Detailed Analysis for IEEE 802.11e EDCA 1n
Non-saturated Conditions
— Frame-Transmission-Cycle Approach —

Chongyang Huang and Shigeo Shioda
Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
Email:huang @ graduate.chiba-u.jp, shioda@faculty.chiba-u.jp

Abstract—Theoretical analysis of the IEEE802.11e enhanced
distributed channel access (EDCA) mechanism is now a mature
research theme and is receiving considerable attention. Most
previous studies have focused on the saturation throughput,
but typical networks are non-saturated in practice. We herein
propose an analytical model for IEEE 802.11e EDCA under
non-saturated conditions based on the frame-transmission-cycle
approach. The approach considered herein focuses on the status
of each station at the start of the frame-transmission cycle,
and describes the state transition by a Markov chain. Through
comparison with simulation results obtained by ns2, we confirm
that the proposed model accurately estimates the throughput
performance of EDCA-based WLANSs in which voice and best
effort traffic are multiplexed.

Index Terms—wireless LAN, IEEE802.11e, EDCA, perfor-
mance analysis, non-saturated

1. INTRODUCTION

The IEEE 802.11 has gained widespread popularity as a
standard physical/MAC-layer protocol for wireless local area
networks (WLANSs). The IEEE 802.11 standard defines the
Distributed Coordination Function (DCF) as a contention-
based MAC mechanism, but the DCF does not have Quality-
of-Service (QoS) functionality. The IEEE 802.11 standard
group has specified the 802.11e standard to add a set of QoS
enhancements to the original 802.11 protocol. In the IEEE
802.11e, the enhanced distributed channel access (EDCA)
corresponds to a QoS enhancement of the DCF of IEEE
802.11.

The IEEE 802.11e classifies traffic into four access cat-
egories (ACs): voice, video, best effort, and background.
ACs with higher priorities wait for shorter periods of time
on average before frame transmission. This prioritization is
achieved using a combination of the following parameters of
the EDCA:

— arbitration inter-frame space (AIFS),

— minimum contention window size (CW,,;,) and maximum
contention window size (CW,,,),

— transmission opportunity (TXOP) limit.

If the above-mentioned parameters are ideally configured,
the EDCA should provide better QoS than the DCF. In order
to determine a better configuration of the parameters of the
EDCA, an analytical model, which allows us to evaluate
the performance under a given configuration of the EDCA
parameters, is highly desired. Several analytical models have

been proposed to evaluate the saturation throughput of the
EDCA, but there is no decisive analytical model for EDCA-
based WLANs with stations under non-saturated conditions,
in which stations have no data ready to send. The purpose of
the present study is to propose an analytical model for the
EDCA with non-saturated stations. We also focus on wireless
LANSs, in which Voice over IP (VoIP) and best-effort traffic
are multiplexed, and we apply the proposed analytical model
to determine how the EDCA provides different levels of QoSs
to VoIP and best-effort traffic.

The remainder of the present paper is organized as follows.
In Section II, we present related research. In Section III, we
explain the proposed analytical model, which is validated by
comparison with simulation results in Section IV. In Section
V, we present concluding remarks.

II. RELATED RESEARCH

The performance of the IEEE802.11 and IEEE802.11e
EDCA has been widely studied. Bianchi [1] first proposed
a two-dimensional Markov chain model by which to analyze
the performance of the IEEE 802.11 DCF under saturation
conditions. Bianchi’s approach focuses on the per-slot status
of stations, especially the probability with which the station
will start to send a frame. Most models for EDCA performance
analysis originated from this approach.

Robinson er al. [2] proposed an extension of the slot-
based model of Bianchi for the analysis of IEEE 802.11e
EDCA under saturated conditions. They introduced the con-
cept of contention zones to the model in order to take into
consideration the fact that different ACs experience different
collision probabilities. Kong er al. [3] and Inan er al. [4]
took a different approach to evaluate the performance of IEEE
802.11e EDCA. They used a three-dimensional Markov chain,
in which the status of a station was described in terms of three
parameters: backoff stage, backoff counter, and the remaining
AIFS time. Hui et al. [5] proposed an analytical model for the
EDCA, called the generalized P-persistent CSMA/CA model,
which approximately describes the behavior of stations in
the EDCA by a classical p-persistent-like CSMA/CA model.
These models make a common assumption that stations are
saturated, which is not always the case in practice. Chen
et al. [6] proposed an analytical model for the EDCA with
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Fig. 1. Frame Transmission Cycle

non-saturated stations, but their model does not take into
consideration the difference of AIFS.

