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Abstract: We propose a multidimensional approach to store XML data in relational
database systems. In contrast to other efforts we suggest a solution to the problem us-
ing established database technology. We present a multidimensional mapping scheme
for XML and also thoroughly study the impact of established and commercially avail-
able multidimensional index structures (compound B-Trees and UB-Trees) on the per-
formance of the mapping scheme. In addition, we compare our multidimensional
mapping to other known mapping schemes. While studying the performance we have
identified projection and selection to be fundamental parts of a typical query on XML
documents. Our measurements show that projection and selection are orthogonal and
require special multidimensional index support to be processed efficiently.

1 Introduction

XML is widely seen as the lingua franca of the Internet. Originally designed to become
the successor of HTML, XML has found its way into many unexpected parts of applica-
tions, ranging from simple formats for data exchange to archiving data in XML. With the
growing need to deal with large collections of XML documents as well as with the rapid
increase in the document sizes there is a strong demand to store and query XML data in
databases. This ranges from the development of new, efficient index structures for XML
to mapping schemes for XML to relational and object-oriented database systems. As re-
lational database management systems (RDBMS) hold the largest market share there was
and still is intensive research going on to efficiently store XML in these systems. Several
mapping schemes have been proposed in the literature [FK99, CSF+01] but to our knowl-
edge there has never been an extensive analysis of a mapping scheme in conjunction with
index structures.

In our work we discuss a multidimensional approach for indexing XML. We propose a
multidimensional mapping scheme for XML to relational DBMS and discuss the perfor-
mance of UB-Trees and compound B-Trees for the indexing of this mapping scheme.

The rest of the paper is structured as follows. At first we motivate the problem of XML
indexing (Section 2) in RDBMS. Then we present a modelling of the XML document in a
multidimensional universe (Section 3). We describe an implementation of our multidimen-
sional approach by using Multidimensional Hierarchical Clustering (MHC) and propose
a database schema and a technique for query rewriting on this schema (Section 4). We



also present detailed performance experiments using the UB-Tree and various compound
B-Trees as multidimensional index structures in Section 5. We conclude the paper with a
short summary in Section 7.

2 The Problem: Storing XML in RDBMSs

Many approaches have been made to store XML in relational database systems. All ap-
proaches use a similar concept though. First the XML document is split into parts of
a previously defined granularity. These parts are stored in the RDBMS. Queries on the
XML documents which are written in an XML query language have to be rewritten to
SQL before being processed by the RDBMS. The results of the SQL queries are docu-
ments. The projection is either done via methods like XSLT or the projection results are
assembled directly from the database. Our approach especially takes care of both cases.

Besides storing XML data, querying large amounts of XML data is a challenging problem.
Due to its graph-like nature the classical set oriented query languages in general are not
powerful enough. After several proposals for query languages (mainly from the fast evolv-
ing field of semistrucutred data) the W3C started a working group to formulate a query
language for XML. The current proposal XQuery though is not yet a recommendation of
the W3C. Throughout this paper we instead use a form of Pseudo-SQL to present queries
on XML documents. We have chosen Pseudo-SQL as it is more similar to SQL dialects
available in RDBMS. It is also easier to point out important requirements when querying
mapped XML data with SQL. We do not consider Pseudo-SQL to be a full-fledged query
language for XML, although it is of course possible to formulate the queries of this paper
in XQuery (or XPath) without any loss of semantics. Due to the above restrictions the way
vice versa is apparently not true.

We have identified two fundamental parts of a query for XML. Consider the following
query in Pseudo-SQL which should retrieve the value of a tag (tag1) in a document con-
taining the tag with value ABC: select <tag1> from xmlbase where tag2=’ABC’;. This
query can be (similarly to queries in the relational case) split up into two steps. The se-
lection part identifies the document(s) which contain(s) the pattern matching a predicate
s. The projection part in contrast returns only those part(s) of the document(s) which are
stated right after the select statement as a set of paths. The mentioned problems can be
defined more formally:

Definition 1 (selection problem) Let X be a set of XML documents stored in a database
where each document is described by a persistant unique identifier Id. The selection
problem is defined as returning Id for those documents where the predicate s from the
query is evaluated to true.

