
Congestion Control Using OpenFlow in Software

Defined Data Center Networks

Masoumeh Gholami

The Faculty of Electrical and Computer Engineering

Tarbiat Modares University

Tehran, Iran

masoomeh.gholami@modares.ac.ir

Behzad Akbari

The Faculty of Electrical and Computer Engineering

Tarbiat Modares University

Tehran, Iran

b.akbari@modares.ac.ir

Abstract— this paper studies congestion control issue in data

center networks and proposes a potential solution based on

OpenFlow protocol. A main feature of the emerging data center

networks is their performance in hosting different cloud

applications and services. Since congestion management is

necessary to effectively utilize numerous data center applications,

in this paper we present an efficient method to control the

congestion in the software defined data center networks based on

OpenFlow protocol. In our proposed method, congestion in the

network links is recognized by centrally checking the port

statistics of the OpenFlow enabled switches and after that some

of the flows in any congested link are rerouted through paths

with more free resources by the OpenFlow controller. We

executed our proposed method by Mininet, and the experimental

results demonstrate the efficiency of the proposed method in

decreasing the congestion and enhancing the performance of the

network.

Keywords— OpenFlow; data center; congestion control; fat-

tree; software-defined network.

I. INTRODUCTION

Nowadays, data centers services have been increasingly
used in campus, enterprise, and companies for running a
diverse range of programs and applications. Data centers have
multiple networks such as storage area network (SAN), local
area network (LAN) and clustering high performance
computing (HPC) network. Each communication infrastructure
struggles to meet the objective of their traffic. For example
SAN and HPC need to achieve high speed lossless packet
forwarding and LAN need to carry best effort traffic. The
presence of different types of communication patterns in data
centers leads to an increase in the cost of power consumption,
system cooling, infrastructure maintenance, as well as
administration management of data centers [1-3]. To solve this
issue, IEEE 802.1 Data Center Bridging (DCB) work group [4]
is enhancing Ethernet as a single unified network of data
centers which can satisfy the performance requirements of
single unified network such as losslessness and low
transmission delay. However, the proposed scheme still lacks a
set of quality service requirements where one of the
indispensable requirements is Ethernet congestion
management. Regarding the network traffic characteristics of
data centers [5], Ethernet congestion management must greatly
reduce transmission delay and bandwidth consumption, and
significantly optimize application throughput and performance

of the network. Therefore, providing high throughput at
network is fundamental to the performance of data center for
congestion management.

Hence, to eliminate the transient congestion, IEEE
802.1Qbb work group [6] provides a link surface current
control mechanism known as PAUSE mechanism which can
temporarily stop the link when the buffer is full. Even though,
this mechanism can guarantee losslessness, it results in
congestion spreading to other network nodes which will
extremely degrade the serious performance of the network due
to the longitudinal congestion. The IEEE 802.1Qau work group
[7] has developed a new two-layer end-to-end congestion
management known as Quantized Congestion Notification
(QCN). In this way, whenever congestion occurs in a switch, a
feedback message is transmitted to the source that causes
congestion to reduce its data transmission rate. Upon receiving
the feedback message, the related source decreases its
transmission rate by activating the rate limiter. This approach
leads to alleviating congestion without congestion spreading
over the network. Nevertheless, when congestion occurs in
the network owing to contention of end hosts or severely large
bursty traffic, reducing source transmission rate is unavoidable.
Furthermore, QCN scheme relies on parameters setting and
network configuration failing to guarantee high throughput and
low latency for all kinds of network.

Meanwhile, a typical data center topology called fat-tree
often has the possibility to deliver huge bandwidth through
providing multipathing between any pair of hosts [8].
However, the full utilization of bandwidth proves inefficient
due to unbalanced traffic distribution which causes heavy
congestion among core/ aggregation switches in the network.
Besides, this issue leads to a long delay and high packet drop in
all flows owing to congestion causing degraded network
performance. Therefore, it is essential for congestion
management in data centers to achieve high throughput and
low latency for efficient communications. To date, a
considerable amount of work has been dedicated to congestion
management using sampling frame in order to detect
congestion and feedback message to control it. However, these
solutions should measure congestion according to buffer queue
length and prevent it through the control messages so that they
lead to extra network overhead and increase its complexity. To
tackle this, to the best of our knowledge, there has not been any
previous study on congestion control in data center using

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

1

Software Defined Networking (SDN) technology [9]. Since
congestion management can tremendously benefit numerous
data center applications, we study congestion control in fat-tree
data center in this paper [10].