Tinnirello et al. [7] developed a new model using an
approach different from that of traditional per-slot modeling.
They introduced the concept of the frame-transmission cycle
and computed the stationary distribution of the status of each
individual station at the beginning of the frame-transmission
cycle. Although their model can easily take into account the
difference of AIFS values of stations, their model only works
under saturated conditions.

Ergen et al. [8] proposed a mathematical model for the
EDCA by extending Bianchi’s DCF model. They introduced
additional states to Bianchi’s Markov chain to represent idle
states of a station. Malone er al. [9] developed a different
extension of Bianchi’s DCF model that allows stations to have
different packet-arrival rates. However, these models are not
applicable to the EDCA.

III. ANALyTICAL MODEL

A. Frame Transmission Cycle

Consider the case in which N stations, including the access
point, contend for a wireless channel. In such a case, the
time axis consists of two periods: one is the idle period,
in which stations pause or decrease their backoff counters,
and the other is the transmission period, in which a station
successfully sends a frame or more than one station sends
frames, resulting in a collision. An idle period and the follow-
ing transmission period compose a frame transmission cycle
[5], [7]. For example, in Fig. 1, the ith cycle starts just after
station C successfully transmits a frame. When station A has
successfully transmitted a frame, the ith cycle ends, and, at
the same time, the (i + 1)th cycle starts. More precisely, the
frame transmission cycle is defined as a period that starts (and
ends) when two slots have passed after the transmission of an
ACK frame (Fig. 1). According to this definition, station k, the
AIFS of which is larger than two, must wait for ¢; (defined
below) slots before resuming its backoft counter.
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where AIFS is the AIFS of station k.

B. Basic Assumptions

In [7], Tinnirello et al. presented an analytical model for the
EDCA, using the concept of the frame transmission cycle. In
the model, the state of station k at the start of the ¢th transmis-
sion cycle was expressed in terms of two parameters: backoff
stage sx(#) and backoff counter by(f). They described the
transition from {sy(¢), bp(¢)} to {sx(t+ 1), bp(t+ 1)} by a Markov
chain and numerically obtained its stationary distribution,
which in turn was used to obtain the saturation throughput.
Their model uses a key assumption that the behavior of a
station is statistically independent of other stations contending
for access to the channel. The time evolution of a target station
is governed by the Markov chain dedicated to the target station,
which is independent of the time evolution of other stations.
This assumption is known as decoupling approximation [1] or
fixed point analysis [10]. Note that the transition probability
of the Markov chain of station k depends on the stationary
distributions of the Markov chains of other stations. In this
sense, stations contending for the common wireless channel
are mutually dependent through the transition probabilities of
their Markov chains.

In contrast to Tinnirello’s model, in which all stations
are saturated, the model proposed herein needs to explicitly
consider the arrival process of frames. In order to describe
the transition from {s;(¢), br(t)} to {sp(t + 1),b(t + 1)} by a
Markov chain, the frame arrival process to station k should be
memoryless. Therefore, in the present study we assume that
frames arrive according to a Poisson process. In the proposed
model, each station could be in a post backoff state, in which
the station has no data to send. We use the backoff-stage
value to indicate whether station & is in a post-backoff state.
If s¢(f) = —1, station k is in a post-backoff state at the start of
the rth cycle; otherwise, station k is in a backoff state.

