.
[16]
J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly. 2015. Cryogenic control architecture for large-scale quantum computing. Phys. Rev. Appl. 3 (Feb. 2015), 024010.
[17]
T. S. Humble, A. J. McCaskey, R. S. Bennink, J. J. Billings, E. F. DAzevedo, B. D. Sullivan, C. F. Klymko, and H. Seddiqi. 2014. An integrated programming and development environment for adiabatic quantum optimization. Comput. Sci. Discov. 7, 1 (2014), 015006.
[18]
M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, and others. 2011. Quantum annealing with manufactured spins. Nature 473, 7346 (2011), 194--198.
[19]
N. Cody Jones, Rodney Van Meter, Austin G. Fowler, Peter L. McMahon, Jungsang Kim, Thaddeus D. Ladd, and Yoshihisa Yamamoto. 2012. Layered architecture for quantum computing. Phys. Rev. X 2, 3 (2012), 031007.
[20]
Ivan Kassal, James D. Whitfield, Alejandro Perdomo-Ortiz, Man-Hong Yung, and Alán Aspuru-Guzik. 2011. Simulating chemistry using quantum computers. Annu. Rev. Phys. Chem. 62, 1 (2011), 185--207.
[21]
Volodymyr Kindratenko, George K. Thiruvathukal, and Steven Gottlieb. 2008. High-performance computing applications on novel architectures. Comput. Sci. Eng. 10, 6 (2008), 13--15.
[22]
Emmanuel Knill. 1996. Conventions for Quantum Pseudocode. Technical Report. Technical Report LAUR-96-2724, Los Alamos National Laboratory.
[23]
J. M. Kreula, S. R. Clark, and D. Jaksch. 2015. A Quantum Coprocessor for Accelerating Simulations of Non-equilibrium many Body Quantum Dynamics. arXiv:1510.05703 {quant-ph}.
[24]
Rodney van Meter and Mark Oskin. 2006. Architectural implications of quantum computing technologies. ACM J. Emerg. Technol. Comput. Syst. 2, 1 (2006), 31--63.
[25]
Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong. 2011. Quantum Computing for Computer Architects, (2nd ed.). Morgan 8 Claypool Publishers.
[26]
C. Monroe and J. Kim. 2013. Scaling the ion trap quantum processor. Science 339, 6124 (2013), 1164--1169.
[27]
Michael A. Nielsen and Isaac L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press.
[28]
Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. OBrien. 2014. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5 (Jul. 2014).
[29]
Kamyar Saeedi, Stephanie Simmons, Jeff Z. Salvail, Phillip Dluhy, Helge Riemann, Nikolai V. Abrosimov, Peter Becker, Hans-Joachim Pohl, John J. L. Morton, and Mike L. W. Thewalt. 2013. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 6160 (2013), 830--833.
[30]
Barry I. Schneider. 2015. The impact of heterogeneous computer architectures on computational physics. Comput. Sci. Eng. 17, 2 (Mar 2015), 9--13.
[31]
Peter Selinger. 2004. Towards a quantum programming language. Math. Struct. Comput. Sci. 14 (8 2004), 527--586. Issue 04.
[32]
Peter W. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 5 (1997), 1484--1509.
[33]
Daniel R. Simon. 1997. On the power of quantum computation. SIAM J. Comput. 26, 5 (1997), 1474--1483.
[34]
Darshan D. Thaker, Tzvetan S. Metodi, Andrew W. Cross, Isaac L. Chuang, and Frederic T. Chong. 2006. Quantum memory hierarchies: Efficient designs to match available parallelism in quantum computing. SIGARCH Comput. Archit. News 34, 2 (May 2006), 378--390.
[35]
Rodney Van Meter, Thaddeus D. Ladd, Austin G. Fowler, and Yoshihisa Yamamoto. 2010. Distributed quantum computation architecture using semiconductor nanophotonics. Int. J. Quant. Inf. 8, 01n02 (2010), 295--323.
[36]
Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. 2001. Efficient load balancing for wide-area divide-and-conquer applications. SIGPLAN Not. 36, 7 (Jun. 2001), 34--43.
[37]
Dave Wecker and Krysta M. Svore. 2014. LIQUID: A Software Design Architecture and Domain-Specific Language for Quantum Computing. Retrieved from http://arxiv.org/pdf/1402.4467v1.pdf.
[38]
M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-Guzik, and E. Solano. 2014. From transistors to trapped-ion computers for quantum chemistry. Sci. Rep. 4, 3589 (2014).

