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Abstract—In order to meet increasing traffic demands, future
generations of cellular networks are characterized by decreasing
cell sizes at full frequency reuse. Due to inevitable inter-cell
interference, load conditions in neighboring cells can no longer
be considered independent. This paper provides a flow level
modeling framework for cellular networks, where the coupling
of flow level dynamics due to intercell interference is specifically
taken into account. Since an adequate queueing model renders
analytically intractable, we review different methods from the
literature to bound and approximate the stationary behavior
of network performance measures. Numerical investigations of
a typical wireless scenario reveal, that in high and low load
regimes first as well as second order bounds may be quite loose,
depending on the type of bound. Especially for design of network
optimization algorithms, bounds do not appear to suitably reflect
network performance, and approximation techniques must be
considered instead. In this regard, a suitable tradeoff between
computational complexity and accuracy over the whole traffic
range is provided by a model based on the notion of average
interference.

I. INTRODUCTION
Flow level models that capture the dynamic nature of

arrivals and service periods of data requests are crucial to
characterize the performance of cellular networks above the
physical layer. In such models, a cell is commonly represented
by a queue and the main object of study is a random process
describing the number of data flows being serviced in a cell
at any point in time.
The ability of these techniques to characterize not just

flow delays and throughputs but also utilization and energy
consumption of wireless base stations (BSs) statistically over
longer periods of time appears particularly useful in the area
of self-organizing networks (SON), where these KPIs are
addressed by different use cases. Several applications of flow
level models to SON-type optimization of cellular systems are
already reported in the literature. Among others, the authors
of [1] use them to maximize the cell capacity via adaptation
of pilot powers. In [2], [3], Kim et al. provide a framework
to selectivly optimize either flow throughput, flow delay, BS
energy consumption, or maximal BS loads via adjustment of
the user association policy. This framework is extended to
address said KPIs via joint optimization of antenna tilts and
the user association rule in [4].
Scenarios with multiple interfering cells are naturally rep-

resented by a network of queues where the number of active
flows is a vector process. Unfortunately, the adequate queueing
model, a so called processor sharing model, renders analyti-

cally intractable. Since analytical or straightforward numerical
computation is not viable, most studies tend to ignore the
coupling effect by assuming that data flows always observe
some given constant interference during their service. Such
an assumption leads to a network model with independent
queues. These assumptions, however, are accurate only in a
fully loaded or a completely empty system. Realistically, each
flow observes only a single interference condition and, as a
consequence, the service rates in each cell depend on the
network state, i.e., the number of active flows in all other
cells.
In the context of wireless networks, these observations

are first made by Bonald et al. in [5], where the authors
provide techniques to bound and approximate average flow
throughputs in individual cells based on minimal and maxi-
mal interference assumptions in all other cells. Additionally,
numerical studies demonstrate that the constant interference
assumption, as mentioned above, provides only very coarse
approximation of the actual flow throughput. A later work
[6], applies the concept of aggregation of variables to the
same multi-cell scenario to obtain very accurate approximation
of the BS utilizations. Since this accuracy comes at the cost
of considerable complexity, the same paper also provides a
second approximation technique based on the idea that flows
observe average interference. The latter model is indepently
proposed in [7], the only difference being that the algorithm
proposed to compute BS utilizations is considerably more
cumbersome compared to the one proposed in [6].
This paper consolidates the work presented in above ref-

erences. The contributions are threefold. First we briefly
overview and discuss a framework to represent radio networks
as multi-cell flow level models in Section III and Section IV.
Based on which in Section IV, we present four approaches to
approximate flow level KPIs in multi-cell scenarios. We then
compare the accuracy of these approximation techniques to
results obtained from simulation of a wireless network and
discuss tradeoffs between different methods in Section V and
Section VI.

II. PRELIMINARIES: TRAFFIC MODELING

Data traffic can be categorized as being either streaming or
elastic traffic. The latter typically originates from transferring
digital documents like web pages or different types of files
being downloaded. In contrast to streaming, the transmission
rate of elastic traffic can be adapted to network conditions.



Here, we assume all traffic to be elastic. This assumption
reflects the traffic situation today, which is dominated by TCP
controlled data transfers. It is anticipated, that streaming video
applications will rapidly develop and have a much larger share
in the future [8]. Extension of the framework presented here
to include streaming-type traffic is left for future work.

