Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A push-relabel framework for submodular function minimization and applications to parametric optimization

Published: 12 September 2003 Publication History

Abstract

Recently, the first combinatorial strongly polynomial algorithms for submodular function minimization have been devised independently by Iwata, Fleischer, and Fujishige and by Schrijver. In this paper, we improve the running time of Schrijver's algorithm by designing a push-relabel framework for submodular function minimization (SFM). We also extend this algorithm to carry out parametric minimization for a strong map sequence of submodular functions in the same asymptotic running time as a single SFM. Applications include an efficient algorithm for finding a lexicographically optimal base.

References

[1]
{1} W.H. Cunningham, Testing membership in matroid polyhedra, J. Combin. Theory B 36 (1984) 161- 188.]]
[2]
{2} W.H. Cunningham, On submodular function minimization, Combinatorica 5 (1985) 185-192.]]
[3]
{3} W. Dinkelbach, On nonlinear fractional programming, Management Sci. 13 (1967) 492-498.]]
[4]
{4} J. Edmonds, Submodular functions, matroids, and certain polyhedra, in: R. Guy, H. Hanani, N. Sauer, J. Schönheim (Eds.), Combinatorial Structures and their Applications, Gordon and Breach, London, 1970, pp. 69-87.]]
[5]
{5} L. Fleischer, S. Iwata, S.T. McCormick, A faster capacity scaling algorithm for submodular flow, Math. Programming 92 (2002) 119-139.]]
[6]
{6} S. Fujishige, Lexicographically optimal base of a polymatroid with respect to a weight vector, Math. Oper. Res. 5 (1980) 186-196.]]
[7]
{7} S. Fujishige, X. Zhang, New algorithms for the intersection problem of submodular systems, Japan J. Ind. Appl. Math. 9 (1992) 369-382.]]
[8]
{8} G. Gallo, M.D. Grigoriadis, R.E. Tarjan, A fast parametric maximum flow algorithm and applications, SIAM J. Comput. 18 (1989) 30-55.]]
[9]
{9} A.V. Goldberg, R.E. Tarjan, A new approach to the maximum flow problem, J. ACM 35 (1988) 921-940.]]
[10]
{10} M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981) 169-197.]]
[11]
{11} M. Grötschel, L. Lovász, A. Schrijver, Geom. Algorithms and Combin. Optimization, Springer, Berlin, 1988.]]
[12]
{12} S. Iwata, A capacity scaling algorithm for convex cost submodular flows, Math. Programming 76 (1997) 299-308.]]
[13]
{13} S. Iwata, L. Fleischer, S. Fujishige, A combinatorial strongly polynomial algorithm for minimizing submodular functions, J. ACM 48 (2001) 761-777.]]
[14]
{14} S. Iwata, S.T. McCormick, M. Shigenc, A strongly polynomial cut canceling algorithm for the submodular flow problem, in: Proceedings of the 7th Conference on Integer Programming and Combinatorial Optimization (IPCO), Graz Austria, 1999, pp. 259-272.]]
[15]
{15} S. Iwata, K. Murota, M. Shigeno, A fast parametric submodular intersection algorithm for strong map sequences, Math. Oper. Res. 22 (1997) 803-813.]]
[16]
{16} N. Megiddo, Optimal flows in networks with multiple sources and sinks, Math. Programming 7 (1974) 97-107.]]
[17]
{17} A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly polynomial time, J. Combin. Theory B 80 (2000) 346-355.]]
[18]
{18} É. Tardos, C.A. Tovey, M.A. Trick, Layered augmenting path algorithms, Math. Oper. Res. 11 (1986) 362-370.]]
[19]
{19} D.M. Topkis, Minimizing a submodular function on a lattice, Oper. Res. 26 (1978) 305-321.]]

Cited By

View all
  • (2022)Minimizing Convex Functions with Rational MinimizersJournal of the ACM10.1145/356605070:1(1-27)Online publication date: 19-Dec-2022
  • (2022)A primal-dual approximation algorithm for the k-prize-collecting minimum vertex cover problem with submodular penaltiesFrontiers of Computer Science: Selected Publications from Chinese Universities10.1007/s11704-022-1665-917:3Online publication date: 22-Oct-2022
  • (2022)Approximation algorithm for the parallel-machine scheduling problem with release dates and submodular rejection penaltiesJournal of Combinatorial Optimization10.1007/s10878-021-00842-x44:1(343-353)Online publication date: 1-Aug-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Discrete Applied Mathematics
Discrete Applied Mathematics  Volume 131, Issue 2
Submodularity
12 September 2003
299 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 12 September 2003

Author Tags

  1. parametric optimization
  2. submodular function

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Minimizing Convex Functions with Rational MinimizersJournal of the ACM10.1145/356605070:1(1-27)Online publication date: 19-Dec-2022
  • (2022)A primal-dual approximation algorithm for the k-prize-collecting minimum vertex cover problem with submodular penaltiesFrontiers of Computer Science: Selected Publications from Chinese Universities10.1007/s11704-022-1665-917:3Online publication date: 22-Oct-2022
  • (2022)Approximation algorithm for the parallel-machine scheduling problem with release dates and submodular rejection penaltiesJournal of Combinatorial Optimization10.1007/s10878-021-00842-x44:1(343-353)Online publication date: 1-Aug-2022
  • (2022)Approximation algorithms for stochastic set cover and single sink rent-or-buy with submodular penaltyJournal of Combinatorial Optimization10.1007/s10878-021-00753-x44:4(2626-2641)Online publication date: 1-Nov-2022
  • (2022)On-line Single Machine Scheduling with Release Dates and Submodular Rejection PenaltiesAlgorithmic Aspects in Information and Management10.1007/978-3-031-16081-3_6(55-65)Online publication date: 13-Aug-2022
  • (2021)Minimizing convex functions with integral minimizersProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458125(976-985)Online publication date: 10-Jan-2021
  • (2020)Approximation Algorithm for Stochastic Set Cover ProblemAlgorithmic Aspects in Information and Management10.1007/978-3-030-57602-8_4(37-48)Online publication date: 10-Aug-2020
  • (2019)MWSR over an Uplink Gaussian Channel with Box ConstraintsProceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing10.1145/3323679.3326519(211-220)Online publication date: 2-Jul-2019
  • (2019)Fair Rate Allocation over A Generalized Symmetric Polymatroid with Box ConstraintsIEEE INFOCOM 2019 - IEEE Conference on Computer Communications10.1109/INFOCOM.2019.8737384(289-297)Online publication date: 29-Apr-2019
  • (2018)Improving Computational Efficiency of Communication for Omniscience and Successive Omniscience2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)10.1109/ALLERTON.2018.8636087(1073-1080)Online publication date: 2-Oct-2018
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media