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Abstract—Wi-Fi offloading can help the mobile operator to
obtain immediate capacity relief when facing the explosive growth
of mobile data traffic. In this paper, we study the Wi-Fi offloading
problem with delay tolerant applications. We formulate it as a
finite-horizon sequential decision problem, where the objective is
to minimize the total cellular usage plus the potential penalty for
deadline violation. We solve the problem optimally using dynamic
programming, and propose a general optimal delayed Wi-Fi
offloading (ODWO) algorithm. For the special case with a convex
penalty function and fixed location-independent data rates, we
show that the optimal policy exhibits a threshold structure. A
monotone ODWO algorithm with a lower complexity can be used
in this case. Simulation results show that the ODWO scheme
achieves both the minimal total cost and the highest file transfer
efficiency as compared with two heuristic schemes.

I. INTRODUCTION

With the proliferation of smartphones and mobile social

networking, consumer demands for wireless data services are

growing very rapidly, such that the capacity of the cellular

network is pushed to its limit. According to Cisco’s forecast,

mobile data traffic will increase by 18-fold between 2011 and

2016 globally [1]. However, since the amount of wireless

spectrum is limited, the mobile operators (MOs) worldwide

are seeking ways to increase the network capacity in a cost-

effective and timely manner. An efficient way to achieve

this purpose is to use complementary technologies, such as

Wi-Fi [2] or femtocells [3], to offload the traffic originally

targeted towards the cellular network. There are two main

approaches for the initiation of data offloading, namely mobile

user (MU)-initiated and MO-initiated offloading. In the MU-

initiated offloading, the MU is given the option to select

the network technologies that it intends to use. In the MO-

initiated offloading, however, the operator profile stored in

the mobile device prompts the connection manager to initiate

the offloading procedure. In this paper, we focus on the MO-

initiated Wi-Fi offloading.

Traditionally, Wi-Fi is used for sharing broadband Inter-

net connections at home or public hotspots. Recently, new

Wi-Fi standards have been proposed to enable the use of

carrier-based Wi-Fi, which promises the MUs a cellular-like

experience [2]. For example, the IEEE 802.11u standard [4]

automates the network discovery, selection, and authentication

of Wi-Fi devices. Hotspot 2.0, which is built on the IEEE

802.11u standard, is a Wi-Fi Alliance (WFA) initiative that

aims to provide seamless and secure Wi-Fi authentication at
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the hotspots [2]. Together with the increasing number of Wi-

Fi access points (APs) that are deployed worldwide, these

standardization efforts allow the huge amount of data traffic

to be offloaded to the Wi-Fi networks efficiently.

Besides the effort from the industry, the academia is paying

more attention to the theoretical study of Wi-Fi offloading.

Recently, it was demonstrated in the measurement studies [5],

[6] that the cellular network traffic can be reduced significantly

by using Wi-Fi offloading. Dimatteo et al. in [7] evaluated

the costs and benefits of Wi-Fi offloading in metropolitan

area with real mobility traces. The number of Wi-Fi APs

required for the support of a given quality of service (QoS)

requirement was characterized. Joe-Wong et al. in [8] studied

the user adoption of supplementary technology (e.g., Wi-Fi or

femtocell) for cellular traffic offloading. The utility function

of each user is related to its valuation of the technology, the

congestion level, and the flat pricing of the service provider.

The works in [9], [10] considered an offloading market, where

the MOs pay the third-party deployed APs for data offloading.

Gao et al. in [9] characterized the subgame perfect equilibrium

in a data offloading game, where the base stations (BSs)

propose the market prices, and the APs determine the volume

of data traffic that they are willing to offload. Iosifidis et al.

in [10] proposed an iterative and incentive compatible double

auction that maximizes the social welfare.

For delay-tolerant applications, such as movie download,

software update, and e-mail, which can tolerate some delays

without sacrificing too much user satisfactions, the potential

benefit of data offloading is even more significant [5], [6].

A number of recent research results have been devoted to

the study of delayed Wi-Fi offloading. Zhuo et al. in [11]

considered a 3G cellular network, where the MO motivates the

MUs to use delayed data offloading by giving them discount

coupons. The problem was formulated as a reverse auction

with one buyer and multiple sellers, where the MO is the

buyer, and the MUs are the sellers. Lee et al. in [12] studied the

economic aspects of Wi-Fi offloading in a monopolistic market

with multiple MUs and one MO. Each MU is characterized

by its willingness to pay, traffic demand, delay profile, and

Wi-Fi contact probability. Im et al. in [13] considered the

cost-throughput-delay tradeoff in Wi-Fi offloading. Given the

predicted future usage and the availability of Wi-Fi, the

proposed system decides on the application that should offload

its traffic to Wi-Fi at a given time, while taking into account

the cellular budget constraint of the MU. In fact, there are only

a few previous works in the literature related to the network

control of Wi-Fi offloading, which includes [5], [13]. The

work in [5] proposed a heuristic prediction-based offloading

scheme, while we design and analyze an optimal delayed Wi-

Fi offloading (ODWO) scheme. The work in [13] is related to

the MU-initiated offloading, while this paper focuses on the



MO-initiated offloading.

