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ABSTRACT
Efficient program path exploration is important for many software
engineering activities such as testing, debugging and verification.
However, enumerating all paths of a program is prohibitively ex-
pensive. In this paper, we develop a partitioning of program paths
based on the program output. Two program paths are placed in
the same partition if they derive the output similarly, that is, the
symbolic expression connecting the output with the inputs is the
same in both paths. Our grouping of paths is gradually created by
a smart path exploration. Our experiments show the benefits of the
proposed path exploration in test-suite construction.

Our path partitioning produces a semantic signature of a program
— describing all the different symbolic expressions that the output
can assume along different program paths. To reason about changes
between program versions, we can therefore analyze their semantic
signatures. In particular, we demonstrate the applications of our
path partitioning in debugging of software regressions.

1. INTRODUCTION
Programs follow paths. Indeed a program path constitutes a

“unit” of program behavior in many software engineering activi-
ties, notably in software testing and debugging. Use of program
paths to capture underlying program behavior is evidenced in tech-
niques such as Directed Automated Random Testing or DART [6]
- which try to achieve path coverage in test-suite construction.

Why do we attempt to cover more paths in software testing? The
implicit assumption here is that by covering more paths, we are
likely to cover more of the possible behaviors that can be exhibited
by a program. However, as is well known, path enumeration is ex-
tremely expensive. Hence any method which covers various possi-
ble behaviors of a given program while avoiding path enumeration,
can be extremely useful for software testing.

We note that software testing typically involves checking the pro-
gram output for a given input - whether the observed output is same
as the “expected” output. Hence, instead of enumerating individual
program paths, we could focus on all the different ways in which
the program output is computed from the program inputs. In other
words, we can define an output as a symbolic expression in terms
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1 int x,y,z; // input variables
2 int out; // output variable
3 int a;
4 int b = 2;
5 if(x - y > 0) //b1
6 a = x;
7 else
8 a = y;
9 if (x + y > 10) //b2
10 b = a;
11 if(z*z > 3) //b3
12 printf("square(z) > 3 \n");
13 else
14 printf("square(z) <= 3 \n");
15 out = b; //slicing criteria

Figure 1: Sample program

of the program inputs. Thus, given a program P , we seek to enu-
merate all the different possible symbolic expressions which de-
scribe how the output will be computed in terms of the inputs. Of
course, the symbolic expression defining the output (in terms of the
inputs) will be different along different program paths. However,
we expect that the number of such symbolic expressions to be sub-
stantially lower than the number of program paths. In other words,
a large number of paths can be considered “equivalent” since the
symbolic expressions describing the output are the same.

To illustrate our observation, let us consider the program in Fig-
ure 1. The output variable out can be summarized as follows.

x − y > 0 ∧ x + y > 10 : out == x
¬(x − y > 0) ∧ x + y > 10: out == y
¬(x + y > 10): out == 2

The summary given in the preceding forms a “semantic signature”
of the program as far as the output variable out is concerned. Note
that there are only three cases in the semantic signature - whereas
there are eight paths in the program. Thus, such a semantic signa-
ture can be much more concise than an enumeration of all paths.

In this paper, we develop a method to compute such a semantic
signature for a given program. Our semantic signature is computed
via dynamic path exploration. While exploring the paths of a pro-
gram, we establish a natural partitioning of paths on-the-fly based
on program dependencies - such that only one path in a partition
is explored. Thus, for the example program in Figure 1 only three
execution traces corresponding to the three cases will be explored.
For test-suite construction, we can then construct only three tests
corresponding to the three cases in the semantic signature.

How do we partition paths? The answer to this question lies in
the computation of the output variable. We consider two program
paths to be “equivalent” if they have the same relevant slice [7] with
respect to the program output. A relevant slice is the transitive clo-
sure of dynamic data, control and potential dependencies. Data and

1



control dependencies capture statements which affect the output by
getting executed; on the other hand, potential dependencies capture
statements which affect the program output by not getting executed.
In Figure 1, even if line 10 is not executed, the output statement in
line 15 is potentially dependent on the branch in line 9. This is to
capture the fact that if line 9 is evaluated differently, the assign-
ment in line 10 will be executed leading different values flowing to
the output out. We base our path partitioning on relevant slices to
capture all possible flows into the output variable - whether by the
execution of certain statements or their non-execution.

The contributions of this paper can be summarized as follows.
We present a mechanism to partition program paths based on the
program output. The grouping of paths is done by efficient dynamic
path exploration - where paths sharing the same relevant slice natu-
rally get grouped together. We show that our smart path exploration
is much more time efficient as opposed to full path exploration via
path enumeration. Our efficient path exploration method has im-
mediate benefits in software testing. Since our path exploration
naturally groups several paths together - it is much more efficient
than the full path exploration (as in Directed Automated Random
Testing or DART) as evidenced by experiments. Moreover, since
several paths are grouped as “equivalent” in our method (meaning
that these paths compute the output similarly), the test-suite gener-
ated from our path exploration will also be concise.

Secondly, we show the application of our path partitioning method
in reasoning about program versions, in particular, for debugging
the root-cause of software regressions. While trying to introduce
new features to a program, existing functionality often breaks; this
is commonly called as software regression. Given two program ver-
sions P,P ′ and a test t which passes in P while failing in P ′ — we
seek to find a bug report explaining the root cause of the failure of t
in P ′. In an earlier work [9], we presented the DARWIN approach
for root causing software regressions. The DARWIN approach con-
structs and composes the path conditions of test t in program ver-
sions P,P ′ in trying to come up with a bug report explaining an
observed regression. In this work, we show that computing and
composing the logical condition over a relevant slice (also called
relevant-slice condition throughout the paper) produces more pin-
pointed bug reports in a shorter time — as opposed to computing
and composing path conditions. The reason for obtaining shorter
bug reports in lesser time comes from the path conditions contain-
ing irrelevant information which are filtered out in relevant-slice
conditions. Hence relevant-slice conditions are smaller formulae,
which are constructed and solved (via Satisfiability Modulo Theory
solvers) more efficiently.

2. OVERVIEW
We begin with a few definitions.

DEFINITION 1 (PATH CONDITION). Given a program P and
a test input t, let π be the execution trace of t in P . The path
condition of π, say pcπ is a quantifier free first order logic formula
which is satisfied by exactly the set of inputs executing π in program
P . Clearly, t ⊧ pcπ .

The path condition is computed through symbolic execution. Dur-
ing symbolic execution, we interpret each statement and update the
symbolic state to represent the effects of the statements (such as as-
signments) on program variables. At every conditional branch, we
compute a branch constraint, which is a formula over the program’s
input variables which must be satisfied for the branch to be evalu-
ated in the same direction as the concrete execution. The result of
symbolic execution is a path condition, which is a conjunction of

constraints corresponding to all branches along the path. Any in-
put that satisfies the path condition generated by executing an input
t is guaranteed to follow the same path as t. We take the follow-
ing example to show that the effect of assignments is also consid-
ered in path conditions. The path condition for input ⟨x == 0⟩
is ¬(x − 1 > 0), that is, the effect of the assignment in line 3 is
considered.

1 int x; //input variable
2 int a = 0;
3 x = x - 1;
4 if(x > 0){
5 a = 1;}
6 out = a;

Figure 2: Example to show path condition and relevant-slice
condition computation

We now define slice conditions, which are path conditions com-
puted over slices.

DEFINITION 2 (DYNAMIC SLICE CONDITION). Given a pro-
gram P , a test input t and a slicing criteria C — let π be the exe-
cution trace of t in P . Let π ∣C denote the projection of π w.r.t. the
dynamic slice ofC in π. In other words, a statement instance s in π
is included in the projection π ∣C if and only if s is in the backward
dynamic slice of C on π. The dynamic slice condition of C in π is
the path condition computed over the projected trace π ∣C .

Slice conditions are weaker than path conditions, that is, pcπ ⇒
dsc(π,C) where dsc(π,C) is the dynamic slice condition of crite-
ria C in π. Note that given a branch condition bc in dsc(π,C),
the symbolic values of the variables used in bc must be the same
in dsc(π,C) and pcπ . This is because assignments are considered
in symbolic execution as shown in Figure 2 and each assignment
instance in dynamic slice is contained in the full execution trace.
Since path condition pcπ contains each branch condition in the ex-
ecution trace π, we have pcπ ⇒ dsc(π,C). We now refine dynamic
slice condition to relevant-slice condition - the central concept be-
hind our path partitioning. But first, let us recall the notion of po-
tential dependencies and relevant slices [1, 7].

DEFINITION 3 (POTENTIAL DEPENDENCE [1]). Given an ex-
ecution trace π, let s be a statement instance and b be a branch in-
stance that is before s in π. We say that s is potentially dependent
on b iff. there exists a variable v used in s such that (i) v is not
defined between b and s in trace π but there exists another path σ
from b to s along which v is defined, and (ii) evaluating b differently
may cause this untraversed path σ to be executed.

We now introduce the notion of a relevant slice, and relevant-slice
condition, a logical formula computed over a relevant slice.

DEFINITION 4 (RELEVANT SLICE). Given an execution trace
π and a slicing criteria C in π, the relevant slice in π w.r.t. C con-
tains a statement instance s in π iff. C ↝ s where ↝ denotes the
transitive closure of dynamic data, control and potential depen-
dence.

Note that our definition of relevant slice is slightly different from
the standard definition of relevant slice [1, 7]. In standard rele-
vant slicing algorithm, if a statement instance A is included only
by potential dependence, the statement instances that are only con-
trol dependent by A are not be included in the relevant slice. We
have removed this restriction to simplify the definition of relevant
slice, it is simply the transitive closure of three kinds of program
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dependencies — dynamic data dependencies, dynamic control de-
pendencies and potential dependencies. In the rest of the paper, all
appearances of relevant slice and relevant-slice condition refer to
this simplified definition of relevant slice.

DEFINITION 5 (RELEVANT SLICE CONDITION). Given an ex-
ecution trace π and a slicing criteria C in π, the relevant slice con-
dition in π w.r.t. criterion C is the path condition computed over
the statement instances of π which are included in the relevant slice
of C in π.

We take the example program in Figure 2 to show that the effect of
assignments is also considered in relevant-slice condition compu-
tation (just as assignments are considered in path condition compu-
tation). Let the slicing criteria be the value of out in line 6. The
relevant-slice condition for input ⟨x == 0⟩ is ¬(x − 1 > 0), that is,
the effect of the assignment in line 3 is considered.

We use the simple program in Figure 1 to illustrate the advantage
of using relevant-slice condition in dynamic path exploration. The
slicing criteria is the variable out at line 15. Since each statement
is executed once, we do not distinguish between different execution
instances of the same statement in this example.

We use the executed branch sequence annotated with directions
to represent an execution trace. For example, the trace for input
⟨x == 6, y == 2, z == 2⟩ of the program in Figure 1 is denoted
as [b1t, b2f , b3t]. Let us take the input ⟨x == 6, y == 2, z ==
2⟩ as an example to see the differences between path condition,
dynamic slice condition and relevant-slice condition. Given the
trace [b1t, b2f , b3t] corresponding to input ⟨x == 6, y == 2, z ==
2⟩, the path condition along this execution is (x−y > 0)∧¬(x+y >
10) ∧ (z ∗ z > 3).

For the execution path of ⟨x == 6, y == 2, z == 2⟩, the dynamic
backward slice result w.r.t. the slicing criteria at line 15 is {4,15}
- it contains no branches. The path condition computed over the
statements in the dynamic slice (or the dynamic slice condition) is
simply the formula true.