SDN is an innovative network technology that offers high
interoperability and cost-efficient ways of user control and
network programmability in data center networks. The main
difference between a traditional networking and SDN based
networking is separation of data plane and control plane in
SDN based networks. In SDN technology, the whole network
is centrally managed by a dedicated controller which interacts
with network switches using the OpenFlow protocol. A
common OpenFlow network is composed of three components:
the OpenFlow controller, OpenFlow switches, and hosts. Each
of the switches maintains a flow table that contains routing
information. The controller and switches communicate via
OpenFlow messages. There are a series of actions that the
OpenFlow controller can perform by sending messages to the
switches, such as updating flow tables or probing switch
statistics. By analysis of the reply messages from the switches,
the OpenFlow controller can detect network congestion and
reroute the network paths, through OpenFlow protocol, in order
to decrease the congestion [11].

In this paper, an efficient approach based on SDN is
introduced for reduction of congestion in data center networks.
The main characteristics of the proposed approach are 1)
enhanced operational efficiency, 2) dynamic decision making
about the congestion and 3) response efficiency. In this
approach, the congestion detection and routing component are
the main modules of OpenFlow controller. The main property
of our proposed approach is rerouting some selected flows in
the switches using the congested links. Due to practical
constrains such as data center real platform and real traffic, we
simulated a data center network with Fat-tree topology using
Mininet [12] emulator and Floodlight controller [13] to
evaluate our proposed congestion control approach. Our
experimental results show that by deploying our proposed
approach, performance metrics such as throughput and end-to-
end delay are considerably improved.

The remaining part of the paper proceeds as follows:
Section II presents our proposed approach for congestion
control. In section III, experiment of the proposed approach is
conducted. Subsequently, the performance of the proposed
approach is presented and discussed. Finally, the conclusion
and further works are presented in Section V.

II. METHOD

Traditionally, a variety of methods have been used to assess
congestion control in data center such as BCN, QCN etc. Each
has its advantages and drawbacks. A major problem with the
classical method is that it is not flexible and dynamic relative to
the network status. Hence, the SDN approach is one of the
most flexible ways for congestion control and to evaluate the
effectiveness of performance in the network. In this section,
we present an efficient approach based on SDN that is able to
control congestion as well as dynamic decision making under
congestion conditions in a fat-tree data center. Our proposal is
described with five components, including network topology

creation, host management, congestion detection, congestion
control, re-routing.

A. Topology creation component

This component aims to discover, storing link status to
make network current topology. Using Link Layer Discovery
Protocol (LLDP), this component sends LLDP packet on all
ports for link detection. By the use of received information
from switches, the network current topology is stored for the
controller and the information is also available for re-rerouting
component.

B. Host management component

Host management component maintains all identified hosts
over the network. This component stores the requirement
information including MAC address of source and destination,
IP address of source and destination, OpenFlow switch ID
connected hosts and the number of ports of OpenFlow switch
connected hosts. Using this information, re-routing component
computes the proper route for large flow identified, whenever
congestion occurs in the network.

C. Congestion detection component

The aim of this component is to query and store the
statistics from all OpenFlow switches. These statistics are then
used by the control component to identify large flows and the
re-route component to compute the load on various links. This
component gathers statistics from each OpenFlow switch (per
table, per flow and per port) by polling them at fixed intervals.
For congestion detection, the controller sends
STATS_REQUEST message assigned to the PORT, FLOW
and TABLE in the network as the statistics of each switch.
Then, the switch responds to the controller with
STATS_REPLY message. The controller examines transmitted
bytes on the port of each switch at fixed intervals. Once the
transmitted bytes are 70% higher than the link capacity, the
congestion conditions occur in the port. Then the controller
using congestion control component identifies the large flow
which causes congestion and this flow path is altered with the
least loaded shortest path.

D. Congestion control component

This component aims to identify one or more large flows
which cause congestion by the use of gathered statistics. In
order to identify large flow size and also life time of flow
considered. Namely, L is defined as flow size at time estimated
and 𝑏𝑡 is defined as byte totally of flow received by the use of
the switch at time, I defined as time interval that it is
considered 5ms:

𝐿𝑡 = (𝑏𝑡 − 𝑏𝑡−𝑖)/𝐼 

After identifying one or more large flows, the flows path
should be changed with an alternative path. Through the
controller through the OFP_FLOW_MOD message, the current
table of the switches is updated.

E. Re-routing component

The control component is responsible for rerouting. It
computes the minimum loaded shortest paths between a set of

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

2

the shortest paths based on the statistics collected from the
switches by the congestion detection component.