In this paper, we study the MO-initiated Wi-Fi offloading

problem in a cellular network. We assume that the MU is mov-

ing under the coverage range of the cellular BS. However, the

Wi-Fi connection is location-dependent and may not always

be available to the user all the time. We consider that the

MU is running a delay-tolerant file transfer application with

a given deadline. To provide a satisfactory user experience

while using as little cellular bandwidth as possible, the MO

aims to minimize the total cellular usage, while taking into

account the given deadline of the application. With information

related to the mobile pattern of the MU [14], we formulate

the delayed Wi-Fi offloading problem as a finite-horizon

sequential decision problem, where each cellular time slot used

leads to a unit cost, and the MU will incur a penalty if the

file transfer cannot be completed by the deadline.

The main contributions of our work are as follows:

• We formulate the Wi-Fi offloading problem as a finite-

horizon sequential decision problem, and propose a gen-

eral ODWO algorithm that achieves the optimal perfor-

mance for the general case.

• We show that the optimal policy has a threshold structure

for the special case with a convex penalty function and

fixed location-independent cellular and Wi-Fi data rates.

A low-complexity monotone optimal ODWO algorithm

is proposed for this special case.

• Simulation results show that ODWO algorithm results

in the minimal total cost and the highest file transfer

efficiency as compared with two heuristic schemes.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a MU moving within

the coverage of the cellular network, such that the cellular

connection is always available to the MU. Occasionally, the

MU may meet some Wi-Fi APs available for use at some

locations (e.g., in a coffee shop or in a shopping mall). As

a result, the Wi-Fi connection is location-dependent and may

not be available to the MU all the time. We consider that

the MU is running a file transfer application, which requires

transferring of K bits within T time slots. In other words, the

file transfer application is delay-tolerant with a deadline T .

We consider that the MU moves in a set L = {1, . . . , L} of

possible locations. We consider a known mobility model of the

MU based on the past mobility pattern of the MU [14] using

the global positioning system (GPS) information. We assume

that the MU has a unlimited data plan in the cellular network,

and the Wi-Fi hotspots are offered free to the MU, so pricing

is not an issue to the MU.

As mentioned before, we consider the MO-initiated Wi-Fi

data offloading, where a MO can use the Wi-Fi networks to

offload the data traffic originally targeted towards the cellular

network. Specifically, we assume that the Wi-Fi offloading

is initiated by the network server of the MO remotely by

prompting the connection manager in the mobile device of

the MU. Under this MO-initiated offloading, both the cellular

usage and the QoS requirement of the MU should be taken

into account. First, the MO has the incentive to offload as
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Fig. 1. An example of the network setting, where the MU is moving within
a set of L = {1, . . . , 16} locations. The MU is always under the coverage

of a cellular BS, but Wi-Fi is only available at four locations, where L(1) =
{4, 11, 13, 16} and L(0) = L\L(1). We assume that the MU is launching a
file transfer of size K bits that should be completed by deadline T . Given the
mobility pattern of the MU, the MO aims to decide whether the MU should
remain idle (a = 0), use the cellular network (a = 1), or use the Wi-Fi
network (a = 2) if it is available in each time slot to offload as much traffic
as possible, while taking into account the deadline of the application.

much data traffic to the Wi-Fi network as possible, and reduce

the congestion in the cellular network. In this way, the MO

may prefer not to start the data transmission using the cellular

connection immediately, but defer the transmission until a Wi-

Fi hotspot is available. On the other hand, the MO should also

consider the satisfaction of the MU in its offloading decision.

For example, if the deadline T is short, then the deferred

transmission may violate the deadline if the MU does not

encounter enough Wi-Fi APs in the near future. Instead, the

MO should start the file transfer using the cellular connection

as soon as possible to reduce the latency. Thus, a MO-initiated

Wi-Fi offloading needs to achieve a good tradeoff between the

total cellular usage and the QoS requirement of the MU.

Due to the dynamic nature of the delayed Wi-Fi offloading

problem, we formulate it as a finite-horizon sequential decision

problem in the following section. We consider that the MO

aims to find the optimal transmission policy that minimizes

the total cellular usage, while taking into account the deadline

of the file transfer application. By defining the total cost as

the total cellular usage and a penalty for not able to finish

the file transfer by the deadline, we can derive the optimal

transmission policy through dynamic programming (DP).

III. PROBLEM FORMULATION

In this section, we formulate the delayed Wi-Fi offloading

problem of the MO involving a single MU as a finite-horizon

sequential decision problem [15]. Without loss of generality,

we normalize the length of a time slot to be one. The MU

needs to choose an action (to be explained later) at each

decision epoch

t ∈ T = {1, . . . , T}. (1)

The system state is defined as s = (k, l). The state element

k ∈ K ⊆ [0,K] represents the remaining size (in bits) of a

file to be transferred. The state element l ∈ L = {1, . . . , L}
is the location index, where L is the total number of possible

locations that the MU may reach within the T time slots. We



define the function w(l) as the availability of Wi-Fi at location

l. Specifically, we define w(l) = 1 if Wi-Fi is available at

location l ∈ L, and w(l) = 0 otherwise. We let L(0) = {l ∈
L : w(l) = 0} and L(1) = {l ∈ L : w(l) = 1} be the sets of

locations where Wi-Fi is not and is available, respectively.

