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Abstract—Reducing energy and power consumption is impor-
tant for many reasons, including extending the lifetime of battery
operated devices and reducing energy bills. An important source
of energy loss in wireless networks comes from retransmissions of
lost packets. Many of the transmission protocols in use today were
designed mainly to be used in wired IP networks, and therefore
performs bad in wireless scenarios. We present a protocol that
more efficiently handles packet losses in wireless network with
a special emphasis on video streams, and show that the use
of fountain coding can reduce power consumption and save
energy, especially in multicast settings. We show that fountain
coding minimizes the number of retransmissions in lossy wireless
networks. Our initial tests for video multicast scenarios with up
to 10 users in networks with high loss rates show that power can
be reduced by up to 200%.

I. I NTRODUCTION

With the increasing popularity of smart phones and other
mobile devices, the use of mobile Internet is also quickly
increasing. Video delivery forms a big portion of the traffic
on mobile terminals and consumes much energy.

Reducing energy and power consumption is important for
many reasons, including extending the lifetime of battery oper-
ated devices and reducing energy bills. An important source of
energy loss in wireless networks comes from retransmissions
of lost packets. Many of the transmission protocols in use
today were designed mainly to be used in wired IP networks,
and therefore performs bad in wireless scenarios. An area
that currently experiences rapid growth is video streaming,
and Cisco reports that video will amount to about 80% of all
Internet traffic by 2019 [1]. Cisco further predicts that 67% of
all IP traffic will be consumed by WiFi connected devices.

While it is generally well know that WiFi connections
experiences packet loss, it is less known that these losses are
typically much higher than most people realize. For unicast
packets, WiFi employ up to four retransmissions and perform
dynamic link rate adaptation to better cope with bad channel
and signal propagation conditions. One study [2] found that
during an important computer science conference as much as
28% of all transmissions failed. In residential areas, many
wireless networks and devices coexist in a small frequency
spectrum and experiences sustained noise and interference.
However, retransmissions are very efficient and even with a
loss rate as high as 50%, the resulting packet loss rate is only
6.25%.

Depending on the type of service, video streams can either
be transported using TCP or UDP, but often rely on use the
UDP protocol in order to reduce latency and for its support
of multicast and broadcast streaming services. However, UDP
multicast and broadcast packet are not retransmitted, and are
therefore much more vulnerable to adverse wireless channel
conditions.

A topic that is currently receiving a lot interest in the
wireless research community is fountain codes [3], because
their properties are particularly efficient in broadcast and mul-
ticast scenarios and for improving retransmission performance.
Recent studies [4] also indicate that they may also save energy.

In this paper we introduce a protocol that is able to perform
reliable UDP multicast streaming and which also supports the
use different types of fountain coding. We study how fountain
codes can save energy and improve power consumption over
lossy wireless radio links, especially in video multicast and
multi client scenarios, and for different number of users.

The remainder of this paper is organized as follows: section
II describes related work and in section III a brief overview of
fountain coding is given. Section IV describes our consump-
tion reducing protocol, followed by a description of our setup
in V and results in VI. Final conclusions is given in VII.

II. RELATED WORK

While UDP may reduce latency and support multicast
streaming, it does not have have any delivery guarantee for
the correct order of packet reception, or the retransmission of
lost packets. With UDP, the network layer is unable to recover
from packet losses, which may lead to significant drop in video
quality. Reliable User Datagram Protocol (RUDP) [5] is there-
fore a proposed protocol by Bell Labs to provide a solution
where guaranteed-order packet delivery is desirable. Similar
to TCP, RUDP implements features of acknowledgment of
received packets, windowing and flow control, and retrans-
mission of lost packets, but with less overhead. However, in
lossy wireless networks, the high packet loss rate leads to an
increase of retransmissions, and often multiple receptions of
the same packets by the same device, which is a waste of
energy.

Fountain codes have be proposed recently for video stream-
ing [6] [7]. Fountain codes are rateless erasure codes in the
sense that the encoder can create as many encoded symbols
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as required on the fly. This is an advantage for wireless
channels in which the channel conditions vary frequently or
are unknown. Moreover, Fountain codes has low complexity
both on the encoder and decoder sides compared with other
Forward Error Correction (FEC) coding algorithms such as
Reed-Solomon codes.

While much work has been performed on the study of foun-
tain codes, including on how it can be used for video streaming
[6], and improve the performance of video codecs [8], very
little has been done in terms of assessing the impact it has on
energy and power consumption. Our presented method also
make its deployment much more straight forward, by instead
of embedding the coding in the codec or network protocols, it
can easily be dropped into applications. It can also be easily
deployed at video servers, or at wireless access points.