Definition 2 (projection problem) Let I be a set of persistant unique identifiers and L be
a list of path expressions in a projection list. The projection problem is defined as returning
the content of those paths from the documents referenced by I that fullfill the expressions
in L.



When talking about the projection problem we sometimes use the term ”reconstruction of
(parts of) the document”. We refer to the fact that the desired document is completely or
partially assembled from the database into its original state.

In our approach we do not tackle only one of the above mentioned problems (either selec-
tion or projection) but both.

One has to be aware of the fact that the projection in the case of XML documents is funda-
mentally different from the relational world. The operations in the relational algebra deal
with tuples and sets as the basic units. Tuples in RDBMSs are typically small compared
to the size of an XML document, therefore tuples are normally retrieved as a whole during
the selection process and the projection always processes the tuples that resulted from the
selection. For efficiently answering queries in the relational world it is therefore sufficient
to only speed-up the selection. For XML documents the scenario is slightly different as the
granularity of an XML document can be seen on different levels. A very rough granularity
is based on documents (which are identified by a persistent unique identifier). Tags as the
building block of XML documents are another level of granularity, a very fine granularity
would be based on words or letters. Depending on the storage of XML in the RDBMS the
projection works on a completely different position of the XML document than the selec-
tion. The consequence is that an index that is suitable for the selection is rarely suitable
to speed up projection as well. We will see later that selection and projection can even be
orthogonal and require very specialized index support.

3 XML - A Multidimensional Model

Paths are a fundamental feature of XML. Many approaches to speed up queries therefore
concentrate on the efficient indexing of paths and path expressions. When discussing paths
it is also important to note the order of paths which is inherent in the XML documents. The
ordering of XML documents is a very important aspect especially in the case of indexing.
The DTD of an XML document already defines the ordering of the tags in the document.
This is especially important when tags with the same substructure occur several times but
with different data.

Example 1
<author><FN>Michael</FN><LN>Bauer</LN></author>
<author><FN>Rudolf</FN><LN>Bayer</LN></author>

Order is also important for query languages. When the above example (a fragment from
a larger document) is queried with the predicate author/FN = Michael and author/LN =
Bayer the semantics of the predicate is not clear at first hand. In the document fragment
the paths to the values are the same but the structure and the order of the paths is of
great importance as it acts as a grouping feature that is very relevant for queries. The
above predicate can be reformulated so that the semantics is clear and the two parts of the
query have to be valid in the same subtree. A correct version of the above predicate in
XPath returning the above fragment is formulated as author[FN = ”Michael” and LN =



”Bauer”]. To be able to evaluate such a predicate it is apparently necessary to preserve
the document structure for the stored document.

Finally, ordering might have a severe impact on the performance of answering queries. In
every database instance the data is stored in a certain physical order on external storage
devices. Clustering the stored data in document order usually can be achieved, nevertheless
an order independent of the document order might be more useful for certain queries.
Nevertheless, the original order of the stored document has to be preserved in some way,
otherwise it is impossible to reconstruct the document in the same order as it was originally
available.

In the following we propose three building blocks of XML documents.

Paths: The notation of paths is a basic concept of XML and query languages for XML.
Due to the graph-like nature of XML it is necessary to preserve path information
and order for query processing.

Values: We define values as the content of XML tags. Our proposed scheme can deal with
both, data-centric and document-centric XML. Attributes in XML are modelled by
using the @notation in the paths as known from XPath.

Document Identifiers: Document identifiers group paths for one document and are the
results in the above mentioned selection. We assume that this identifier is available
from the XML data itself. If this is not the case it can be easily computed when the
document is processed before it is inserted into the database.

Summing up our results we can define a set of XML documents which are stored in our
database as follows.

Definition 3 Let P be a set of paths, <path the order of the paths, V a set of values and
id a document identifier.

