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Abstract—The growing popularity of mobile data services has
placed great demands for wireless cellular networks to support
higher throughput. One way to meet the rapidly growing traffic
demand is through heterogeneous network (HetNet) deployment,
which uses a mixture of macro cells and small cells (also known
as micro- or pico-cells) to further enhance the spatial reuse and
thus improves network throughput. In this paper, we propose a
Gibbs-sampling based optimization method for the deployment
of small cells in 3G networks. To our best knowledge, this work
is the first to optimize the locations of multiple small cells with
the goal of maximizing a given network utility function. The
Gibbs sampling based (GSB) method intelligently balances two
potentially conflicting considerations: (i) placing small cells close
to congested areas; and (ii) minimizing interference with the
existing macro cells and other small cells. We also describe
two low-complexity algorithms, the greedy EcNo and the greedy
hotspot algorithms. Both algorithms are widely used in industry
and will be used as the performance benchmark. Extensive
simulations have been conducted based on real traffic traces
from the 3G data network. The numerical results show that
the GSB placement leads to 10% higher throughput and 30%
higher off-loading factor than the greedy solutions. Since the
cost of deploying small nodes could be expensive and each city
may need a large number of small nodes, the proposed results
represent significant cost savings compared to greedy solutions.

I. INTRODUCTION

The proliferation of smartphones and tablets has resulted

in much higher data traffic demands on the cellular networks.

Between 2007 and 2009 an unprecedented 5000% increase

in data traffic has been witnessed [1]. In the USA, nearly 100

million people have subscribed to wireless data plans and used

smartphones as one of their main portals for accessing Internet

[2]. It is projected that by 2014 an average cell phone user will

consume 1GB data per month [3], and the average wireless

data connection speed will surpass 1 Mbps in 2014 [4].

To meet the ever-growing demands of higher throughput

and better quality-of-service, researchers and providers have

considered different ways to expand the network capacity,

including the use of multi-antenna techniques, better schedul-

ing and network coding [5]–[7], high-order modulation, and

sectorization of the cells. However, these mechanisms are

already quite close to their fundamental performance limits,

and there is not too much room for further improvement [3].

One promising orthogonal approach is to use small low-power

cells (sometimes termed micro/pico base-stations) [8] that

complement the regular base stations (sometimes termed the

macro base-stations) to further enhance the spatial reuse and

improve throughput. Such a cellular network with a mixture

of macro cells1 and small micro/pico cells [3] is commonly

referred to as Heterogeneous Networks (HetNet) (see Fig. 1).

The small cells can operate either in the same channel as the

macro cells (the co-channel mode), or in different channels

than the macro cells (the dedicated small-cell carrier mode).

By leveraging the new frequency reusage opportunity, mobile

carriers can use the small cells to increase the spectrum

efficiency and provide higher network capacity. However,

how to deploy the small cells in a HetNet environment is

a non-trivial problem. There are two potentially important

considerations, i.e., to improve the signal quality and to offload

users from macro nodes to small nodes. (We will use the term

“small node” and “small-cell base station”, interchangeably.)

However, these two objectives could be conflicting. For ex-

ample, in order to offload more users from macro cells, we

would ideally deploy small nodes close to the traffic hotspots2.

However, small nodes close to each other or close to macro

nodes may introduce severe interference, and the signal quality

suffers. Thus, the total system throughput may be significantly

reduced. Therefore, to optimally place the small nodes, we

need to jointly consider both the interference and the traffic

demand profile, which is a non-trivial problem.

How to manage interference between macro and pico cells

has been studied in LTE networks, and the eICIC (Enhanced

Inter-cell Interference Coordination) has been introduced. In

contrast, for 3G UMTS/HSDPA, the options of interference

management are relatively limited, and have mainly been

studied only in the context of femtocell and femto-user

transmission power control [9]. Hence, we believe that in

3G UMTS/HSDPA network, the optimization of small cell

placement is even more important in order to control the

macro-small cell interference for HetNets.