 Once the large flow is examined in the network, the
controller performs re-routing process based on the network
topology. For further re-routing, first, it computes all the
possible shortest paths with Dijkstra algorithm [14]. Moreover,
to measure the least loaded path, the statistics from the
congestion detection component will be used to compute it.
The total cost of each path 𝑝𝑖 ∈ 𝑃 is defined as 𝑦𝑖 = 𝑎𝑖 + 𝑏𝑖 ,

 𝑎𝑖 = ∑ 𝑤𝑘
𝑁
𝑘 , 𝑏𝑖 = ∑

𝐿𝑘

𝐶𝑘

𝑁
𝑘 

Where 𝑎𝑖 is the total fixed costs of each link in the path 𝑙𝑘 ∈ 𝑝𝑖
and 𝑏𝑖 is the total variable costs of 𝑙𝑘 ∈ 𝑝𝑖 . Each 𝑙𝑘 has a
predetermined fixed weight 𝑤𝑘 , a link load of 𝐿𝑘 bps computed
from the statistics, and link capacity 𝐶𝑘 bps. Currently, all link
weights are set to 1. The value of 𝐿𝑘 is estimated from the
change in byte count for all flow entries in a switch between
the two most recent statistics from the congestion detection
component. After computing paths 𝑦𝑖 from all 𝑝𝑖 ∈ 𝑃 the
controller then picks the path that has the minimum 𝑦𝑖 . If the
amount of statistics collected is insufficient, a route is
randomly picked from P. Through the OFP_FLOW_MOD
message, the current table of the switches is updated.

III. EXPERIMENT RESULTS

In this experiment, we employ emulator Mininet to assess
the performance of our proposal method. One of the most
significant features Mininet supports is SDN. Mininet creates
virtual networks including core, switch, user codes etc just on a
single machine. Because of the simple communing and
customizing the most of components, this emulator can be
applied in various development, training, and research projects.
After creating the network from OpenFlow switches, we need
to control these switches. Here, we evaluate Floodlight
controller which is an open-source controller with modular and
flexible controller platform at its core. This OpenFlow
controller is implemented purely in software and is included in
its own Java Virtual Machine (JVM). Floodlight is a
community for the promotion and/or proposing standardization
of SDN Northbound APIs, so that services that use an
OpenFlow controller can be written quickly and efficiently.

In order to assess performance, we build up a k=4 fat-tree
network which includes 20 OpenFlow switches, 16 hosts as can
be seen from Fig. 1.

Fig. 1. The topology of Fat-tree with k=4.

To generate traffic on the network which is the main
challenge of the network, we used the highly precise Ipref
instrument [15], which suits analytical and industrial purposes.
Ipref is an open source code, which can be used for the
evaluation of the traffics generated through TCP and UDP.
This instrument reports different types of statistical scales such
as throughput delay dispersion, and datagram removal. Using
the Ipref instrument, the packets with determined size are
transmitted in a given time and a specific share of load
proportional to the linkage rate. We carry out two experiments
to evaluate the effect of important network parameters, such as
maximizing throughput and minimizing latency on the
performance of the network. We compare performance of our
proposed method with a scheme without congestion detection
and with congestion detection. In the following section, each of
the experiments will be described.

A. Experiment 1:k=4 fat-tree network

We tested the impact of parameters on the network with
k=4 fat-tree network. In the test, we ran scenario with packet
size 64 byte, load amount 10% to 99%, duration 1 minute.
Then we compared throughput and average latency difference.
Fig. 2 and 3 show throughput (Mb/s) and average delay (ms),
respectively.

Fig. 2. Throughput considering different amounts of load on the network.

Fig. 3. Average delay with load size.

0

100

200

300

400

500

600

700

1 10 20 30 40 50 60 70 80 90

Th
ro

u
gh

p
u

t
(M

b
/s

)

Load

Throughput in terms of load

without congestion detection

with congestion detection

0

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70 80 90 99

A
ve

ra
ge

 d
el

ay
 (

m
s)

Load

Average delay in terms of load

without congestion detection

with congestion detection

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

3

It must be noted that the computed delay is not two-way
and just the time difference between the source and destination
is considered. In addition, since characteristics of the links are
considered to be the same, the average is measured as point-to-
point for the entire delays.

Fig. 4. Throughput for different packet sizes at 60% load.

Fig. 4 indicates the throughput for different packet sizes
where load percentages are maintained at 60%, while the
packet size varies in the range of 64 to 1024 byte.

B. Experiment 2:k=4 fat-tree network

In this scenario, we ran parameters similar to previous
scenario with only the packet size considered to be 1024 byte.
Then we compared network behavior in this scenario. As Fig. 5
and Fig. 6 show, there is a significant difference between the
two scenario namely with increasing packet size, our method
simply acts on congestion conditions.

Fig. 5. Throughput considering different amounts of load on the network.

Fig. 6. Average delay with load size

IV. DISCUSSION

This study set out with the aim of assessing the importance
of congestion control using SDN in the data center network.
The most obvious finding to emerge from the analysis is that
by increasing packet size efficiency proposed method the
performance of the network did not reduce. One of the reasons
for the phenomenon is that the line space is considered rather
independent from the packet size, where the increase in packet
size results in less congestion. So, the effect of congestion
control procedure is less noticed. Nevertheless, the proposed
method not only does not reduce the network efficiency, but
also indicates a considerable rise in load peak.