Different from dynamic backward slicing, relevant slicing also
includes the statement instances that could potentially affect the
slicing criteria. For example, if evaluating a branch differently
could affect the slicing criteria — such a branch is included in the
relevant slice, even though it is not contained in the dynamic back-
ward slice. In the example program, the branch at line 9 can poten-
tially affect the value of out in the slicing criteria. This is because
if the branch in line 9 is evaluated differently (to true), the variable
b is re-defined (in line 10) which affects the output variable out.
Hence the relevant slice contains line 9. The entire relevant slice is
{1,4, 9,15}, and the relevant-slice condition on it is ¬(x+ y > 10).
Any input t satisfying the relevant-slice condition ¬(x + y > 10)
has the same symbolic expression for the output out, which in this
case turns out be the constant value 2.

Just like the DART approach [6] uses path conditions to dynam-
ically explore paths in a program, relevant-slice condition can be
used to explore the possible symbolic expressions that the program
output can be assigned to. How would such an exploration pro-
ceed? Suppose we simply use relevant-slice condition to replace
path condition in DART’s path exploration. Given a relevant-slice
condition ψ1∧ψ2∧ . . .∧ψk−1∧ψk — we construct k sub-formulae
of the form of ψ1 ∧ψ2 . . .∧ψi−1 ∧¬ψi, where 1 ≤ i ≤ k. The path
exploration is done by solving these formulae to get new inputs
and iteratively applying this process to the new inputs. Note that
each sub-formula shares a common prefix with the relevant-slice
condition. Now, we examine the effectiveness of this simple solu-
tion on the program in Figure 1. Depth-first exploration strategy is
used, and path exploration terminates when no new sub-formulae

are generated. Let the initial input be ⟨x == 6, y == 2, z == 2⟩, the
path for this input is [b1t, b2f , b3t]. The entire path exploration
process is shown in Table 1. The “from” column of Table 1 can be
understood as follows. If the “from” column contains α.β, it means
that the current input is generated by negating the βth branch con-
straint of the relevant-slice condition in the αth row.

Recall from Section 1 that we expect the following three sym-
bolic expressions for out to be explored.

x − y > 0 ∧ x + y > 10 : out == x
¬(x − y > 0) ∧ x + y > 10: out == y
¬(x + y > 10): out == 2

As we can see from Table 1, no path having relevant-slice condition
¬(x − y > 0) ∧ (x + y > 10) is explored. Therefore, this feasible
relevant-slice condition is missed by the exploration process. In
addition, the relevant-slice condition ¬(x + y > 10) is explored
several times. Thus, we cannot simply replace path condition with
relevant-slice condition in DART’s path exploration.

Let us examine closely what went wrong in the path exploration
of Table 1. In particular, the input on line 3 is generated by negating
the second branch condition of the relevant-slice condition in line
2 in Table 1. That is, when we solve (x − y > 0) ∧ ¬(x + y >
10) the relevant-slice condition of the new input is ¬(x + y >
10). The branch condition (x − y > 0) disappears in the new
relevant-slice condition because the corresponding branch is not
contained in the relevant slice anymore. In contrast, path condition
based path exploration follows certain path-prefixing properties —
if ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ψi is the prefix of a path condition (for
some program input), the path condition of any input satisfying
ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi will have ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi as a
prefix. Such a property does not hold for relevant-slice condition.
Hence, simply replacing path condition with relevant-slice condi-
tion in DART not only causes redundant path exploration but also
makes the exploration incomplete (in terms of possible symbolic
expressions that the output variable may assume).

We have developed a path exploration method which avoids the
aforementioned problems. While exploring (groups of) paths based
on relevant-slice condition, our method re-orders the constraints in
the relevant-slice condition. The path exploration is based on re-
ordered relevant-slice condition. A reordered relevant-slice condi-
tion satisfies the following property (which also holds for path con-
ditions): if ψ1∧ψ2 . . .∧ψi−1∧ψi is a prefix of a reordered relevant-
slice condition, the reordered relevant-slice condition of any input
satisfying ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi has ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi
as a prefix.

3. OUR APPROACH
In this section, we give our path exploration algorithm based on

relevant-slice condition. We then prove that our path exploration
algorithm is complete, as far as relevant-slice condition coverage is
concerned. Throughout the paper, we assume that the slicing crite-
ria is in a basic block that post-dominates the entry of the program.

First we introduce the following notations.

Notations. We use C to denote the unique slicing criteria. When
used in a dynamic context, C refers to the last executed instance
of the slicing criteria. Given a test case t, we use π(t) to denote
the execution path of t. We use rs(sc, π) to denote the relevant
slice on path π w.r.t. slicing criteria sc. We use rsc(sc, π) to de-
note the relevant slice condition on path π w.r.t. slicing criteria sc.
We use reordered_rsc(sc, π) to denote the reordered sequence of
rsc(sc, π). We use b(ψ) to denote the branch instance of a branch
condition ψ. We use bc(b) to denote the branch condition gener-
ated by b. Given a relevant-slice condition or reordered relevant-
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No. from input path RSC
1 ⟨6,2,2⟩ [b1t, b2f , b3t] ¬(x + y > 10)

2 1.1 ⟨6,5,2⟩ [b1t, b2t, b3t] (x − y > 0) ∧ (x + y > 10)

3 2.2 ⟨6,2,2⟩ [b1t, b2f , b3t] ¬(x + y > 10)

4 2.1 ⟨2,6,2⟩ [b1f , b2f , b3t] ¬(x + y > 10)

Table 1: Path exploration based on relevant-slice conditions for example in Figure 1

No. from input path RSC reordered RSC
1 ⟨6,2,2⟩ [b1t, b2f , b3t] ¬(x + y > 10) ¬(x + y > 10)

2 1.1 ⟨6,5,2⟩ [b1t, b2t, b3t] (x − y > 0) ∧ (x + y > 10) (x + y > 10) ∧ (x − y > 0)

3 2.2 ⟨5,6,2⟩ [b1f , b2t, b3t] ¬(x − y > 0) ∧ (x + y > 10) (x + y > 10) ∧ ¬(x − y > 0)

Table 2: Path exploration with reordered relevant-slice conditions for example in Figure 1

slice condition θ and a branch condition ψ, we use θ/ψ to denote
the result of removing ψ from θ. Recall that θ is a conjunction of
branch conditions. If ψ is contained in θ, ψ is deleted from the
conjunction to get θ/ψ. Otherwise, θ/ψ is the same as θ.

3.1 Path exploration algorithm
We now present our path exploration method which operates on

a given program P . All relevant slices and relevant-slice conditions
are calculated on the same program P with respect to a slicing cri-
teria C (which refers to the program output).

We group paths based on relevant-slice condition. As explained
in the last section, a DART-like search based on relevant-slice con-
ditions is incomplete, that is, not all possible symbolic expressions
that the output may assume will be covered. For this reason, we
reorder the relevant-slice conditions.

Our path exploration algorithm is shown in Algorithm 1. The
core of the algorithm is the reorder procedure, which reorders the
relevant-slice conditions. When we compute the relevant-slice con-
dition, we get a sequence of branch conditions – ordered according
to the sequence in which they are traversed. We use the reorder
function to reorder the branch conditions, after which the path ex-
ploration will be performed based on the reordered sequence of
branch conditions.

The reorder procedure is given in Algorithm 1. The reordering
works in a quick-sort-like fashion. In each call to reorder, we split
the to-be-reordered sequence into two sub-sequences. Suppose the
last branch condition in the sequence is from branch instance bk.
If a branch instance b is in the backward relevant slice of bk, then
the branch condition of b is placed before the branch condition of
bk. Otherwise, the branch condition of b is placed after the branch
condition of bk. Then we recursively call the reorder procedure to
reorder the two sub-sequences.

We show the reorder procedure in action in Figure 3. Note that
our reorder is done on branch conditions in a relevant-slice condi-
tion. Since there is a unique branch condition for each branch in-
stance in the execution trace, the example in Figure 3 is on branch
instances for simplicity. On the left of Figure 3, the dependencies
among all the branch instances are provided. If there is an arrow
from bj to bi, then bj is transitively dependent on bi. The “pivot”
in each reorder step is marked in dark; the other branches are re-
ordered w.r.t to the “pivot”. For example, initially b6 is the pivot
and we reorder b1, . . . b5 depending on whether they are in the
relevant slice of b6.

In Algorithm 1, we use a stack to maintain the to-be-explored
partial relevant-slice condition. The main algorithm keeps on pro-
cessing the formulae in the stack when it is not empty. In each

b1 b2 b3 b4 b5 b6

b1 b3 b6 b5 b4 b2

b1 b3 b2 b4 b5

b5 b4 b2

b2 b4

b4 b2

b1 b2 b3 b4 b5 b6
b1 b3 b6 b2 b4 b5

b1 b3

b5 b2 b4

Figure 3: Reorder algorithm in action

iteration, the algorithm pops out one partial relevant-slice condi-
tion from the stack, and checks whether it is satisfiable or not. If
it is satisfiable, we get a new input µ by solving the formula. The
new input µ could lead to some unexplored relevant-slice condi-
tion. The relevant-slice condition for the execution trace of input
µ is then explored, as shown by the procedure Execute in Algo-
rithm 1. Given the execution trace of µ, the relevant-slice condition
over this trace w.r.t. the slicing criteria C is first computed. The
relevant-slice condition is reordered using the reorder procedure,
and the to-be-explored partial relevant-slice conditions are pushed
into the stack.

The second parameter of Execute is used to avoid redundancy
in path search. When Execute is called with parameters t and n,
let the reordered relevant-slice condition reordered_rsc(C,π(t))
beψ′1∧ψ

′
2∧. . .∧ψ

′
m−1∧ψ

′
m. For any partial relevant-slice condition

ϕi = ψ
′
1 ∧ ψ

′
2 ∧ . . . ∧ ψ

′
i−1 ∧ ¬ψ

′
i, 1 ≤ i ≤ n ≤ m, we know that

ϕi has been pushed into the stack a-priori. So the for-loop in the
Execute procedure starts from n + 1 to avoid these explored partial
relevant-slice conditions.

The path exploration of Algorithm 1 when employed on the pro-
gram in Figure 1 leads to the relevant-slice conditions shown in Ta-
ble 2. If the “from” column of Table 2 contains α.β, it means that
the current input is generated by negating the βth branch constraint
of the reordered relevant-slice condition in the αth row. The path
exploration based the reordered relevant-slice condition explores
all possible relevant-slice conditions of the program.
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Algorithm 1 Path exploration
1: Input:
2: P : The program to test
3: t : An initial test case for P
4: C : A slicing criterion
5: Output:
6: T : A test-suite for P
7:
8: Stack = null // The stack of partial rsc to be explored
9: Execute(t,0)

10: while Stack is not empty do
11: let ⟨f, j⟩ = pop(Stack)
12: if f is satisfiable then
13: let µ be one input that satisfies f
14: put µ into T
15: Execute(µ, j)
16: end if
17: end while
18: return T
19:
20: procedure Execute(t, n)
21: execute t in P and compute relevant-slice condition rsc

w.r.t. C
22: let rsc = ψ1 ∧ ψ2 ∧ . . . ∧ ψm−1 ∧ ψm
23: let rsc′ = reorder(rsc)
24: suppose rsc′ = ψ′1 ∧ ψ

′
2 ∧ . . . ∧ ψ

′
m−1 ∧ ψ

′
m

25: for all i from n+1 to m do
26: let h = (ψ′1 ∧ ψ

′
2 ∧ . . . ∧ ψ

′
i−1 ∧ ¬ψ

′
i)

27: push ⟨h, i⟩ into Stack
28: end for
29: return
30: end procedure
31:
32: procedure reorder(seq)
33: if ∣seq∣ == 0 then
34: return seq
35: end if
36: let seq be ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk
37: seq1 = true, seq2 = true
38: for all i from 1 to k-1 do
39: if b(ψi) is in relevant slice of b(ψk) then
40: seq1 = seq1 ∧ ψi
41: else
42: seq2 = seq2 ∧ ψi
43: end if
44: end for
45: return reorder(seq1) ∧ ψk ∧ reorder(seq2)
46: end procedure

Algorithm 2 Augmented reorder
1: procedure reorder(seq, p)
2: if ∣seq∣ == 0 then
3: return seq
4: end if
5: let seq be ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk
6: seq1 = true, seq2 = true
7: for all i from 1 to k-1 do
8: if b(ψi) is in relevant slice of b(ψk) then
9: seq1 = seq1 ∧ ψi

10: else
11: seq2 = seq2 ∧ ψi
12: end if
13: end for
14: assign the priority of b(ψk) as p@[b(ψk)]
15: seq′1 = reorder(seq1, p@[b(ψk)])
16: seq′2 = reorder(seq2, p)
17: return seq′1 ∧ ψk ∧ seq′2
18: end procedure

3.2 Proofs

Assumptions. We assume that the program input space is bounded.
We also assume that the SMT solver used to solve relevant-slice
conditions is sound and complete. As mentioned earlier, we as-
sume that the slicing criteria is in a basic block that post-dominates
the entry of the program — this is the location of the program out-
put. If the program contains multiple outputs, the slicing criteria
can simply be a set of of primitive criteria of the form

⟨output variable, output location⟩

Note that slicing can be performed on such a criteria (which is a
set) without any change to our method.