III. N ETWORK AND FOUNTAIN CODING

In network and fountain coding, intermediate nodes may
send out packets that are linear combinations of a set of other
packets. There are two main benefits of this approach: potential
throughput improvements and a higher degree of robustness.
Robustness translates into loss resilience and facilitates the
design of simple distributed algorithms that improves perfor-
mance, even if decisions are based only on partial information.

The main difference between network and fountain coding,
is that in network coding any packets may be combined, while
in fountain coding only packet from a particular source or
stream are combined. In network coding [9], a router or a
set if routers may identify that multiple paths are available
through the network, and that by combining some packets the
number of transmitted packets in the network can be reduced.

Fountain codes typically operate on a set of data such as
a file, or a piece of a file, and randomly combines these
pieces so that the order in which they are received becomes
unimportant as long as the number matches at least the number
of pieces in the source data. Due to its similarity to erasure
coding [10], fountain codes are sometimes also referred to
as rateless erasure codes. As a Forward Error Correcting
(FEC) mechanism used for Automatic Repeat Request (ARQ)
operations, it means that a sender and receiver do not have to
consider the correct arrival of individual packets, which greatly
simplifies retransmission operation and the needed amount of
signaling.

For multicast or multiple receiver operations, especially in
wireless scenarios such as in WiFi networks, it has even higher
benefits. If individual receivers independently loose different
packets in a stream, each of those individual packets needs to
be retransmitted. In the case of fountain codes, only a single
packets would be needed for all of the receivers, thus greatly
reducing the number of needed transmissions and thereby the
energy consumed.

In this study we consider two types of fountain coding, LT
codes [11] and RaptorQ [12] codes.

Luby Transform (LT) codes are the first class of efficient
practical Fountain codes. Potentially, a LT code can generate
an unlimited amount of encoded data from the source, where

the source data can be efficiently and completely recovered
from reception of any combination of encoded data essentially
equal in size to the source data.

The LT (Luby Transform) encoder produces packets from a
block of source data as follows: Randomly choose the degree,
d from a degree distribution, which depends of the size,K of
source data. HereK represent the number of packets needed
to represent the source data. The encoder then uniformly at
random, choosesd out of theseK packets and bitwise modulo
2 combines these packets to a new packet of equal size. In [11]
the chosen distribution is a Soliton distribution that enables
fast encoding and decoding operations by creating a mix of
low and high degree packets. The decoder then reverses this
operation by considering the operation as a linear equation
system and solves this through Gaussian elimination.

However, LT codes do not have linear decoding properties,
and in order to improve upon this, Raptor Codes have been
proposed. Raptor codes uses a compound coding structure,
which usually includes a high-rate outer LDPC [13] code and
an inner LT code, which is able to nearly optimally minimize
the needed number of packets for successful decoding. The
difference is that in LT codes there is always a slight chance
that a newly received packet is linear dependent in the de-
coder equation matrix, and thus provides no new information.
The outer code greatly reduces this probability and thereby
increases the effectiveness of the code.

A superior form of Raptor codes have been proposed, i.e.,
RaptorQ codes. RaptorQ is more efficient than Raptor coding
in terms of flexibility and efficiency. It uses an enhanced
two-step pre-coder and a superior LT encoding algorithm.
Moreover, it supports a larger range of the size of source
symbols and encoding symbols and can deliver huge chunks
of data at a time.

RaptorQ is currently the most efficient known fountain code,
although it is covered by heavy IPR protection.

IV. PROTECTEDV IDEO STREAMING
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Fig. 1. Packet Loss Rate Over Time

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

267



Fig. 2. Fountain Coding packet transmission over lossy channels

Video services delivered using UDP as the transport proto-
col are vulnerable to packet loss as no explicit acknowledg-
ments or retransmissions are performed. While modern video
codecs can accept some packet loss, this comes at the price
of lower video quality. In [14] the authors studied how the
quality of the video is impacted by packet loss, and found
that the quality of the video degrades quickly as the packet
loss ratio increases. By 10% it is so bad the video is almost
unwatchable.

While it is reasonably well known that commercial and
residential WiFi networks periodically experiences packet loss,
it is less know how severe this loss actually is. This is because
the WiFi protocol performs link adaptation and that this in
combination with retransmissions is very efficient. The default
is to perform 4 retransmissions, which means that even with
a loss rate as high as 50%, the resulting perceived packet
loss rate is only 6.25%. However, retransmissions are only
performed for unicast packets, not for multicast or broadcast
transmissions.

Figure 1 shows a 5 min measurement of the packet loss
rate performed in a residential area in central Stockholm.
The capacity fluctuates heavily due to variations in noise and
interference, and the average packet loss was 23% with peaks
up to 80% loss. This would have severe impact on video
streams over UDP multicast or broadcast streams.

