Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Cognitive Map Formation Through Sequence Encoding by Theta Phase Precession

Published: 01 December 2004 Publication History

Abstract

The rodent hippocampus has been thought to represent the spatial environment as a cognitive map. The associative connections in the hippocampus imply that a neural entity represents the map as a geometrical network of hippocampal cells in terms of a chart. According to recent experimental observations, the cells fire successively relative to the theta oscillation of the local field potential, called theta phase precession, when the animal is running. This observation suggests the learning of temporal sequences with asymmetric connections in the hippocampus, but it also gives rather inconsistent implications on the formation of the chart that should consist of symmetric connections for space coding.In this study, we hypothesize that the chart is generated with theta phase coding through the integration of asymmetric connections. Our computer experiments use a hippocampal network model to demonstrate that a geometrical network is formed through running experiences in a few minutes. Asymmetric connections are found to remain and distribute heterogeneously in the network. The obtained network exhibits the spatial localization of activities at each instance as the chart does and their propagation that represents behavioral motions with multidirectional properties. We conclude that theta phase precession and the Hebbian rule with a time delay can provide the neural principles for learning the cognitive map.

References

[1]
Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. Cambridge: Cambridge University Press.
[2]
Amari, S. (1977). Dynamics of pattern formation in later-inhibition type neural fields. Biological Cybernetics, 27(2), 77-87.
[3]
Amit, D. J., & Tsodyks, M. V. (1992). Effective neurons and attractor neural networks in cortical environment. Network: Computation in Neural Systems, 3(2), 121-137.
[4]
Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464-10472.
[5]
Blum, K. I., & Abbott, L. F. (1996). A model of spatial map formation in the hippocampus of the rat. Neural Computation, 8(1), 85-93.
[6]
Bose, A., & Recce, M. (2001). Phase precession and phase-locking of hippocampal pyramidal cells. Hippocampus, 11(3), 204-215.
[7]
Bostock, E., Muller, R. U., & Kubie, J. L. (1991). Experience-dependent modifications of hippocampal place cell firing. Hippocampus, 1(2), 193-205.
[8]
Burgess, N., Recce, M., & O'Keefe, J. (1994). A model of hippocampal function. Neural Networks, 7(6-7), 1065-1081.
[9]
Ekstrom, A. D., Meltzer, J., McNaughton, B. L., & Barnes, C. A. (2001). NMDA receptor antagonism blocks experience-dependent expansion of hippocampal "place fields." Neuron, 31(4), 631-638.
[10]
Freeman, W. J. (1987). Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biological Cybernetics, 56(2-3), 139-150.
[11]
Gothard, K. M., Skaggs, W. E., Moore, K. M., & McNaughton, B. L. (1996). Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. Journal of Neuroscience, 16(2), 823-835.
[12]
Harris, K. D., Henze, D. A., Hirase, H., Leinekugel, X., Dragoi, G., Czurkó, A., & Buzsáki, G. (2002). Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature, 417, 738-741.
[13]
Hasselmo, M. E. (1999). Neuromodulation: Acetylcholine and memory consolidation. Trends in Cognitive Science, 3(9), 351-359.
[14]
Hasselmo, M. E., Bodelon, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14(4), 793-817.
[15]
Hasselmo, M. E., Hay, J., Ilyn, M., & Gorchetchnikov, A. (2002). Neuromodulation, theta rhythm and rat spatial navigation. Neural Networks, 15(4-6), 689-707.
[16]
Hoppensteadt, F. C. (1986). An introduction to the mathematics of neurons. Cambridge: Cambridge University Press.
[17]
Jensen, O., & Lisman, J. E. (1996). Hippocampal CA3 region predicts memory sequences: Accounting for the phase precession of place cells. Learning and Memory, 3(2-3), 279-287.
[18]
Káli, S., & Dayan, P. (2000). The involvement of recurrent connections in area CA3 in establishing the properties of place fields: A model. Journal of Neuroscience, 20(19), 7463-7477.
[19]
Kamondi, A., Acsády, L., Wang, X. J., & Buzsáki, G. (1998). Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity-dependent phase-precession of action potentials. Hippocampus, 8(3), 244- 261.
[20]
Larson, J., & Lynch, G. (1989). Theta pattern stimulation and the induction of LTP: The sequence in which synapses are stimulated determines the degree to which they potentiate. Brain Research, 489(1), 49-58.
[21]
Lengyel, M., Szatmáry, Z., & Érdi, P. (2003). Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing. Hippocampus, 13(6), 700-714.
[22]
Levy, W. B., & Steward, O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience, 8(4), 791-797.
[23]
Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society of London Series B; Biological Sciences, 262(841), 23- 81.
[24]
McNaughton, B. L. (1989). Neuronal mechanisms for spatial computation and information storage. In L. Nadel, L. Cooper, P. Culicover, & R. M. Harnish (Eds.), Neural connections, mental computation (pp. 285-350). Cambridge, MA: MIT Press.
[25]
McNaughton, B. L., & Morris, R. G. M. (1987). Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neurosciences, 10(10), 408-415.