XMLdocs =
⋃

{(P, <path, V, id)|id = docid}

For better visualization the three dimensions can be presented as a cube (Figure 1). In this
three dimensional model we can now easily answer queries for both the selection and the
projection problem as follows.

Both selection and projection restrict the threedimensional universe in two dimensions.
The input for evaluation of the XPath predicate of the selection is one (or more) path
expressions and one (or more) values which correspond to the path expression and form
a predicate. The output of the selection is a set of document identifiers which match path
expression(s) and value(s).

In the projection the document identifiers and the path expressions are the input of the
query. The results are values. For better readability and post-processing capabilities the
document identifiers and the output paths are sometimes returned as well.
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Figure 1: XML documents in a three dimensional cube

4 Implementation

4.1 Multidimensional Hierarchical Clustering

Multidimensional Hierarchical Clustering (MHC) is a technique that was originally devel-
oped for data warehousing applications [MRB99]. In data warehousing MHC is used to
cluster data with respect to multiple hierarchical dimensions. MHC enables us to find a
compact and order preserving representation for paths in XML documents. It also fixes
the problem of long equal prefixes which has already been addressed in work on special
index structures for XML [CSF+01]. We briefly describe the technique in an overview,
show its application in our context of XML indexing, how we use MHC to preserve order
and how to store paths in a compact form.

It is well known by now that XML documents form a hierarchy. We assume that each
XML document has a maximal hierarchy of depth h leading to an overall of h + 1 levels
in each document. We use a slightly different tree representation as it is usually common.
Identical paths which occur several times within a subtree are rewritten by using repetition
numbers to preserve uniqueness and order. The paths from example 1 are rewritten to
<author>[1]<FN>[1], <author>[1]<LN>[1],
<author>[2]<FN>[1], <author>[2]<LN>[1] .

In the following we treat the repetition numbers as an own hierarchy level. The set of
levels is ordered according to the document structure. Each hierarchy level i is a set of
sets L (L =

⋃n

i=0 Li), where each set Li consists of nodes mi
k. L0 is defined to be

the root level. Due to the hierarchical nature every member mi
k has a (varying) number

of children. A function ordm defines a numbering scheme for the children of mi
k and

assigns each child of mi
k a number between 1 and the total number of children of mi

k,
i.e., ordm : children(m) −→ {1, . . . , |children(m)|}. The function ordm needs to be
order preservering so that nodes are sequentially numbered according to document order.
We call each element of {1, . . . , |children(m)|} a surrogate of a node. To encode paths
through the hierarchy we introduce the concept of compound surrogates. A compound
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Figure 2: XML document hierarchy and MHC surrogates

surrogate is formed by recursively concatenating the compound surrogate of the father
node with the surrogate of the current node. More formally the compound surrogate for a
node is defined as follows:

cs(mi) =

{

ordfather(mi)(m
i), if i = 1

cs(father(mi)) ◦ ordfather(mi)(m
i), otherwise

Example 2 Using Figure 2 the path <author>[1]<FN>[1] is transformed into the
compound surrogate 2.1.1.1

Compound surrogates can be very efficiently stored in a compact binary representation.
The upper limit for each surrogate can be calculated by the formula

surrogate(i) = max{cardinality(children(m)) where m ∈ level(i− 1)}

The length of the surrogates can be chosen sufficiently large in advance and although the
fixed length leads to static boundaries of the surrogates this can be neglected. Extending
every surrogate by one bit doubles the number of children that can be addressed at every
level.

Besides the compact, prefix-free and order preserving representation it is also possible to
evaluate path expressions on compound surrogates. Evaluating simple path expressions



(i.e., full qualified paths) in MHC is equivalent to point queries on the compound surro-
gates while other path expressions are equivalent to range queries or combinations of point
and range queries. It can be shown that all 13 location steps which are defined in XPath
1.0 and XPath 2.0 can be implemented as simple expressions on compound surrogates.