Another important finding was that the congestion delay,
whereby the packet size increases, the overall delay is reduced
and more delayed congestion occurs. Thus, the enhanced
efficiency of the network is observed using the proposed
method at higher percentages of load insertion on the network.

The findings of the current study do not support the
previous research. However, in the view of qualitative data we
attempt to compare the proposed method with the previous
research such as QCN. The previous research attempted to
control congestion through source using rate transmission
reduction whereas our proposed method centrally deals with
the problem with congestion by the use of OpenFlow switch
without involving hosts. In the following, we discuss and
compare advantages and disadvantage of this method with our
proposed method in the following aspects [3].

1) Overhead: The overhead of QCN is fairly low and

unpredictable. Whilst the overhead of proposed method is low

and predictable namley the sizes of messages for requesting

and replying port statistics on each port are 8 bytes and 104

bytes respectively [16].

2) Rate of convergece to fair state: QCN is slow in

convergence to fair state due to AIMD- like algorithms can

obtain fairness just in the long term. But the proposed method

can reach the perfect fair state owing to centralization.

0

100

200

300

400

500

600

700

64 128 512 1024

Th
ro

u
gh

p
u

t
(M

b
/s

)

Packet size

Throughput in terms of packet size at 60%
load.

without congestion detection

with congestion detection

0

200

400

600

800

1000

1 10 20 30 40 50 60 70 80 90

Th
ro

u
gh

p
u

t
(M

b
/s

)

Load

Throughput in terms of load

without congestion detection

with congestion detection

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

10 20 30 40 50 60 70 80 90 99

A
ve

ra
ge

 d
el

ay
 (

m
s)

Load

Average delay in terms of load

without congestion detection

with congestion detection

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

4

V. CONCLUSION

In the present paper, we introduced congestion control for
software defined data center network. Our proposed method
considered using significant features of SDN in order to
optimize performance of the network. We analyzed the
effectiveness of our approach by the use of a range of tests,
showing that this method has potential to improve particularly
in the throughput enhancement and average packet delay
reduction. Another key point of the proposed method is its
higher generalization potential, which originated from the
minimum possible assumption on the problem conditions. This
capability of the system results in the simple integration of the
proposed method to the data centers SDN platforms.

Further research could usefully exploit machine learning
methods for improvement of the detection and management
components of our scheme. Moreover, the proposed method
could examine in the large scale of the network using
distributed controller due to overhead on the single controller.

ACKNOWLEDGMENT

The authors gratefully acknowledge the anonymous
reviewers for their valuable comments.

REFERENCES

[1] J. R. Santos, Y. Turner, and G. Janakiraman, “End-to-end congestion
control for infiniband,” in INFOCOM. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications. IEEE
Societies, vol. 2, pp. 1123–1133, 2003.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4, pp. 63–74, 2008.

[3] Y. Zhang and N. Ansari, “On architecture design, congestion
notification, TCP incast and power consumption in data centers,”
Communication. Survey. Tutorials, IEEE, vol. 15, no. 1, pp. 39–64,
2013.

[4] IEEE. 802.1 - Data Center Bridging Task Group. Available at:
http://www.ieee802.org/1/pages/dcbridges.html/.

[5] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, pp. 267–280, 2010.

[6] IEEE. 802.1Qbb, “Priority-based Flow Control,” 2011. [Online].
Available: http://www.ieee802.org/1/pages/802.1bb.html.

[7] IEEE. 802.1Qau, “Congestion Notification.” [Online]. Available:
http://www.ieee802.org/1/pages/802.1au.html.

[8] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable
fault-tolerant layer 2 data center network fabric,” in ACM SIGCOMM
Computer Communication Review, vol. 39, no. 4, pp. 39–50, 2009.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in
Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[10] H. Kim and N. Feamster, “Improving network management with
software defined networking,” Communications Magazine, IEEE, vol.
51, no. 2, pp. 114–119, 2013.

[11] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxonomy
of software-defined networking,” Communications Surveys Tutorials,
IEEE, vol. PP, no. 99, pp. 1–1, 2014.

[12] Mininet. http://mininet.org/.

[13] Floodlight. http://www.projectfloodlight.org/floodlight/.

[14] L. Feng, L. Dongmei, and C. Weihong, “Improved Dijkstra Algorithm
Based on Quad Heap Priority Queue and Inverse Adjacent List,” J.
Image Graph., vol. 12, p. 7, 1999.

[15] D. A. S. T. D. at the National Laboratory for Applied Network Research
(NLANR). Iperf. http://iperf.sourceforge.net/, Mar 2012.

[16] OpenFlow Switch Consortium, “OpenFlow switch specification, version
1.4.”, 2013.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

5

