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Abstract: Face recognition based on thermal images has minor importance in com-
parison to visible light spectrum recognition. Nevertheless, in applications such as
livelyness detection or fever scan, thermal face recognition is used as a stand-alone
module, or as part of a multi-modal biometric system. This paper investigates combi-
nations of many methods, used for thermal face recognition, and introduces some new
and modified algorithms, which have not been used in the area as of yet. Moreover, we
show that the best method is always limited to a certain database (input data). In order
to address this problem, the multi-algorithmic biometric fusion, based on the logistic
regression, is deployed.

1 Introduction

Face recognition is widely used in access control and surveillance biometric systems. Stan-

dard visible spectrum cameras are used as he sensors in these applications. Recently, there

has been an increased interest in face recognition in the thermal infra-red spectrum, be-

cause it solves some problems of the visible spectrum recognition. Thermal images are

remarkably invariant to light conditions, and, most importantly, provide higher level of

liveness detection. On the other hand, intra-class variability is higher due to variations in

environment and face temperature, emotions and health state [ABB06, Che03].

According to recent studies, there are several algorithmic approaches used for thermal face

recognition [ABB06, HRdSVC12]. The appearance based methods [SS06, FY02, Che03]

deal with suche aligned images as a matrix of numbers. They are computationally efficient,

but have some problems with head pose variance. Another approach is to extract features

using Gabor filter bank [BPK04]. In [BPTB07], authors present thermal face recognition

by vascular network extraction.

Some papers use a fusion of visible and infrared face images at the decision or feature level

[AH06, FY02, SVN08]. Contrary to other papers, which describe multi-algorithmic fusion

[KS08], we evaluate our proposed algorithm using images from several databases. The
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Figure 1: The overview of a generalized recognition pipeline. Any path from the left to the right
yields a possible recognition algorithm.

theoretical background of a general multi-biometric fusion, especially the link between

the correlation and variance of both the impostor and genuine distribution between the

employed recognition methods, is described in [PB05].

In contrast, we perform the fusion by combining both appearance approaches and feature

extraction approaches for infrared images. In addition, we present a new approach to geo-

metrically normalize images before performing the feature extraction. This normalization

uses a 3D model back-projection in order to deal with different head poses.

2 Thermal face recognition

Almost every biometric system consists of four major parts – sensor, feature extraction,

comparison, and the final decision. In order to address specific parts of the process, we use

a slightly more complex pipeline structure (see Figure 1). The numbers in the following

list refer directly to the numbers in Figure 1.

1. The detection of facial features involves the localization of important facial land-

marks. These landmarks are used in subsequent steps. In this paper, we are using

manually annotated data, because precise detection of facial features is still a chal-

lenge. Moreover, we are focusing on algorithm performance, rather than detection

accuracy.

2. The face can be normalized into some predefined position by affine transformation,

based on the detected points (2D-warping). The other solution (3D-projection) in-

volves a 3D model that is adapted to the input image.

3. Some of our testing databases contain the IR images, captured in dynamic range

mode. Due to this fact, intensity normalization is needed.

4. The feature vector extraction is a simple vectorization of the normalized image. The

other possibility is the application of a filter bank. Either the Gabor filter [Lee96] or

the Laguerre-Gaussian filter banks [JN95] may be used.

5. In order to reduce space dimensionality, as well as to increase inter-class variability

and/or reduce redundancy, the feature vector may optionally be passed onto some

statistical projection technique. The PCA, LDA, and ICA [TP91, BHK97, Hyv99]
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were used for this purpose.

6. Feature vector post-processing involves additional processing of the feature vector.

For example, a selection of the best components (in terms of recognition perfor-

mance) may be used. Individual components may obtain weights, or the components

may be normalized.

7. A comparison of two processed faces (feature vectors) is accomplished by calculat-

ing the distance between them. Any distance-metric function may accomplish this

task. In our paper, we are using Euclidean, cosine, city-block (Manhattan, sum of

absolute differences), and correlation metric.

8. The final decision is simply a thresholding of the achieved comparison score.

2.1 Pose normalization

The pose normalization is a function that transforms points pR of the raw input image,

R, to its new positions, pG, of the normalized image, G. This transformation tries to

eliminate intra-class variance, caused by a different head pose. Geometrical transformation

usually needs an additional information, such as a minimal face bounding box, or the

locations of some important facial landmarks.