[26]
McNaughton, B. L., & Nadel, L. (1989). Hebbian-Marr networks and the neurobiological representation of action in space. In M. A. Gluck & D. E. Rumelhart (Eds.), Neuroscience and connectionist theory (pp. 1-63). Hillsdale, NJ: Erlbaum.
[27]
Mehta, M. R., Barnes, C. A., & McNaughton, B. L. (1997). Experience-dependent, asymmetric expansion of hippocampal place fields. Proceedings of the National Academy of Sciences of the United States of America, 94(16), 8918-8921.
[28]
Mehta, M. R., Lee, A. K., & Wilson, M. A. (2002). Role of experience and oscillations in transforming a rate code into a temporal code. Nature, 417, 741- 746.
[29]
Mehta, M. R., Quirk, M. C., & Wilson, M. A. (2000). Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron, 25(3), 707-715.
[30]
Muller, R. U., & Kubie, J. L. (1987). The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. Journal of Neuroscience, 7(7), 1951-1968.
[31]
Muller, R. U., Kubie, J. L., & Saypoff, R. (1991). The hippocampus as a cognitive graph (abridged version). Hippocampus, 1(3), 243-246.
[32]
Muller, R. U., Stead, M., & Pach, J. (1996). The hippocampus as a cognitive graph. Journal of General Physiology, 107(6), 663-694.
[33]
Nakazawa, K., Quirk, M. C., Chitwood, R. A., Watanabe, M., Yeckel, M. F., Sun, L. D., Kato, A., Carr, C. A., Johnston, D., Wilson, M. A., & Tonegawa, S. (2002). Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science, 297, 211-218.
[34]
O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171-175.
[35]
O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.
[36]
O'Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3(3), 317-330.
[37]
Redish, A. D., & Touretzky, D. S. (1998). The role of the hippocampus in solving the Morris water maze. Neural Computation, 10(1), 73-111.
[38]
Rolls, E. T. (1989). The representation and storage of information in neuronal networks in the primate cerebral cortex and hippocampus. In R. Durbin, C. Miall, and G. Mitchison (Eds.), The computing neuron (pp. 125-159). Reading, MA: Addison-Wesley.
[39]
Rosenzweig, A. D., Ekstrom, A. D., Redish, A. D., McNaughton, B. L., & Barnes, C. A. (2000). Phase precession as an experience-independent process: Hippocampal pyramidal cell phase precession in a novel environment and under NMDA-recepter blockade. Society for Neuroscience Abstract, 26, 982.
[40]
Samsonovich, A., & McNaughton, B. L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. Journal of Neuroscience, 17(15), 5900-5920.
[41]
Sato, N., & Yamaguchi, Y. (2003). Memory encoding by theta phase precession in the hippocampal network. Neural Computation, 15(10), 2379-2397.
[42]
Skaggs, W. E., McNaughton, B. L., Wilson, M. A., & Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6(2), 149-172.
[43]
Skarda, C. A., & Freeman, W. J. (1987). Brains make chaos to make sense of the world. Behavioral Brain Research, 10(2), 161-173.
[44]
Trullier, O., & Meyer, J. A. (2000). Animat navigation using a cognitive graph. Biological Cybernetics, 83(3), 271-285.
[45]
Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., & McNaughton, B. L. (1996). Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model. Hippocampus, 6(3), 271-280.
[46]
Vanderwolf, C. H. (1971). Limbic-diencephalic mechanisms of voluntary movement. Psychological Review, 78(2), 83-113.
[47]
Wagatsuma, H., & Yamaguchi, Y. (1999). A neural network model self-organizing a cognitive map using theta phase precession. In Man Cybernetics, Society Staff, IEEE Systems (Eds)., IEEE SMC'99 Conference Proceedings (Vol. 3, pp. 199-204). Amsterdam: IOS Press.
[48]
Wagatsuma, H., & Yamaguchi, Y. (2000). Self-organization of the cognitive map in a neural network model using theta phase precession. Society for Neuroscience Abstract, 26, 1589.
[49]
Wallenstein, G. V., & Hasselmo, M. E. (1997). GABAergic modulation of hippocampal population activity: Sequence learning, place field development, and the phase precession effect. Journal of Neurophysiology, 78(1), 393-408.
[50]
Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science, 261, 1055-1058.
[51]
Wu, Z., & Yamaguchi, Y. (2004). Input-dependent learning rule for the memory of spatiotemporal sequences in hippocampal network with theta phase precession. Biological Cybernetics, 90(2), 113-124.
[52]
Yamaguchi, Y. (1996). Synchronization of theta activities as a supervisory mechanism of the memory formation in a neural network model of the hippocampus. In N. Kato (Ed.), The hippocampus: Functions and clinical relevance (pp. 339-344). Dordrecht: Elsevier Science.
[53]
Yamaguchi, Y. (2003). A theory of hippocampal memory based on theta phase precession. Biological Cybernetics, 89(1), 1-9.
[54]
Yamaguchi, Y., Aota, Y., McNaughton, B. L., & Lipa, P. (2002). Bimodality of theta phase precession in hippocampal place cells in freely running rats. Journal of Neurophysiology, 87(6), 2629-2642.
[55]
Yamaguchi, Y., & McNaughton, B. L. (1998). Nonlinear dynamics generating theta phase precession in hippocampal closed circuit and generation of episodic memory. In S. Usui & O. T. Omori (Eds.), ICONIP98: The Fifth International Conference on Neural Information Processing Joined with JNNS'98: The International Conference of the Japanese Neural Network Society Proceedings (Vol. 2, pp. 781-784). Amsterdam: IOS Press.