The action a specifies the transmission decision of the

MU at each decision epoch. Specifically, we have a ∈ A =
{0, 1, 2}, where a = 0 means that the MU chooses to remain

idle, a = 1 means that the MU uses the cellular connection,

and a = 2 represents that the MU uses Wi-Fi in a time slot.

Notice that actions a = 0 and a = 1 are always available to

the MU. Action a = 2, however, is only available at location

l ∈ L(1). Thus, the available choice of action a depends on

the state element l, so a ∈ A(l) ⊆ A, where A(l) is the set of

available transmission actions at location l:

A(l) =

{

{0, 1, 2}, if l ∈ L(1),

{0, 1}, if l ∈ L(0).
(2)

Let µ(l, a) be the data rate at location l with action a ∈ A(l),

respectively, where µ(l, 0) = 0, ∀ l ∈ L when the MU remains

idle (i.e., when a = 0).

We define the cost at state s with action a at time slot t as

ct(s, a) = ct(k, l, a) = I(a = 1) =

{

1, if a = 1,

0, otherwise,
(3)

where a ∈ A(l) and I(·) is the indicator function. Whenever

the cellular connection is used in a time slot (i.e., when a = 1),

the network incurs a unit cost, so that the sum of the cost over

all the time slots is equal to the total cellular usage.

After the deadline has passed at T+1, we define the penalty

for not being able to finish the file transfer at state s as

ĉT+1(s) = ĉT+1(k, l) = h(k), (4)

where h(k) ≥ 0 is a nondecreasing function of k with h(0) =
0. It is chosen according to the latency requirement of the

application.

The state transition probability p
(

s
′ | s, a

)

=
p
(

(k′, l′) | (k, l), a
)

is the probability that the system

will go into state s
′ = (k′, l′) if action a is taken at state

s = (k, l). Since the transition of the Wi-Fi availability from

l to l′ is independent of the value of k and action a, we have

p
(

s
′ | s, a

)

= p
(

(k′, l′) | (k, l), a
)

= p(l′ | l) p
(

k′ | (k, l), a
)

,

(5)

where

p
(

k′ | (k, l), a
)

=

{

1, if k′ = [k − µ(l, a)]+ and a ∈ A(l),

0, otherwise,

(6)

and [x]+ = max{0, x}. Here, we assume that p(l′ | l) is

defined according to the Markov chain estimated based on

the past mobility pattern of the MU [14].

Let δt : K × L → A be a function that specifies the

transmission decision of the MU at state s = (k, l) and time

slot t. We define a policy π = (δt(k, l), ∀ k ∈ K, l ∈ L, t ∈ T )
as the set of decision rules for states and time slots. We denote

s
π

t = (kπt , l
π

t ) as the state at time slot t if policy π is used,

and we let Π be the feasible set of π. We consider that the

MO aims to find an optimal policy π
∗ that minimizes the sum

of the expected total cost from t = 1 to t = T and the penalty

at t = T + 1 as

minimize
π∈Π

Eπ

s

[

T
∑

t=1

ct
(

s
π

t , δt(s
π

t )
)

+ ĉT+1(s
π

T+1)

]

.

(7)

Eπ

s
denotes the expectation with respect to the probability

distribution by the mobility model of the MU and policy π

with an initial state s = (K, l1), where l1 is the location of

the MU at time slot t = 1.

IV. GENERAL OPTIMAL DELAYED WI-FI OFFLOADING

In this section, we solve problem (7) optimally using the

finite-horizon DP for the general case with general penalty

function and cellular/Wi-Fi data rates. We propose a general

ODWO algorithm that computes the optimal policy.

Let vt(s) be the minimal expected total cost of the MU

from time slot t to T + 1, given that the system is in state s

immediately before the decision at time slot t. The optimality

equation [15, pp. 83] relating the minimal expected total cost

at different states for t ∈ T is given by

vt(s) = vt(k, l) = min
a∈A(l)

{ψt(k, l, a)}, (8)

where for k ∈ K, l ∈ L, and a ∈ A(l), we have

ψt(k, l, a) = ct(k, l, a)+
∑

l′∈L

∑

k′∈K

p
(

(k′, l′) | (k, l), a
)

vt+1(k
′, l′) (9)

= I(a = 1) +
∑

l′∈L

p(l′ | l) vt+1

(

[k − µ(l, a)]+, l′
)

. (10)

The first and second terms on the right hand side of (9) are the

immediate cost and the expected future cost in the remaining

time slots for choosing action a, respectively. The derivation

of (10) from (9) follows directly from (5) and (6). Moreover,

for t = T + 1, we set the boundary condition as

vT+1(s) = ĉT+1(s) = h(k), ∀ k ∈ K, l ∈ L. (11)

A. Properties of the Optimal Policy

In this subsection, we discuss some analytical results related

to the properties of the optimal policy. They are useful in

establishing the threshold policy in Section V.