This paper presents two methods for geometrical normalization: 2D-warping and 3D-

projection (see Figure 2(a)). Both use a set of important facial landmarks, F = (f1, f2, ...fn).
Let pI,f be the coordinates of a landmark f in an image I. The position of pR,f is obtained

during facial feature detection, while the pG,f is the same for all input images.

The 2D-warping using affine transformation is a well-known normalization approach. The

three important facial points (typically eyes and mouth or nose) are selected as landmarks,

F. The affine transformation matrix, AM, can be computed by solving a system of three

equations (see [Rat95]). This matrix is used to map an input image to the normalized

template as follows:

G[AM · pR] = R[pR], (1)

where R[pR] is the pixel intensity at position pR of image R.

Human heads have an irregular ellipsoid-like 3D shape, therefore, the 2D-warping method

works well, when the head is scaled or rotated in the image plane. In case of any other

transformation, the normalized face is deformed. Possible solution is to normalize the

head, using 3D head model [Bla06]. This is a complex approach, and needs some manual

assistance.

The proposed 3D-projection method works with the average 3D model of a human head,

M , consisting of vertices vM . A geometrical transformation, τ(vM ), can be applied to

each vertex. τ(vM ) usually consists of translation, rotation and scaling. A transformed

model point τ(vM ) can be perspectively projected by ϑ(τ(vM )) to the 2D plane. The

coordinates vM,f of each landmark f have to be known within the model M .

Next, the model alignment according to the image I is required. It is aimed at finding a
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2.3 Feature extraction

Feature extraction involves the transformation of the input image data into some vector

representation. The simplest approach is vectorization. The image is considered as a

matrix I with r rows and c columns. The vectorization transforms I to the feature vector

fv ∈ R
r·c, by simple row/column concatenation.

In this paper, we apply filter banks to feature extraction. This approach has been previously

described in [YJW07, SSC09]. The normalized image is convolved with a bank of 2D

filters, which are generated, using some kernel function with different parameters. Each

response of this convolution forms a final feature vector.

The Gabor filter bank is one of the most popular banks [Lee96]. We employed the

Laguerre-Gaussian filter bank as well, due to its good performance in the face recogni-

tion area [JN95]. In case of the Gabor bank, we use 3 different scales and 4 different

orientations. The Laguerre-Gaussian filter bank consists of 4 filters, generated by 2 kernel

functions, using both real and imaginary parts.

2.4 Statistical projections

The statistical projection methods linearly transform the input feature vector from an m-

dimensional space into an n-dimensional space, where n < m. They are usually integrated

into the feature extraction part of the pipeline, but we have decided to split feature extrac-

tion and statistical projections. We have used the following methods:

• Principal component analysis (PCA, Eigenfaces)

• PCA followed by linear discriminant analysis (LDA of PCA, Fisherfaces)

• PCA followed by independent component analysis (ICA of PCA)

Every projection method has a common learning parameter, which defines how much vari-

ability of the input space is captured by the PCA. This parameter controls the dimension-

ality of the output projection space. Let the k eigenvalues, computed during the PCA

calculation, be denoted e1, e2, . . . , ek, (e1 > e2 > · · · > ek). These eigenvalues directly

represent the variability in each output dimension. If we want to preserve only 98% of

variability, then only the first l eigenvalues, and corresponding eigenvectors are selected,

such that their sum forms only 98% of the
∑k

j=1
ej .

There is an optional step to perform a per-feature z-score normalization after the projec-

tion, such that each vector fv is transformed into fv
′ = fv−fv

σ
, where fv is the mean vector

and σ is the vector of standard deviations.
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2.5 Feature selection and weighting

An optional processing, after the application of the statistical projection methods, is the

feature weighting. We can consider the decorrelated feature vectors, since the PCA, ICA,

or LDA was applied. Suppose that we have a set FV of all pairs of feature vectors, fvj , and

their corresponding class (subject) labels, idj : FV = {(id1, fv1), (id2, fv2), . . . , (idn, fvn)}.

The individual feature vector components, fvj1 , fvj2 , . . . , fvjm , of the vector fvj do not

have the same discriminative ability. While some component may have positive contri-

bution to the overall recognition performance, the other component may not. The op-

timization criterion in feature weighting is achieved EER with specific feature weights

w = w1, . . . , wm.