Cited By

View all
  • (2019)Biomimetic approach to tacit learning based on compound controlIEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics10.1109/TSMCB.2009.201447040:1(77-90)Online publication date: 21-Nov-2019
  • (2010)Simulation of human episodic memory by using a computational model of the hippocampusAdvances in Artificial Intelligence10.1155/2010/3928682010(2-2)Online publication date: 1-Jan-2010
  • (2008)Synchronized rhythmic signals effectively influence ongoing cortical activity for decision-makingProceedings of the 15th international conference on Advances in neuro-information processing - Volume Part I10.5555/1813488.1813602(859-866)Online publication date: 25-Nov-2008
  • Show More Cited By

Index Terms

  1. Cognitive Map Formation Through Sequence Encoding by Theta Phase Precession
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Neural Computation
    Neural Computation  Volume 16, Issue 12
    December 2004
    226 pages

    Publisher

    MIT Press

    Cambridge, MA, United States

    Publication History

    Published: 01 December 2004

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 22 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2019)Biomimetic approach to tacit learning based on compound controlIEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics10.1109/TSMCB.2009.201447040:1(77-90)Online publication date: 21-Nov-2019
    • (2010)Simulation of human episodic memory by using a computational model of the hippocampusAdvances in Artificial Intelligence10.1155/2010/3928682010(2-2)Online publication date: 1-Jan-2010
    • (2008)Synchronized rhythmic signals effectively influence ongoing cortical activity for decision-makingProceedings of the 15th international conference on Advances in neuro-information processing - Volume Part I10.5555/1813488.1813602(859-866)Online publication date: 25-Nov-2008
    • (2008)Relationship between an input sequence and asymmetric connections formed by theta phase precession and STDPProceedings of the 15th international conference on Advances in neuro-information processing - Volume Part I10.5555/1813488.1813513(186-193)Online publication date: 25-Nov-2008
    • (2008)Hybrid design principles and time constants in the construction of brain-based roboticsProceedings of the 15th international conference on Advances in neuro-information processing - Volume Part I10.5555/1813488.1813504(119-126)Online publication date: 25-Nov-2008
    • (2008)Context-Dependent Adaptive Behavior Generated in the Theta Phase Coding NetworkNeural Information Processing10.1007/978-3-540-69162-4_19(177-184)Online publication date: 1-Jan-2008
    • (2007)Theta Phase Coding in Human HippocampusDynamic Brain - from Neural Spikes to Behaviors10.1007/978-3-540-88853-6_2(13-27)Online publication date: 5-Dec-2007
    • (2006)Conserving total synaptic weight ensures one-trial sequence learning of place fields in the hippocampusNeural Networks10.1016/j.neunet.2005.06.04819:5(547-563)Online publication date: 1-Jun-2006
    • (2006)How reward can induce reverse replay of behavioral sequences in the hippocampusProceedings of the 13 international conference on Neural Information Processing - Volume Part I10.1007/11893028_1(1-10)Online publication date: 3-Oct-2006

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media