Lemma 1: vt(k, l) is a nondecreasing function in k, ∀ l ∈
L, t ∈ T .

The proof of Lemma 1 is given in Appendix A. Intuitively,

a larger remaining file size k leads to a higher expected cost

(given a fixed location l ∈ L). Next, we show the result related

to location l ∈ L(1), where Wi-Fi is available. Lemma 2(a)

states that action a = 2 (i.e., use Wi-Fi) is always preferred

to action a = 0 (i.e., remain idle). Lemma 2(b) states that if

the Wi-Fi data rate is higher than the cellular data rate, then

Wi-Fi will always be used.

Lemma 2: For all location l ∈ L(1) (hence Wi-Fi is avail-

able), we have: (a) ψt(k, l, 0) ≥ ψt(k, l, 2), ∀ k ∈ K, t ∈ T .

(b) If µ(l, 1) ≤ µ(l, 2), then δ∗t (k, l) = 2, ∀ k ∈ K, t ∈ T .



The proof of Lemma 2 is given in Appendix B. Notice that

at l ∈ L(1), although A(l) = {0, 1, 2} from (2), Lemma 2(a)

implies that we do not need to consider action a = 0 in (8).

Specifically, let

Ã(l) =

{

{1, 2}, if l ∈ L(1),

{0, 1}, if l ∈ L(0).
(12)

We can simplify the optimality equation in (8) as

vt(k, l) = min
a∈A(l)

{ψt(k, l, a)} = min
a∈Ã(l)

{ψt(k, l, a)}. (13)

B. General ODWO Algorithm

With the simplified optimality equation, we are ready to

propose the general ODWO algorithm in Algorithm 1. The

algorithm consists of two phases, namely the planning phase

and the transmission and Wi-Fi offloading phase. Let σ > 0
be the granularity of the discrete state element k in the

algorithm (such as 1 Kbyte). First, in the planning phase,

based on the simplified optimality equation in (13) and the

boundary condition in (11), we obtain the optimal policy π
∗

that solves problem (7) using backward induction [15, pp. 92].

Specifically, we first set vT+1(k, l) based on the boundary

condition (line 2). Then, we obtain the values of δ∗t (k, l) and

vt(k, l) by updating them recursively backward from time slot

t = T to time slot t = 1 (lines 3 to 16). The complexity of

the algorithm is directly proportional to |K| × L× T [16].

Theorem 1: The policy π
∗ = (δ∗t (k, l), ∀ k ∈ K, l ∈ L, t ∈

T ), where

δ∗t (k, l) = argmin
a∈A(l)

{ψt(k, l, a)} = argmin
a∈Ã(l)

{ψt(k, l, a)},

(14)

is the optimal solution of problem (7).

Proof: Using the principle of optimality [17, pp. 18], we

can show that π∗ is the optimal solution of problem (7).

Notice that the optimal policy π
∗ is a contingency plan that

contains information about the optimal transmission decision

at all the possible states (k, l) in any time slots t ∈ T ,

and it is computed offline before the file transfer begins in

the second phase. In the second phase, the location index l

in each time slot is first determined based on the location

information obtained by GPS (line 20). Then, the transmission

decisions are carried out based on the optimal policy π
∗

through checking a table (lines 21 to 25), and the state element

k is updated accordingly (line 24).

V. THRESHOLD POLICY AND MONOTONE ODWO

In this section, we consider a special case, where the penalty

function h(k) is convex, and the cellular and Wi-Fi data rates

are location-independent (but these two rates are different). We

show that the optimal policy has a threshold structure in the

remaining file size k. As a result, we propose a monotone

ODWO algorithm with a lower computational complexity

to achieve the optimal performance. Notice that the convex

penalty function is commonly used for resource allocation

Algorithm 1 General Optimal Delayed Wi-Fi Offloading

(ODWO) Algorithm.

1: Planning Phase:

2: Set vT+1(k, l), ∀ k ∈ K, l ∈ L using (11)
3: Set t := T
4: while t ≥ 1
5: for l ∈ L
6: Set k := 0
7: while k ≤ K
8: Calculate ψt(k, l, a), ∀ a ∈ Ã(l) using (10)
9: Set δ

∗
t (k, l) := min

a∈Ã(l)
{ψt(k, l, a)}

10: Set vt(k, l) := ψt

(

k, l, δ∗t (k, l)
)

11: Set k := k + σ
12: end while
13: end for
14: Set t := t− 1
15: end while
16: Output the optimal policy π

∗ for use in the transmission and
Wi-Fi offloading phase

17: Transmission and Wi-Fi Offloading Phase:
18: Set t := 1 and k := K
19: while t ≤ T and k > 0
20: Determine the location index l from GPS
21: Set action a := δ∗t (k, l) based on the optimal policy π

∗

22: If a > 0
23: Send µ(l, 1) bits to the cellular network if a = 1

or offload µ(l, 2) bits to the Wi-Fi network if a = 2
24: Set k := [k − µ(l, a)]+

25: end if
26: Set t := t+ 1
27: end while

[16], and the assumption of fixed data rates is valid for a

free space uniformly distributed with MUs.