We have implemented and evaluated two possible feature-weighting techniques. The first

option is to consider individual feature vector components as a standalone one-dimensional

feature vectors, and then to evaluate the equal error rate EERi for each specific compo-

nent i, separately. The resulting discriminative ability, that we call EER potential of the

component i, is:

EER potentiali = 1− EERi (2)

The individual EER potentials are linearly transformed, such that the smallest value be-

comes 0 and the greatest is transformed to 1. These new values EER′

i directly forms a

weight vector w = EER′

1, . . . , EER′

m.

The second option is to make an assumption that the appropriate feature vector component

has stable values across the different scans of the same subject, and, on the other hand, the

mean value of a specific component across different subject differs as much as possible.

Let the intra-class variability of feature component i be denoted as intrai, and expresses

the mean of standard deviations of all measured values, for the same subjects. The inter-

class variability of component i is denoted as interi, and expresses the standard deviation

of means of the measured values for the same subject. The resulting discriminative poten-

tial of component i, therefore, can be expressed as follows:

Discriminative potentiali = interi − intrai (3)

Further, in our tests, we have used only the discriminative potential, because it yields

almost the same result as an EER potential, but due to its definition, it is much faster to

compute.

While, EER calculations for each feature vector component have to be performed for the

EER potential evaluation, the discriminative potential can be computed only within one

iteration over a training set. For example, our implementation of a discriminative potential

in C++ takes about 2 seconds to compute discriminative potential of 1000 feature vectors

(images) of length 4080 in contrast to 20 seconds that are needed for an EER potential

calculation (Measured on an Intel Core i3 CPU, 2GB of RAM).
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3 Evaluation

We use four databases to evaluate the performance of the described methods. First, two

databases were captured at Brno University of Technology (BUT database I and BUT

database II). They are not public, and together contain more than 600 images of 60 persons.

The BUT database II contains high intra-class variability, caused by various head poses

and facial expressions. The other two databases are Equinox [equ] and the Notre Dame

University database [CFB03, FBP03]. Equinox contains 243 scans of 74 subjects, while

the Notre Dame database consists of 2292 scans of 82 subjects.

The evaluation scenario was as follows. We divided each database into three equal parts.

Different data subjects were present in each part. The first portion of the data was used

for training of the projection methods. The second portion was intended for an optional

calculation of the z-score normalization parameters, feature weighting, and training of

fusion classifiers. The last part was used for evaluation.

To ensure that particular results of the employed methods are stable and reflect real per-

formance, the following cross-validation process was selected. The database was divided

into three parts randomly, where all three parts had equal number of subjects. This random

division and subsequent evaluation was processed n times, where n depends on the size of

the database. The smaller databases (BUT I, BUT II, and Equinox) were cross-validated

10 times, while the Notre-dame database was cross-validated 3 times. The performance

of a particular method was reported as the mean value of the achieved equal error rates

(EERs).

3.1 Comparison of standalone methods

The evaluation procedure involves comparing two different normalization approaches:

2D-warping and 3D model projection. The achieved results are given in Table 1. Based on

these baseline tests, several conclusions are deduced. In most tests, the best combination

of the statistical projection method and distance comparison function is the independent

component analysis (ICA) and cosine metric. Thus, in further tests, we focus mainly on

this combination.

The second conclusion concerns the comparison of the 3D-projection pose normalization

and simple 2D-warping. Except the Notre-dame database, the recognition results, ex-

pressed in EER, are always better, when 3D-projection normalization was employed. The

decrease of recognition performance for 3D-projection in Notre-dame is caused by the fact

that 3D projection performs better on images with higher head pose variance, while it has

slightly worse performance on frontal images, because of an imprecise alignment.

After the evaluation of the standalone methods in their basic form, we have selected the

best candidates for further improvement: PCA and ICA, using the cosine distance func-

tion. For both PCA and ICA, we have evaluated the recognition performance, without

any additional feature vector processing. Moreover, the z-score normalization of feature

vector components and weighting, based on discriminative potential, have been added.
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Table 1: The EER (in %) for various single methods applied on the Equinox and Notre-dame
databases, and selected results from both BUT databases, given various pose normalizations, sta-
tistical projections, and distance functions.

