
Data I/O provision for Spark applications in a

Mesos cluster

Nam H. Do§∗, Tien Van Do§∗‖, Xuan Thi Tran∗, Lóránt Farkas¶, Csaba Rotter¶

§ Division of Knowledge and System Engineering for ICT (KSE-ICT)

Faculty of Information Technology,

Ton Duc Thang University, HCM City, Vietnam
∗Analysis, Design and Development of ICT systems (AddICT) Laboratory

Budapest University of Technology and Economics

Magyar tudósok körút 2, Budapest, Hungary
¶Nokia Networks

Köztelek utca 6, Budapest, Hungary
‖ (Corresponding author)

Abstract—At present there is a crucial need to take into
account the I/O capabilities of commodity servers of clusters
in production environments. In order to support such a demand
in production environments, we propose a solution that can be
integrated into Mesos to control I/O data throughput for Spark
applications. The proposed solution takes into account the I/O
capability to provide resource mapping, control and enforcement
functionality for applications that process HDFS data. The aim is
to minimize I/O contention situations that lead to the degradation
of quality of service offered to Spark applications and clients.

I. INTRODUCTION

The development of computing frameworks such as

YARN [1] and Mesos [2] has been motivated by the need

of sharing a cluster of commodity servers among different

applications. Computing frameworks include appropriate com-

ponents that run in commodity servers to provide the manage-

ment and the execution of jobs (submitted by applications) on

a specific cluster. These frameworks provide interfaces that

hide the complexity of reserving resources and the allocation

of resources in a specific cluster from applications. There-

fore, for a certain degree computing frameworks simplify the

programming of applications for resource reservations from

clusters.

Normally, the number of CPUs, memory (in MB), and disk

space (in MB) are quantities in resource reservation requests.

In addition, Mesos can handle resource reservations in the

term of the number of CPUs, memory (in MB), disk quota (in

MB), port range as well as the limitation of outgoing traffic [2].

Applications (clients) can submit jobs (consisting of a number

of tasks) with a specific resource demand. The resource man-

agement functionality decides about the allocation of resources

to clients by a simple mapping from resource quantities to the

real capabilities of commodity servers. Tasks (and jobs) are

scheduled and executed within computing components that are

often termed containers [1], [2].

However, the I/O capability of commodity servers is not

fully considered in present computing frameworks. When

containers compete for a resource in the hardware level, which

often happens in production environments, applications may

suffer from a disk I/O performance degradation. It is worth

emphasizing that the competition in the hardware level is

hidden from programmers (and therefore from applications)

and is not solved within computing frameworks.

At present the provision of a data rate for real-time big

data applications may play a key factor to achieve benefits

for operators in telecommunication networks. In such environ-

ments there are many sources for real-time unstructured big

data which can be analyzed for customer retention, network

optimization, network planning, customer acquisition, fraud

management [3]–[6]. In order to support such a demand in

production environments, we propose a solution that takes into

account the I/O capability of computing clusters to provide

resource mapping, control and enforcement functionality for

applications. The aim is to minimize contention situations

that lead to the degradation of quality of service offered to

applications and clients. In other words, the main purpose is

to create environments where the competition for resources

is fully controlled by administrators. In this paper, we present

our proposal through the integration with the Mesos computing

framework with Spark [7] and Hadoop Distributed FileSystem

(HDFS) [8].

The rest of this paper is organized as follows. In Section II,

we present a technical background of deployed frameworks

and discuss about the data I/O problem in a shared computing

environment. The proposal of a general framework is presented

in Section III. A proof of concept for our proposal is demon-

strated in Section IV. Finally, Section V concludes our paper.

II. MOTIVATION

In this section, we present a scenario where I/O contentions

cause a problem for Spark applications in a shared cluster

managed by Mesos. To ease the comprehension, we first

provide an overview of related software frameworks that are

involved.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

45

A. Mesos

Mesos is a resource management framework in a shared

cluster. It is capable to cooperate and coordinate Hadoop,

Spark, Storm, etc [9]. The Mesos framework consists of a

Mesos master and a set of Mesos slaves that are native

(C++) processes. The Mesos master is responsible to manage

the cluster slaves and the resource reservations for other

frameworks (see the illustration in Fig. 1(a)). The Mesos

master sends resource offers to application frameworks and

coordinates the resource allocations for the shared cluster. The

scheduler of a specific framework interacts with the Mesos

master to negotiate resource reservations. If a resource offer

is accepted, an executor program is launched on Mesos slave

nodes to execute tasks. Information a scheduler sends to the

Mesos master includes

• life cycle management (Register, Reregister, Unregister)

• resource allocation (Request, Decline, Accept,...),

• task management (Launch, Kill, Acknowledgment,...).