To show the threshold policy, we need to leverage on the

concepts of superadditivity and subadditivity [15, pp. 103].

Specifically, with the assumptions we made on h(k) and

cellular/Wi-Fi data rates, we show in Appendix C that

ψt(k, l, a) is superadditive or subadditive on K × Ã(l) under

different conditions.

Definition 1: Given l ∈ L, the function ψt(k, l, a) is super-

additive on K × Ã(l) if for ∀ k̂, ǩ ∈ K and ∀ â, ǎ ∈ A, where

k̂ ≥ ǩ and â ≥ ǎ, we have

ψt(k̂, l, â) + ψt(ǩ, l, ǎ) ≥ ψt(k̂, l, ǎ) + ψt(ǩ, l, â). (15)

Moreover, ψt(k, l, a) is subadditive on K×Ã(l) if the reverse

inequality holds.

Then, with δ∗t (k, l) defined in (14), we can establish the

threshold structure of the optimal policy [15, pp. 104, 115].

Theorem 2: If h(k) is a convex and nondecreasing function

in k, and the cellular and Wi-Fi data rates are location indepen-

dent such that µ1 = µ(l, 1), ∀ l ∈ L and µ2 = µ(l, 2), ∀ l ∈
L(1), then the optimal policy π

∗ = (δ∗t (k, l), ∀ k ∈ K, l ∈
L, t ∈ T ) has a threshold structure in k as follows: First, for

l ∈ L(0), we have

δ∗t (k, l) =

{

1, if k ≥ k∗t (l),
0, otherwise,

∀ t ∈ T , (16)

where k∗t (l) is the threshold that depends on both l and t.

Second, for l ∈ L(1), if the Wi-Fi data rate is lower than the



cellular data rate (i.e., µ2 ≤ µ1), we have

δ∗t (k, l) =

{

1, if k ≥ k∗t (l),
2, otherwise,

∀ t ∈ T , (17)

otherwise (hence µ1 < µ2), we have

δ∗t (k, l) = 2, ∀ k ∈ K, t ∈ T . (18)

The proof of Theorem 2 is given in Appendix D. With

this threshold structure, we propose Algorithm 2 with a lower

computational complexity than Algorithm 1 for the special

case with a convex penalty function and fixed data rates. In the

first phase, we aim to obtain the set of thresholds (k∗t (l), ∀ l ∈
L, t ∈ T ) (line 21), which completely characterizes the

optimal policy π
∗. Basically, the procedure THRESHOLD(j,

flag) is used to obtain the thresholds, where we set j = 0
if l ∈ L(0) (line 7) and j = 2 if l ∈ L(1) (line 10) as

mentioned in Appendix C. Let Ă ⊆ A be the set of actions that

should be considered in line 5 of the procedure. The variable

flag indicates whether the threshold has been obtained in

an iteration. Specifically, for l ∈ L(0) or l ∈ L(1) with

µ2 ≤ µ1, we set flag = 0 (lines 7 and 11) to consider

Ă = {j, 1} (procedure line 2) and search for the threshold.

However, for l ∈ L(1) with µ1 < µ2, we know from (18)

that δ∗t (k, l) = 2, so we set flag = 1 (line 11) to consider

Ă = {j} = {2} (procedure line 2). In THRESHOLD(j,

flag), when the threshold is reached, where δ∗t (k, l) = 1 and

flag = 0 (procedure line 7), the threshold k∗t (l) is recorded,

and Ă becomes a singleton (procedure line 8). In this way, the

minimization in line 5 of the procedure is readily known, so the

computational complexity is reduced. In the second phase, the

action a is determined based on the threshold optimal policy

stated in Theorem 2. Specifically, the decisions in lines 23,

26, and 28 are due to (16), (17), and (18), respectively.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the ODWO

scheme in Algorithm 1 by comparing it with the on-the-spot

offloading [6] and Wiffler [5] schemes. The threshold policy

stated in Theorem 2, of which Algorithm 2 is based on, is

illustrated. For the on-the-spot offloading scheme, the data

traffic is offloaded to the Wi-Fi network whenever Wi-Fi is

available. Cellular connection will be used immediately when

Wi-Fi is not available. Furthermore, we consider a prediction-

based offloading scheme that was proposed in the Wiffler

system [5]. Let ζ be the estimated amount of data that can

be transferred using Wi-Fi by the deadline. Under the Wiffler

scheme, a history-based predictor is used, which estimates ζ

based on the inter-meeting time and throughput of the last

m Wi-Fi AP encounters. If Wi-Fi is available in the current

location, then Wi-Fi will be used immediately. Otherwise, if

Wi-Fi is not available, then we need to check whether the

condition ζ ≥ ck is satisfied, where k is the remaining size

of the file to be transferred, and c > 0 is the conservative

coefficient that tradeoffs the amount of data offloaded with

the completion time of the file transfer. If this condition is

satisfied, meaning that the estimated data transfer using Wi-Fi

is large enough, then it will stay idle and wait for the Wi-Fi

Algorithm 2 Monotone ODWO Algorithm for the special

case with convex penalty function h(k) and fixed location-

independent cellular and Wi-Fi data rates µ1 and µ2.