Flow Level versus Packet Level
The dynamics of elastic internet traffic at packet level

are notoriously difficult to analyze. Their temporal statistics
exhibit self-similarity and multi-fractal behavior, which are
induced by the heavy tailed distribution of document sizes
as well as the mechanisms of TCP congestion control (see,
e. g. [9], [10] and references therein). As a result, network
performance on packet level is hardly tractable. In particular,
established models from queueing theory, which require (at
least) the assumption of Poisson arrival processes, are not
directly applicable.
In [11], [12], Bonald et al. put forward a traffic modeling

paradigm, that considers data traffic on flow and session rather
than on packet level. In this regard, a flow represents a
continuous stream of packets pertaining to a particular content,
like a web page or any kind of file. A session is a collection
of flows whose statistical properties are independent of flows
of another session. In particular, a session is associated with
an individual user. It is further assumed that users generate
sessions independently and no user accounts for an excessive
amount of sessions.

Performance Evaluation
A key observation is, that users perceive network perfor-

mance on flow and session, rather than on packet level and,
consequently, performance modeling is most naturally done
on flow level.
For a reasonably sized user population, session arrivals

resemble a Poisson process. The session structure in terms
of number, size, and inter-arrival time of flows, however, does
inherit the more complex statistical properties from the packet
level. It is argued in [11], [12] that, despite these intricacies,
the system is well represented by a Markovian model, as long
as session arrivals can be considered Poisson. A prerequisite
is that transmission resources are shared somewhat equally
among contending flows. At least partially, we can observe
the validity of this result in Section VI, where quite a close
approximation of a system with heavy tailed service time
distribution is achieved by Markovian models.

III. RADIO NETWORK MODELING

In the following, we discuss major assumptions regarding
the representation of a wireless network as a flow level model.

A. Network Layout
Throughout the paper, we consider the downlink of a

cellular network consisting of N base stations covering a
compact region L Ď R2. BS locations and types can be
perfectly arbitrary. We assume users to be spatially distributed

according to some distribution δp¨q with
ş
L
δpuqdu “ 1. Users

can in principle be mobile with certain restrictions as explained
subsequently. We denote the serving area or cell of BS i by
Li Ă L.

B. Traffic Model

For the analytical part, we assume that the arrival of flow
requests to the network takes place according to a Poisson
process with intensity λ. The overall intensity is then split
among individual cells according to their associated coverage
area. Flow sizes are assumed to be exponentially distributed
with common mean denoted by Ω. The terms λ, Ω, and δpuq
determine the traffic intensity distribution σpuq :“ λΩδpuq in
Mbps per km2, which we use in the remainder of the paper.

C. Radio Link and Resource Sharing

The radio link quality generally depends on the users’
distance to the serving and the surrounding base stations, on
the number of active BSs generating interference, as well as
their transmit powers.
The data rates, in addition, depend on the amount of

transmission resources allocated to a particular flow. In this
regard, we make the following important assumptions.

Assumption 1 (Resource Sharing). We assume that transmis-
sion resources are shared evenly among all flows in the cell.
Further, if there is at least one active flow within a cell, the
corresponding base station utilizes all available transmission
resources and thus decidedly transmits at full power.

We call a BS active if it serves at least one flow. We denote
by y P Y :“ t0, 1uN a vector with yi “ 1 if BS i is active and
yi “ 0 otherwise. Further, we collect the indices of inactive
and active BS for each y in the sets

N0pyq :“
"
i P NN | yi “ 0

(
, (1)

N1pyq :“
"
i P NN | yi “ 1

(
. (2)

In addition, we define the set Ai, collecting all vectors y for
which BS i is active:

Ai :“ ty P Y | yi “ 1u. (3)

Assuming BS i to be active, i. e., yi “ 1 the signal-to-
interference-and-noise-ratio (SINR) and the data rate achiev-
able at location u P Li are given by

γipu, yq “
pipuqř

jPN1pyq
j‰i

pjpuq ` θ
and (4a)

cipu, yq “ a ¨ w ¨ log2
`
1 ` b ¨ γipu, yq

˘
, (4b)

where θ, pi, and w denote the noise power, the power received
from BS i at location u, and the bandwidth available for
transmission, respectively. The inclusion of all path loss and
fading related effects is discussed subsequently. The purpose
of parameters a and b is explained in Section III-C4 below.