The master can send a framework a “callback” such as

Registered (for life cycle management), resourceOffers (re-

source allocation), statusUpdate (for task management), etc.

Mesos uses the Dominant Resource Fairness (DRF) scheduling

algorithm to allocate resources for requests [10]. At present,

the DRF algorithm only takes into account Memory and CPUs.

Mesos slaves are responsible to launch and kill executors

that host tasks of a job from a specific application. In Mesos,

resources of machines can be described by slave resources and

slave attributes. Slave resources include CPU, memory, etc.

Attributes are simple key-value pairs that identify a slave node

and can be included in the slave configuration as an optional

flag. It is worth emphasizing that any consumable resource

can be defined in Mesos slaves using the “–resource” flag.

Currently Mesos handles a resource model that can contain

quantities such as the number of CPUs, an amount of memory

(in MB), disk quota (in MB), outbound traffic rate (in MB/s),

and a port range as user demands.

Mesos also provides containerizer APIs to support plug-

ins for different containerization and resource isolation im-

plementations such as using Mesos Containerizer, Docker

Containerizer, or customized containerizer. The built-in Mesos

Containerizer normally launches a container that isolates an

executor and its inside tasks using CGroups. Docker can

be applied in Mesos to package applications in light-weight

container. Docker container supports resource isolation using

CGroups, LXC, OpenVZ and kernel namespaces. To control

resources available for a Docker container, Docker enables

resource limitations in terms of memory, swap space, “cpu

shares” (CPU times for a container), “cpuset” (which CPU

container can use), “cpu pinning” (the number of CPU for

container), etc. From Mesos version 0.20.0, users now can run

a Docker image (essentially a snapshot of a Docker container)

as a task, or as an executor. Customized containerizations can

be done by an executable external program implemented as

an external containerizer plugin.

Furthermore, the availability of Mesos modules provides a

simple way to extend Mesos functionality and to integrate with

external tools and systems.

B. HDFS

In a shared cluster, Hadoop Distributed File System (HDFS)

[8] offers big data services for applications. The master Na-

meNode (JVM process) manages the file metadata and DataN-

odes (JVM processes) keep data in form of data blocks/chunks,

as illustrated in Fig. 1(b). To read/write a file, an HDFS

client initiates a request to the NameNode for metadata, then

directly opens TCP sessions to certain DataNodes to stream

data. Note that HDFS can either run alongside Mesos as a

standalone distributed filesystem, or a resource allocation to

the components of Hadoop Distributed File System (HDFS)

can be managed by Mesos as well.

C. Spark

In Apache Spark [7], a high-performance computational

engine is implemented with the abstraction of Resilient Dis-

tributed Datasets (RDD) and Directed Acyclic Graph (DAG)

execution algorithm to support the processing of big data.

RDD is simply a partitioned collection of elements that can

be operated on in parallel [11]. Spark can create RDDs

from existing collections, local filesystem, Hadoop Distributed

FileSystem (HDFS), or any data storages supported by Hadoop

API. Currently, Spark can run as a standalone system using

its built-in cluster manager, or can be managed by YARN or

Mesos. For each cluster manager, Spark provides particular

interfaces for scheduler implementation and for launching

executors.

Each Spark application consists of a main program called

driver and an executor program (see Fig. 1(c)). A driver

program, which runs in a JVM process, serves as the main

entry point of a SparkContext object. The main functional

block components of SparkContext are as follows.

• An RDD graph is a direct acyclic graph of task stages to

be performed on the cluster.

• A DAG Scheduler builds stages of each job by breaking

the RDD graph at shuffle boundaries, computes a DAG

of stages with stage-oriented scheduling. Then stages

are submitted as TaskSets to an underlying Task Sched-

uler implementation. In addition, DAG scheduler also

determines the preferred locations to run each task on,

based on the current cache status, and passes these to the

underlying Task Scheduler.