4.2 The Schema

The implementation of our mapping scheme is based on two relations. The core is a
table with three attributes, which we refer to as xmltriple. The table xmltriple holds
the attributes did, val, and surr (see Table 1 for an example with two tuples and 4 bits
per surrogate). For each value in a document, xmltriple stores the corresponding path
information as a compound surrogate and the document, which contains this value, as a
document id.

For mapping XML document paths to compound surrogates we use an additional table
typedim with the two attributes path and surr (Table 2). The table does not contain any in-
formation about paths on a per document basis but only stores complete paths to leafs. This
reduces the size of typedim significantly, so typedim is typically very small compared to
xmltriple.

did val surr
1 Rudolf 0010 0001 0001 0001 0000 0000 0000 0000
1 Bayer 0010 0001 0010 0001 0000 0000 0000 0000

Table 1: Relation xmltriple

surr path
0010 0001 0001 0001 0000 0000 0000 0000 /Author[1]/FN[1]
0010 0001 0010 0001 0000 0000 0000 0000 /Author[1]/LN[1]

Table 2: Relation typedim

For our measurements we compared four different indexing methods for our proposed
mapping scheme. Since we claim that XML indexing is a multidimensional problem we
chose the UB-Tree (threedimensional) and three variants of B-Tree compound indexes for
the xmltriple relation.

4.3 The Query-Rewriting

As mentioned already in Section 1 XML Queries on XML documents have to be rewritten
to SQL so that RDBMS are able to process them. The method for our mapping is shown
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Figure 3: Steps to rewrite the query into SQL

in Figure 3.

To illustrate the rewriting process we have chosen an example query from a typical library
scenario. The query returns the title and keywords of all scientific papers that were written
by a certain author. The same query will later be used in our measurements.

Example 3
select titel, keywords
from xmldata
where /author[FN = "Michael" and LN = "Bauer"]

The initial query is seperated into the already mentioned two components selection and
projection. The selection consists of a selection path (SP) and selection value (SV), which
can be seen in the left branches of the diagram in Figure 3. The paths are mapped to com-
pound surrogates by a lookup in the typedim table (MHC(SP)). The compound surrogates
and search values are then used to identify the document ids which satisfy the selection
predicate (SDID) by querying the xmltriple relation.

The projection, which outputs the result values (RV), is processed similarly. The result
paths (RP) are transformed into compound surrogates. In the next step the result values
are returned by using the retrieved document ids and the compound surrogates as input.
More complex queries might require recursive application of this schema.

As we are examining a relational mapping of XML data the queries of each step have to
be rewritten to SQL statements. Some of the statements depend on the output of previous
queries. This may lead to long statements (especially for many hits in the document ids)
and for ease of presentation we only give very short example statements. It would of
course be possible to rewrite the query into one large SQL statement, but this would hide



the diversity of the query parts and significant facts about the nature of XML queries.

Example 4 1. Step: MHC(SP)

select surr from typedim
where attr like ’Author[%]/FN[1]’ order by surr;

select surr from typedim
where attr like ’Author[%]/LN[1]’ order by surr;

2. Step: SDID

select distinct x1.did from xmltriple x1, xmltriple x2
where
(x1.surr = 0b00100001000100010000000000000000
or x1.surr = 0b00100010000100010000000000000000
............... result of MHC(SP)
or x1.surr = 0b00101000000100010000000000000000)
and
x1.val = ’Michael’
and
(x2.surr = 0b00100001001000010000000000000000
or x2.surr = 0b00100010001000010000000000000000
or .............. result of MHC(SP)
or x2.surr = 0b00101000001000010000000000000000)
and
x2.val = ’Bauer’
and
x1.did = x2.did
order by x1.did

3. Step: MHC(RP)

select surr from typedim
where attr like ’Title[1]’

or attr like ’Keyword[%]’ order by surr;