Execution Index. In the following proofs, we need to align/-
compare different paths. Hence, it is critical to determine whether
two statement instances from different paths are the same. We use
the concept of execution index [15], two statement instances in dif-
ferent paths are the same iff. they have exactly the same “execution
index". Given two paths π1 and π2 and statement instance s in π1,
we say s also appears in π2 iff. in π2 there is a statement instance
s′ such that the execution index of s′ in π2 is same as the execution
index of s in π1. In its simplest form, we can use the path from
root to s in the Dynamic Control Dependence Graph of π1 as the
execution index of s in π1.

Additional Notations Used in Proofs. Over and above the
notations introduced earlier, we use the following notations in our
proofs. The immediate post-dominator of a branch b is denoted as
postdom(b). We use→d to denote dynamic data dependence, and
→c to denote dynamic control dependence. We use →p to denote
potential dependence. We use ↝d to denote transitive data depen-
dence and ↝c to denote transitive control dependence. When no
subscript is specified, we use→ to denote any type of direct depen-
dence and↝ to denote the transitive closure of→.

We use↝s to denote a special kind of transitive dependence. Let
u be a statement instance and b be a branch instance in path π, then
u ↝s b, iff. (i) there exist a variable v used at u, (ii) there is no
definition of u between postdom(b) and u and (iii) there is at least
one static definition of v that is statically transitively control depen-
dent on the static branch of b. There could potentially many static
definitions of v that are statically transitively control dependent on
static branch of b. Depending on whether these definitions of v are
executed, there are two different scenarios when u ↝s b. If all the
definitions of v are not executed, then u is potentially dependent on
b. Otherwise, u is data dependent on the last definition of v (say
it is d), and d is control dependent on b. In both cases, there is a
dependence chain from u to b.

Transformations. For the ease of our proofs, we statically trans-
form any program in the following way. Note that the transforma-
tions do not affect the program semantics, and does not impact the
generality of our proofs. (i) We add a dummy statement nop at the
start of the program. The statement nop means no operation. (ii)
If the slicing criteria (output statements(s)) is not a branch, we add
a dummy branch that contains a dummy use for each variable ap-
pearing in the output statement(s). We use this branch as the slicing
criterion C.

3.2.1 Priority sequence and shortened priority se-
quence

Recall that we need to prove the following property for relevant-
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slice condition: if ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ψi is a prefix of a re-
ordered reordered_rsc(C, t), the reordered relevant-slice condi-
tion of any input t′ satisfying ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi has ψ1 ∧
ψ2 . . . ∧ ψi−1 ∧ ¬ψi as a prefix. There are two important facts
to prove:(i) Each b(ψk), 1 ≤ k ≤ i, is included in the relevant
slice in path π(t′). (ii) The relative order of branch conditions in
ψ1∧ψ2 . . .∧ψi−1∧¬ψi is not changed. To prove these two facts, we
need to find out what is not changed between reordered_rsc(C, t′)
and reordered_rsc(C, t). In the following, we define a shortened
priority sequence sp(b) for each branch instance b. The shortened
priority sequence has the following two properties:

1. Let t and t′ be two inputs. Suppose ψ1 ∧ψ2 ∧ . . .∧ψi−1 ∧ψi
is a prefix of reordered_rsc(C,π(t)). If t′ ⊧ ψ1 ∧ ψ2 ∧
. . . ∧ ψi−1, then sp(b(ψi)) is the same in π(t) and π(t′).

2. Let bx and by be two branch instances in path π(t). If bc(bx)
is reordered before bc(by) by the reorder algorithm in Algo-
rithm 2, then sp(bx) > sp(by).

The first property means that the shortened priority sequence for
the corresponding branch instance of each branch condition in ψ1∧
ψ2∧ . . .∧ψi−1∧ψi is not changed between reordered_rsc(C, t′)
and reordered_rsc(C, t). The second property means that the
shortened priority sequence essentially defines the order of branch
conditions in a reordered relevant-slice condition. We explain how
the shortened priority sequence is computed in the following.

To define the shortened priority sequence, we define the priority
sequence first. In Algorithm 2, we have an augmented reorder algo-
rithm. When reorder is invoked from Execute, the value for the
second parameter of the augmented reorder procedure is an empty
list. The @ symbol in Algorithm 2 means list concatenation. Given
the same parameters, the augmented reorder algorithm computes
the same reordered sequence as the one in Algorithm 1. In the aug-
mented reorder procedure, a priority sequence is computed for each
branch instance along with the reorder process. Recall that the re-
order process is done in a quick-sort-like fashion. When we divide
the input sequence of the reorder procedure using ψk as the “pivot”,
if b(ψi) is in the relevant slice of b(ψk), then b(ψk) is added to the
end of the priority sequence of b(ψi).

Let t be an input and bx be a branch instance in path π(t). Let the
priority number for bx in π(t) be p(bx) = [b̂1x, b̂

2
x, . . . , b̂

σ
x]. From

this priority sequence, we form a new shortened priority sequence
sp(bx) by selecting only the branches b̂ix such that b̂ix satisfies:
there does not exists any b̂jx in p(bx) such that b̂ix ↝c b̂

j
x. We de-

note the new shortened priority sequence as sp(bx) = [b1x, . . . , b
α
x ].

Note that the last branch instance in both p(bx) and sp(bx) is al-
ways bx itself. Because of our transformation, if bk is in rs(C,π(t)),
then the first branch instance in both p(bx) and sp(bx) is from the
slicing criteria C.

Let bx and by be two branch instances in path π(t). If bc(bx) is
reordered before bc(by), then one of the following two cases must
be true: (i) There is a branch instance b in p(bx), where b is after by
in time order and b   by . (ii) by ↝ bx. In the first case, when b is
used as the “pivot” in reorder algorithm, bc(bx) is reordered before
bc(by). In the second case, since by ↝ bx, then bx should always
be before by in the entire reorder process.

Suppose sp(bx) = [b1x, b
2
x, . . . , b

α
x ] and sp(by) = [b1y, b

2
y, . . . , b

β
y ].

Let k be the maximal number that satisfies: for each i, i ≤ k, bix ==
biy . Then we say sp(bx) > sp(by) if either (i) k == min(α,β)

and by ↝ bx or (ii) k < min(α,β) and bk+1y ↝c b
k+1
x or (iii)

k < min(α,β), bk+1x  c b
k+1
y ∧ bk+1y  c b

k+1
x and bk+1x is after

bk+1y in time order. By this definition, it is impossible to have both
sp(bx) > sp(by) and sp(by) > sp(bx).

Lemma 3.1

Lemma 3.2

Lemma 3.9

Lemma 3.8Theorem 1

Lemma 3.3

Lemma 3.4

Lemma 3.12 Lemma 3.13

Lemma 3.5

Lemma 3.6

Lemma 3.11

Lemma 3.7

Lemma 3.10

Theorem 2

Figure 4: Structure of the proofs

3.2.2 Proof structure
We prove two theorems in this paper about relevant-slice con-

dition and our path exploration algorithm based on relevant-slice
condition. The proof structure is shown in figure 4. For the ease of
understanding, we give the outline of our proofs and the relations
between lemmas and theorems in the following.

In Theorem 3.1, we show that a relevant-slice condition could
guarantee the unique symbolic values of the variables used in the
slicing criteria. Symbolic value can be computed by dynamic sym-
bolic execution. Each symbolic value is a expression in terms of
the program inputs. Let s be a statement instance in the path of
input t, and v be a variable used in s. The symbolic value of v in
s is a expression in terms of input variables. If the symbolic value
of v is concretized with t, it must be the same as the value of v in
s when the program is run concretely with input t. To prove The-
orem 3.1, we actually prove the stronger Lemma 3.2. Let t and t′

be two inputs and s be a statement instance in π(t). In Lemma 3.2,
we show that if t′ ⊧ rsc(s, π(t)), then the relevant slice w.r.t. s
in π(t′) would be exactly the same as that in π(t). Theorem 3.1
could be easily derived from Lemma 3.2.

In Theorem 3.2, given any feasible path π, we show that our
path exploration algorithm would explore a path π′ that share the
same relevant-slice condition with π. This is concretized by show-
ing that the algorithm gradually gets a sequence of relevant-slice
conditions with each one closer to the relevant-slice condition of π
than the previous one. Recall that the path exploration process is
by iteratively negating a branch condition in a relevant-slice condi-
tion. Suppose we solve ϕ to get a new input t′, we need to prove
that the relevant-slice condition on π(t′) still contains ϕ as a pre-
fix. Otherwise, the path exploration process would be out of or-
der. Although this is obviously true for path condition, it is not
obvious for relevant-slice condition. According to the result of
relevant slice, some branch constraints do not appear in relevant-
slice condition even they are in path condition. This important
property of reordered relevant-slice condition is proved in Lemma
3.13. Let t and t′ be two inputs. In Lemma 3.13, we prove that if
t′ ⊧ ψ1∧ψ2∧ . . .∧ψi−1∧¬ψi, where ψ1∧ψ2∧ . . .∧ψi−1∧ψi is a
prefix of reodered_rsc(C,π(t)), then reordered_rsc(C,π(t′))
must contain ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi as a prefix. Let the target
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reordered relevant-slice condition be g = ϕ1∧ϕ2∧ . . .∧ϕn−1∧ϕn
and reodered_rsc(C,π(t)) be f . If the first different branch con-
dition between f and g is at location k, we prove that ψk ==
¬ϕk in Lemma 3.12. Combining with 3.13, we show that we
could indeed get closer to π(having longer common prefix with
reordered_rsc(C,π) by negating the kth branch condition in f .
All the lemmas from Lemma 3.3 to 3.11 are used to gradually prove
Lemma 3.12 and Lemma 3.13.

3.2.3 Full proofs

LEMMA 3.1. Let t and t′ be two inputs and s be a statement
instance in π(t). Suppose s is not in π(t′). Let bs be the last
branch instance in π(t) that satisfies: s ↝c bs and bs is in both
π(t) and π(t′). Then bs is evaluated differently in π(t) and π(t′).