• A Task Scheduler receives TaskSets as the input, negoti-

ates resources with the cluster manager, and determines

where tasks should be executed and which resources a

task can consume.

Each Spark executor is a process (a standalone JVM or

embedded in another JVM process), which is responsible

for running tasks and storing RDD data. An application can

contain a set of executor processes spawned on worker nodes.

Each executor can run multiple tasks in a task thread pool. It

also serves and stores data (RDD, shuffle data, etc) for use in

further jobs through the Block manager and the cache service.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

46

(a) Mesos architecture (b) HDFS architecture (c) Spark architecture

(d) An example scenario of Spark deployment on Mesos

Fig. 1. Spark on Mesos cluster

Spark enables a configuration for the number of CPUs per

executor and per task, as well as a memory amount as resource

demands from an application. Those quantities are used in the

negotiation process with the Mesos master. Spark application

frameworks can be launched with two modes in Mesos: fine-

grained and coarse-grained. In the default fine-grained mode,

the Mesos master and a Mesos slave are aware of the existence

of the Spark tasks run on the slave, thus the Mesos slave can

allocate resource (e.g. the number of CPUs required for the

tasks) appropriately for the executor, which can provide an

efficient resource utilization. On the contrary, in the coarse-

grained mode only one long-running Mesos task is launched

on each Mesos machine and reserves the allocated resources

for the entire duration of the application. This Mesos task then

dynamically schedules Spark tasks. Thus, the startup overhead

is much lower than in the fine-grained mode, hence it is more

suitable for applications with low-latency requirements like

interactive queries or serving web requests. The number of

executors can be scaled up and down according to the actual

workload using the dynamic resource allocation mechanism.

D. Disk I/O contention of Spark applications

To give an example regarding a disk I/O resource con-

tention, we establish a shared cluster that consists of servers

with Intel R© CoreTM i5-4670 CPU @ 3.40GHz, 16GB

Kingston HyperX Black DDR3 1600MHz RAM, Asus H87-

PLUS Motherborad with Intel R© H87 chipset and SATA 6Gb/s

Ports, and 1GB WD Black WD1003FZEX 7200 RPM hard

drives with SATA 6Gb/s interface and data transfer rate up

to 150 MB/s. Ubuntu Server 14.04.3 LTS 64 bit, Hadoop

2.7.1, Mesos 0.24.0, and Spark 1.5.0 are used in our cluster.

The configuration with a Mesos master node, a Hadoop

NameNode, and a set of machine nodes hosting Mesos slaves

and a Hadoop DataNode is illustrated in Fig. 1(d). It is worth

mentioning that in each worker machine, HDFS data blocks

are stored in a separate hard drive.

We runs Spark TeraSort and WordCount in the default

fine-grained mode to process HDFS data with the following

settings:

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

47

• WordCount counts the occurrence number of each word

in 3GB HDFS data with block size of 256MB,

• TeraSort sorts 3 million records stored in HDFS with

block size of 512MB,

• By using Mesos roles, WordCount and TeraSort were

configured to launch their tasks in a dedicated machine,

which stores the needed HDFS data blocks,

• All executors are configured to run up to three tasks in

parallel.

The interactions in the cluster are described as follows:

• When each application (TeraSort or WordCount) is sub-

mitted, its driver is launched in a separate JVM process.

• The driver creates RDDs from its inputs, builds stages

of tasks, determines the preferred nodes where tasks can

run (based on data locality constraint), registers with

Mesos master, and is ready to negotiate resources for the

application’s needs.

• The Mesos master sends a resource offer in the callback

to the driver,

• The driver accepts an offer and requests the launch of an

executor with tasks on the appropriate slave.

• The master asks the slave to launch the executor with its

tasks on behalf of the driver.

• The slave spawns a Mesos executor as a stadalone

JVM process using MesosExecutorBackend pluggin. The

Mesos executor in turn launches a Spark Executor, which

registers itself with the driver through a private RPC

(Remote Process Call).

• After being launched, the Spark Executor uses a task

thread pool to launch the framework’s tasks.

• Each task reads a data block from certain DataNode, does

computation, and saves results.