In the literature, the optimal deployment problem for pico

cells have not been extensively studied. [8] has investigated

how to use pico cells to improve the performance in UMTS

networks under the simple setting of 1 macro node and 1

pico node. [10] studies a similar setting in LTE network,

with one macro node and one pico node in the hotspot. In

contrast, our work considers the scenario where multiple small

nodes will jointly offload the traffic from multiple macro

nodes. To our best knowledge, our work is the first to study

1The traditional base station in the 3G network is usually termed Node-B.
To distinguish from the small nodes, we will use the term “macro node” to
refer to the Node-B.

2Hotspot indicates an area with high user density.



the small-cell placement problem that jointly optimizes the

locations of multiple small nodes with the goal of maximizing

a given network utility function. Our work is also related

to the femtocell placement problem. Femtocells, as another

type of small low-power cells typically deployed indoors,

are installed by users instead of cellular operators. They are

currently widely employed by cellular carriers, since they can

reduce infrastructure and operational expenses (for capacity

upgrade) and improve coverage [11]. However, the unplanned

deployment and restricted access may cause heavy interfer-

ence to macro-cell users. The closest solution in the existing

literature is the femtocell deployment problem studied in [12]–

[14]. However, our work differs significantly from the existing

solutions in terms of the objectives and the new consideration

of traffic profiles. Specifically, [12], [13] discuss the problem

of femtocell placement in a single building. The goal is to

minimize the power consumption for the mobile handsets

while covering “all the service areas in a building.” [14] aims

to minimize the coverage holes and pilot transmission power,

which focuses on how to adjust the power control in order to

optimize the public coverage space. None of the objectives in

[12]–[14] are related in our problem because, in our work the

area of interest is already covered by macro nodes. Hence, we

do not need to consider coverage as either an objective or a

constraint. Further, our work aims to automatically adapt to

the traffic demand profiles, which has not been considered in

any previous work including [12]–[14].

In this paper, we propose a Gibbs-sampling based optimiza-

tion method for the deployment of small cells in 3G networks.

The Gibbs sampling based (GSB) method intelligently bal-

ances the two potentially conflicting considerations discussed

earlier: (i) placing small cells close to congested areas; and

(ii) minimizing interference with the existing macro cells and

other small cells. We also describe two low-complexity algo-

rithms, the greedy EcNo and the greedy hotspot algorithms.

Both algorithms are widely used in industry and will be

used as the performance benchmark. Extensive simulations

have been conducted based on real traffic traces from the

3G data network. The numerical results show that the GSB

placement leads to 10% higher throughput and 30% higher

off-loading factor than the greedy solutions. In summary, the

main contributions of this work are

• We incorporate the traffic demand profiles for different

geographical locations into the node placement problem.

• We propose the Gibbs sampling algorithms to optimize

the total throughput of all users in the area of interest.

• Empirically, we have conducted extensive simulations

based on real traffic traces from existing 3G networks.

Our results show that Gibbs sampling converges quickly

to the optimal solution and the resulting throughput is

10%-15% better than that of the greedy algorithms.

II. UMTS/HSDPA HETNET SETTINGS AND MODELS

A. HetNet Topology and Traffic Profile

We focus on the downlink transmission in a given area adja-

cent to several macro cells. For ease of exposition, we assume

that the area of interest is rectangular with length L and width

W (meters). We divide the area into Na × Nb number of

rectangular mini-cells. For any mini-cell, the network designer

may choose to place a small node (transceiver) in the center of

the given mini-cell. Consider the example in Fig 2, for which

the area of interest is evenly divided into 3×3 mini-cells. We

use #1 to #9 to label the 9 mini-cells in Fig. 2, respectively.

For the k-th mini-cell, we use ck (Mbps) to represent the data

traffic density which is obtained from the statistics of the user

activities in the existing network. For example, for the 5-th

mini-cell (the center mini-cell), we use #5 : 0.5 to indicate

the corresponding data traffic density is 0.5Mbps. Define the

normalized traffic density for mini-cell j as
cj

∑Na×Nb
k=1

ck
.