PROOF. Let the control dependence chain from s to bs in π(t)
be s ↝c b →c bs, where b →c bs is the last link in s ↝c bs. Note
that b could be same as s. Assume to the contrary that bs is eval-
uated to the same direction in π(t) and π(t′). Then b must also
be executed in π(t′). Therefore, b also satisfies: s ↝c b and b
is in both π(t) and π(t′). Since b is after bs in time order, this
contradicts that bs is the last branch instance that satisfy this condi-
tion. Therefore, bs is evaluated to different directions in π(t) and
π(t′).

LEMMA 3.2. Let t and t′ be two inputs and s be a statement
instance in π(t). If t′ ⊧ rsc(s, π(t)), then s will be executed in
π(t′) , the variables used in s in π(t′) will have the same symbolic
values as in π(t), rs(s, π(t′)) is exactly the same as rs(s, π(t))
and each branch instance in rs(s, π(t)) is evaluated to the same
direction in π(t) and π(t′).

PROOF. We prove this lemma by induction. Given the path
π(t), suppose it is a sequence [s0, s1, . . . , sn−1, sn].

Initial Step: According to our transformation, the statement in-
stance s0 must be from nop. Then rsc(s0, π(t)) is true. It is
obvious that s0 satisfies Lemma 3.2.

Inductive Step: The induction hypothesis is: for each statement
sj , j < i, sj satisfies Lemma 3.2. We need to prove that si also
satisfies Lemma 3.2.

First we prove that si will be executed in π(t′). Let sj be the
statement prior to si such that si →c sj . Then each statement in
rs(sj , π(t)) is also in rs(si, π(t)). So we have rsc(si, π(t))⇒
rsc(sj , π(t)). Since t′ ⊧ rsc(si, π(t)), t′ ⊧ rsc(sj , π(t)). By
the induction hypothesis , sj will be executed to the same direction
in π(t) and π(t′). This implies that si will be executed in π(t′).

The core of the inductive step is to prove that rs(si, π(t′)) is
exactly the same as rs(si, π(t)). This is proved in two directions.
(i) If si ↝ s′ in π(t′), then si ↝ s′ in π(t). (ii) If si ↝ s′ in π(t),
then si ↝ s′ in π(t′).

Now, we prove that given any statement instance s′ in π(t′), if
si ↝ s′ in π(t′), then it must also be si ↝ s′ in π(t). Suppose
in π(t′), si → sk ↝ s′ where sk is another statement instance in
π(t′). We first prove that si → sk in π(t) in two steps: (i) sk
appears in π(t). (ii) si → sk in π(t).

We first prove that sk appears in π(t). We prove this by contra-
diction. Assume to the contrary that sk does not appear in π(t).
We find the last control dependence ancestor of sk that is in both
π(t) and π(t′). Let this statement be su. This means that su is
the last statement in both π(t) and π(t′) such that sk is transitively
control dependent on su in both the execution traces π(t), π(t′).

According to Lemma 3.1, the branch in su must be evaluated
differently in π(t) and π(t′). According to the type of si → sk in
π(t′) we have the following cases.

● (a) si →c sk. The existence of si in π(t) contradicts that sk
is not in π(t).

● (b) si →d sk or si →p sk. In this case, the existence of si
in both paths π(t), π(t′) indicates that si  c su in π(t′)
since su is evaluated differently in π(t) and π(t′). Simi-
larly, si  c su in π(t). This means that si appears after
postdom(su) in both execution traces π(t), π(t′).

Suppose si →d sk or si →p sk in π(t′) is caused by the
use of variable v at si (in case of multiple such variables, we
choose one randomly). There should be no definition of v be-
tween postdom(su) and si in π(t). Otherwise the definition
would also appear in π(t′), making si →d sk or si →p sk
impossible in π(t′). In π(t), according to the definition of
↝s, si ↝s su in π(t). Therefore, su is in the relevant slice of
si in π(t). By the induction hypothesis , su is then evaluated
to the same direction in π(t) and π(t′), contradicting our
original assumption that su is evaluated differently in π(t)
and π(t′).

Therefore, in both cases, we achieve a contradiction - thereby es-
tablishing that sk must appear in π(t).

Given that sk is in π(t), we prove that si → sk in π(t). Ac-
cording to the type of si → sk in π(t′) we have the following
cases. (a) si →c sk in π(t′). — The existence of si and sk in
π(t) already shows that si →c sk. (b) si →d sk or si →p sk in
π(t′). — Suppose the dependence between si and sk is caused by
the use of variable v (in case of multiple such variables, we choose
one randomly) at si in π(t′). Then si ↛ sk could only happen in
π(t) because v is redefined by another statement instance between
sk and si in π(t). Suppose the last definition of v before si in
π(t) is at statement instance sn. So we have si → sn in π(t). By
the induction hypothesis, sn will be executed in π(t′). The vari-
able v will still be redefined by sn in π(t′), which contradicts that
si →d sk or si →p sk in π(t′). Therefore, we have proved that in
both case, si → sk in π(t).

We have now proved that si → sk in π(t). According to induc-
tion hypothesis, we have the relevant slice of sk is the same in π(t)
and π(t′), that is, rs(sk, π(t)) == rs(sk, π(t

′)). Thus, for any
statement instance s′ such that sk ↝ s′ in π(t′) — we must have
sk ↝ s′ in π(t). Therefore, si → sk ↝ s′ in π(t). Thus, we have
proved that given any statement instance s′ in π(t′), if si ↝ s′ in
π(t′), then it must also be si ↝ s′ in π(t).

Next, we prove that given a statement instance s′ in π(t), if si ↝
s′ in π(t), then it must also be si ↝ s′ in π(t′). Suppose si →
sj ↝ s′ in π(t). According to induction hypothesis, sj appears in
π(t′) and sj ↝ s′ in π(t′). So we only need to prove that si → sj
in π(t′). According to the dependence type of si → sj , we have
the following two cases.

● (a) si →c sj in π(t). The existence of both si and sj already
implies that si →c sj in π(t′).

● (b) si →d sj or si →p sj in π(t). We need to prove that the
dependence between si and sj still appears in π(t′). Sup-
pose si →d sj or si →p sj in π(t) is caused by the use of
variable v at si. We prove si →d sj or si →p sj in π(t′) by
contradiction. Assume to the contrary that this is not the case
in π(t′). This could only happen if v is redefined between
sj and si in π(t′). Suppose the last definition of v before
si in π(t′) is statement instance sn, so si →d sn in π(t′).
We have already established that for any statement instance
s′ in π(t′), if si ↝ s′ in π(t′), then it must also be si ↝ s′

in π(t). Thus, sn must also appear in π(t), and si →d sn
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in π(t). This contradicts that si →d sj or si →p sj in π(t)
(simply by the definition of dynamic data dependencies and
potential dependencies). So if si →d sj or si →p sj is in
π(t), si →d sj or si →p sj is also in π(t′),

Therefore, we have proved by induction that rs(si, π(t′)) is ex-
actly the same as rs(si, π(t)) (inductive step).

Since the entire slice of si is exactly the same in two paths, the
symbolic values of the variables used in si must be exactly the same
in π(t) and π(t′). Suppose si usesα variables v1, v2, . . . , vα−1, vα
to define variable s̄i. Let the corresponding definition of these
variables be at si1, s

i
2, . . . , s

i
α−1, s

i
α. Note that each definition six,

1 ≤ x ≤ α, is same in both π(t′) and π(t) since six is in the relevant
slice of si. According the induction hypothesis, the symbolic value
of each vx is the same in π(t) and π(t′), where 1 ≤ x ≤ α. More-
over, the definition of s̄i is computed in exactly the same way (using
the same operations) from v1, v2, . . . , vα−1, vα in π(t) and π(t′).
Therefore, the symbolic value of s̄i in si is the same in π(t) and
π(t′). We know that t′ ⊧ rsc(si, π(t)). Therefore, t′ should sat-
isfy the branch constraints corresponding to the branches appearing
in the relevant slice rs(si, π(t)) == rs(siπ(t′)). Therefore each
branch instance in rs(si, π(t)) is evaluated to the same direction
in π(t) and π(t′). This completes the proof.

THEOREM 3.1. If the relevant-slice conditions of two paths π1

and π2 w.r.t. C are the same, then the variables used in the slicing
criteria C have the same symbolic values in π1 and π2.

PROOF. Let t1 and t2 be two test inputs whose execution traces
are π1 and π2 respectively. According to the theorem statement,
we have rsc(C,π1) == rsc(C,π2). Since t2 ⊧ rsc(C,π2), t2 ⊧
rsc(C,π1). According to Lemma 3.2, the symbolic values of the
variables used inC are exactly the same in π(t2) and π(t1), where
π(t2) == π2 and π(t1) == π1. Therefore, the variables used in the
slicing criteriaC have the same symbolic values in π1 and π2. This
completes the proof.

LEMMA 3.3. Let t be an input. Suppose the reordered relevant-
slice condition in π(t) is reordered_rsc(C,π(t)) = ψ1∧ψ2∧. . .∧
ψk−1 ∧ψk. Then for any i, 1 ≤ i ≤ k, ψ1 ∧ψ2 ∧ . . . ∧ψi−1 ∧ψi ⇒
rsc(b(ψi), π(t)).

LEMMA 3.4. Let t and t′ be two inputs, given a branch instance
b in π(t), if t′ ⊧ rsc(b, π(t))/bc(b), b will be executed in π(t′)
and the variables used in b in π(t′) would have the same symbolic
values as in π(t).

LEMMA 3.5. Let t be an input. Let reordered_rsc(C,π(t))
be ψ1∧ψ2∧ . . .∧ψk−1∧ψk in path π(t). Then for any i, 1 ≤ i ≤ k,
ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ⇒ rsc(b(ψi), π(t))/ψi.

LEMMA 3.6. Let bx and by be two branch instances in path
π(t). If bc(bx) is reordered before bc(by) by the reorder algorithm
in Algorithm 2, then sp(bx) > sp(by).

PROOF. Suppose sp(bx) is [b1x, b
2
x, . . . , b

α−1
x , bαx ] and sp(by) is

[b1y, b
2
y, . . . , b

β−1
y , bβy ]. When sp(bx) ≠ sp(by), let k be the maxi-

mal number that satisfies: for each i, i ≤ k, bix == b
i
y .

If k == min(α,β), it must be either k == α or k == β. If k ==
α, then we have bx == bαx == bkx == bky and bky ↝ by . Therefore,
we have bx ↝ by , which could not be possible when bc(bx) is
reordered before bc(by). Therefore, when k ==min(α,β), it must
be k == β and by ↝ bx.

If k < min(α,β), we enumerate the relation between bk+1x and
bk+1y .

1. bk+1y ↝c b
k+1
x . This is possible.

2. bk+1x ↝c b
k+1
y . We prove that it is not possible to have bc(bx)

being reordered before bc(by). This is proved through (i)
bk+1y   bx (ii) There is no branch b after bk+1y such that
b is in p(bx), but b   by . We first prove bk+1y   bx by
contradiction. Assume to the contrary that bk+1y ↝ bx. Ac-
cording to the process of computing p(bx), if bk+1y ↝ bx and
bk+1x ↝c b

k+1
y , then bk+1y is in p(bx). Since bk+1y is in sp(bx),

bk+1y is also in p(bx). However, according to the definition
of sp(bx), if bk+1x ↝c b

k+1
y and bk+1y is in p(bx), then bk+1x is

not in sp(bx). This contradicts that bk+1x is in sp(bx). Next,
we prove that there is no branch b after bk+1y such that b is
in p(bx), but b   by . This is obvious since for each b after
bk+1y and b is in p(bx), we have b ↝ bk+1x ↝ bk+1y ↝ by ,
contradicting b   by . Therefore, we know that there is no
branch b after bk+1y such that by is reordered after bx by using
b as the “pivot”. So when bc(bk+1y ) is used as the “pivot” in
the reorder algorithm, either bc(bx) is already after bc(bk+1y )

hence after bc(by), or bc(bx) is still before bc(bk+1y ). If
bc(bx) is still before bc(bk+1y ), given the “pivot” bc(bk+1y )

and the fact that bk+1y   bx, bc(bx) will be reordered after
bc(bk+1y ) hence after bc(by). This contradicts that bc(bx) is
before bc(by).