In a shared cluster, a disk I/O contention can happen on

any worker node where different executors (or even several

tasks of an executor) concurrently access the same disk. When

Wordcount and Terasort simultaneously run in the cluster (see

Fig. 1(d)), the executor of Wordcount launches two tasks to

be run in parallel and the Terasort executor runs one task on

the same worker machine.

Concurrent activities of reading/writing data blocks by

different applications or frameworks on the same DataNode

and other intermediate results in shuffle phase and RDD data

of each application can be spilled to the local disk can have a

bad impact in uncontrolled environments. The execution flow

of a particular Spark Wordcount example in a Mesos cluster

to process an HDFS file with two data blocks is illustrated in

Fig. 2(a). Spark implicitly constructs the DAG graph of RDD

operations with all necessary RDDs from the input HDFS

text file and operations in the program. When the driver is

launched, it converts the logical DAG of operations into the

stages of tasks to be executed. With 2-block input file, two

2-task stages are created (see Fig. 2(a)). Thus, the application

is executed in two sequential stages. In each stage, resources

for two simultaneous tasks are needed.

In our experiment each executor is configured to require

1 CPU and 4GB memory, and each task requires 1 CPU.

That means, a resource offer that advertises at least 2 CPUs

and 4GB memory may be accepted by an application. Spark

also considers the data locality as a constraint in scheduling.

The master starts offering resources to the driver. In this case,

the master sends an offer that advertised slave X’s resource

model that looks like {cpus(r1):4; cpus(*):4; mem(*):14895;

disk(*):213239; ports(*):[31000-32000]}. With this resource

offer, an application with the role r1 can use up to 8 CPUs,

while applications with another role can only use 4 CPUs.

Since it satisfies resource demands as well as data locality

constraint, the driver accepts the offer and launches Task 1 and

2 of stage 0 with introducing the resource demands regarding

to memory and CPUs, i.e 4GB memory and 1 CPU for a Spark

executor and 2 CPUs for its two tasks (action (1)). When the

slave is asked to launch a Mesos executor with two assigned

tasks, it also launches a container (action (2)) that provides a

resource isolation for the executor (action (3)). In turn, a Spark

executor is spawned and actually starts Task 1 and Task 2.

In this example only Task 1 and Task 2 need the access of

HDFS blocks (action (4)). Moreover, the executor created by

“MesosExecutorBackend” can be reused to launch Task 3 and

Task 4 in case of enough resources.

As shown in the work flow of the WordCount application

(Fig. 2(b)), the disk I/O contention may happen when tasks

read data blocks (action 4). The performance measures related

to the I/O activities of WordCount and TeraSort are collected

and reported in Table I (note that the average values of

ten repeated measurements are presented, the buffer cache

was dropped before each measurement and was flushed in

the end). It can be observed that I/O operations of another

Spark applications or external frameworks cause a decrease

in the I/O performance of a given executor. For instance,

the read data rate of the WordCount application in cases of

running alone and with TeraSort are 44.71 MB/s and 22.18

MB/s, respectively. The average delay time for a disk block

I/O is another evidence that the disk contention can cause

a performance problem for applications. As a consequence,

the application runtime increases due to the I/O contentions.

The similar observation can be obtained with the Terasort

application as well.

Disk bottlenecks can be caused by sequentially read-

ing/writing activity on a large amount of disk blocks of an

application. The I/O activity may greedily seize the whole disk

I/O capacity and cause I/O starvation for other applications

that access the same disk. Such cases can frequently happen

in production environments when data is uploaded to HDFS

or data reorganized in HDFS. To emulate such cases, we use

some simple applications to process 15GB data:

• HDFS-reader and HDFS-writer are simple applications

for reading and writing HDFS data,

• Fio [12] is initiated for synchronous reading and writing

data. Fio-reader and Fio-writer are applications calling

Fio to process data in the disk drive shared with HDFS

data blocks.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

48

(a) The DAG graph

(b) The execution flow

Fig. 2. Spark WordCount example in Mesos

TABLE I
Perfomance of the WordCount and the TeraSort applications (Avg read and Avg write are the average data rate of a container for the read activity and

the write activity, blkio delay (ms) is the average delay (in milliseconds) that an application spends waiting for a disk block I/O.)