1) Fast and Slow Fading: We presume here, that serving
a data flow takes much longer than the coherence time of a
wireless channel, and thus, data flows observe fast fading by its
average. Similarly, we presume that shadowing effects happen
on a much larger time scale and are constant over the duration
of many flows. Consequently, we assume fast and slow fading
effects to be contained in the location-dependent terms pip¨q.
2) User Mobility and Handovers: While users can be

mobile in principle, here we require that the received powers
pip¨q do not change during a flow duration. Flow durations
are usually rather short periods, e. g., less than a second, and
path gains can be assumed to be constant over radii of few
meters [13]. As a consequence, user mobility, even though not
necessarily zero, is restricted to a few meters per second, i. e.,
typical pedestrian speed. Such “quasi-stationarity” is fairly
realistic because as of today about 80% of all data traffic
originates from indoor locations (e. g., [14]).
Handover events are commonly triggered by user mobility

and the slow fading process. Since both happen on a much
larger time scale than a typical flow duration, we do not
model handover events explicitly here and assume, that a flow
remains connected to a single serving base station during its
entire lifetime.
3) Fast Packet Scheduling: Following the approach in [15],

we incorporate an average packet scheduling gain into the
model via the parameters a and b, i. e., choosing larger parame-
ters for a more spectrally efficient scheduling mechanism. The
main reason for doing so is simplicity. Since fast scheduling
mechanisms explicitly adapt to fast fading conditions, the
approach is justified when flow durations are much longer than
the channel coherence time. In this case, each flow experiences
the effects of fast fading and fast scheduling only by their
averages.
4) Adapting the Link Model with Parameters a and b: The

parameters a and b in Eq. (4b) are used to further tailor the
data rate achievable with a certain SINR γi and bandwidth w
to the system under study. The same model is already proposed
by Mogensen et al. in [15] and used to capture – for instance –
the effects of packet scheduling (as discussed above), MIMO
techniques, or system specific overheads, which individually
increase or decrease the average bitrates. In this regard, we can
think of the products aw and bγi as the effective bandwidth
and effective SINR, respectively.

IV. FLOW LEVEL DYNAMICS

Based on the assumptions regarding the radio network, this
section defines the corresponding flow level models consid-
ered.

A. A Single Base Station

Consider a network of N base stations and let Xiptq P N0

denote the number of flows in some cell i at time t. With the
above definitions, we can understand Xiptq as a continuous
time random process. For a fixed vector y of active BSs and
considering all points in its serving area, we can represent a

single BS by an M/M/1 PS queuing model (e. g., [16]). The
mean serving rate for flows at BS i is given as

µipyq “
Cipyq

Ω
with Cipyq :“

˜ż

Li

δipuq

cipu, yq
du

¸´1

,

(5)
where δipuq :“ δpuqş

Li
δpuq du denotes the distribution of users

conditioned on being in cell i. For each i the utilization of the
queue, for given y ą 0, is defined as

ρipyq :“ min

ˆ
λi

µipyq
, 1

˙
“ min

ˆ
λiΩ

Cipyq
, 1

˙
. (6)

The term y indicates which BSs are transmitting and thus
represents the interference scenario. Focussing on the dynam-
ics of a single BS in this section, we assume y to be fixed,
i. e., other BSs are either always active or always inactive,
depending on the choice of y. Subsequent sections explicitely
address the case when y is not fixed but a random process
itself.

B. Flow Level KPIs Considered
Before proceeding to analyze the dynamics of coupled BSs,

this section introduces flow level performance metrics. Since
subsequent sections introduce different techniques that reduce
the analysis of mulitple interfering BSs to variants of an
M/M/1 PS system described above, we provide concrete KPI
definitions for the M/M/1 PS queueing model. Derivations of
these definitions can be found in standard textbooks such as
[16]. As before, we assume some interference scenario y to
be fixed.
With Assumption 1, the average utilization of time and

frequency resources of BS i is equivalent to the probabilitiy
that there is at least one flow in cell i and is stated in
Eq. (6). The utilization itself may not be of direct interest,
however, a variety of flow level metrics (for instance all
metrics considered here) are strictly monotonic functions of
the utilization. For that reason, the BS load itself is a basic
quantity of this study.
Let Ti denote the random overall time that a flow spends

in the cell i from its arrival until the completion of service.
The average sojourn time of flows in cell i is given as the
expectation of Ti, i. e.,

τipyq :“ EpTiq “
Ω`

1 ´ ρipyq
˘
Cipyq

. (7)

The average flow throughput is defined as the ratio of
average flow size and average sojourn time, i. e.,

ripyq :“
Ω

EpT q
“

`
1 ´ ρipyq

˘
Cipyq. (8)

Note that, strictly speaking, the average flow throughput is the
expectation of the ratio S

T
, i. e., E

`
S
T

˘
, where S denotes the

random flow size. Since this latter expectation is difficult to
obtain, ri is commonly used for performance evaluation (see
[17] for a more detailed discussion).