3. bk+1x  c b
k+1
y ∧ bk+1y  c b

k+1
x . We prove that bk+1x is after

bk+1y in time order using contradiction. Assume to the con-
trary that bk+1x is before bk+1y in time order. According to
whether bk+1y is transitively dependent on bk+1x , we have the
following two cases: (i) bk+1y ↝ bk+1x , then the (k + 1)th

element in sp(bx) should be either be bk+1y or some branch
that bk+1y is transitively control dependent on. Neither case
is true for bk+1x . (ii) bk+1y   bk+1x . We first show bk+1y   bx.
Assume to the contrary that bk+1y ↝ bx. Then when bk+1y is
used as the “pivot” in the reorder process, bx is before bk+1y

and bk+1x is after bk+1y . Therefore, bx and bk+1x are in two dif-
ferent sub-sequences, making it impossible to have bk+1x in
the shortened priority sequence of bx. This contradicts that
bk+1x is in sp(bx). Given bk+1y   bx, when bk+1y is used as
the “pivot” in the reorder process, either bc(bx) is already
after bc(bk+1y ) hence after bc(by), or bc(bx) is still before
bc(bk+1y ). If bc(bx) is still before bc(bk+1y ), given the “pivot”
bc(bk+1y ), bc(bx) will be reordered after bc(bk+1y ) hence af-
ter bc(by). This contradicts that bc(bx) is before bc(by). So
it is impossible to have bk+1x before bk+1y in either case.

So we have either (i) k == min(α,β) and by ↝ bx or (ii) k <
min(α,β) and bk+1y ↝c b

k+1
x . or (iii) k <min(α,β) and bk+1x  c

bk+1y ∧ bk+1y  c b
k+1
x and bk+1x is after bk+1y in time order. This is

exactly the definition of sp(bx) > sp(by).

LEMMA 3.7. Let t be an input and b and bk be two branch in-
stances in π(t). Suppose in π(t), sp(bk) is [b1k, b

2
k, . . . , b

i
k]. If

bjk ↝ b, where 1 ≤ j < i, and postdom(b) is after postdom(bj+1k ),
then bc(b) is before bc(bk) in reordered_rsc(C,π(t)).

PROOF. We first prove that b is not in p(bk). Based on the pos-
sible position of b in π(t), we have the following two cases:(i)
b is after postdom(bj+1k ). Since bjk ↝ b, b could only be be-
tween bjk and postdom(bj+1k ). According to the process of com-
puting the shortened priority sequence, any branch instances be-
tween bjk and postdom(bj+1k ) cannot be in p(bk). (ii) b is before
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postdom(bj+1k ). Since postdom(b) is after postdom(bj+1k ), it
must be bj+1k ↝c b. Therefore, we have bj+1k ↝c b and b is in
p(bk). This cannot happen given bj+1k is in sp(bk).

According to the reorder algorithm, if bc(bk) is reordered before
bc(b) and b is not in p(bk), then there must be a branch instance b̂uk
in p(bk) such that b̂uk is after b and b̂uk   b. We will prove that such
a b̂uk cannot exist. Such a b̂uk should be after postdom(b), otherwise
b̂uk ↝c b. Since postdom(b) is after postdom(bj+1k ), b̂uk is after
postdom(bj+1k ). However if b̂uk in p(bk) is after postdom(bj+1k ),
b̂uk ↝ bjk ↝ b. So it is not possible to have any b̂uk in p(bk) such
that b̂uk is after b and b̂uk   b. This means that bc(bk) cannot
be reordered before bc(b). Therefore, bc(b) is before bc(bk) in
reordered_rsc(C,π(t)).

LEMMA 3.8. Let t and t′ be two inputs. Let the reordered
relevant-slice condition in π(t) be reordered_rsc(C,π(t)) = ψ1∧
ψ2 ∧ . . .∧ψi−1 ∧ψi. Then if t′ ⊧ ψ1 ∧ψ2 ∧ . . .∧ψk, k ≤ i, for any
j, 1 ≤ j ≤ k, b(ψj) is evaluated to the same direction in π(t) and
π(t′).

LEMMA 3.9. Let t and t′ be two inputs. Suppose ψ1 ∧ ψ2 ∧
. . .∧ψk−1 ∧ψk is a prefix of reordered_rsc(C,π(t)). Let b(ψk)
be bk. Suppose the shortened priority sequence for bk in π(t) is
sp(bk) = [b1k, b

2
k, . . . , b

i
k], where bik == bk. If t′ ⊧ ψ1 ∧ ψ2 ∧

. . . ∧ ψk−1, then (i) For any j, 1 ≤ j ≤ k, bjk also appears in
π(t′). (ii) For any j, 1 ≤ j < k, each statement that is between
bjk and postdom(bj+1k ) in rs(bjk, π(t

′)) is also in rs(bjk, π(t)).
(iii) For any j, 1 ≤ j < k, each statement that is between bjk and
postdom(bj+1k ) in rs(bjk, π(t)) is also in rs(bjk, π(t

′)).

PROOF. We prove the claims in the lemma one by one.
For any j, 1 ≤ j ≤ k, bjk also appears in π(t′). Suppose bjk →c

bc. Since bjk →c bc, we have bjk ↝ bc and postdom(bc) after bjk
hence after postdom(bj+1k ). According to Lemma 3.7, bc(b) is
reordered before bc(bk)(same as ψk) in reordered_rsc(C,π(t)).
This means that the branch condition of b is actually one of the ψm,
where m ≤ k − 1. Since t′ ⊧ ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1, according to
Lemma 3.8, b will be evaluated to the same direction in π(t) and
π(t′). So bjk is also executed in π(t′).

For any j, 1 ≤ j < k, each statement that is between bjk and
postdom(bj+1k ) in rs(bjk, π(t

′)) is also in rs(bjk, π(t)). We prove
this by contradiction. Assume to the contrary that there is an s in
π(t′), where s ∈ rs(bjk) and s is between bjk and postdom(bj+1k ),
but s is not in rs(bjk, π(t)). There must exist two nodes s1 and
s2 in bjk ↝ s in π(t′) such that bjk ↝ s1 in π(t), but s1 ↛ s2 in
π(t). If it is not the case, then in π(t) we have bjk ↝ s. We prove
s1 → s2 to draw the contradiction in two steps: (i) s2 appears in
π(t). (ii) s1→ s2.

We first prove that s2 appears in π(t). According to the de-
pendence type from s1 to s2 in π(t′), we have the following two
cases:(i) s1 →c s2. the existence of s1 in π(t) shows that s2 also
exists in π(t). (ii) s1 →d s2 or s1 →p s2. Assume to the contrary
that s2 does not appear in π(t). We find the last control ances-
tor s3 of s2 that is in both π(t) and π(t′). According to Lemma
3.1, s3 is evaluated to different directions in π(t) and π(t′). Sup-
pose s1 →d s2 or s1 →p s2 is caused by the use of variable v at
s1(in case of multiple such variables, we choose one randomly).
There should be no definition of v between postdom(s3) and s1
in π(t). Otherwise, that definition would be kept in π(t′), mak-
ing s1 → s2 impossible in π(t′). According to the definition of
↝s, s1 ↝s s3 in π(t). Therefore, we have bjk ↝ s1 ↝ s3 in
π(t). Because s2 ↝c s3, postdom(s3) is after s2 and hence after

postdom(bj+1k ) in π(t′). Since the relative time order of any two
statement instances does not change across different paths, the ex-
istence of both s3 and bj+1k in π(t) indicates that postdom(s3) is
after postdom(bj+1k ) in π(t). According to Lemma 3.7, bc(s3) is
reordered before bc(bk)(same as ψk) in reordered_rsc(C,π(t)).
Since t′ ⊧ ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1, according to Lemma 3.8, s3 is
evaluated to the same direction in π(t) and π(t′). However, this
contradicts that s3 is evaluated to different directions in π(t) and
π(t′).

Then, we show s1 → s2 in π(t). According to the dependence
type from s1 to s2 in π(t′), we have the following two cases:
(i) s1 →c s2. The existence of s1 and s2 already shows that
s1 →c s2 in π(t). (ii) s1 →d s2 or s1 →p s2. Assume to the
contrary that s1 ↛ s2 in π(t). Suppose s1 →d s2 or s1 →p s2
is caused by the use of variable v at s1(in case of multiple such
variables, we just choose one randomly). Therefore, s1 ↛ s2 in
π(t) could only be v is redefined by some statement instance be-
tween s1 and s2 in π(t). We denote this statement instance as
s4. Suppose s4 is control dependent on s5 in π(t), we have bjk ↝
s4 ↝ s5 and postdom(s5) after s4 hence after postdom(bj+1k ).
According to Lemma 3.7, bc(s5) is reordered before bc(bk) in
reordered_rsc(C,π(t)). Since t′ ⊧ ψ1∧ψ2∧ . . .∧ψk−1, accord-
ing to Lemma 3.8, s5 is evaluated to the same direction in π(t) and
π(t′). Therefore, s4 will be executed in π(t′). This contradicts
that s1→d s2 or s1→p s2 in π(t′).

For any j, 1 ≤ j < k, each statement that is between bjk and
postdom(bj+1k ) in rs(bjk, π(t)) is also in rs(bjk, π(t

′)). For a
statement s that is in rs(bjk) and is between bjk and postdom(bj+1k ),
We first prove that s exists in π(t′). Suppose s →c bc. There-
fore, we have bjk ↝ s ↝ bc and postdom(bc) after s hence after
postdom(bj+1k ). According to Lemma 3.7, bc(bc) is reordered
before bc(bk)(same as ψk) in reordered_rsc(C,π(t)). Since
t′ ⊧ ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1, according to Lemma 3.8, bc is eval-
uated to the same direction in π(t) and π(t′). Therefore, s will be
executed in π(t′).

Then, we prove that bjk ↝ s in π(t′). Assume to the contrary
that this is not the case. There must exist two nodes s1 and s2 in
bjk ↝ s in π(t) such that bjk ↝ s1 in π(t), but s1 ↛ s2 in π(t′).
If it is not the case, then in π(t′) we have bjk ↝ s. According the
proof in the last paragraph, s1 and s2 are both executed in π(t′).
According to the dependence type from s1 to s2 in π(t), we have
the following two cases:(i) s1 →c s2. The existence of s1 and s2
already shows that s1 →c s2 in π(t′). (ii) s1 →d s2 or s1 →p
s2. Suppose s1 →d s2 or s1 →p s2 in π(t) is caused by the
use of variable v at s1(in case of multiple such variables, we just
choose one randomly). Therefore, s1 ↛ s2 in π(t′) could only
be v is redefined by some statement instance between s1 and s2 in
π(t′). We denote this statement instance as s4. According to the
above proof, s4 also exists in π(t). Therefore, v should also be
redefined by s4 in π(t), contradicting that s1 →d s2 or s1 →p s2
in π(t).

LEMMA 3.10. Let t and t′ be two inputs. Suppose ψ1 ∧ ψ2 ∧
. . . ∧ ψk−1 ∧ ψk is a prefix of reordered_rsc(C,π(t)). If t′ ⊧
ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1, then sp(b(ψk)) is the same in π(t) and
π(t′).