Scenario Avg read Avg write blkio delay Runtime
(MB/s) (MB/s) (ms) (s)

WordCount
Alone 44.76 - 5.19 40.5
+TeraSort 22.18 - 13.08 71.3

TeraSort
Alone 36.67 69.38 8.51 99.8
+WordCount 17.37 70.65 15.71 133.2

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

49

TABLE II
Perfomance of the WordCount and the TeraSort applications with/without I/O stress influence

Scenario Avg read Avg write blkio delay Runtime
(MB/s) (MB/s) (ms) (s)

WordCount

Alone 44.76 - 5.19 40.5
+Fio-reader 16.76 - 20.64 90.8
+Fio-writer 28.20 - 58.08 143.6
+HDFS-reader 34.46 - 8.25 54.9
+HDFS-writer 22.41 - 56.52 162.1

TeraSort

Alone 38.89 72.67 7.71 106.2
+Fio-reader 30.35 64.87 10.71 120.6
+Fio-writer 27.95 66.18 35.19 209.3
+HDFS-reader 33.34 66.01 9.21 115.9
+HDFS-writer 27.40 61.57 37.91 216.9

Tables II shows the measured results. As observed, Spark

applications suffer in uncontrolled environments.

III. PROPOSED SOLUTION

Fig. 3. Enforcing HDFS read data rate in Mesos

Quality of Service (QoS) is defined by Recommendation

ITU-T G.1000 [13] to characterize the degree of satisfaction of

a user. There are several QoS criteria (speed, accuracy, avail-

ability, reliability, security, simplicity and flexibility) [14] that

serves as the base for setting QoS parameters and performance

objectives. Furthermore, there are four viewpoints [13] of

QoS from the perspective of customers and service providers:

customer’s QoS requirements, QoS offered by a provider,

QoS achieved by a provider, QoS perceived by a customer.

It is worth mentioning that mechanisms (rules, procedures,

policies) should be deployed in the infrastructure of service

providers to provision QoS for customers in cloud comput-

ing environments as well. Following the general principles

regarding the provision of QoS from the viewpoint of ser-

vice provider in such shared environments, mechanisms for

guaranteeing the IO rate of applications should include

• the specification of requirements of users and their appli-

cations,

• information about the shared compute cluster, i.e.,

– the maximum capacity of the resource of the cluster

(i.e., the maximum capacity of disk I/O),

– the amount of resource occupied by containers and

application frameworks,

• unified resource management policy (i.e., a strategy to

allocate and isolate resource) and decision procedures

(admission control and policing).

In [15], we proposed a design of building block components

to control a data rate from HDFS for YARN applications.

The detailed implementation called HdfsTrafficControl can be

found in [16]. This design is refined to support a data I/O

provision for Spark applications in Mesos (see Fig. 3).

We propose a process with two main components to be

executed in each worker machine: an agent to monitor the

resource usage of executors and the worker machine, and

a controller to perform resource enforcements. In order to

guarantee the data I/O, the Mesos master should known about

the I/O usage of the containers, DataNodes, etc. by querying

the proposed framework, then offers the usable free disk I/O to

the application frameworks, which in turn can decide whether

accept or reject the resource offer. The information can be

shared amongst the clients through a persistent storage based

ZooKeeper, which acts as a passive coordinator in this design.

The integration of our approach into the execution flow

illustrated in Fig. 2(b) is described in the following:

• a Mesos slave may retrieve information from the monitor

agent in order to report the amount of usable resource

to the Mesos master, which in turn advertise it to Spark

drivers. It is worth emphasizing that declaring new re-

source is easy in Mesos thanks to its flexible resource

description model,

• Spark drivers must specify I/O requirements when ac-

cepting resources offered by Mesos master (action (1)),

• based on the list of tasks and the I/O requirements (per

task), the slave can calculate the total amount of resource

for the given container, then it can notify the resource

enforcement request to the agent (action (2), (3) and (5)).

Mesos already supports the isolator module feature, that

can be used to implement this procedure,

• the controller then translates the request into appropriate

enforcement settings, and enforcements are performed.