Suppose that there are Nm macro nodes nearby and our

goal is to place Np small nodes in the mini-cells. Among the

Nm + Np transmitters of interest, we use the indices n =
1, 2, ..., Nm to denote the existing macro nodes and use the

indices n = Nm + 1, Nm + 2, ..., Nm + Np to denote the

to-be-placed small nodes. Since any mobile is associated to

either a macro node or a small node in HSDPA, we use Un

to denote the number of users associated with node n for

all n = 1, · · · , Nm + Np. For any user i, we use n(i) to

denote the index of the node with which user i is associated.

We sometimes call n(i) the serving node of user i. We use

U =
∑Nm+Np

n=1 Un to denote the total number of users in the

area of interest.

B. HSDPA and Cell Selection

Let ln,i denote the path loss from cell n to user i, for all

n = 1, · · · , Nm+Np and i = 1, · · · , U . The path loss denotes

the average signal attenuation due to distance-dependent path

loss, directional antenna gain, and various fading and shad-

owing. It can be derived based on network measurements,

in which user equipments report the received signal power

at their locations. Or, it can be derived based on empirical

path loss models after calibration using the data obtained

from network measurements and/or drive tests. We assume the

power constraint for each small node is Ps Watt. For the macro

nodes, the power constraint may vary and we assume that the

power constraint for macro node n is Pm(n) Watt. In practice,

each node only uses a certain fraction of the max power

constraint for data traffic since the node still needs power for

supporting voice traffic, control traffic, and broadcast channels

Fig. 1. HetNet is comprised of macro nodes and small nodes. Data traffic on
the edge of macro cells are offloaded to the small cells, so that the performance
on the macro-cell boundary area is improved and traffic load for the macro
cell is alleviated.



Fig. 2. Illustration of the mini-cells, the corresponding data traffic density,
and three coexisting macro nodes.

including CPICH (Common Pilot Channel). The fraction of

power available to HSDPA thus varies depending on voice

traffic condition and can be estimated by the cellular carrier.

We use hf to denote the total HSDPA power fraction, i.e.,

the fraction of power that can be assigned to High Speed

Downlink Shared Channel (HS-DSCH). A typical hf value

is 50% for a macro node and 80% for a small node. Let Pn

(Watt) denote the transmission power of node n. We assume

that even without any data traffic, a node still needs to use

(1− hf ) of the max power constraint. Therefore, we have for

any small node n = Nm + 1, · · · , Nm +Np,

Pn =











Ps if at least 1 user is associated

with node n (Un ≥ 1)

Ps(1− hf ) if Un = 0

(1)

and for any macro node n = 1, · · · , Nm

Pn =

{

Pm(n) if Un ≥ 1

Pm(n) · (1− hf ) if Un = 0
. (2)

The transmission power Pn and the path loss ln,i will be

used subsequently to compute the SINR and the throughput

of individual users.

We now discuss how to compute n(i), the serving node of

user i. In HSDPA, each user i measures CPICH. Then user

i chooses the node that has the largest Received Signal Code

Power (RSCP) value (with unit Watt), which is the power level

received from the pilot channel of a node. The RSCP value of

user i from a node n is defined as

RSCPn
i = Pilot(n) ∗ ln,i, (3)

where Pilot(n) (in Watts) denotes the power of the pilot

channel for node n. We assume that for each small node, it

uses 10% of its power as the pilot power, i.e., Pilot(n) = 0.1Ps

for all n = Nm+1 to Nm+Np. The pilot power for the macro

node is from the existing 3G network.

In summary, given the traffic profile ck of each individual

mini-cell k, our goal is to find the optimal placement of the

Np small nodes that maximizes the throughput of users in the

area of interest, based on the long term data traffic geographic

information. For the purpose of non-disclosure, we could not

explicitly present the data details. Some of the simulation

results may only reflect the relative ratios but not the real

values.