1: Planning Phase:

2: Set vT+1(k, l), ∀ k ∈ K, l ∈ L using (11)
3: Set t := T
4: while t ≥ 1
5: for l ∈ L
6: if l ∈ L(0)

7: Set j := 0 and flag := 0
8: Call THRESHOLD(j, flag)
9: else if l ∈ L(1)

10: Set j := 2
11: if µ2 ≤ µ1, Set flag := 0, else, Set flag := 1, end if
12: Call THRESHOLD(j, flag)
13: end if
14: end for
15: Set t := t− 1
16: end while
17: Output the thresholds (k∗t (l), ∀ l ∈ L, t ∈ T )
18: Transmission and Wi-Fi Offloading Phase:
19: Set t := 1 and k := K
20: while t ≤ T and k > 0
21: Determine the location index l from GPS
22: If l ∈ L(0)

23: If k ≥ k∗t (l), Set a := 1, else, Set a := 0, end if

24: else if l ∈ L(1)

25: If µ2 ≤ µ1

26: If k ≥ k∗t (l), Set a := 1, else, Set a := 2, end if
27: else
28: Set a := 2
29: end if
30: end if
31: If a > 0
32: Send µ1 bits to the cellular network if a = 1

or offload µ2 bits to the Wi-Fi network if a = 2
33: Set k := [k − µa]

+

34: end if
35: Set t := t+ 1
36: end while

procedure THRESHOLD(j, flag)

1: Set k := 0
2: If flag = 0, Set Ă := {j, 1}, else, Set Ă := {j}, end if
3: while k ≤ K
4: Calculate ψt(k, l, a), ∀ a ∈ Ă using (10)
5: Set δ

∗
t (k, l) := min

a∈Ă

{ψt(k, l, a)}

6: Set vt(k, l) := ψt

(

k, l, δ∗t (k, l)
)

7: if δ∗t (k, l) = 1 and flag = 0
8: Set Ă := {1}, k∗t (l) := k, and flag := 1
9: end if

10: Set k := k + σ
11: end while

connection. Otherwise, it will use the cellular connection. We

adopt c = 1 and m = 4 as suggested in [5].

For the performance evaluations, we run each experiment in

1000 different network scenarios and show the average value.

Unless specified otherwise, we assume that the cellular data

rate µ(l, 1), ∀ l ∈ L and the Wi-Fi data rate µ(l, 2), ∀ l ∈ L(1)

are obtained by rounding off a set of normally distributed

random variables, with mean equal to 3 Mbps and standard

deviation equal to 1 Mbps, to the nearest non-negative num-

bers. The probability that a Wi-Fi connection is available
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Fig. 2. Total cost and file transfer efficiency (i.e., probability of completing
file transfer / average number of cellular time slots used) versus file size K
for D = 3 min and b = 1. Our proposed ODWO scheme achieves both the
minimal total cost and the highest file transfer efficiency.

at a particular location is equal to 0.7. We set the length

of a time slot to be equal to one second. We consider that

the MU is downloading a file (e.g., a movie), where the

deadline of the file transfer is D minutes (so T = 60D).
Moreover, we consider that the MU is moving around L = 6
possible locations in a linear network with the state transition

probabilities p(l′ | l) given as follows: p(l | l) = 0.6, ∀ l ∈ L,

p(l + 1 | l) = 0.2, p(l − 1 | l) = 0.2 for l = 2, . . . , L − 1,

p(2 | 1) = 0.4, p(L − 1 |L) = 0.4, and zero for other state

transitions. For the penalty, we use the convex function

h(k) = b k2, ∀ k ∈ K, (19)

where b ≥ 0 is a constant.

First, we plot the total cost (i.e., the objective function in

problem (7)) against the file size K for D = 3 min and b = 1
in Fig. 2(a). Since ODWO computes and obtains the optimal

policy, it achieves the minimal total cost as stated in Theorem

1. Moreover, we observe that the total cost increases with K.

It is because a larger number of cellular time slots (i.e., the

time slots with chosen action a = 1) is often used for a larger

K. In addition, the chance of completing the file transfer is

smaller for a large K, which results in a larger penalty.

To measure the efficiency of the file transfer with respect to

the cellular usage, we define a metric called the file transfer

efficiency, which is defined as the probability of completing file

transfer divided by the average number of cellular time slots

used. As shown in Fig. 2(b), ODWO achieves the highest file

transfer efficiency as compared with the two other heuristic

schemes. The reason is that by setting the penalty parameter
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Fig. 3. Total cost and file transfer efficiency versus deadline D for K = 70
Mbytes and b = 1. Our proposed ODWO scheme achieves both the minimal
total cost and the highest file transfer efficiency.

b = 1, ODWO achieves a high probability of completing file

transfer while using a small number of cellular time slots.