The enforcements can be carried out during the lifetime

of the executor and resource monitoring may be needed

to perform the enforcements (e.g. enforcing HDFS traffic

during action (4)). In Linux environment, CGroups Block

I/O Controller [17] or LTC based TCP/IP controller [18]

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

50

TABLE III
Wordcount application - 3GB data with block size of 256MB

Scenario Avg read blkio delay Runtime
(MB/s) (ms) (s)

Baseline 44.76 5.19 40.5

With IO-stress
influence

+Fio-reader 16.76 20.64 90.8
+Fio-writer 28.20 58.08 143.6

+HDFS-reader 34.46 8.25 54.9
+HDFS-writer 22.41 56.52 162.1

Under IO
controls

+Fio-reader/CGroups 40.51 6.41 44.2
+Fio-writer/CGroups 28.01 59.71 143.7
+HDFS-reader/LTC 40.39 6.37 49.6
+HDFS-writer/LTC 35.85 7.24 52.6

TABLE IV
Terasort application - sorting 3 million records with block size of 256MB

Scenario Avg read Avg write blkio delay Runtime
(MB/s) (MB/s) (ms) (s)

Baseline 38.89 72.67 7.71 106.2

With IO-stress
influence

+Fio-reader 30.35 64.87 10.71 120.6
+Fio-writer 27.95 66.18 35.19 209.3

+HDFS-reader 33.34 66.01 9.21 115.9
+HDFS-writer 27.40 61.57 37.91 216.9

Under IO
controls

+Fio-reader/CGroups 34.55 58.77 9.81 108.6
+Fio-writer/CGroups 27.96 63.25 37.78 216.0
+HDFS-reader/LTC 33.88 66.64 9.24 113.0
+HDFS-writer/LTC 29.33 62.90 10.67 118.8

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70

T
h

ro
u

g
h
p

u
t

(M
B

/s
)

time (s)

Captured HDFS read data rate

WordCount, nolimit
TeraSort, nolimit

(a) Without limiting rates

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70

T
h

ro
u

g
h
p

u
t

(M
B

/s
)

time (s)

Captured HDFS read data rate

WordCount, 30MB/s
TeraSort, 10MB/s

(b) WordCount is preferred

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70

T
h

ro
u

g
h
p

u
t

(M
B

/s
)

time (s)

Captured HDFS read data rate

WordCount, 10MB/s
TeraSort, 30MB/s

(c) TeraSort is preferred

Fig. 4. Captured HDFS read data rate of the executors of WordCount and TeraSort in the same worker machine

can be applied to control disk I/O. The interested readers

can find more information about them in [15], [19].

This design also takes care of the case when multiple nodes

are involved in order to perform the enforcement. For example,

enforcing data I/O of HDFS read operations with LTC is more

complicated [15] as

• the enforcement of the I/O usage of containers and HDFS

only can be done at DataNodes in the machine level as

LTC has an impact only on outgoing traffic,

• the TCP/IP pipe and disk I/O pipe are hidden from other

resource management functions due to the implementa-

tion of HDFS and can not be revealed at the beginning.

Therefore, the connection data related to the given container

must be available in order to perform the enforcement in

the Datanode machine: the agent periodically checks and

detects a TCP/IP connection to the DataNode, uploads the

monitored connection data to the data persistent storage (e.g.

using ZooKeeper). The controller component alongside the

DataNode, in turn, will be notified, and then appropriately

applies LTC rules for the concerned HDFS connections in the

Datanode machine.

IV. PROOF-OF-CONCEPT

In this section, we illustrate that administrators of a shared

cluster can apply our proposed solution to give a preference

for certain applications, a feature is much needed in production

environments.

Tables III and IV summarize the measured I/O performance

of the Spark WordCount and TeraSort. When a specific appli-

cation (e.g., as Wordcount and Terasort in our application)

needs to be executed in a certain time limit, the application of

our solution can give a higher data rate (from 16.47 MB/s to

40.51 MB/s). Of course, this can be achieved if administrators

limit the I/O activities of less important applications.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

51

The result of the data I/O contention can be observed in

Fig. 4(a), which plots the captured HDFS read data rate of

the executors of WordCount and TeraSort. Fig. 4(b) shows the

measurement result when the limited rate per task of Word-

Count and TeraSort were 30MB/s and 10MB/s, respectively.

Similarly, Fig. 4(c) plots the read data rate when TeraSort was

preferred. It can be observed that the HDFS read data rate of

Spark applications can be properly controlled by our solution.