4. Step: RV

select did,val,attr,typedim.surr from xmltriple,typedim
where
(typedim.surr = 0b00010001000000000000000000000000
or
typedim.surr = 0b00110001000000000000000000000000
or .......... result of MHC(RP)
or
typedim.surr = 0b00111000000000000000000000000000)



and ( did = 76 or ..... result of SDid
or did = 9783 )
and typedim.surr = xmltriple.surr
order by did,typedim.surr

5 Measurements

5.1 The Data and Measurement Environment

We have chosen a DTD from a digital library scenario for our measurements. The DTD of
the documents is a typical specification for scientific papers. We generated 10000 different
documents using the XMLGenerator tool [XML]. The raw size of the XML data is approx.
50 MB. We have used a similar distribution [CSF+01] as in the DBLP database [DBL]
for authors which results in approx. 400 different authors for 10000 documents. From
these documents we generated flat files for bulk loading the databases. The sizes of the
database are approx. 25 MB and they differ slightly depending on the used index. For our
measurements we ran the already above mentioned query on the different indexed tables.

All measurements were performed with the relational database system TransBase1, which
won the European Information Technology Prize 2001 for its pioneering implementation
of UB-Tree indexes. We chose a page size of 2KB and limited the database cache to 128
KB. With a cache size this small not many pages can be kept in the cache. Completely
eliminating the cache would severely decrease performance as even index pages would no
longer reside in the cache.

The database system was installed on a Sun Ultra 10 (400MHz, 512MB main memory)
and the measurements were performed on a Seagate ST39111A (73.4GB) U160 hard disk.

In the following we use abbreviations to denote the different indexing methods.

• UB-Tree denotes the indexing with the threedimensional UB-Tree, the index at-
tributes are did, surr, value.

• DidSurr denotes indexing with a compound B-tree with the index attributes did and
surr (in this order),

• DidSurr Val adds an additional secondary B-Tree index on val.

• SurrValDid denotes the use of the compound B-tree with the index attributes surr,
val, and did.

In addition, we measured two variants of the Edge mapping approach. Edge mapping is
explained and discussed in detail in Section 5.4.

We rewrote the query from Section 4.3 to SQL as shown above and measured both, the
elapsed time and the number of pages that were accessed for answering the SQL queries.

1http://www.transaction.de

http://www.transaction.de


The number of retrieved pages is further divided into the overall number of physical page
accesses, logical accesses to the index pages, and logical accesses to the data pages. The
physical page accesses occur whenever the database system requests a page from sec-
ondary storage, i.e. the page is not available from database cache. Logical page accesses
occur whenever a page is accessed by the database system. One physical page access
leads to at least one logical page access. Several logical page accesses occur if the page
is accessed several times, e.g., if tuples on pages are repeatedly read in different stages of
query processing. In these cases no physical access occurs if the page is available in the
database cache.

We analyze selection and projection separately and for our example data set (10000 docu-
ments) the following numbers of tuples were returned for each processing step (Table 3).

Query Step Selection (SDID) Projection (RV)
Number of Tuples 104 554

Table 3: Number of tuples returned for each processing step

5.2 Selection

As noted above, we have separated the queries into a selection and projection part. The
selection restricts values and compound surrogates and outputs a set of document ids. The
set of document ids is then further processed in the projection.

The selection query is graphically illustrated in Figure 4 (due to reasons of visibility the
figure only shows 8 point restrictions). The query cuts through the cube as the two di-
mensions are restricted, while the third is variable. The query is located on two parallel
planes orthogonal to the value dimension and is processed using 16 point restrictions (one
for each surrogate and value restriction). The compound surrogates are dense in their
dimension.

5.2.1 UB-Tree

For the UB-Tree the results of this query are located on the same page with a high propa-
bility due to the space-filling Z-curve. As the query is processed by repeatingly stabbing
through the threedimensional space pages are read severaly times; caching can be used
in this situation to speed up query processing. In this case the caching is intra-query as
the query processing itself benefits from the reuse of pages that were already read from
secondary storage at earlier stages of query processing.