C. HSDPA Throughput Calculation

In this section, we describe an approach to approximate the

achievable HSDPA throughput in a static network situation.

The propagation channel from cell node k to user i consists

of a set of paths, each of which is associated with an average

relative received power and delay. Suppose lk,i is the average

path loss from cell k to user i. Suppose P i
sv is the average

power that user i receives from the serving node n(i), and P i
rv

is the average total power that user i receives. Thus, we have

P i
sv = Pn(i)ln(i),i, (4)

and P i
rv = WN0 +

Nm+Np
∑

k=1

Pklk,i, (5)

where W = 3.84× 107 Hz is the WCDMA chip rate and the

effective bandwidth of UMTS HSDPA, and N0 = 3.9811 ×
10−21 watts/Hz is the power spectral density of thermal noise.

For user i, we use σi to denote the ratio of the average total

power due to other-cell interference and thermal noise to the

average received power from the serving cell, abbreviated as

APR. It is calculated by σi = (P i
rv − P i

sv)/P
i
sv.

A direct calcuation of the distribution function of the signal

to interference and noise ratio (SINR) is numerically in-

tractable. We followed the method in [15] to estimate the mean

and variance as functions of the APR. This approximation is

also used by the well-known orthogonality factor model as

noted in [15].

We use SINRi to denote the SINR for user i and SINRdbi

to denote the SINR for user i measured in db, i.e, SINRdbi =
10 log10(SINRi). Similar to the four-parametric Weibull func-

tions in [15], we use the following approximation for the mean

of SINRdb and also the standard deviation STD of SINRdb

in decibel scale.

SINRdbi = 10 log10(hf ) + a− be−c(σi)d , (6)

where 10 log10(hf ) is the offset in the decibel scale due to

the fraction of power available to HSDPA. The empirical

parameters a, b, c and d are evaluated based on Monte-Carlo

numerical simulation for different multi-path profiles defined

in 3GPP TS 34.121. The mean and standard deviation allow us

to determine the distribution of SINRdb under the assumption

of a certain distribution model. As shown by the numerical

studies in [15], the distribution that achieves the best approx-

imation is the Gaussian distribution (in the decibel scale).

Once SINRdbi is computed, we can compute the Channel

Quality Indicator (CQI) according to [16] by

CQIi = min(30,max(0, ⌊SINRdbi/1.02 + 16.62⌋)). (7)

Each CQI is an integer number ranging between [0, 30]. In

each Transmit Time Interval (TTI), the Transport Format and

Resource Combination (TFRC) selector in HSDPA scheduler

decides the number of bits (called Transport Block Size, or

TBS) to transmit, based on the CQI value. In 3GPP TS

25.214, TFRCs for different user classes are specified. The



Fig. 3. Example 1 with
4 mini-cells

Fig. 4. Example 2 with
4 mini-cells

CQI-TBS mapping table for a category-10 user is shown in

Table I. The average TBS for user i is given by E{TBSi} =
∑30

q=0 pi(q)TBS(q), where pi(q) is the probability that user

i reports a CQI value q, and TBS(q) denotes the TBS value

given CQI value q. (The TBS(q) value can be derived from

Table I.) We assume that HS-DSCH code is not limited, which

is the case in real networks. With a round-robin scheduling,

the average throughput T i
peak for user i served by cell n(i) is

T i
peak =

E{TBSi}

Un(i)(1 + pe)TTI
, (8)

where Un(i) is the number of users served by cell n(i), TTI =
2ms, pe is the block error rate, targeted to be 0.1.

D. Optimization Objective

We define the Np-dimensional position vector

s = (sNm+1, sNm+2, ..., sNm+Np
)

to represent the locations of all small nodes. Let S denote

the feasible set, that is, the set of all possible small node

placements. We use U : S → R to denote the global utility

function. In our work, we choose U to be the summation

of the average throughput for each individual user. However,

our solution strategy would work for other types of utility

functions of the cell throughput. Note that the actual (average)

throughput of user i has to take into account time-sharing

among all users associated to node n(i) and is thus computed

as T i
peak/Un(i). Our objective function is thus

max
s∈S

U(s).