V. CONCLUSION

In this paper, we have presented the interaction of different

software frameworks in a shared cluster controlled by Mesos

where I/O contention may cause a performance degradation for

applications. We have proposed a solution that can be applied

to monitor and enforce the I/O throughput for applications. It is

worth emphasizing that the I/O enforcements were performed

in the container level in the experiments. I.e., the total HDFS

data rate of tasks inside an executor is controlled because

Spark tasks are Java threads spawned inside an JVM executor.

Information regarding each task is needed to control the I/O

activity in the task level, which requires the cooperation of the

frameworks. This issue will be considered in our future work.

REFERENCES

[1] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: Yet Another Resource Negotiator,” in Proceedings

of the 4th Annual Symposium on Cloud Computing, ser. SOCC ’13.
New York, NY, USA: ACM, 2013, pp. 5:1–5:16. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523633

[2] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for
Fine-grained Resource Sharing in the Data Center,” in Proceedings

of the 8th USENIX Conference on Networked Systems Design

and Implementation, ser. NSDI’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 295–308. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1972457.1972488

[3] “Cloudera Industry Brief: Big Data Use Cases for Telcos,”
https://www.cloudera.com/content/dam/cloudera/Resources/PDF/
solution-briefs/Industry-Brief-Big-Data-Use-Cases-for-Telcos.pdf,
accessed: 2015-12-17.

[4] O. Acker, A. Blockus, and F. Potscher, “Benefiting
from big data: A new approach for the telecom in-
dustry”, Strategy& report, http://www.strategyand.pwc.
com/media/file/Strategyand Benefiting-from-Big-Data
A-New-Approach-for-the-Telecom-Industry.pdf, accessed: 2015-12-17.

[5] “CEM on Demand - see every aspect of the customer
experience,” http://networks.nokia.com/portfolio/products/
customer-experience-management, accessed: 2015-12-17.

[6] “IBM Service Provider Delivery Environment Framework,” http:
//www-01.ibm.com/software/industry/communications/framework/, ac-
cessed: 2015-12-17.

[7] “Apache Spark,” http://spark.apache.org/.

[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proceedings of the 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST), ser.
MSST ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1–10. [Online]. Available: http://dx.doi.org/10.1109/MSST.2010.
5496972

[9] “Software projects built-on Mesos,” http://mesos.apache.org/
documentation/latest/mesos-frameworks, accessed: 2015-07-01.

[10] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types,” in Proceedings of the 8th USENIX Conference

on Networked Systems Design and Implementation, ser. NSDI’11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 323–336.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1972457.1972490

[11] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-tolerant Abstraction for In-memory Cluster Computing,”
in Proceedings of the 9th USENIX Conference on Networked

Systems Design and Implementation, ser. NSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 2–2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228298.2228301

[12] “Fio - an I/O tool for benchmark and stress/hardware verification,” http:
//freecode.com/projects/fio/.

[13] Recommendation ITU-T G.1000, Communications Quality of Service: A

Framework and Definitions. International Telecommunication Union,
2001.

[14] J. Richters and C. Dvorak, “A Framework for Defining the Quality of
Communications Services,” Communications Magazine, IEEE, vol. 26,
no. 10, pp. 17–23, Oct 1988.

[15] T. V. Do, B. T. Vu, N. H. Do, L. Farkas, C. Rotter, and T. Tarjanyi,
“Building Block Components to Control a Data Rate in the Apache
Hadoop Compute Platform,” in Intelligence in Next Generation Networks

(ICIN), 2015 18th International Conference on, Feb 2015, pp. 23–29.

[16] “Building Block Components to Control a Data Rate from HDFS,” https:
//issues.apache.org/jira/browse/YARN-2681.

[17] “Blkio Controller,” https://www.kernel.org/doc/Documentation/cgroups/
blkio-controller.txt.

[18] “Linux Advanced Routing and Traffic Control: HOWTO,” http://lartc.
org, Accessed: 2015-04-10.

[19] X. T. Tran, T. V. Do, N. H. Do, L. Farkas, and C. Rotter, “Provision
of Disk I/O Guarantee for MapReduce Applications,” in 2015 IEEE

TrustCom/BigDataSE/ISPA, Helsinki, Finland, August 20-22, 2015,

Volume 2, 2015, pp. 161–166.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

52