Projection Warp2D Projection3D

Euclidean city-block cosine correlation Euclidean city-block cosine correlation

Database: Equinox, PCA selection threshold: 0.98

PCA 7.27 6.40 5.90 5.69 5.60 5.17 5.00 5.12

LDA 7.77 6.76 6.31 6.42 5.93 5.69 5.51 5.60

ICA 7.46 6.93 4.21 4.44 6.66 6.33 4.06 4.15

Database: Equinox, PCA selection threshold: 0.9999

PCA 6.69 6.15 5.26 5.17 6.24 5.67 5.51 5.55

LDA 7.76 7.18 6.84 7.05 6.62 6.68 6.50 6.61

ICA 7.77 7.21 3.95 4.13 7.63 7.36 4.22 4.31

Database: Notre-dame, PCA selection threshold: 0.98

PCA 24.11 19.45 23.02 23.03 25.66 19.83 24.46 24.47

LDA 26.84 26.11 26.50 26.54 28.5 27.90 28.01 28.10

ICA 21.98 21.67 8.22 8.33 22.34 22.06 10.29 10.32

Database: Notre-dame, PCA selection threshold: 0.9999

PCA 24.24 20.62 22.85 22.86 25.28 21.22 23.83 23.80

LDA 27.27 26.54 26.73 26.81 28.47 27.94 27.61 27.69

ICA 21.80 21.47 7.64 7.69 23.46 23.14 10.24 10.23

Database BUT I, PCA selection threshold: 0.9999

ICA 9.86 9.25 8.06 8.07 6.89 6.32 5.66 5.83

None 6.11 5.40 6.11 6.22 3.87 3.28 3.95 4.12

Database BUT II, PCA selection threshold: 0.98

ICA 20.16 20.01 16.73 16.82 17.68 17.42 13.42 13.55

The results are presented in Table 2. This table shows that the feature vector component

normalization, and subsequent weighting have the most impact on the PCA. On the other

hand, there is no significant improvement for the ICA, when the z-score normalization or

weighting is present. This is due to the fact that the used FastICA algorithm requires a pre-

liminary whitening of training data, so that their correlation matrix equals unity [Hyv99].

This means that in the case of the ICA, the data is already normalized.

Table 2: The EER (in %) for PCA and ICA after z-score normalization and feature weighting. PCA
selection threshold is 0.98.

Database Projection
Warp2D Projection3D

Plain Z-score Weighting Plain Z-score Weighting

BUT I PCA 8.82 6.83 5.41 6.59 4.61 3.88

BUT I ICA 7.29 7.07 5.70 4.00 5.00 3.89

BUT II PCA 19.82 17.09 16.05 17.40 12.86 13.18

BUT II ICA 16.58 17.03 16.23 12.53 12.81 13.08

Equinox PCA 3.87 2.37 2.08 6.35 3.49 4.03

Equinox ICA 3.65 2.51 2.40 3.69 3.25 3.66

Notre-dame PCA 24.36 7.42 9.11 22.23 8.47 8.83

Notre-dame ICA 7.73 7.46 9.15 9.10 8.09 10.31

Other evaluated properties of the recognition pipeline are the intensity normalization and

feature extraction, using filter banks. We have evaluated all possible combinations of filter

banks and pose normalization techniques, using PCA and ICA on all four databases. These

results are given in Table 3. Neither the Gabor nor the Laguerre filter bank, followed by the

weighted PCA or ICA, outperformed plain feature extraction. However, the filter banks

are used in an additional fusion approach (see section 3.2).
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Table 3: The EER (in %) for various applications of filter banks and intensity normalization ap-
proaches. The PCA selection threshold was set to 0.98. The results are reported for weighted PCA
and ICA.

Database Normalization Projection
Global normalization Local normalization

No bank Gabor Laguerre No bank Gabor Laguerre

BUT I

Warp2D
wPCA 5.06 7.63 7.41 8.60 11.69 10.33

wICA 5.03 7.76 7.48 9.06 12.14 10.90

Projection3D
wPCA 3.06 4.62 4.15 5.47 7.19 7.92

wICA 3.22 4.92 4.25 5.62 7.76 8.28

BUT II

Warp2D
wPCA 16.79 19.26 18.56 20.50 20.98 21.97

wICA 16.58 19.47 19.09 20.88 21.44 22.39

Projection3D
wPCA 12.04 17.81 12.78 16.13 20.47 17.46

wICA 12.32 18.01 13.08 16.70 20.47 18.11

Equinox

Warp2D
wPCA 2.77 6.30 6.45 5.35 8.95 6.01

wICA 2.71 6.27 6.31 5.49 8.60 6.27

Projection3D
wPCA 3.76 7.76 6.42 4.97 9.24 5.99

wICA 4.05 8.08 6.22 5.49 9.17 6.53

Notre-Dame

Warp2D
wPCA 8.30 14.69 14.87 7.23 13.30 13.24

wICA 8.19 14.63 15.14 21.94 13.33 13.40

Projection3D
wPCA 9.22 16.23 15.87 9.69 15.47 14.54

wICA 13.88 16.23 16.38 22.20 15.41 14.57

3.2 Biometric fusion

It follows from previous experiments that no single combination of the feature extraction

method, and no distance function exist that outperform all other combinations on every

database. The best solution is always limited to a certain data. As a solution to the posed

problem, we propose an approach, based on biometric fusion.