PROOF. Let b(ψk) be bk. Suppose the shortened priority se-
quence for bk in π(t) is sp(bk) = [b1k, b

2
k, . . . , b

i
k], where bik == bk.

We prove sp(b(ψk)) is the same as [b1k, b
2
k, . . . , b

i
k] in the fol-

lowing steps:(i) We prove that bjk ↝ bj+1k for each j, 1 ≤ j < k,
in π(t′). (ii) We prove that each bjk is in p(bk) in π(t′). (iii) We
prove that for any branch instance in p(bk) in π(t′), either it is
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transitively dependent on some bjk, where bjk is in sp(bk) in π(t)
or it is some bjk. (iv) We show that for each bjk in π(t′), if bjk ↝c bc
then bc is not contained in p(bk) in π(t′).

We first show that bjk ↝ bj+1k in π(t′), where 1 ≤ j < k. Since
bjk ↝ bj+1k and bjk  c b

j+1
k in π(t), there must be a statement in-

stance s between postdom(bj+1k ) and bjk in π(t) such that bjk ↝ s

and s ↝s bj+1k . Note that such an s could be the same as bjk. Sup-
pose s ↝s bj+1k is caused by the use of variable v at s(in case
of multiple such variables, we choose one randomly). As proved
above, between postdom(bj+1k ) and bjk, rs(bjk, π(t

′)) is exactly
the same as rs(bjk, π(t)). Therefore, bjk ↝ s in π(t′) and there
is not definition of v between postdom(bj+1k ) and s in π(t′). Ac-
cording to the definition of ↝s, s ↝s bj+1k is irrespective of the
direction of bj+1k . So in π(t′), we also have s↝s bj+1k . So we have
bjk ↝ bj+1k in π(t′).

Next, we prove that each bjk is in p(bk) in π(t′), where 1 ≤ j ≤
k. Assume to the contrary that this is not the case. Since ψk is
in reorderd_rsc(C,π(t)), b(ψk)(same as bk) is in rs(C,π(t)).
Then the first element in sp(bk) must be from C. According to
the proof in last paragraph, b1k ↝ bk in π(t′). Therefore, the first
element of p(bk) in π(t′) would still be fromC, which is b1k. So b1k
is in p(bk) in π(t′). For j > 1, suppose bjk is the first one in sp(bk)
in π(t) that is not in p(bk) in π(t′). Therefore, we have bj−1k is in
p(bk) in π(t′). According to the process of computing p(bk), there
must be some “pivot” b between bj−1k and bjk(including bjk), where
bj−1k ↝ b and b   bjk and b ↝ bk. According to the proof in last
paragraph, we have bj−1k ↝ bjk and bjk ↝ bk in π(t′). Therefore, b
could not be the same as bjk, meaning b could only be after bjk and
before bj−1k . According to the possible locations of b, we have the
following two cases: (i) b is between bjk and postdom(bjk). If b
is between bjk and postdom(bjk), then b ↝c bjk, contradicting that
b   bjk. (ii) b is between postdom(bjk) and bj−1k . As shown in
Lemma 3.9, rs(bj−1k , π(t′)) is exactly the same as rs(bj−1k , π(t))

between bj−1k and bjk. Since we have b   bjk in π(t), b   bjk in
π(t′) either. This contradicts that b ↝ bjk in π(t′). In each case,
we got a contradiction showing that the assumption is wrong. So
we have bjk is in p(bk) in π(t′).

Then, we prove that for given any branch instance in p(bk) in
π(t′), either this branch instance is transitively dependent on some
bjk, where bjk is in sp(bk) in π(t), or it is some bjk. This is the
same as: for any branch b, if b is not between any pair of bjk and
postdom(bjk), 1 < j ≤ k, then b cannot be in p(bk) in π(t′). Note
that j > 1 is because the range between b1k and postdom(b1k) is
after the slicing criteria C(same as b1k) in time order. Assume to the
contrary that such a b exists, then b must be between some bjk and
postdom(bj+1k ). According to Lemma 3.9, between postdom(bj+1k )

and bjk, rs(bjk, π(t
′)) is exactly the same as rs(bjk, π(t)), then

such b is also in π(t). According to the process of computing
p(bk), b is contained in p(bk) in π(t), contradicting that p(bk)
does not contain any branches that are between postdom(bj+1k )

and bjk. Therefore, we have proved that such b could not exist.
Finally, we show that for each bjk in π(t′), if bjk ↝c bc then bc

is not contained in p(bk) in π(t′). Assume to the contrary that
there exists a bc, bjk ↝c bc and bc is contained in p(bk) in π(t′).
According to proof in the last paragraph bc must be either transi-
tively dependent on some bik or bc is the same as bik. In either case,
we have bjk ↝c b

i
k in π(t′). Recall that control dependence be-

tween two statement instances are preserved across paths as long
as the two statement instances both exist. Since bjk and bik are also

in π(t), we have bjk ↝c b
i
k in π(t). Therefore bjk can not be in

sp(bk) in π(t), contradicting that bjk is in sp(bk) in π(t).
According to the process of computing shortened priority se-

quence, sp(bk) in π(t′) would be [b1k, b
2
k, . . . , b

i
k].

LEMMA 3.11. Let t be an input and bx be a branch instance
in rs(C,π(t)). If the shortened priority sequence of bx in π(t)
is sp(bx) = [b1x, . . . , b

α
x ], then for any i, 1 ≤ i < α, bix ↝ bi+1x .

This essentially means that there is a dependence chain from slicing
criteria to bx, which means bx will be included in rs(C,π(t)).

LEMMA 3.12. Let π1 and π2 be two paths. Let f and g be
reordered_rsc(C,π1) reordered_rsc(C,π2) respectively. Sup-
pose f is ϕ1∧ϕ2∧. . .∧ϕj−1∧ϕj and g is ψ1∧ψ2∧. . .∧ψi−1∧ψi.
If the first different branch condition between f and g is at location
k, then ϕk == ¬ψk.

PROOF. We first show that b(ϕk) and b(ψk) must be the same.
We prove this by contradiction. Assume to the contrary that b(ϕk)
and b(ψk) are different. Let b(ϕk) be bx and b(ψk) be by . Since
the first different branch condition between f and g is at location k,
ϕ1∧ϕ2∧. . .∧ϕk−1 (same as ψ1∧ψ2∧. . .∧ψk−1) is satisfied by the
input of both paths. , Since the input of π1 satisfy ϕ1 ∧ ϕ2 ∧ . . . ∧
ϕk−1, by is contained in rs(C,π1) according to Lemma 3.11. The
branch condition bc(by) should not be inψ1∧ψ2∧. . .∧ψk−1, which
is the same as ϕ1 ∧ϕ2 ∧ . . . ∧ϕk−1. So bc(by) could only be after
bc(bx)(same as ϕk) in reordered_rsc(C,π1). Similarly, bc(bx)
could only be after bc(by) in reordered_rsc(C,π2). According
to Lemma 3.6, we have sp(bx) > sp(by) from π1. Similarly we
have sp(by) > sp(bx) from π2. This contradicts that the shortened
priority sequences are the same in both paths by Lemma 3.10. So
b(ϕk) and b(ψk) must be the same.

According to Lemma 3.4 and 3.5, ϕ1 ∧ϕ2 ∧ . . .∧ϕk−1 can guar-
antee that the symbolic values of the variables used at b(ϕk)(same
as b(ψk)) are the same in π1 and π2. So ϕk could only be different
from ψk if the branch b(ϕk) and b(ψk) are evaluated to different
directions in π1 and π2. So we have ϕk == ¬ψk.

LEMMA 3.13. Let t and t′ be two inputs. If t′ ⊧ ψ1 ∧ ψ2 ∧
. . . ∧ ψi−1 ∧ ¬ψi, where ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ψi is a prefix
of reodered_rsc(C,π(t)), then reordered_rsc(C,π(t′)) must
contain ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi as a prefix.

PROOF. We will prove the following properties of π(t′):

● Each b(ψk), 1 ≤ k ≤ i, in π(t) is executed in π(t′) and the
variables used in each b(ψk) have the same symbolic values
in π(t) and π(t′).

● Each b(ψk), 1 ≤ k ≤ i, in π(t) is contained in rs(π(t′)).

● The order of the branch conditions is the same as ψ1 ∧ ψ2 ∧
. . . ∧ ψi−1 ∧ ¬ψi in π(t′).

Each b(ψk), 1 ≤ k ≤ i, in π(t) is executed in π(t′) and the
variables used in each b(ψk) have the same symbolic values in
π(t) and π(t′). Since k ≤ i, so ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi ⇒
ψ1∧ψ2∧ . . .∧ψk−1. According to Lemma 3.4 and 3.5, each b(ψk)
in π(t) is executed and the variables used in each b(ψk) have the
same symbolic values in π(t) and π(t′).

Each b(ψk), 1 ≤ k ≤ i, in π(t) is contained in rs(π(t′)).
Since k ≤ i, so ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi ⇒ ψ1 ∧ ψ2 ∧ . . . ∧
ψk−1. According to Lemma 3.11, each b(ψk) in π(t) is contained
in rs(π(t′)).

The order of the branch conditions is the same as ψ1 ∧ ψ2 ∧
. . .∧ψi−1 ∧¬ψi in π(t′). Let ψj and ψk be any two branch condi-
tions inψ1∧ψ2∧. . .∧ψi−1∧¬ψi, where 1 ≤ j < k ≤ i. According to
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Lemma 3.7, if ψj is before ψk, then sp(b(ψj)) > sp(b(ψk)). Ac-
cording to Lemma 3.10, the priority sequence of b(ψj) and b(ψk)
in π(t′) are the same as those in π(t) respectively. Therefore in
π(t′), we also have sp(b(ψj)) > sp(b(ψk)). This shows that the
relative order of any two branch conditions in ψ1∧ψ2∧ . . .∧ψi−1∧
¬ψi are the same π(t) and π(t′). Therefore, the order of the branch
conditions is the same as ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi. in π(t′).

The direction of bj is restricted by the corresponding branch con-
dition in ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi. According to the first two
properties above, each branch condition in ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧
¬ψi still appears in reordered_rsc(C,π(t′)). And the order of
these branch conditions in reordered_rsc(C,π(t′)) is the same
as ψ1 ∧ψ2 ∧ . . . ∧ψi−1 ∧ ¬ψi. So reordered_rsc(C,π(t′)) con-
tains ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi as a prefix.

We now prove the completeness of our path search method.

THEOREM 3.2. Given a programP and an execution trace π(t)
for input t in P , Algorithm 1 must explore an execution trace π(t′)
for some input t′ such that π(t) and π(t′) share the same relevant-
slice condition (irrespective of the initial test input with which Al-
gorithm 1 is started) — provided the input space (total number of
possible input values) of P is bounded.

PROOF. Consider any input t in program P , its execution trace
π(t) and the associated reordered relevant-slice condition g. We
use dist(f, g) to denote the distance from f to g where f is also
a reordered relevant-slice condition of some path. Suppose f =
ϕ1 ∧ϕ2 ∧ . . .∧ϕj−1 ∧ϕj and g = ψ1 ∧ψ2 ∧ . . .∧ψi−1 ∧ψi. Let k
be the number such that (i) for all m ≤ k we have ϕm == ψm, and
(ii) either k ==min(i, j) or ϕk+1 ≠ ψk+1. We define dist(f, g) ≡
1− k

i
. When dist(f, g) == 0, f and g are the same. The definition

of dist is asymmetric, that is, dist(f, g) ≠ dist(g, f) is possible.
In Algorithm 1, we maintain a fcurrent which has the closest

distance to g among all the explored relevant-slice conditions. Sup-
pose fcurrent = ϕ1 ∧ϕ2 ∧ . . .∧ϕj−1 ∧ϕj and g = ψ1 ∧ψ2 ∧ . . .∧
ψi−1 ∧ ψi. Suppose the first different branch condition between
fcurrent and g is at location k + 1. When fcurrent is explored,
the partial relevant-slice condition ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk ∧ ¬ϕk+1 is
pushed into the stack. This formula will be eventually processed
by our path search algorithm, provided the total number of pro-
gram paths is finite (which is the case since the input space of the
program is finite, and each input traces exactly one path).