It is clear that the above throughput objective takes into

consideration the interference between cells. Further, we argue

that the objective of maximizing throughput automatically in-

corporates the consideration of the data traffic profile. Consider

TABLE I
CQI TO TBS MAPPING FOR CATEGORY-10 USERS (UNIT: NUMBER OF

BITS PER BLOCK )

CQI TBS CQI TBS CQI TBS
0 0 1 136 2 176
3 232 4 320 5 376
6 464 7 648 8 792
9 928 10 1264 11 1488
12 1744 13 2288 14 2592
15 3328 16 3576 17 4200
18 4672 19 5296 20 5896
21 6568 22 7184 23 9736
24 11432 25 14424 26 15776
27 21768 28 26504 29 32264
30 38576

the two 4-mini-cell examples shown in Fig. 3 and 4. Assume

that we are deploying one small node in the center of mini-cell

1 in both examples. We also generate U users for each example

according to the respective data traffic profile3. Then the total

user throughput for Example 1 would be larger than that for

Example 2. Specifically, in Example 1, most of the users are

in mini-cell 1, and they are closer to the small node. Hence,

a larger fraction of users would have a higher peak rate T i
peak.

Since all users share the bandwidth at a small node n(i) evenly

(i.e., we use T i
peak/Un(i) to calculate the actual throughput of

such a user), the total throughput of the small node will thus

be higher. In contrast, in Example 2, more users are in the

surrounding mini-cells, so they are further away from the small

node. Then, the throughput would suffer. Thus, by optimizing

the total throughput in the area of interest, the solution would

tend to deploy small nodes close to the hotspots.

III. OPTIMIZATION OF SMALL-NODES DEPLOYMENT

Finding the optimal locations for small-cell deployment

is highly non-trivial since the complexity of computing the

optimal locations grows exponentially O((NaNb)
Np) as the

number of the to-be-placed nodes increases. In this section,

we introduce two low-complexity greedy approaches to deploy

the small nodes in the area of interest, which are widely used

in industry.

A. Greedy EcNo Algorithm

In the first greedy algorithm, the discussions are based

on RSCP (see (3)) and EcNo. EcNo is the received energy

per chip (Ec) of the pilot channel divided by the total noise

power density (No). The following greedy algorithm selects

the location based on the EcNo values.

§ GREEDY ECNO

1: Input the traffic profiles, the locations of the macro nodes,

and the value of U , the total number of users.

2: Run the subroutine DECIDE-USER-LOCATIONS.

3: for n = Nm + 1 to Nm +Np do

4: Assume that the locations of all nodes from Nm + 1
to n− 1 have been fixed and there are no small nodes

from n+ 1 to Nm +Np.

5: Temporarily place node n to the mini-cell j and calcu-

late the EcNo value for all users and compute the sum

of all EcNo:
∑U

i=1 EcNo(i)
6: Place node n to mini-cell j∗ that results in the largest

sum of EcNo values for all users.

7: end for

8: Associate all users to either the small nodes or the macro

nodes according to their RSCP values as discussed in

Section II.

The subroutine DECIDE-USER-LOCATIONS is described as

follows.

3The user generation part can be carried out by the subroutine DECIDE-
USER-LOCATIONS discussed in Section III-A.



§ DECIDE-USER-LOCATIONS

1: For each user, it has probability
cj

∑Na×Nb
k=1

ck
to be assigned

to mini-cell j.

2: For each user that is assigned to mini-cell j, uniformly

generate a position within mini-cell j.

3: The location of each user will be used to compute the

average path loss ln,i for the subsequent computations.

B. Greedy Hotspot Algorithm

To best offload traffic from the macro cells, it is intuitive to

deploy small nodes in the vicinity of the traffic hotspots, which

inspires the following even simpler, location-based greedy

algorithm that does not involve the computation of the path

losses, etc.