C. Multiple Interfering Base Stations
In the following, we extend the flow level model of a single

access point as presented in the previous Section IV-A to the
case of several interfering BSs. We make the same assumptions
regarding arrival and service time processes as before.
Let Xptq :“

`
X1ptq, . . . , XN ptq

˘
P S :“ NN

0 for t ě 0
denote the vector process of the number of flows in N cells
with state transition rates

qpx, x1q “

$
’’&

’’%

λi for x1 “ x ` ei,

µipyq for x1 “ x ´ ei,

0 else,
(9)

where the term ei denotes an N -dimensional vector with the
i’th component equal to one and all other components equal
to zero. The vector x P S collects the number of flows in all
cells.
Note that using Assumption 1, we can identify the interfer-

ence scenario y with the sign of the state x, i. e., y “ sgnpxq.
In the following, let σpyq denote the probability of finding the
network in state y. Let further ρi denote the utilization of BS
i with

ρi “
ÿ

yPAi

σpyq. (10)

1) Tractability of the Stationary Behavior: The service
rates in Eq. (9) vary among states, which implies that the
queueing network is not partially reversible. Techniques to
obtain a product form stationary distribution (from which
σpyq, ρi and other performance metrics could be derived)
as proposed, e.g., in [18], are not applicable here. In fact,
in [19], Fayolle et al. observe that, in case of two queues a
product form solution exists if and only if µ1p0, 1q`µ2p1, 0q “
µ1p1, 1q ` µ2p1, 1q. In case of a wireless network, this condi-
tion requires that the service rate provided by one of the BSs
must be larger in case of interference, which is contradictory
to the definition of the SINR and service rate in Eq. (4) and
Eq. (5), respectively.

D. Performance Bounds
Following the framework proposed by Bonald et al. in [5],

this section defines first and second order performance bounds
on the average BS resource utilization. Note that in [5],
the authors focus on the corresponding bounds for the flow
throughput, rather than the resource utilization itself.
In the following, lower bound on performance means an

actual lower bound on the flow throughput, but an upper bound
on the BS utilization and the sojourn time. Similarly, upper
bound on performance means an actual upper bound on the
flow throughput but a lower bound on the BS utilization and
flow sojourn time.
1) First order bounds: First order lower and upper per-

formance bounds on the utilization of BS i are obtained by
assuming that the process Xi of the number of flows in cell
i evolves like in an M/M/1 PS system (i. e., independently of
all processes Xj) under the best case (y “ 0) and worst case
(y “ 1) interference scenarios, respectively. Specifically, first

order upper and lower performance bounds for the utilization
of BS i are given as

ρ̂1
i :“ min

˜
λiΩ

Cip0q
, 1

¸

and ρ̌1
i :“ min

˜
λiΩ

Cip1q
, 1

¸

,

respectively. Above, Cip0q and Cip1q denote the capacity
of cell i from Eq. (5) when all other BSs are always idle
and always active, respectively. The corresponding expressions
for flow sojourn times and flow throughputs are obtained by
inserting ρip0q, Cip0q, ρip1q and Cip1q, into Eqs. (7) and (8),
respectively.
2) Second Order Bounds: Second order performance

bounds on the utilization of BS i are obtained by assuming
that the process Xi depends on the state of all other processes
Xj , with j ‰ i, however, the latter evolve independently
under either best case or worst case interference conditions.
In addition, the processes Xj are assumed to evolve either
much faster or much slower than the process Xi, which, in the
limit, leads to the so-called fluid regime and quasi-stationary
regime for the processes Xj , respectively. It is shown in [20]
that network performance is overestimated by the former and
underestimated by the latter.

a) Second Order Upper Bound: Let σ̂ipyq denote the
probability that BS i sees interference scenario y, assuming
all processes Xj evolve independently and without any inter
cell interference, which is given as

σ̂ipyq :“
ź

jPN0pyq
j‰i

`
1 ´ ρjp0q

˘ ź

jPN1pyq
j‰i

ρjp0q. (11)