The consequence is that the average time per page sharply decreases (0.3 ms/physical
page), as the page is processed only in memory. This is shown by the measurements in
Table 4 and Table 5.
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Figure 4: Point restrictions for selection query

Index log. Idxp. log. Datp. phys. Pages DB size (pages)
UB-Tree 918 782 693 20428
DidSurr 213 11946 11957 14426
SurrValDid 39 22 36 12132
DidSurr Val 215 705 1208 18656
Edge Compound 386566 241118 49776 41585
Edge Secondary 5689 7473 6526 93999

Table 4: Page numbers for the selection

5.2.2 Compound B-Tree DidSurr

For a compound B-Tree on the attributes did and surr the scenario is completely different
compared to the UB-Tree. The query processor of the database system cannot use any
restriction on the did attribute, so it has to start with the smallest value for the compound
surrogate dimension, starts to read all data pages and performs a post-filtering. Table 4
shows that the query reads almost all pages of the database. The query is slowest among
all the others (Table 5), still it achieves a high page rate (1.7 ms/physical page). This hints
that the query is highly supported from caching. This time it is not intra-query caching as
with the UB-Tree, but caching from the operating system.

5.2.3 Compound B-Tree SurrValDid

In our third measurement the selection is performed with xmltriple indexed with a com-
pound B-Tree on the compound surrogate attribute, the value attribute, and the document
id attribute. This index exactly supports the restricitions of the query. The number of
physical pages read is only 5% of the physical pages read for the UB-Tree (Table 4).



Index Selection Projection Total
UB-Tree 0.26s 8.73s 8.99s
DidSurr 20.3s 1.96s 22.3s
SurrValDid 0.02s 9.18s 9.20s
DidSurr Val 0.95s 2.16s 3.11s
Edge Compound 60.3s 0.58s 60.9s
Edge Secondary 6.65s 2.50s 9.15s
Tupel 104 (DocIds) 554 (Tags)

Table 5: Running times for selection and projection queries

5.2.4 Compound B-Tree DidSurr with secondary index Val

A closer look on the restrictions of the selection query and on the result for the three
indexes discussed above, show that it is important for the performance of the index to di-
rectly support a restriction on the value attribute. Depending on the data, especially if value
restricts stronger than structure (the structure here is represented by the surr attribute), a
secondary index on the value attribute should improve the scenario for the DidSurr index.
The creation of the secondary index results in an increase of the database size by approx.
30% but is still below the size of the UB-Tree index. Our measurements show that both,
the elapsed time and the number of retrieved pages are reduced as expected (Table 5 and
Table 4) although the performance of the SurrValDid index is of course not reached.

5.3 Projection

The projection query outputs values and restricts the document ids and the compound
surrogates. The restrictions are no range restrictions but point restrictions. The cardinality
of the set of points in the document id dimension depends on the result set of the selection
query. It is important to note that the result set of the selection query is usually not a range
(a range would be quite unlikely). The compound surrogates in the other dimension are
restricted to 9 point values (one compound surrogate for title and 8 compound surrogates
for keywords). All values which answer the query are consequently located on 9× 104 =
936 parallel straight lines intersecting the three dimensional space. Figure 5 sketches the
scenario with three lines due to the sake of clarity.

5.3.1 UB-Tree

Since the straight lines completely stab through the universe (there is no restriction in
the value dimension) we can deduce some more information about the processed data by
calculating the expected number of page accesses. According to Table 6 the size of the
database is 20428 pages. This results in approx. 215 = 23∗5 pages. This leads to approx.
25 = 32 pages in each of the three dimensions meaning that each of the 936 straight lines



touches 32 pages. This sums up to 29952 logical data page accesses.

Figure 6 presents the page numbers for the projection query from our performance tests.
The accessed logical data pages are close to the results calculated above. They are not
exactly the same because we have assumed a uniform distribution of the data. This is not
the case for the data we used.