§ GREEDY HOTSPOT

1: Input the traffic profiles.

2: for n = Nm + 1 to Nm +Np do

3: Among all the mini-cells which do not have any small

node deployed, choose the one with the highest data

traffic volume (see Fig. 2) and place node n in that

mini-cell.

4: end for

C. Discussion

Both greedy EcNo and greedy hotspot algorithms have

low complexity. However, their performances could be highly

suboptimal. Take the traffic profile in Fig. 2 for example.

Suppose that we would like to deploy two small nodes.

Apparently, greedy hotspot algorithm would choose mini-cell

9 and mini-cell 6 since they have the largest data traffic density

(both being 6). However, it is likely that the users close to

mini-cells 1, 4, and 7 will not be offloaded according to such

node placement. For the greedy EcNo algorithm, it is likely

that it will choose mini-cell 5 first, since placing a small node

right in the center can result into the maximum sum of the

EcNo values. After placing the first node in mini-cell 5, the

greedy algorithm will choose mini-cell 9 for the second small

node as it has the highest traffic density among all peripheral

mini cells. On the other hand, one can quickly see that a better

deployment would be to choose mini-cells 4 and 6, which

covers two of the highest density regions while the small nodes

being separated far enough to reduce co-channel interference.

This example illustrates the importance of jointly optimizing

all small node locations simultaneously when compared to the

greedy solutions.

IV. GIBBS SAMPLING FOR OPTIMIZATION OF SMALL

NODE LOCATION

We next propose an optimization algorithm based on Gibbs

sampling. Our goal is to optimize the small nodes locations

so that the total utility for the users in the area of interest

can be improved. The basic idea is as follows. First we

place all small nodes randomly: each small node randomly

chooses one mini-cell. Then, in each iteration, each small

node one-by-one decides (for itself) whether to relocate to to

a neighboring mini-cell according to a probability distribution

and re-associate with users. Based on the above construction,

the locations of the small nodes form a stochastic process.

By carefully choosing the probability whether a small node

should change location, we can ensure that the steady state

distribution of the stochastic process is concentrated (in some

sense of probability) around the global optimal solution.

Recall that the Np-dimensional position vector

s = (sNm+1, sNm+2, ..., sNm+Np
)

represents the locations of all small nodes. We use s\n to

represent the Np-1 small-node locations except the small node

n, and (s\n, bn) to denote the Np-dimensional vector

(sNm+1, ...sn−1, bn, sn+1, ..., sNm+Np
),

which replaces sn, the location of small node n, by bn. Recall

that S denotes the feasible set. Let S∗ ⊆ S be the set of

optimal solutions that maximize the global utility function U :
S → R. Recall that in our work, we choose U to be the

summation of the average throughput for each individual user.

For discussion, we use t to denote the number of Gibbs

sampling iterations. The goal is to design the transition prob-

ability such that the steady-state distribution (t → ∞) is

π(s) =
eγU(s)

∑

s
′∈S eγU(s′)

, (9)

where γ > 0 is a fixed parameter. This distribution is called

the Gibbs measure [17]. When γ is large, the steady-state

distribution being (9) means that with high probability, the

steady-state will concentrate on the optimal solution s∗ (the

one that has the largest U(s) value). The Gibbs sampler to

be presented below drives the small node placement Markov

chain to the steady state distribution (9).

For each iteration (we assume that within each iteration we

update the node location sequentially from node n = Nm +1
to Nm +Np. Let the current small node placement be s ∈ S
and assume small node n is updating its location. Node n can

jump up, down, left, right by one mini-cell, or remain in the

original mini-cell. We again use Fig. 2 for example. Suppose

that small node n originally locates in mini-cell 5. In one

update process, it can choose to move to mini-cell 8, mini-

cell 2, mini-cell 4, or mini-cell 6. Or, it can simply remain in

mini-cell 5. For the small node on the boundary of the area

of interest, it can jump around the boundary. For example,

mini-cell 9 can move to mini-cell 3, mini-cell 6, mini-cell 8,

or mini-cell 7. Or, it can stay in mini-cell 9. Let P(bn|s) be

the probability that small node n updates its location to bn.