In this paper, we are using score-level fusion. Each employed method (feature extraction

and distance function) provides the resulting comparison score. The task of the fusion

component is to combine these input scores into a final one, that is finally thresholded.

In order to compare and fuse the scores that come from different methods, the normaliza-

tion, to a certain range, has to be performed. We use the following score normalization:

the score values are linearly transformed, such that the genuine mean (the score, obtained

from comparing the same subjects) is 0, and the impostor mean (score, obtained from com-

paring different subjects) is 1. Note that at this point, individual scores may have negative

values. This does not matter in the context of the score-level fusion, since these values

represent the positions within the classification space, rather than the distances between

two scans.

Score fusion is, in fact, a binary classification problem. Based on an input score vector,

s = (s1, s2, . . . , sn), the fusion classifier has to decide, whether the score vector belongs

to a genuine user or impostor. We have implemented the following fusion methods: Sup-

port Vector Machine (SVM) with linear and sigmoid kernel, Linear Discriminant Analysis

(LDA), and Logistic Regression. Initially, all of these methods have been applied to the

Notre-dame database, but no significant differences were noticed. Thus, in further tests,

we concentrate on the logistic regression only. The overview of the recognition pipeline

that involves logistic regression fusion of 10 individual feature extraction and comparison

methods, is shown in Figure 4.
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Fusion results from all databases are shown in Table 4. The fusion is always better than

any of the employed methods alone. It is not clear, whether the best statistical projection

is the weighted PCA or ICA. On the other hand, it is clear that fusion at the score-level

outperforms both the PCA and ICA.

Contrary to previous evaluations shown in Tables 1, 2, and 3, we also added two impor-

tant indicators of performance. These are False Non-Match Rates (FNMR) at specific

False Match Rates (FMR). These measures show the probability of a genuine user being

rejected, if we assume that 0.1% of impostors are wrongly accepted. The FNMRs were

measured at FMRs = 0.1% and 1%.

Table 4: Evaluation of fusion based on logistic regression. For every fusion test, all individual com-
ponents of the resulting fusion method were evaluated separately. The best component were com-
pared with the overall fusion, and improvement was reported. The numbers represent the achieved
EER in %. The FNMR at FMR = 0.1% and FMR = 1% are FNMR1 and FNMR2, correspondingly.

Database, Best single Best single
Fusion improve- FNMR1 FNMR2normalization method name method EER ment

BUT I, 2D PCA, Laguerre filter, global norm. 4.31 4.09 5.10% 18.58 10.18

BUT I, 3D ICA without any filter 2.70 2.21 18.15% 6.02 3.13

BUT II, 2D PCA, Laguerre filter, global norm. 14.96 12.61 15.71% 54.47 37.44

BUT II, 3D PCA, Laguerre filter, global norm. 9.70 8.69 10.41% 40.40 24.79

Equinox, 2D ICA without any filter 2.28 1.06 53.51% 8.35 1.21

Equinox, 3D ICA without any filter 2.68 1.90 29.10% 10.76 4.08

Notre-dame, 2D PCA without any filter 6.70 5.99 10.60% 35.11 14.45

Notre-dame, 3D PCA without any filter 8.22 7.61 7.42% 39.39 21.59
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4 Conclusion

We have compared several existing methods of thermal face recognition. Additionally,

we proposed normalization by 3D projection, feature extraction by the Laguerre-Gaussian

filter bank, and feature vector component weighting by the discriminative potential.

3D normalization significantly improved performance within databases, where the head

pose variation is high. For example, the experiment that used the BUT I database, fusion

approach led to the EER decreasing from 4.09% to 2.21%. The discriminative potential

is a good alternative to known weighting methods, in terms of computational complexity

and performance improvement.

This paper confirms that not a single method performs equally well in all considered sce-

narios. Therefore, to maximize the performance of the thermal face recognition, a multi-

algorithmic fusion must be applied.
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