We conventionally assume that the time axis is divided into
slots, which are numbered sequentially, 0,1,2,..., in each
frame-transmission cycle. Even if a station is in a post-backoff
state at the start of the frame-transmission cycle, the station
transits to a backoff state during the current cycle when a
new frame is received. Since frames are assumed to arrive
according to a Poisson process, the probability that station k
receives the first frame at slot i in a frame-transmission cycle
is equal to f,(i) defined below:
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where o is the slot-time (20 us) and A; is the frame arrival
rate at station k. For convenience in the numerical analysis, we
further assume that the inter-arrival time of frames is bounded
by L, i.e.,

e Wo(l —e %) for0<i<lL,

e~ Ulo fori=1L,

0 otherwise.

fe(i) =



The cutoff time L was set to 5,000 when we conducted
the numerical analysis described in Section IV. We assume
an ideal channel condition under which transmission failure
occurs only due to collision, but the extension to cases in
which transmission failure also occurs due to channel error is
straightforward.

C. Transition Probabilities of Markov Chain

In this subsection, we derive the state transition probabilities
of the Markov chain of a target station (station k). In order
to derive the expression of the transition probabilities, we
introduce the following variables:

—Qx(i): probability that no station other than station k starts
a frame transmission prior to slot i.

—T(i): probability that (at least) one station other than station
k transmits a frame at slot i; Ty (7) is related to Q (i) through
the following equation:

Ty() = Ok(i) — O + 1). (D

—Ry: retry limit. If the frame transmission of a station fails
R times, the frame is discarded.

—W; s: contention window size of station k when its backoff
stage is s.

—ry: probability that station k keeps the next frame to send
after a successful frame transmission or a frame discard
because the retry limit has been exceeded.

=D (Di””): duration of a successful frame transmission
(frame collision). We assume that D" = Dzo” .

Moreover, we use the following notation:

i-1
Fo) € Y f(j), Fol) S 1=F(i), Dy =E[D)fo,
=0

where E[D] denotes the expectation of the duration of a
successful transmission or collision. The calculation for E[D]
will be discussed in Section III-F. If all frames are of the same
size, E[D] = D = D;"” .

Let P(s, i; u, j) denote the transition probability from {s;(¢) =
s, bi(t) = i} to {sx(t+1) = u, br(t+1) = j}. The derivation of the
state transition probabilities {P(s, i; u, j)} is rather complicated
and is summarized in the Appendix. Here, as an example,
we present the expression of P(s,i;s,j) for s > 0, i.e., the
probability of transition from a backoff state to another backoff
state with the same backoff stage.

First, we consider the case of s > 0. If i > j, such a transition
event occurs only when (at least) one station other than station
k transmits a frame at slot i—j—1+0d; and thus the 7th cycle ends
just after the backoff counter of station k reaches j (Fig. 2).
Since one station other than station k transmits a frame at slot
Jj—1i—1+6; with probability Ti(j — i — 1 + d;), we have

P(s,i;s, ) =Ti(j—i—1+6), fori>j.

If i = j, the transition is allowed only when one of other
stations sends a frame prior to slot §; and then station k does
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not resume its backoff counter (Fig. 3). Thus, we have

6k—1

P(s,is5,i) = ) Tun) = 1= Q(0).
n=0

For the case of s = 0, we need to consider the following
additional transition event, in which station k successfully
transmits a frame at the end of the rth cycle, and a new
backoff counter value is set to j. This transition event occurs
when the following three conditions are jointly satisfied. (1)
No other station sends frames prior to slot i + 6; + 1, the
probability of which is Q(i+1+6y). (2) Station k has the next
frame to send just after the successful frame transmission, the
probability of which is 7. (3) The new backoff-counter value
after the frame transmission is j, the probability of which is
1/(1+Wy). Since this additional event occurs with probability
reQr(@ + 1+ 6)/(1 + Wyp), for i > j, we finally obtain

P(0,5;0, ) = Tp(j—i— 1+ 6) + re Qi@+ 1+ 6) /(1 + Wyp),
and
P0,i;0,1) =1 — Qk(6p) + e Qu(@ + 1+ 6) /(1 + Wyp).

In summary,

P(s,i; s, j)
Th(j—i—1+6p) fori> j, s #0,
1 = Ok(6r) fori=j, s#0,
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fori>j, s=0,

1 = Ok(6e) + fori=j, s=0.

D. Balance Equations

Let (s, j) denote the stationary distribution of the Markov
chain, i.e.,

n(s, j) = lim Pls(t) = s, (1) = i].