In the fluid regime, the data rate achievable at any location
u P Li is given as the average with respect to the random
interference scenario y, which leads to the second order
performance upper bound on the utilization

ρ̂2
i :“ min

˜
λiΩ

pCi

, 1

¸

with (12a)

pCi :“

˜ ż

Li

δipuqř
yPAi

cipu, yq σ̂ipyq
du

¸´1

. (12b)

Second order upper bounds on the sojourn times and flow
throughputs are obtained by inserting both ρ̂2

i and pCi into
Eqs. (7) and (8).

b) Second Order Lower Bound: Replacing ρjp0q with
ρjp1q in Eq. (11) yields the probability that BS i sees the in-
terference scenario y assuming that all other cells permanently
see maximum interference. Let us denote this probability by
σ̌ipyq. As opposed to the fluid regime, in the quasi-stationary
case the interference scenario evolves very slowly such that
the process Xi reaches stationarity before other BSs changes
states. As a result, the utilization of BS i and the sojourn
time are defined as the arithmetic mean with respect to the
distribution σ̌ipyq. Due to its definition, the flow throughput is
obtained as the corresponding harmonic mean. For ρp1q ă 1,



we write utilization, sojourn time and throughput as:

ρ̌2
i :“ min

˜
ÿ

yPAi

ρipyqσ̌ipyq, 1

¸

, (13a)

τ̌2
i :“

ÿ

yPAi

τipyqσ̌ipyq, and (13b)

ř2
i :“

„ ÿ

yPAi

ripyq´1σ̌ipyq

´1

, (13c)

respectively. The set Ai is defined in Eq. (3). For ρip1q “ 1
the KPIs are given by

ρ̌2
i :“ 1, τ̌2

i :“ 8, and ř2
i :“ 0. (13d)

E. Second Order Approximations of Flow Level Performance
As stated before, the fluid and quasi-stationary regimes

are known to respectively overestimate and underestimate the
performance of a queueing system [20]. Thus, pairing the best
and worst case interference assumptions with the fluid and
quasi-stationary regimes, respectively, lead us to upper and
lower bounds on performance as explained above.
In addition to these bounds, approximations of the BS

utilization, flow throughput, and sojourn time are obtained
by cross-pairing the fluid and quasi-stationary regimes with
full and zero interference assumptions, respectively. Based on
the definitions in the previous section, these approximations
are obtained by interchanging the probabilities σ̂ and σ̌ in
Eqs. (13) and (12).

F. Approximating Flow Level Performance via Aggregation
Aggregation of variables is a versatile tool to reduce the

complexity of analyzing systems with a large state space.
While studying complex interactions in economics, Simon and
Ando lay foundations for these principles in [21]. The general
idea behind aggregation is to decompose the overall state space
into groups or aggregates where strong interactions occur, and
then characterize transitions within and amongst aggregates
separately.
1) Partitioning the State Space: With the definition y :“

sgnpxq, the state-dependent transition rates µip¨q are given in
Eq. (5). These rates are state dependent in general, but are
equal in states where the same BSs are active and are strictly
smaller in states where additional BSs are active, i.e.,

sgnpxq “ sgnpx1q ùñ µipxq “ µipx
1q,

sgnpxq ą sgnpx1q ùñ µipxq ă µipx
1q,

(14)

where, the inequality is taken component wise.
We now partition the set of all possible states S into 2N

disjoint subsets by grouping states corresponding to the same
interference scenario, i.e.,

Spyq :“
"
x P N

N
0 | sgnpxq “ y

(
.

Considering the sets Spyq, we can think of y as representing a
collection or an aggregate of states x P Spyq. It follows from
Eqs. (14) that, conditioned on being in one of the states in any
aggregate Spyq, the network essentially behaves as a network

of independent queues. This property of the process X can be
exploited to approximate the stationary behavior of the process
Xptq by considering transitions within and between aggregates
separately.
2) Approximate Aggregate Probabilities: Let the terms

σ̃pyq denote the approximate probabilities of being in an
aggregated state y. Following the derivations in [6], these
probabilities are obtained as solutions to the system

P σ̃ “ 0, (15)

where, for any ordering i ÞÑ ypiq, the elements of the matrix
P “ rpijs are defined as

pij :“

$
’’&

’’%

λn for ypiq “ ypjq ` en,

max
”
µn

`
ypjq

˘
´ λn, 0

ı
for ypiq “ ypjq ´ en,

0 else,

and σ̃ denotes a vector collecting all probabilities σ̃p¨q in
corresponding order.
3) A Fluid Approximation With Aggregate Probabilities:

The partitioning of the state space inherently presumes a quasi-
stationary setup, in which an infinite number of flows pass
through any active BS before the aggregated state y changes
again. Numerical investigations by Fischer et al. in [22] show,
that a finer approximation of flow level KPIs is obtained by
considering the probabilities σ̃ in the fluid regime, where
transitions between aggregates y do not happen infinitively
slowly but arbitrarily fast.
Consequently and analogous to the fluid approximations

befoseen earlier, we define the utilization of any BS i for the
aggregation model as the ratio

ρ̃i “
λiΩ

rCi

with (16)

rCipyq :“

˜ż

Li

δipuqř
yPAi

cipu, yq σ̃pyq
du

¸´1

. (17)

The corresponding expressions for flow sojourn time and
throughput are then obtained from Eqs. (7) and (8).

G. An Approximation Based on Average Interference
The link model in Eqs. (4), (5), and (6) provides different BS

utilizations for each aggregated state y, corresponding to all
possible interference conditions. This section considers a link
model and the respective utilization, which occurs when data
flows experience the average interference over all aggregates
y. Assuming average interference, we write the SINR as

γ̄ipu,σq :“
pipuqř

yPY σpyq
ř

jPN1pyq
j‰i

pjpuq ` θ
,

where σ denotes a vector collecting the σpyq in some or-
der. By re-ordering the terms in the denominator and using
Eq. (10) we can express the mean SINRs as functions of
ρ “ pρ1, . . . , ρN qT in the form

γ̄ipu, ρq :“
pipuqř

j‰i pjpuqρj ` θ
. (18)



Based on mean interference, the SINRs can be expressed as
functions of N BS utilizations ρi instead of 2N aggregate
probabilities σpyq. Moreover, if exposed to average interfer-
ence, BSs behave as a network of independent queues and all
utilizations are given by the expression

fipρq “ min

ˆ
λiΩ
sCipρq

, 1

˙
, with

sCipρq “

˜ż

Li

δipuq

c̄ipu, ρqq
du

¸´1

,

where c̄i is the data rate corresponding to the SINR in Eq. (18).
We note, that under average interference the utilizations are
given only implicitly, since the SINR w.r.t. BS i now depends
on the loads ρj of the interferers. The above formulation
suggests computation of the BS utilization via the fixed point
iteration

ρk`1 :“ f
`
ρk

˘
, (19)

where fp¨q “
`
f1p¨q, . . . , fN p¨q

˘T. In this regard, we state the
following result (refer to [6] for the proof):

Theorem 1. For any initial load vector ρ0 P RN
` , the sequence

ρk`1 :“ f
`
ρk

˘
for k “ 0, 1, 2, . . . converges to a unique fixed

point ρ̄ “ pρ1, . . . , ρN qT.

According to Theorem 1, the BS utilization under average
interference is well defined and given as the fixed point of
Eq. (19), which we denote by ρ̄. The corresponding flow
sojourn times and throughputs are, once again, obtained by
inserting ρ̄ into Eqs. (7) and (8).

V. NUMERICAL STUDIES
The previous section presents two types of bounds as well

as four different techniques to approximate the BS utilizations
in a network of interfering BSs. This section is concerned with
comparing the accuracy of the approximations and tightness
of bounds.

A. Simulation Setup
We study a network of six macro cells, located at four

sites with a common inter-site distance of 500 meters. One
central site features three sectors, the three remaining sites
are positioned around the center and feature one sector each
pointing toward the center. In addition, there is a single micro
cell placed in the central area. For evaluation, we select one
of the three central sectors as depicted in Fig.1.
We consider the downlink of an LTE 10 MHz system, where

all aspects related to the radio environment, transmit powers,
etc. are modeled according to 3GPP recommendations in [23].
The system dynamics are simulated as follows: Flows

arrive at each cell according to Poisson processes with equal
and gradually increasing intensities. The users are uniformly
distributed within each cell. The flow size S follows a
heavy tailed Pareto distribution, i. e., the CDF is given as
Prsize ą xs “

´
θ
x

¯α

with shape parameter α “ 1.5 and
scale parameter θ “ 2.67 Mbit. The resulting average flow
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Fig. 1: Network layout used for numerical studies

size is EpSq “ α θ
α´1

“ 8 Mbit, i. e., 1 Mbyte. The underlying
spatial grid consists of 5000 pixels with side length of about
14 m each. For every simulation run, we observe about 1000
departures from every pixel.