According to Lemma 3.12, ¬ϕk+1 == ψk+1. It is clear that ϕ1 ∧
ϕ2∧ . . .∧ϕk∧¬ϕk+1 is the same as ψ1∧ψ2∧ . . .∧ψk∧ψk+1. Note
that g = ψ1 ∧ ψ2 ∧ . . . ∧ ψi is satisfiable, as g is the relevant-slice
condition of a feasible path π(t). Since k < i (fcurrent and g are
same up to the first k conjuncts), g ⇒ ψ1 ∧ ψ2 ∧ . . . ∧ ψk ∧ ψk+1.
Since g is satisfiable, ϕ1∧ϕ2∧ . . .∧ϕk∧¬ϕk+1 (same as ψ1∧ψ2∧
. . .∧ψk∧ψk+1) is also satisfiable. Let t0 be an input which satisfies
ϕ1∧ϕ2∧ . . .∧ϕk ∧¬ϕk+1, that is t0 ⊧ ϕ1∧ϕ2∧ . . .∧ϕk ∧¬ϕk+1.
Using Lemma 3.13 we get that reordered_rsc(C,π(t0)) contains
ϕ1∧ϕ2∧. . .∧ϕk∧¬ϕk+1 (which is same asψ1∧ψ2∧. . .∧ψk∧ψk+1)
as a prefix. By the definition of distance dist, the distance from
reordered_rsc(C,π(t0)) to g should be

dist(reordered_rsc(C,π(t0)), g) ≤ 1 −
k + 1

i
< 1 −

k

i

Replacing fcurrent with reordered_rsc(C,π(t0)) will therefore
decrease dist(fcurrent, g). Thus, from fcurrent our path search
algorithm moves to the execution trace for input t0 in one step.
Since g contains only i conjuncts, we need at most i such steps to
make dist(fcurrent, g) to be 0. When dist(fcurrent, g) == 0, we
have a path π(t′) that has the same reordered relevant-slice condi-
tion with g (such a t′ can be found since in each step of replacing

fcurrent we obtain a feasible execution trace which is executed by
at least one program input). Since the reordered relevant-slice con-
ditions of π(t) and π(t′) are identical, therefore the relevant-slice
conditions of π(t) and π(t′) must be identical.

4. IMPLEMENTATION
In this section, we discuss our combined infra-structure for sym-

bolic execution and dependency analysis of Java programs.

4.1 Engine
Our implementation is based on JSlice [12]1. JSlice is an open-

source dynamic slicing tool on Java bytecode. We have extended
JSlice to compute relevant-slice conditions. The architecture of our
extended JSlice is shown in Figure 5.

JSlice keeps the collected trace in a compressed form to achieve
scalability. The compression is online — as the trace is gener-
ated it is simultaneously compressed and then slicing is done on
the compressed trace. The slicing algorithm works directly on the
compressed trace without fully uncompressing it. We design our
extension of JSlice to retain this feature (of analyzing compressed
traces with decompression).

In Figure 5, relevant slicing and symbolic execution are sepa-
rated for ease of understanding. However, we do not need the entire
relevant slicing result to start computing relevant-slice condition
in the implementation. The process of constructing the relevant-
slice condition is done along with the backward relevant slicing to
achieve efficiency. Since the relevant slicing process is backward,
we also compute the relevant slice condition via a backward sym-
bolic execution which starts from the slicing criteria and stops at
the beginning of the trace.

For backward symbolic execution, we keep a set of symbolic
values which need to be explained. The symbolic value of a vari-
able v is explained by either an assignment to v or by program
input to v. Let us take the sample program in Figure 1 to show
our backward symbolic execution on a relevant slice. Note that
although we show this example at the source code level, our im-
plementation is at the Java bytecode level. Suppose the input is
⟨x == 6, y == 5, z == 2⟩. The relevant slice for the execution trace
of this input is [1,2,5,6,9,10,15]. Backward symbolic execution
along this trace is shown in Table 3.

To construct the relevant-slice conditions, we need to precisely
represent the semantics of each bytecode type in the generated for-
mula. There are more than 200 different bytecode types in the Java
Virtual Machine instruction set, and almost all of them are han-
dled in our implementation engine. In particular, bytecode types
related to multi-threading and exception are not handled. More-
over, precisely modeling the semantics of certain bytecode types
may be difficult. In the “Threats to Validity” section (Section ??),
we discuss the bytecode types which are not precisely modeled in
our current implementation.

In the original implementation of JSlice, the concrete operand
values of most executed instructions are not stored in the com-
pressed trace as they are not needed in the slicing process. How-
ever, these values are needed when the semantics of some opera-
tions cannot be precisely modeled. In such cases, we have to under-
approximate the generated path condition/relevant-slice condition
by concretizing certain symbolic values in the relevant-slice condi-
tion. For example, Java allows a program to use libraries written in
other languages through native method call. Since the native calls
cannot be traced in Java Virtual Machine, the symbolic return val-
ues from native calls cannot be precisely modeled. In this case, we

1
http://jslice.sourceforge.net/
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Relevant slice Symbolic To be explained Relevant slice condition
values variables

15 out = b; { out→ b } { b } true
10 b = a; {out→ a, b→ a } { a } true
9 if(x+y > 10) {out→ a, b→ a } { x, y } x + y > 10
6 a = x; {out→ x, b→ x, a→ x } { x, y } x + y > 10
5 if(x-y >0) {out→ x, b→ x, a→ x } { x, y } x − y > 0 ∧ x + y > 10
2 int out; {out→ x, b→ x, a→ x } { x, y } x − y > 0 ∧ x + y > 10
1 int x, y, z; //input {out→ x, b→ x, a→ x } { } x − y > 0 ∧ x + y > 10

Table 3: Backward symbolic execution example
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Figure 5: Architecture of relevant-slice condition computation

simply concretize the symbolic return value from a native call using
the concrete return value of the native call (therefore, the concrete
return value of native calls are traced in our implementation).

Our execution engine is a combined infra-structure for dynamic
dependency analysis and dynamic symbolic execution. Thus, apart
from computing relevant-slice conditions, we can simply disable
the dependency analysis in our engine to compute path conditions.
The path conditions and relevant-slice conditions generated from
our tool are in the format of SMT22, which can be solved by var-
ious Satisfiability Modulo Theory or SMT solvers. In our imple-
mentation, we choose Z33 as the SMT solver for our tool.

4.2 Approximation of Path Search
The core component of our path search algorithm (Algorithm

1) is the reorder procedure for reordering relevant-slice conditions.
Although reordering of relevant-slice conditions can be performed
efficiently, in our JSlice setup reordering of relevant-slice condi-
tions turn out to be very expensive. This is because reordering in-
volves many relevant slice computations. Such repeated relevant
slicing is inefficient using JSlice since a lot of the time in each slic-
ing computation goes into the computation of the static control/data
dependencies (which are needed to compute the dynamic control
dependencies and potential dependencies respectively).
2
http://combination.cs.uiowa.edu/smtlib/

3
http://research.microsoft.com/en-us/um/redmond/

projects/z3/

In order to alleviate this inefficiency , we have approximated the
reorder procedure in our path search implementation. Thus, our
implementation of Algorithm 1 in JSlice is approximate and not
exact. This approximation introduces incompleteness into our path
search implementation. However, the incompleteness is only in the
JSlice based implementation, the path search method is complete.

To understand the approximation we introduce into the reorder-
ing of relevant-slice conditions, take the sample program in Figure
1 as an example. Recall that the simple but problematic DART-like
path exploration using relevant-slice condition is shown in Table
1. In particular, when we negate the second branch condition of the
relevant-slice condition in row 2, solving (x−y > 0)∧¬(x+y > 10)
generates a new input whose relevant-slice condition is ¬(x + y >
10). The branch condition (x − y > 0) disappears in the new
relevant-slice condition. As we have mentioned in Section 2, this
is because whether the branch b1 (if (x-y >0)) appears in rel-
evant slice depends on which direction b2 (if (x +y >10)) is
evaluated to. Our approximation method observes this relationship
between b1 and b2 as follows — when b2 is negated, branch b1
disappears from the relevant slice. After we detect this relationship
between b1 and b2, it is used to reorder the relevant-slice condi-
tions. By reordering the branch condition of b2 before the branch
condition of b1, the path exploration process is shown in Table 2.

Let the reordered relevant-slice condition of execution trace π(t)
from input t beψ1∧. . . ψn−1∧ψn. Suppose we solveψ1∧. . . ψm−1∧
¬ψm, where m ≤ n, to generate a new input t′. If the relevant
slice of execution trace π(t′) does not contain bi (the branch cor-
responding to ψi) where i < m ≤ n, then we can detect whether
the appearance of bi appears in the relevant slice depends on the
direction of evaluation of bm (the branch corresponding to ψm). If
we detect that the appearance of bi in relevant slice is dependent
on the direction of bm, we will keep track of the pair (bi, bm). We
detect and maintain a set of such branch pairs during the execution
of our path search algorithm. This set is used in the reordering the
relevant-slice conditions. In particular, if we know (bi, bm) is in
the set of branch pairs, while reordering a relevant-slice condition
of the form (. . .∧. . .∧ψi∧. . .∧ψm . . .) the branch condition of bm
is placed before that of bi in the reordered relevant-slice condition.

5. EXPERIMENTS
In the following, we first compare our relevant-slice condition

based path exploration method with Directed Automated Random
Testing (DART). We then present an application of relevant-slice
conditions in the debugging of evolving programs.

5.1 Path exploration
We compare our path exploration algorithm with DART. The

subject programs shown in Table 4 are from SIR [3] repository.
The lines of code (LOC) in each program are also shown.

Recall that our path search is complete, but an approximation
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Subject prog. Size (LOC) Coverage Coverage Time #Testcases Avg. formula size #Solver calls
(RSC) (DART) RSC DART RSC DART RSC DART RSC DART

tcas 113 100% 54% 6.6s 14.7s 37 120 5632 61663 452 987
BinarySearchTree 175 76% 29% 14.6s 61.9s 175 527 3174 38310 472 3188

OrdSet 211 64% 28% 4.1s 10.8s 20 59 5513 53932 150 293
Schedule 257 100% 100% 0.4s 40.1s 3 186 1775 59061 11 932

Disjoint Set 102 90% 25% 12.1s 64.5s 60 278 7297 167678 523 3855

Table 4: Experiments in full program exploration

in the reordering of relevant-slice conditions introduces some de-
gree of incompleteness. The “Coverage (RSC)” column in Table 4
measures how much incompleteness is introduced by the approx-
imated reorder method described in section 4.2. The numbers in
the “Coverage (RSC)” column are computed as follows. Let the
program being explored be P . We employ path enumeration on
P to explore all the feasible paths and construct a test-suite Tall
which covers the set of all feasible paths in P . For each test case
t in Tall, we compute the relevant-slice condition on the execu-
tion trace of t and put this relevant-slice condition into a set Sall.
Similarly, we generate a test-suite TRSC for program P using our
path exploration method (with the approximation in re-ordering).
For each test case t in TRSC , we compute the relevant-slice condi-
tion on the execution trace of t and put this relevant-slice condition
into a set SRSC . Then the “Coverage (RSC)” column in Table 4 is
∣SRSC ∣
∣Sall ∣ . As shown in Table 4, our method cannot always achieve

100 percent relevant slice coverage due to the approximation in re-
ordering. Note that this does affect the validity of the completeness
claim in Theorem 3.2, the approximation/incompleteness is only in
the implementation.