Another drawback for the UB-Tree in this measurement is the very high number of physi-
cal accesses to the pages. The numbers show that for our simple example query almost one
third of the database is being read (6441 pages of 20428 pages) although the result set is
very small. Most of these physical page accesses are data pages as only 1% of the overall
pages in the database are index pages. The high number of physical page acccesses is a
combination of the way the query is processed (as explained above), the distribution of the
selection results which are not ranges but spread over the docid dimension and the cluster-
ing of the UB-Tree which does not favour one or two attributes but treats all attributes in
an equal manner.

Index log. Idxp. log. Datp. phys. Pages DB size
UB-Tree 39700 31043 6441 20428
DidSurr 384 436 305 14426
SurrValDid 6 463 468 12132
DidSurr Val 384 436 305 18656
Edge Compound 374 517 508 41585
Edge Secondary 2278 2488 1353 93999

Table 6: Page numbers for the projection

5.3.2 Compound B-Tree DidSurr

The compound index on the attributes did and surr is the fastest index for projection as the
query restricts exactly the index attributes to points. As there are more dids than compound
surrogates there are more index pages read than for the SurrValDid index.

5.3.3 Compound B-Tree SurrValDid

Indexing the xmltriple relation with a compound B-Tree (index attributes surr, value, did)
leads to low page numbers in comparison to the UB-Tree. In constrast the running time
of the query is almost the same as for the UB-Tree. A closer look on the way the query
is processed reveals that both numbers are reasonable. The projection query restricts on
the surrogates and on did and there is no restriction on the values. The system starts with
reading the data pages starting with the smallest value for value and did until it terminates
when the surrogate range is processed for the keyword surrogates. The system accesses
the B-Tree a second time for the title surrogat. The results of the projection query are
determined by post filtering the retrieved pages. The retrieved 463 data pages carry approx.
463 ∗ 100 = 46300 tuples. The post filtering has to be done for each of the 104 tuples that



resulted from the selection. This leads to 104 ∗ 46300 = 4815200 overall comparisons.
The observation shows that the projection for SurrValDid is not I/O bound but CPU bound.

DocId

Value

Path

Figure 5: Point restriction for projection query

5.3.4 Compound B-Tree DidSurr with secondary index Val

In the projection part of the query there is no restriction on the value attribute and con-
sequently the secondary index can not be used by the query optimizer. The resulting
measurements are therefore the same as for the DidSurr index.

5.4 Comparison with Edge Mapping

A common way to estimate the performance of a mapping scheme is a comparison with
the Edge mapping for XML data[FK99]. We use the slightly modified version of the Edge
mapping from [CSF+01]. The mapping consists of two tables roots(id, label) and edge
(parentid, childid, label). The roots table contains a tuple for every document with an id
which identifies the document (document identifier) and label for the root tag. The edge
table contains a tuple for every nesting relationship. Non leaf nodes contain the id of the
parent node in the parent attribute and the id of the child node in the childid attribute. The
label contains the tag. Tuples for leaf nodes (data elements) carry a NULL value in the
childid attribute and the data value in the label attribute.

Example 5 The fragment

<paper><title>Fast Query Processing</title></paper>

is stored with the tupel (0, paper) in the roots table and with the tuples (0,1, title) and (1,
NULL, ’Fast Query Processing’) in the edge table.

For our measurements we indexed the root table with a primary compound B-Tree on the
attributes (parentid, childid) (Edge Compound in Tables 4-6). In a second variant we cre-



ated secondary indexes on each of the attributes parentid, childid, and label (Edge Secondary
in Tables 4-6). The second variant comes closest to the measurements in [CSF+01].

As for the previous mapping we also examine selection and projection separatly. Since
Edge mapping explicitly stores the graph structure the space requirements for the edge
table are much higher than for our proposed XML mapping in which we only store the
paths from the root to leafs (Table 4).

Following paths in the edge table leads to a long series of self joins (depending on the
length of the path) in the rewritten SQL queries.

In the first variant the selection is very slow since no restrictions can be used on any index
attributes (60.2s) and the RDBMS performs a full table scan. The scenario is different
for the projection. Here the Edge mapping is the fastest among our measurements. The
restriction on the 104 document ids for the projection leads to a strong restriction on the
parentid attribute and for every self join the intermediate results are further reduced. In
addition the projection query is heavily supported by intra-query caching effects as inter-
mediate results that were already processed for the self-joins can be reused for later stages
of the query.