B. Simulation Results
Besides simulating the BS utilization, sojourn time, and

flow throughput, we compute KPI estimates according to the
second order approximations in Section IV-E, the aggregation
model in Section IV-F, and the average interference model
in Section IV-G, respectively. In addition, we show first and
second order bounds defined in Section IV-D.
1) Base Station Utilization: First we observe the BS utiliza-

tion itself, depicted in Fig.2a. The considerable gap between
the first order lower and upper bound indicates a strong
influence of interference for this scenario. We also observe that
both first but also the second order bounds approximate the
actual BS resource utilization quite coarsely, in particular for
low and high load regimes, depending on the type of bound.
A closer approximation over the complete range is obtained

by the approximation techniques. The quasi-stationary regime
of the zero interference case (“QS no interf.”) provides a very
close approximation for low to medium loads, which is also
observed for the flow throughput in [5]. However, for high
loads the quasi-stationary regime is goverend by the behavior
of ρip1q (compare the subequations in Eq. (13)), which leads
to a very coarse approximation in high load conditions.
The closest approximation is provided by the aggregation

technique. Fig.2b displays the relative error of the load esti-
mate compared to the simulated load for all techniques. The
relative error appears to be largest for medium loads, which,
unfortunately, are of most practical interest. The average
interference model appears to be slightly more accurate than
the one combining the fluid regime with full interference
(“Fluid full interf.”). The maximum deviations observed for
this setup are about 8 % and 30 % for the aggregation and
mean interference model, and about 45 % for both second
order approximations, respectively.
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Fig. 2: BS utilization: Simulation, estimation techniques, and
bounds.

2) Flow Sojourn Time and Flow Throughput: Simulated
and estimated flow sojourn times and throughputs as well as
bounds are displayed in Fig.3a and Fig.3b. Since both KPIs
are strictly monotonic functions of the utilization, we observe
similar behavior as for the load itself. In particular, we observe
a stark over- and under-estimation of both KPIs by the upper
bounds in the low load regime and by the lower bounds in the
high load regime, respectively. The need for approximation
techniques is clearly illustrated. We observe in Fig.3a, that
the quasi-stationary approximation of the sojourn time (“QS
no interf.”) is well defined only for a limited range of the traffic
intensity until the utilization under full interference becomes
equal to one.

VI. SUMMARY AND DISCUSSION
We provide a flow level modeling framework for cellular

networks, where the coupling of flow level dynamics due to
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Fig. 3: Flow sojourn time and flow throughput: Simulation,
estimation techniques, and bounds.

intercell interference is specifically taken into account. Since
the adequate queueing model renders analytically intractable,
we state different methods from the literature to approximate
the stationary behavior of the system. In particular, we con-
sider the BS utilization, flow sojourn time, and flow throughput
as measure of network performance.

A. Performance Bounds
Numerical investigations of a typical wireless scenario con-

sisting of six macro and one micro cell reveal that in high and
low load regimes first as well as second order bounds may be
quite loose, depending on the type of bound (i. e., upper or
lower).
Especially for design of network optimization algorithms,

first order bounds (as used, e. g., in [2], [3]) do not appear
suitable to represent any KPI considered here and approxima-
tion techniques must be considered instead.



B. Performance Approximation Techniques
A method based on aggregation of variables showed the

closest approximation of all KPIs over the complete range
of traffic. Unfortunately, this method also requires the highest
computational effort: Calcualtion of aggregate probabilities for
a network of N BSs requires solving the System (15) of size
2N , which becomes infeasible for larger N
Close approximation of all KPIs for low to medium loads

is provided by the quasi-stationary approximation with a zero
interference assumption. The accuracy, however, decreases if
the utilization under full interference approaches one, i. e., for
ρip1q “ 1.
A suitable tradeoff between complexity and accuracy over

the whole traffic range is, however, provided by the average
interference model outlined in Section IV-G. Computation of
the BS utilization requires computation of a fixed point, which
grows like N in complexity. Moreover, it showes a closer ap-
proximation of all KPIs than both second order approximation
methods. This model is already used for network optimization
in a few publications such as [24], [4].
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