In order to protect video streams from these severe condi-
tions while still supporting multicast and broadcast services,
we developed a protected streaming protocol for UDP video
packets, that operates similar to the Reliable UDP (RUDP)
protocol [5]. This protocol transmits chunks of packets after
which individual packets within the chunk are acknowledged
using a bitfield in an acknowledgment packet. A server trans-

mits these chunks upon receiving chunk requests from clients.
When the server receives an acknowledgment, it transmits the
packets indicated in the bitfield. See figure 3. This makes the
protocol very flexible and ideal for supporting video streams
from both a sender and receiver perspective. A receiver may
choose to receive all the packets in the chunk by indicating
this in the bitfield, or it may use available video encoding
information to only request as much data as it needs for
successful decoding. The receiver can then also choose to
prioritize packets that include data of high importance such as
keyframes within the video. The server on the hand, can also
choose to aggregate acknowledgments from several receivers
in a multicast scenario, and simultaneously support ensured
reliable delivery to all of them.

Fig. 3. Reliable UDP packet transmission over lossy channels

As mentioned above, fountain coding is an efficient method
for transmitting packets over lossy wireless channels. Our
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protocol therefore also support LT and RaptorQ coding of
packets. This version of the protocol operates the same way
as the RUDP version, but a fountain code is used for each
transmitted packet. The symbols from the fountain code are
generated from the requested chunk of data and inserted
into the transmitted packets. Instead of using a bitfield in
the acknowledgments, only the rank of the decoding matrix
is included, which therefore decreases the size of the ac-
knowledgment packets. The server therefore only needs to
know how many packets that needs to be transmitted, not
exactly which packets, and therefore determines the number
of packets to transmit as difference between full rank and
current rank. When the server receives acknowledgments from
several clients for the same video stream, it uses the lowest
rank among the clients.

In a basic fountain coding scenario a sender keeps trans-
mitting symbols until a receiver decodes the message and
signals the sender to stop. In a wireless network situation
this may become inefficient because between the time the
sender sends a packet, and a receiver decodes the message
and sends the stop signaling packet, the sender may already
have sent several unneeded packets. This leads to unneces-
sary packet transmissions and a waste of energy. The other
option is that sender only sends a certain amount of packets
equaling the rank of the message, and then waits for feedback
acknowledgments from the receivers. The sender then sends
another set of packets equaling the difference between full
and current rank. The problem with that approach is that it
becomes inefficient in lossy networks as some packets will
be lost in each transmission phases, and therefore typically
requires several cycles. In this protocol we instead estimate
the packet loss rate of the channel by looking at the difference
between the number of sent and requested packets. Using this
loss rate, an extra number of packets can be transmitted equal
to the expected number of lost packets, see figure 2.

V. EXPERIMENTAL SETUP

The experimental setup consisted of a number of Nexus
5 (LG) mobile phones and a number of Raspberry Pi B+
devices [15] with 802.11abg WiFi cards. The Nexus 5 phones
were running Android 6.1 and the Raspberry PI’s were running
either Raspbian Linux OS [16] or Android 5.1. The Raspberry
PI running Raspbian were used as an WiFi access point and
hosting a video file server that Android clients used to connect
directly to.

This setup has several advantages, as video streaming is
easily supported on Android devices and that the Linux
OS allows controlling packet success rates. Packet loss rate
were controlled using the internal firewall tooliptables where
incoming and outgoing packets can be dropped according to
some statistical distribution, i.e. a uniform distribution. As all
the devices are located very close to each other in the same
room, the iptables packet drops emulates wireless packets
received but discarded due to noise and interference, the most
common type of wireless packet loss.

It also allows power measurements to be more easily
conducted, as Nexus 5 has both API and internal support for
power measurements. Raspberry PI’s are typically powered
through a USB port, which allows easy power measurements
by inserting a USB power meter between the device and the
power source.

For all measurements, the short film “Tears of Steel” [17]
were used, a freely available short movie often used and partly
created for being used in video benchmarks. This video is
streamed using standard video chunk procedures.

VI. RESULTS

The first experiment considers the case of a single client
consuming a single video stream from the server.
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Fig. 4. Power consumption vs different packet loss rates for asingle client
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As can be seen from figure 4, the power consumption of LT
and RaptorQ coding not change very much as the packet loss
rate increases, while for RUDP it increases almost linearly.
That the power consumption should increase should be an
obvious conclusion, because as more packets are lost there
is a greater need for packet transmissions which therefore
increases power consumption. This should also apply to the
coding cases, but here you must also take into account the
power consumption of the decoding process. The decoding
process consumes power, which is why the fountain codes
consume more power for the lower loss rates. However, as
packets starts dropping, packets will arrive more sparsely
allowing the CPU to spread out its work a bit more, which in
turn also cools it down a little bit. That is, the energy consumed
is spread out more in time meaning the average power goes
down. So this decrease in power consumption for LT coding
matches very closely the increase in power caused by the extra
packet transmissions.