The stationary distribution can be computed by solving the

following balance equations:
[Transition to a post backoff state]

(=1, j) = m(=1, )F (0 + D1 — Ox(5p)]
Wio—Jj
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where 1(A) is the indicator function that is equal to 1 (0) when
A is true (false).

[Transition to a backoff state (backoff stage = 0)]

(0, ) = (@ (0, j) + (=1, NFe(6k + D)1 — Oi(61)]
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where x V y = max{x, y}.

[Transition to a backoff state (backoff stage = 1)]

(1, ) = m(1, DI = Ow(61)]
Wii—j
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[Transition to a backoff state (backoff stage s = 2)]

mx(s, j) = me(s, P = Or(60)]
Wis—J
+ D s, j+ DTeli— 1+ 6y)
i1
Wi s-1

1
- 1,DT(i .
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In these equations, QO (i) and T (i) depend on the stationary
distributions of other stations. In order to obtain expressions
for Qk(i) and T(i), we define the following variable:

R, Sutj—1
. def . .
Bu()E Y mals, )+ D ma(=1LDf(j+ 6, = 1)
s=0 =0

+ (=1, NF(j+ Sp).

Note that B,(j) is the probability that station n attempts frame
transmission at slot j + J,. The probability that station n
attempts frame transmission prior to slot i, denoted by S,(i),
is given by.

0 i £ 6y,
def | i—0n—1

PO=N N B i
7=0

Using B,(i), Ok(?) is expressed as

I 1 =)
0uli) = =, (©)
from which we obtain T (i) using (1).

Remark 1: If we apply an approximation whereby each
station in a post-backoff state sends a frame just after its
backoft counter expires, we can obtain a much simpler balance
equation [11]. Applying the approximation is equivalent to
discarding the uniform backoff-counter-value selection for
post-backoft stations. Instead, new backoff counter values of
post-backoff stations are probabilistically selected so as to
follow an exponential distribution. This approximation yields
only a very small difference in the numerical results.



E. Calculation of Stationary Distribution

The stationary distribution can be numerically obtained in
the manner described in [7]. Starting from an initial assump-
tion on {m(s, )}, we compute Q(i) and T(i) from (1) and
(6). These parameters are used to compute the stationary
distribution {m(s, j)} through the set of linear equations (2),
(3), (4), and (5) with the normalization condition:

Rk Wk.&

an( L+ Y Y mds,j)=1.

s=0 j=0

The obtained stationary distribution is in turn used to compute
Oi(i) and Ti(i). This cycle is repeated until a convergence
criterion is met.
F. Throughput Evaluation
The throughput of station & is given as
™" N Pec- DATA ;
= ——
roughput E[CL] (7

where

L
Py = ) BudQ(i + 1 +60)
i=0

is the probability that station k successfully transmits a frame
in a cycle. DATA is the mean payload length of data frames,

and E[CL] denotes the mean duration of a cycle given by
E[CL] = E[IL]o + E[D],

where /L is the length (in slots) of the idle period in a cycle.
Note that E[IL] is obtained by the following calculation:

M=

E[IL] PIIL > j]

~.
Il
—

N
>, | [ -pin.

k=1

M=

~.
Il
—

If all frames transmitted in the WLAN are of the same size,
E[D] = Dj**“; otherwise

N
E[D] — Z P}:MECD;;MCC
k=1
N
£ Y maope
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succ coll
Dkr } : Pkl...k,.’
where

r L
Pt =T e T PP = > BTl + 60).

i=1 kL e i=0

Note that the mean inter-frame-transmission time of station
k should be equal to the mean inter-arrival time of frames
at station k if the transmission buffer of station k is not
overloaded (i.e., the queue in the transmission buffer is stable),
and thus

ADATA = Throughputy,
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Fig. 4. Average throughput of a voice flow versus the number of voice flows
when the DCF is applied

or
A = P /E[CLY. ®)

The right-hand side of (8) is an increasing function of ry, and
we can numerically determine the value of r; such that (8)
holds. If the right-hand side of (8) is lower than 4; when
rr = 1, then station k is overloaded (saturated) and frames are
lost due to the overflow of the transmission buffer of station
k [12].