Then, we study the effects on the total cost and file transfer

efficiency by varying the deadline D for K = 70 Mbytes

and b = 1 in Figures 3(a) and 3(b), respectively. Similarly,

we observe that our proposed ODWO scheme achieves the

minimal total cost and the highest file transfer efficiency as

compared with the two other heuristic schemes. Moreover, as

D increases, the MU has more time to wait for the availability

of Wi-Fi, and thus reduces the cellular usage. Besides, for a

larger D, the chance of completing the file transfer is higher,

and the penalty is thus smaller. As a result, the total cost

decreases with D, while the file transfer efficiency increases

with D, as shown in Figures 3(a) and 3(b), respectively.

Finally, we illustrate the actions of the optimal policy for

different system states. We first look at the special case with

convex penalty function h(k) and location-independent data

rates µ1 and µ2 for K = 20 Mbits, T = 20, and b = 10. In

Figures 4(a) and 4(b), we can observe the threshold structure

in dimension k as stated in (16) for l ∈ L(0) and in (17) for

l ∈ L(1) with µ2 ≤ µ1 in Theorem 2, respectively. We also

observe that the threshold structure exists in dimension t. We

conjecture that this is not limited to this numerical example,

but we have not established its proof analytically. Furthermore,

we show an example of the optimal policy for the general case

with non-convex penalty function h(k) and location-dependent

cellular/Wi-Fi data rates. We consider a step penalty function

h(k) = Z for k > 0 and h(0) = 0, where Z >> 1 is a large

positive constant. With this penalty function, we place more

importance on completing the file transfer than reducing the
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(a) l ∈ L(0) for µ1 = 2 Mbps.
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(b) l ∈ L(1) for µ1 = 2 Mbps and µ2 = 1 Mbps.

Fig. 4. An example of the optimal policy at location l ∈ L for the case with
convex penalty and location-independent data rates, where K = 20 Mbits,
T = 20, and b = 10. The white dots, black dots, and blue crosses represent
the transmission decisions of a = 0 (idle), 1 (use cellular), and 2 (use Wi-
Fi), respectively. We can observe the threshold optimal policy as stated in
Theorem 2.

cellular usage. We adopt Z = 100000. As shown in Fig. 5,

we can see that multiple thresholds exist along dimension k,

instead of a single threshold in the special case. For example,

in Fig. 5(a), for t ≥ 16, when k is increased from zero, the

decision first changes from idle to using cellular, because a

complete file transfer is still possible. However, when k is

increased further that a complete file transfer is impossible,

the idle action is chosen. Notice that it is very different from

the policy in the special case as stated in Theorem 2.

VII. CONCLUSION

In this paper, we studied the delayed Wi-Fi offloading

problem initiated by the mobile operator. The user is run-

ning a file transfer application while moving around different

locations with different data rates and Wi-Fi availabilities.

We considered that the mobile operator initiates the Wi-Fi

offloading to minimize the cellular usage, while taking into

account the completion of file transfer within the user-specified

deadline using a penalty function. We solved this finite-horizon

sequential decision problem using dynamic programming and

proposed the general ODWO algorithm for the general setting.

Then, for the special case with a convex penalty function and

location-independent data rates, we proposed a low-complexity

optimal monotone ODWO algorithm based on the threshold

structure of the optimal policy in dimension k. Simulation

results showed that our proposed ODWO achieves both the

minimal total cost and the highest file transfer efficiency as

compared with two heuristic schemes.
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(a) l ∈ L(0) for µ(l, 1) = 2.1 Mbps.
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(b) l ∈ L(1) for µ(l, 1) = 3.1 Mbps and µ(l, 2) = 2.1 Mbps.

Fig. 5. An example of the optimal policy at location l ∈ L for the case
with step penalty and location-dependent data rates, where K = 20 Mbits,
T = 20, and Z = 100000. The white dots, black dots, and blue crosses
represent the transmission decisions of a = 0 (idle), 1 (use cellular), and 2
(use Wi-Fi), respectively.

APPENDIX

A. Proof of Lemma 1

We prove it by induction. First, from (11), vT+1(k, l) =
h(k) is a nondecreasing function in k, ∀ l ∈ L. Assume that

vt+1(k, l) is a nondecreasing function in k, ∀ l ∈ L. From

(10), since p(l′ | l) ≥ 0, ∀ l, l′ ∈ L and the function I(a = 1)
is independent of k, ψt(k, l, a) is a nondecreasing function in

k, ∀ l ∈ L, a ∈ A. Thus, vt(k, l) in (8) is a nondecreasing

function in k, ∀ l ∈ L.

B. Proof of Lemma 2

Let k ∈ K and l ∈ L be given.

(a) We have

ψt(k, l, 0) =
∑

l′∈L

p(l′ | l) vt+1(k, l
′)

≥
∑

l′∈L

p(l′ | l) vt+1

(

[k − µ(l, 2)]+, l′
)

= ψt(k, l, 2),
(20)

where the two equalities are due to (10) and the inequality is

due to Lemma 1.

(b) First, since µ(l, 1) ≤ µ(l, 2), we have

ψt(k, l, 1) = 1 +
∑

l′∈L

p(l′ | l) vt+1

(

[k − µ(l, 1)]+, l′
)

≥
∑

l′∈L

p(l′ | l) vt+1

(

[k − µ(l, 2)]+, l′
)

= ψt(k, l, 2),
(21)



where the two equalities are due to (10) and the inequality is

due to Lemma 1. Combining the results from (20) and (21),

from (14), we have δ∗t (k, l) = 2, ∀ k ∈ K, t ∈ T .