The second variant (which uses secondary indexes on parentid, childid and label) reaches
a remarkable database size of 93999 pages (almost half of this size is occupied by the
secondary indexes). This is almost 7 times the size of the smallest database size for our
proposed multidimensional mapping and is larger than the original raw XML data. Us-
ing a hand-tuned query plan we could lower the selection query to 6.65s. We hand-tuned
the plan as the original plan used non-optimal join sequences which lead to an original
running time of >300s. The projection query is also hand-tuned (otherwise >145s). It
is now among the fastest query as not many self-joins have to be performed to reassem-
ble the paths (we only query for title and keywords which are toplevel tags). In addition
the restrictions on surrogates and document ids are also very well supported by the sec-
ondary indexes, but the overall running time of selection and projection (9.15s) are severly
declined by the tremendous database size.

6 Related Work

Storing, indexing and retrieving XML in database systems got a lot of attention in research
over the last years. Among the mapping schemes especially the work of Florescu and
Kossmann[FK99] was very influential. Their approach to explicitly store the graph of
the XML documents in relations (the Edge mapping) became one of the benchmarks that
almost all other mappings (including ours) have to compete with. Besides other static
mapping approaches (e.g. [STZ+99]) there were efforts to extract the schema from the
data itself using data mining algorithms (e.g. as in the STORED project[DFS99]). The
schema is then used to store the data in a relational database. Some proposals for storage
though neglect the order of paths in XML documents. Order was only recently discussed
in detail[TVB+02]. The proposed Dewey order is very similar to our MHC technique and
is originally used for the classification of library items.



Most index structures for XML and semistructured data concentrate on the efficient en-
conding of paths. Cooper, et al.[CSF+01] present a solution based on fast text encond-
ing using patricia tries (which they evolved into a balanced index structure for secondary
storage). Besides other research work (T-index [MS99]) there are also commercial sys-
tems available which claim to store XML data “natively” but omit a detailed description
[Tam, XIS]. Widom, et al. have published significant work on systems storing semistruc-
tured data, XML and query languages [MAG+97, AQM+97]. The Lore system which is
based on the OEM model uses different indexes on values and paths to speed up query
processing [MWA+98]. We use a similar approach for the indexes of our relational XML
mapping.

Recently a technique to speed up XPath location steps using a numbering scheme based
on pre and post order of the XML document graph was published and benchmarked us-
ing R-Trees and compound B-Trees [Gru02]. In contrast to our MHC proposal which is
onedimensional this approach is multidimensional.

7 Summary

We have described a multidimensional mapping scheme for XML and relational database
systems. In addition we have analyzed four different multidimensional indexing methods
for our mapping (the UB-Tree and three variants of a compound B-Trees) and compared
them to the well-known edge mapping. In the overall running times of the queries we
were faster in every case than edge mapping and had a up seven times smaller database
size. Additionally we have described the orthogonal nature of typical XML queries.

Due to the special orthogonal requirements for selection and projection currently a combi-
nation of the two compound B-Trees seems to be the most promising one with respect to
elapsed query time. The use of two indexes obviously requires more maintenance work for
insertion as a tuple is effectivly inserted two times into the indexes. Another drawback is
the consumption of additional storage for the second index (the use of additional indexes
renders one variant of the edge mapping unusable). A very promising result is the use of a
secondary index in our mapping to avoid the limitations of one index. This combines the
advantages of two indexes while reducing space requirements.

The research on the multidimensional model, the orthogonal requirements for selection
and projection, and the importance of choice of indexes has shown that typical XML
queries carry restrictions on values and structure. Depending on data and queries the
performance of indexes may strongly vary with the selectivity of value and structure at-
tributes. This has to be especially taken care of when chosing indexes in database schemas
for storing XML.
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