IV. SmmuLATION EXPERIMENTS

In this section, we validate the accuracy of the proposed
analytical model through simulation experiments using the ns2
network simulation tool under two different scenarios.

A. VoIP Only

In the first simulation, a wireless station conducted a bidi-
rectional voice conversation through the AP with a node out-
side the WLAN. If there were n wireless stations conducting
the communication, there should be n uplink and n» downlink
voice flows. Each voice flow generated G.711-codec traffic,
and a 200-byte packet (160-byte data and 40-byte RTP/UDP/IP
header) was generated every 20 ms, meaning that the data rate
of each voice flow was 64 kbps.

We first conducted the simulation using IEEE 802.11 DCF
as a MAC layer protocol. Figure 4 shows the application-level
throughputs defined by (7), where we exclude the lengths of
PHY, MAC, IP, UDP, and RTP headers from the length of the
data frame. The throughput obtained by our analytical model
was almost identical to the results obtained by simulation.
Figure 4 also shows that uplink flows obtained lager through-
put than downlink flows, which is typical of the unfairness
between uplink and downlink flows caused by the congestion
of the AP.

Figure 5 shows the throughput performance when VoIP
traffic was transmitted in the voice category of the EDCA
(CWyin=T, CW,4x=15; AIFS=2). The throughput performance
was found to be worse than in the DCF case (Fig. 4). In
particular, the performance deteriorated significantly when the
number of stations was larger than fifteen. This result indicates
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that the voice category of the EDCA is not a good choice when
only voice traffic is multiplexed in the WLANS.

Figure 6 shows the results when the AP transmitted traffic
in the voice category, while wireless stations transmitted
traffic in the best effort category of the EDCA (CW,,;,=31,
CW,,4x=1023; AIFS=3). Under this configuration, the uplink
and downlink voice flows achieved almost the same level of
throughput performance, significantly mitigating the unfair-
ness between uplink and downlink flows.

B. VoIP with UDP flows

Next, we conducted another simulation experiment in more
practical environments, in which wireless stations sending
UDP traffic used WLANSs together with stations sending VoIP
traffic. Bidirectional voice traffic was transmitted between the
AP and wireless stations as in the first simulation, whereas the
WLAN also transmitted uplink saturated UDP flows (frame
size: 1,500 bytes).

Figure 7 compares the sum of throughputs of uplink voice
flows, the sum of throughputs of downlink voice flows, and the
sum of throughputs of saturated UDP flows when IEEE 802.11
DCF was used as the MAC-layer protocol. As shown in the
figure, the throughput computed by our model agrees well with
the simulation results. Since no prioritization was applied, the

6 T T T
Simulation Analysis
5 A @ Voice —— Voice -
N A A Best effort - Besteffort
z R
a4tr ‘A T
= .
— A
N
a3+ R _
< ‘A
=] N
8 N
N
E 2 - \f —
= . A .
N A uplink
1 aownink Tal_ A N
S a
0 1 L -4

5 10 15 20
Number of voice conversations

Fig. 8. Throughput performance when VoIP and saturated UDP flows use
the WLAN together in the EDCA (VoIP; voice category, saturated UDP; best
effort category)

saturated UDP flows occupied most of the wireless bandwidth.

Figure 8 shows the results when voice flows were trans-
mitted in the voice category while saturated three UDP flows
were transmitted in the best-effort category of the EDCA. The
total throughput of saturated UDP flows was lower than in the
DCF case because the bandwidth occupied by the saturated
UDP flows was restricted by lower priority parameters. The
figure shows that as the number of voice flows increased,
opportunities for the UDP flows to send their frames became
sparse.

Figure 9(a) shows the average throughput of a voice flow
for the DCF condition. The figure shows that a downlink voice
flow did not achieve 64-kbps throughput on average when
more than two voice flows were multiplexed, meaning that
the QoS of voice conversation was not guaranteed. Figure
9(b) shows the results obtained for the EDCA case, where
a downlink voice flow achieved 64-kbps throughput if the
number of voice flows was less than eight. This result verifies
EDCA as effective in suppressing saturated background UDP
traffic to provide better QoS for voice traffic.