Cited By

View all
  • (2024)Demistifying HPC-Quantum integration: it's all about schedulingProceedings of the 2024 Workshop on High Performance and Quantum Computing Integration10.1145/3659996.3673223(1-3)Online publication date: 3-Jun-2024
  • (2024)Near-term distributed quantum computation using mean-field corrections and auxiliary qubitsQuantum Science and Technology10.1088/2058-9565/ad3f459:3(035022)Online publication date: 3-May-2024
  • (2024)Paving the way to hybrid quantum–classical scientific workflowsFuture Generation Computer Systems10.1016/j.future.2024.04.030158:C(346-366)Online publication date: 1-Sep-2024
  • Show More Cited By

Index Terms

  1. High-Performance Computing with Quantum Processing Units

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Journal on Emerging Technologies in Computing Systems
    ACM Journal on Emerging Technologies in Computing Systems  Volume 13, Issue 3
    Special Issue on Hardware and Algorithms for Learning On-a-chip and Special Issue on Alternative Computing Systems
    July 2017
    418 pages
    ISSN:1550-4832
    EISSN:1550-4840
    DOI:10.1145/3051701
    • Editor:
    • Yuan Xie
    Issue’s Table of Contents
    Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 17 March 2017
    Accepted: 01 October 2016
    Revised: 01 September 2016
    Received: 01 November 2015
    Published in JETC Volume 13, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Quantum computing
    2. accelerator
    3. high performance computing

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • UT-Battelle, LLC
    • U.S. Department of Energy

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)322
    • Downloads (Last 6 weeks)36
    Reflects downloads up to 21 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Demistifying HPC-Quantum integration: it's all about schedulingProceedings of the 2024 Workshop on High Performance and Quantum Computing Integration10.1145/3659996.3673223(1-3)Online publication date: 3-Jun-2024
    • (2024)Near-term distributed quantum computation using mean-field corrections and auxiliary qubitsQuantum Science and Technology10.1088/2058-9565/ad3f459:3(035022)Online publication date: 3-May-2024
    • (2024)Paving the way to hybrid quantum–classical scientific workflowsFuture Generation Computer Systems10.1016/j.future.2024.04.030158:C(346-366)Online publication date: 1-Sep-2024
    • (2024)5G High Mast Inspection Based on a Decentralized Autonomous Organization in the Framework of the OASEES ProjectProceedings of the UNIfied Conference of DAMAS, IncoME and TEPEN Conferences (UNIfied 2023)10.1007/978-3-031-49413-0_61(795-806)Online publication date: 30-May-2024
    • (2023)Confidential Quantum ComputingProceedings of the 18th International Conference on Availability, Reliability and Security10.1145/3600160.3604982(1-10)Online publication date: 29-Aug-2023
    • (2023)iQuantum: A Case for Modeling and Simulation of Quantum Computing Environments2023 IEEE International Conference on Quantum Software (QSW)10.1109/QSW59989.2023.00013(21-30)Online publication date: Jul-2023
    • (2023)Experimenting with Hybrid Quantum Optimization in HPC Software Stack for CPU Register Allocation2023 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE57702.2023.10197(134-140)Online publication date: 17-Sep-2023
    • (2023)Quantum Integrated (C+G+Q)PU Split Architecture2023 International Wireless Communications and Mobile Computing (IWCMC)10.1109/IWCMC58020.2023.10183269(1466-1471)Online publication date: 19-Jun-2023
    • (2023)FPGA-based Deterministic and Low-Latency Control for Distributed Quantum ComputingIEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)10.1109/INFOCOMWKSHPS57453.2023.10226129(1-6)Online publication date: 20-May-2023
    • (2023)Feasible Applications of Quantum Computing in Varying Fields2023 International Conference on Computational Science and Computational Intelligence (CSCI)10.1109/CSCI62032.2023.00080(454-459)Online publication date: 13-Dec-2023
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media