We now compare the coverage in our relevant-slice condition
based search with the coverage of Directed Automated Random
Testing (DART). Note that DART intends to achieve path coverage.
However, as we have observed - several paths may have the same
input-output relationship, and testing is always done by checking
outputs. We check the number of relevant-slice conditions that are
covered by the paths covered in DART search. The time budget
given to the DART search is exactly the same as the time taken by
our relevant-slice condition based search to finish. The “Coverage
(DART)” column in Table 4 is computed as follows. We set the
time limit for DART as the time taken by our approximate imple-
mentation of relevant-slice condition based path search. Suppose
during this given time, DART generates a test-suite TDART . For
each test case t in TDART , we compute the relevant-slice condi-
tion on the execution trace of t and put this relevant-slice condition
into a set SDART . Then we report the ratio ∣SDART ∣

∣Sall ∣ . As shown
in columns 3-4 of Table 4, given the same amount of time DART
achieves less relevant slice coverage than our method.

In columns 5-12 of Table 4, we compare the time, number of
generated test cases, formula size and number of solver calls be-
tween our method and DART. For getting these numbers, both our
method (RSC) and the DART method are run to completion, and
the running times are recorded. As shown in Table 4, our technique
takes much less time than DART. The efficiency comes from sev-
eral sources. First, since we use relevant-slice condition instead of
path condition, the formula size of our approach is much smaller
than that of DART. This reduces the time taken by the solver. Sec-
ond, the number of different relevant-slice conditions is consider-
ably smaller than the number of path conditions. This reduces both
the number of executions and the number of solver calls.

5.2 Debugging of evolving programs

The obvious application of relevant-slice conditions is in soft-
ware testing - it groups program paths and can be used to efficiently
generate a concise test-suite. We now show another application of
relevant-slice conditions namely in the debugging of evolving pro-
grams. As a program evolves, functionality which worked earlier
breaks. This is commonly known as software regressions. For any
large scale software development, debugging the root-case of re-
gressions is an extremely time consuming activity.

We applied our relevant-slice conditions on the DARWIN method
for debugging evolving programs [9]. Given two program versions
P and P ′, and a test case t which passes in P but fails in P ′, the
work in [9] tries to find the root cause of the failure of t in P ′. The
debugging proceeds by computing and composing the path condi-
tions of t in P and P ′, as follows.

First, the path conditions f and f ′ of t in P and P ′ are computed.
We then compute the formula f ∧ ¬f ′ as follows. Suppose f ′ is
f ′ = (ψ1 ∧ψ2 ∧ . . .∧ψm) where ψi are primitive constraints. The
following m formulae {ϕi ∣ 0 ≤ i < m} are then solved where

ϕi
def
= f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1. We invoke a Satisfiability Modulo

Theory or SMT solver to solve the m formulae {ϕi ∣ 0 ≤ i < m}.
Finally, for every ϕi which is satisfiable, we can find a single line in
the source code which is a potential error root cause — the branch
corresponding to ψi+1 (which is negated in ϕi).

We observe that the path conditions f and f ′ in the above method
can be replaced by relevant-slice conditions. Path conditions are
calculated by a forward computation along an execution trace. Thus,
a path condition is not “goal-directed” — it contains the constraints
of branches which are not “related” to the observable error. In
particular, a path condition will typically contain constraints for
branches which are not in the dynamic or relevant slice of the ob-
servable error. Consider the following example program

1. ... // input inp1, inp2
2. if (inp1 > 0)
3. x = inp1 + 1;
4. else
5. x = inp1 - 1;
6. if (inp2 > 0)
7. y = inp2 + 1
8. else
9. y = inp2 - 1;
10. ... // output x, y

Suppose the observed value of x is unexpected for inp1 ==
inp2 == 0 because of a “bug” in line 2 (say, the condition should
be inp1 >= 0). The path condition is ¬(inp1 > 0) ∧ ¬(inp2 >
0). Clearly, the constraint ¬(inp2 > 0) corresponding the the
branch in line 6 is unrelated to the observable error (unexpected
value of x). Indeed, line 6 is not in the dynamic slice or relevant
slice of the slicing criterion corresponding to the output value of x
in line 10.

Thus, due to the inherent parallelism in sequential programs,
path conditions contain constraints for branches which are not in
the slice of the observed error. Composing these path conditions
for debugging then allows for such “unrelated” branches to be in-
corporated into the bug report (which is output by the debugging

13



Subject prog. Stable version Buggy version Time from PC Time from RSC Results from PC Results from RSC
JLex 1.2.1 (7290 LOC) 1.1.1 (6984 LOC) 543 min 15 min 50 LOC 3 LOC

Table 5: DARWIN debugging results (LOC stands for Lines of Code)

method). Indeed including these “unrelated” branch constraints in-
creases the burden on the SMT solvers invoked by the DARWIN
method, both in terms of the size of the formulae and the num-
ber of the formulae to solve. In addition, these “unrelated” branch
constraints also introduce some false positives into the bug report
produced by the DARWIN method.

Replacing path condition with relevant-slice condition in the DAR-
WIN method resolves these issues. Thus, given a test case t that
passes in the old version program P but fails in the new version
program P ′ — we now compute g and g′, the relevant-slice con-
dition of t in P and P ′ respectively. We then solve g ∧ ¬g′ in a
manner similar to the solving of f ∧ ¬f ′ in DARWIN (where f, f ′

were the path conditions of t in programs P,P ′).
We compare the debugging result of DARWIN using relevant-

slice conditions with the original DARWIN method (which uses
path conditions). Both methods are fully automated. Our subject
program to be debugged is JLex4. JLex is a lexical analyzer gen-
erator written in Java. We use version 1.2.1 of JLex as the stable
version, and version 1.1.1 as the buggy version. There are 6984 and
7290 lines of code in version 1.1.1 and version 1.2.2 respectively.
The changes across version 1.1.1 and version 1.2.1 consist of 518
lines of code. In particular, the version 1.1.1 of JLex cannot rec-
ognize ‘\r’ as the newline symbol, while in version 1.2.1 this bug is
fixed. We use an input file manifesting this bug.

The experimental results from DARWIN using relevant-slice con-
ditions vs. the original DARWIN method appears in Table 5. The
original DARWIN method, which uses path conditions, takes 543
minutes (or 9 hours) to perform the debugging. The result of DAR-
WIN is a bug report containing 50 lines of code, which are high-
lighted to the programmer as potential root-causes of the observ-
able error. In contrast, DARWIN using relevant-slice conditions
takes only 15 minutes. The result is a bug report containing only
3 lines of code — potential root causes of the observed error. In-
deed, the actual error root-cause lies in one of these three lines of
code. Thus, by using relevant-slice conditionsinside our DARWIN
debugging method - we could avoid 47 false positives among the
potential error causes which are reported to the programmer. More-
over, there is a huge savings in the debugging time (15 minutes vs 9
hours) which comes from the relevant-slice conditions being much
smaller than path conditions.

6. THREATS TO VALIDITY
Our path exploration does not try to cover all paths. Instead, we

try to group paths based on symbolic outputs. This is done with
the goal of test-suite construction, where testing will expose pos-
sible failures in the program. However, failure of a test case does
not only come from unexpected outputs - it can also come from
program crashes. hence the possible null pointer deference is not
spotted by the generated test-suite. Realistically, our test-suite con-
struction could be supplemented by techniques to statically detect
possible program crashes, such as memory error detection [14].

The completeness proof of Algorithm 1 in Section 3.2.3 is under
the assumption that the semantics of the different program state-
ment executed in a trace is precisely modeled in the computed
relevant-slice condition of that execution trace. However, in our

4
http://www.cs.princeton.edu/~appel/modern/java/JLex/

implementation, certain program features are not precisely mod-
eled, which causes our path exploration to be incomplete. In par-
ticular, polymorphism and arrays are not precisely modeled in our
current implementation.

7. RELATED WORK
The technique proposed in this paper is based on dynamic path

exploration [6, 11] and relevant slicing [1, 7, 12]. Our technique
improves existing dynamic path exploration techniques by group-
ing several paths together using relevant-slice condition. Existing
dynamic path exploration tries to achieve path coverage. In con-
trast, our technique only selects one path from each relevant-slice
condition to explore.

There are several works which focus on improving the efficiency
of dynamic path exploration. In [4], function summaries are gen-
erated and exploited. In [5], the grammar of the input is used to
avoid generating large percentage of invalid inputs. Our approach
is orthogonal to these approaches, therefore, our approach can be
combined together with any of these approaches to further improve
the efficiency of the path search.

In [10], a program is statically decomposed into several path
families, where each path family contains several paths that share
similar behavior. Instead of analyzing each path individually, a pro-
gram can be analyzed at the granularity of path family. The authors
of [10] also compute a “path family condition” for each path fam-
ily that could characterize that path family. The main difference
between our work and [10] lies in the static vs. dynamic nature
of the two techniques. [10] statically computes their path family
conditions, while we dynamically explore the relevant-slice con-
ditions. Because of the dynamic nature of our method, we can
under-approximate the relevant-slice conditions , while [10] over-
approximates their “path family conditions" if needed. Clearly, the
dynamic nature of our method makes it more suitable for test gener-
ation. Note that the effect of program statements written in real-life
programming languages are hard to precisely model as symbolic
formulae. In such a situation, under-approximation is a practical
simplification, since it amounts to concretizing parts of the formula.

Apart from the application of relevant-slice condition in debug-
ging mentioned in Section 5, there are many other path condition
based techniques that could benefit from relevant-slice condition.

Our relevant-slice condition can be used to minimize an existing
test-suite [8, 13]. If a test-suite contains two test cases that have
the same relevant-slice condition, these two test cases compute the
output in the same way. Therefore, we can choose to eliminate one
of them to make the test-suite smaller.

The work of [2] explores paths to generate program invariants.
For each path explored, the path condition serves as a pre-condition
and the symbolic program output is treated as a post-condition.
Thus, each explored path produces a program invariant which is
defined as such a (pre-condition, post-condition) pair. We can gen-
erate such program invariants using relevant-slice conditions — the
relevant-slice condition is the pre-condition and for each relevant-
slice condition explored, there is a unique symbolic output which
serves as the post-condition. Moreover, the invariants generated us-
ing relevant-slice conditions will be simpler (as relevant-slice con-
ditions are smaller than path conditions) and fewer (since a single
relevant-slice condition groups more paths).
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8. DISCUSSION
In this paper, we have presented a novel path exploration method

based on symbolic program outputs. Our path exploration dynami-
cally groups paths on-the-fly, where two paths which have the same
symbolic output are grouped together. Given such a path partition-
ing, we can generate a test case from each partition. This enables us
to efficiently obtain a concise test-suite which stresses all possible
input-output relationships in the program.

We have proved that our path exploration method is complete,
that is, it covers all possible symbolic outputs in a given program.
We also experimentally compare the efficiency and coverage of our
method with respect to Directed Automated Random Testing, an-
other path search method based on symbolic execution.

Apart from testing, the path partitioning computed by our method
can be exploited in other software engineering activities. We have
shown its use in the debugging of errors introduced by program
changes, that is, in root-causing observable software regressions.
By comparing the path partitioning in two program versions, we
infer the semantic differences across the versions, leading to pre-
cise root cause identification.
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