V. CONCLUSION

In the present paper, we proposed an analytical model based
on a frame-transmission-cycle approach, which allows us to
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evaluate the performance of each flow under the IEEE 802.11e
EDCA with non-saturated stations, and we compared the
throughput performance achieved by the proposed model with
the simulation results in order to verify the accuracy of the
proposed model. Using the proposed model, it is can easy to
see how the EDCA parameters affect the network performance
under a relatively practical condition (in which voice and
UDP flows exist simultaneously). The proposed model is also
expected to be useful in the evaluation of the performance
of TCP flows, which are multiplexed over a WLAN with
streaming applications. Analysis of the TCP throughput over
a WLAN remains an important task.
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APPENDIX
A. Transition probabilities P(s,i;s+1,j) (0 < s < Ry)

The transition from {sy(t) = s,bi(t) = i} to {sx(t) = s +
1, by(t) = j} occurs if the following two conditions hold jointly:
1) the transmission of station k fails due to a collision, and 2)
the new backoff-counter value after the collision of station k is
Jj. The first condition holds when at least one station other than
k sends a frame at slot j + 0k, and its probability is equal to
T(j+ 6x). The second condition holds with probability 1/(1 +
Wi.s+1). Thus, we obtain

P(s,i;s+1,)) = Tw(i + Op).

1
1+ Wk,s+1
B. Transition probabilities P(s,i;—1, j) and P(s,1;0, j)

We first consider the case in which 0 < s < Ry. The
transition from {s;(¢) = s,bi(t) = i} to {sx(¥) = —1,br(t) = j}
or {s;(t) = 0, bi(t) = j} is allowed when station k successfully
transmits a frame. The probability that station k successfully
transmits a frame is equal to Qy(i+1+3J;), as shown in Section
III-C. After the frame transmission, station k enters a backoff
state with probability r; or enters a post-backoff state with
probability 1 — r¢, depending on whether station k keeps the
next frame to be sent. A new backoff-counter value is set at j
with probability 1/(1 + Wy ). Thus, we have

1
P(s,i;-1,)) = Towe

1- [+ 1+ 6p),
n Wk,O( i) Ok )

1
P(s,i;0,)) = l—erk(i+ 1+ 6;).

+ Wio

The transition from {si(t) = Ry, bi(t) = i} to {sx(t) =
—1,bi(t) = j} or {sx(¢) = 0, br(f) = j} occurs when the backoff
counter of station k expires and then station k tries to transmit
a frame, independent of whether the transmission is successful.
The probability that the backoff counter of station k expires
prior to the frame transmission of other stations is Qx(i + ).
Thus, we have

PRy, i;-1, j) = (1 = 1) Ok(@ + ),

1+ W

5

A 1 )
P(Ry, 150, ]) = kaoerk(l + ).

C. Transition probability P(—1,i; -1, j)

We first consider the case in which j # 0. There are
three possible events that trigger the transition from {si(¢) =
—1,bi(t) = i} to {sx(t) = —=1,bi(¢¥) = j} when j # 0. The first
event, in which the backoff counter of station k is not expired,
consists of the following two sub-events: (1) one of stations
other than station k sends a frame at slot i — j — 1 + O, the
probability of which is T(i — j — 1 + 6;); (2) no frame arrives
at station k during the current frame-transmission cycle, the
probability of which is F,(i- j— 1+ 6r + Dy). Hence, the
probability of the first event is F,(i—j—1+6;+D)T (i—j—1+6y).

The second event, in which station k successfully sends
a frame and begins the stage-0 backoff with a new backoff
counter, consists of the following four sub-events: (1) a frame



arrives at station k at slot /, where 0 < < i+6;—1; (2) station
k successfully sends the frame at slot i + d, the probability of
which is Q(i + 6; + 1); (3) no new frame arrives at station k
from slot [+ 1 to slot i + 6 + Dy — 1, the probability of which
is Fo(i+6;+Ds—1-1); and (4) the new backoff counter value
of station k is set to j, the probability of which is 1/(1+ W;).
Hence, the probability of the second event is

1 +0,—1 _
DO+ 6+ DF(i+6,+Ds—1-1
T+ Weo go Je(DOG + 6 + DF,(i + 6k )
1
= [ + 0, [+ 0 + D) fo(i+ 0 + Dsg — 1).
Tl 000U+ 8+ Dfeli + 6y )