C. Superadditivity and subadditivity of ψt(k, l, a)

The proof of Theorem 2 is based on the results in Lemmas

3 and 4. Let l ∈ L be given. Let Ã(l) = {j, 1}, where j = 0
if l ∈ L(0) and j = 2 if l ∈ L(1) as in (12), and µ0 = 0. With

only two possible actions in Ã(l), we can rewrite (10) as

ψt(k, l, a) = I(a = 1) +
∑

l′∈L

p(l′ | l)
[

I(a = 1)

×vt+1

(

[k − µ1]
+, l′

)

+
(

1− I(a = 1)
)

vt+1

(

[k − µj ]
+, l′

)

]

.

(22)

Lemma 3: If µj ≤ µ1 and h(k) is a convex and nonde-

creasing function in k, then

vt([k − µj ]
+, l)− vt

(

[k − µ1]
+, l

)

≥ vt
(

[k − σ − µj ]
+, l

)

−vt
(

[k − σ − µ1]
+, l

)

, ∀ k ∈ K, l ∈ L, t ∈ T ∪ {T + 1}.
(23)

The proof of Lemma 3 is given in [18].

Lemma 4: If µj ≤ µ1 and ∀ k̂, ǩ ∈ K, l ∈ L, t ∈ T with

k̂ ≥ ǩ, where

vt+1([k̂ − µj ]
+, l)− vt+1

(

[k̂ − µ1]
+, l

)

≥ vt+1([ǩ − µj ]
+, l)− vt+1

(

[ǩ − µ1]
+, l

)

,
(24)

then ψt(k, l, a) is subadditive on K × Ã(l) for j = 0, and

superadditive on K × Ã(l) for j = 2, ∀ t ∈ T , respectively.

Proof: Let k̂, ǩ ∈ K, â, ǎ ∈ Ã(l), l ∈ L, and t ∈ T be

given, where k̂ ≥ ǩ and â ≥ ǎ. Then

ψt(k̂, l, â) + ψt(ǩ, l, ǎ)− ψt(k̂, l, ǎ)− ψt(ǩ, l, â)

=
∑

l′∈L

p(l′ | l)
(

I(ǎ = 1)− I(â = 1)
)[

vt+1([k̂ − µj ]
+, l)−

vt+1

(

[k̂ − µ1]
+, l

)

− vt+1([ǩ − µj ]
+, l) + vt+1

(

[ǩ − µ1]
+, l

)

]

,

(25)

where the equality is derived using (22). Notice that p(l′ | l) ≥
0, ∀ l, l′ ∈ L. First, for j = 0, we have â, ǎ ∈ {0, 1}, so

I(ǎ = 1) ≤ I(â = 1). From the given condition in Lemma 4

and Definition 1, we conclude that ψt(k, l, a) is subadditive on

K×Ã(l). On the other hand, for j = 2, we have â, ǎ ∈ {1, 2},

so I(ǎ = 1) ≥ I(â = 1). We can then conclude that ψt(k, l, a)
is superadditive on K × Ã(l).

D. Proof of Theorem 2

First, for l ∈ L(1) and µ1 < µ2, from Lemma 2(b), we have

δ∗t (k, l) = 2, ∀ k ∈ K, t ∈ T as stated in (18).

Next, we consider that case 0 ≤ µj ≤ µ1. Let k̂, ǩ ∈ K,

l ∈ L, and t ∈ T be given. Let ǩ = [k̂ − zσ]+, where z >

0. If the condition of Theorem 2 is satisfied, by repetitively

applying Lemma 3, we have

vt([k̂ − µj ]
+, l)− vt

(

[k̂ − µ1]
+, l

)

≥ vt
(

[k̂ − σ − µj ]
+, l

)

− vt
(

[k̂ − σ − µ1]
+, l

)

≥ · · ·

≥ vt
(

[k̂ − zσ − µj ]
+, l

)

− vt
(

[k̂ − zσ − µ1]
+, l

)

= vt
(

[ǩ − µj ]
+, l

)

− vt
(

[ǩ − µ1]
+, l

)

. (26)

For l ∈ L(0), we consider j = 0 as mentioned in Appendix

C. Since 0 = µ0 < µ1, ψt(k, l, a) is subadditive on K ×
Ã(l) from Lemma 4. From [15, pp. 104, 115], δ∗t (k, l) is a

monotone nondecreasing function in k. From (12) and (14),

since δ∗t (k, l) ∈ Ã(l) = {0, 1}, δ∗t (k, l) is in the form of (16).

Then, we consider l ∈ L(1) for µ2 ≤ µ1. Since we consider

j = 2 as mentioned in Appendix C, ψt(k, l, a) is superadditive

on K×Ã(l) from Lemma 4. From [15, pp. 104, 115], δ∗t (k, l) is

a monotone nonincreasing function in k. From (12) and (14),

as δ∗t (k, l) ∈ Ã(l) = {1, 2}, δ∗t (k, l) is in the form of (17).
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