For RaptorQ the same argument can be applied, but its
encoder and decoder process is a little bit more complicated.
As RaptorQ consists of an inner and outer code, it is also
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typically decoded in two steps. While Raptor Codes have
linear decoding time compared to the size of source data,
the decoding effort is less linearly spread out in time than
for LT codes. For LT codes, decoding progresses a little bit
for each newly received symbol. Because of the two codes,
Raptor Codes spends a bit more effort after receiving the last
symbol in order to decode the whole message. This results in a
more uneven distribution of energy over time, which is further
complicated by the video decoder operating on the newly
decoding data and the streaming software’s data prefetch
operation and bandwidth estimation policies. In summary, the
LT codes even distribution of work in the decoding process
translates into a more even process than RaptorQ, even though
packets are arriving less often due to packet losses.

A. Multiple Clients and Live Streams

In the first experiment, only a single client was considered.
Because fountain codes are rateless and consumers can receive
packets in any order they are ideal for multi user and multicast
scenarios, such as for live streams. As we saw in the single
client scenario, the extra overhead of the fountain codes results
in higher energy consumption compared to RUDP for lower
loss rates, while being more efficient for extremely lossy
channels.

With fountain coding, if several clients were to consume the
same video stream at the same time, the sender wouldn’t need
to consider which individual packets of the stream each client
have received, and the need for explicit feedback is essentially
eliminated. This is especially important when multiple clients
are considered over lossy channels. Depending on the size of
the stream, and the size of the video chunks, it becomes likely
that the different clients need different parts of the stream, and
that the sender therefore needs to send a separate packet to
each of them. Using fountain coding, this need is eliminated
and a single packet will be sufficient for all of them which
improves both power consumption and throughput.
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Fig. 5. Power consumption depending on number of receiving multicast
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If we look at Figure 5 we can see the results for power
measurements when the number of clients increases. The
figure shows the power consumption for different packet loss
rates for RUDP, but only the average for LT codes and RaptorQ
because as saw above, this is not exactly dependent on the
packet loss rate.

All clients are receiving the same video stream, but as
the individual wireless channels are different (independent),
clients drop different packets which needs to be retransmitted.
The fountain codes maintain the same power consumption
even as the number of clients increases. This means that for 10
clients the power consumption can be reduced between 14%
and 205% compared to RUDP. For 2 clients, the consumption
increases by 13% for 10% packet loss, to being reduced by
30% for 50% packet loss.

In this setup, all the clients experience the same level of
packets loss rate, while in a more non experimental setup
this might not be the case. The consumption would then be
constrained by the client with the worst channel as the server
needs to adapt to its need. It also means that other clients
with better channels still receives packets which they don’t
need, although these packets will just be discarded. This is
a classical problem, called the near-far problem, but which
we will not specifically address in this paper. Client devices
closer to the source server though, should be able predict this
as packets are received in cycles depending on the chunk size.
They could thus predict the remaining length of the cycle and
turn off their radios and save more energy. We will analyze
this is in future work.

B. Discussion

In the previous section VI-A we looked at the case of
multiple receivers and argued that fountain codes would be
a good case for multicast and live streams. UDP is often the
protocol of choice in these scenarios because it offers less
latency and in contrast to TCP, supports multicast. Another
important reason is that modern video codecs accept some
packet loss and so the retransmission features of TCP is not
needed. In [14] it is studied how the quality of the video is
impacted by packet loss, and the quality of the video degrades
quickly as the loss ratio increases. By 10% it is so bad the
video is almost unwatchable. One study [2] found that during
conference setting, 28% of all packets were lost. This means
that actual packet losses in WiFi network are much higher
than commonly known, and multicast streams will be very
vulnerable to this. This means that the schemes presented
here, are of critical importance for achieving acceptable video
qualities.

VII. C ONCLUSION

In this paper we have presented a protocol scheme for video
streaming over lossy wireless networks such as in WiFi net-
works. It uses a flexible Reliable UDP (RUDP) based protocol,
and is very robust even over very lossy wireless channels and
allows clients to request retransmission of individual packets,
which may optionally allow a client to prioritize and request

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

270



packets of higher importance such as keyframes. We show
how the energy consumption of the basic version of this
protocol can be improved by using fountain codes to protect
the video chunks. Because of the computational overhead of
these fountain codes, for a single video stream there is no
gain in power consumption except for higher loss rates. For
multiple receivers very significant power savings can be made
because the transmitter needs to independently consider the
state of each receiver, while in a WiFi setting each receiver
also receives the wireless transmission of packets they don’t
need. Using Fountain coding, the power consumption is more
or less independent of both the packet loss rate and the number
of receivers. For 10 users the gain is between 14% and 205%.
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