The third event is similar to the second event, but a frame
arrives at station k after its backoff counter is expired. The third
event consists of four sub-events: (1) a frame arrives at station
k at slot [, where i+, < [; (2) station k successfully sends the
frame at slot / + 1, the probability of which is Q(/ + 2); (3) no
new frame arrives at station k during its frame transmission,
the probability of which is F,(Dy); and (4) the new backoff
counter value of station k is set to j, the probability of which
is 1/(1 + Wip). Hence, the probability of the third event is

L
FuDg) " fehOI +2)

l=5k+i

1+ Wk,()

When j = 0, in addition to the three events described above,
we need to consider an additional event, in which no frame
arrives at station k during the current cycle and the backoff
counter is expired. This event occurs when the following sub-
events jointly occur: (1) a station other than station k sends a
frame at slot /, where i+ 6, <[ < L; (2) no new frame arrives
at station k during the current frame-transmission cycle. The
probability that this event occurs is

L
> Foll+ DITH().

[=i+0y

When i = j, we need to consider one more event, in which
station k does not resume its backoff counter within the current
cycle and no frame arrives at station k. The probability that
this event occurs is F,(6; + D,)[1 — Qi (61)]. Thus, we finally
have

P(=1,i5=1,j) = Fo(i = j = 146 + T)Ti(i = j = 1 + )

+

T+ Wio Or +DfeOox +i—=1+T)O(i+ 1+ )

L
FuT) ) fDOI +2)

[=6k+i

+

1+ Wk,()

L
+1(j=0) Y. Fol+ DT

l=i+6k

+1( = PFe(Si + DI~ O(60)]-

D. Transition probability P(—1,i;0, j)

There are basically three possible events that trigger the
transition from {s;(t) = —1,b(¢) = i} to {sx(¢) = 0,br(¥) = j}.
The occurrence probability of the first event, in which the
backoff counter of station k is not expired, is

Fo(i—j+ 146+ D)Ti(i—j+ 14 06).

The occurrence probability of the second event, in which
station k successfully sends a frame and begins the stage-0
backoff with a new backoff counter, is

1 Sp+i—1

D SDFG+i=1-1+D)Quli+1+6)
=0

1+ Wk,()

+

L
FuDy) ) foDQ+2),

[=6k+i

1+ Wk,()

The third event triggering the transition is the event in which
station k receives a frame after its backoff timer has expired,
but the wireless medium is busy. In such a case, station k
begins the stage-0 backoff with new backoff counter. The
probability of the third event is

Wio L l

1
1+ Wk,O Z Z fE(l)

=0 I=0+i

Ty (m).
m=((i-1)V0)+6)V(I-Dy+1)
When i = j, we need to consider an additional event, in which
station k does not resume its backoff counter within the current

cycle, and its probability of occurrence is F.(d; + D)[1 —
Qi (6x)]. Thus, we finally obtain

P-1,5;0,))=F.(i—j+ 1+ 0 +D)T1(i — j+ 1+ )
1 Op+i—1

“(DF (0 +i—1-1+ D; [ +1+6
TV ;f() O +i=1=1+DIQui+1+6,)

+

L
FuDg) . fDOI +2)
1=6k+i
Wio L !

v O IPINIY Tym)

i=0 I=5y+i m=((i—1)V0)+6)V(I-Dy+1)
+ 10 = ))Fe(6k + Ds)[1 — OS]
E. Transition probability P(-1,i;1, j)

The transition from {si(t) = —1,b(t) = i} to {s () =
—1, bi(t) = j} occurs when station k receives a new frame but
the transmission fails due to a collision. When a frame arrives
before the expiration of the backoff counter, the collision
occurs if a station other than k transmits a frame at slot i + oy,
when a frame arrives at slot [, where [ > i + §;, the collision
occurs if a station other than k transmits a frame at slot [+ 1.
Thus, we obtain

P(-1,i;1, ))

1+ Wk,()

L
1
= Fo(i + 6)Ti(i + 6 (DT(I+1)].
T | P+ T + k)+Z:iZ+6kf<> Wi+ 1)