According to the current location of node n, each node has 5

possible new locations bn. The Gibbs sampler in [17] set the



transition probabilities as

P(bn|s) =
eγU(bn,s\n)

∑

∀valid new locations b′n
eγU(b′n,s\n)

. (10)

The detailed Gibbs sampling algorithm is described as follows.

§ GIBBS SAMPLING

1: Input The traffic profiles, the locations of the macro

nodes, and the value of U , the total number of users.

2: Run the subroutine DECIDE-USER-LOCATIONS.

3: for t = 1 to max-iter, the maximum number of allowed

iterations do

4: for each small node n do

5: Tentatively move the small node up, down, left, right

by one mini-cell, or remain in the original mini-cell

6: Calculate throughput for each user and compute the

sum of all throughputs.

7: Use the 5 computed summations of throughput (cor-

responding to different transitions respectively) to

calculate transition probability according to (10).

8: Using the distribution (10), randomly choose the

mini-cell that the small node n will jump to.

9: Update the node association for each user.

10: end for

11: end for

We now have the following lemma that quantifies the perfor-

mance of the above Gibbs sampler.

Lemma 1. When t → ∞, the difference between the global

optimal utility U(s∗) and the expected utility generated by the

Gibbs sampler in (10) is no larger than 1
γ
log( |S|

|S∗| ).

Proof: Considering any optimal solution s
∗ ∈ S∗, we

have

E{eγ(U(s∗)−U(s))} =
∑

s∈S

eγ(U(s∗)−U(s))π(s)

=
∑

s∈S

π(s∗)

π(s)
π(s) = |S|π(s∗) ≤

|S|

|S∗|
, (11)

where the last step is because π(s∗) ≤ 1
|S∗| . By Jensen’s

inequality, we have

eγ(U(s∗)−E{U(s)}) ≤ E{eγ(U(s∗)−U(s))} ≤
|S|

|S∗|
. (12)

By taking logrithm on both sides, we have

E{U(s)} ≥ U(s∗)−
1

γ
log(

|S|

|S∗|
). (13)

The implication of Lemma 1 is that, as γ → ∞, the expected

utility generated by the Gibbs sampler approaches the optimal

value. The cost of using larger γ is the convergence speed.

For practical settings we can choose a γ that strikes proper

tradeoff between optimality and the convergence speed.

V. SIMULATION

In our simulation, all the configurations about the macro

nodes are from an existing 3G network. We assume that each

small node’s height is 3.5 meter and each user equipment’s

height is 0.75 meter. Let dn,i denote the Euclidean distance

between user i and cell n. We assume that each small node is

omni-directional, and the path loss between small node n and

user i is given by

ln,i = −30.7− 38× log10(dn,i) (unit: decibel). (14)

For macro node n, the model for deciding the average path

losses can be found in [18], [19]. In our simulation, the multi-

path profile we consider is ITU Pedestrian A. Similar to [15],

we run Monte Carlo simulations to obtain the parameters in

(6), where we set a = 9.23, b = 55.78, c = 1.62, and d =
−0.22.

We run simulations over data set from an existing 3G

network in a metropolitan area on the US western coast. The

area of interest has length L = 700 meters and width W = 700
meters. We evenly divide this area into 49 mini-cells. Thus,

each mini-cell is exactly 100 meters long and 100 meters wide.

In the area of interest, the data traffic density for each mini-

cell is also obtained from the existing 3G network. In Fig. 5,

we show the relative data density value by a heat map.

A. Performance Comparison

We compare the performance of Gibbs sampling, greedy

EcNo, and greedy hotspot in terms of the average throughput4

per user, the average throughput per cell, and the offloading

factor. Among them, the offloading factor is defined as the

ratio of the number of users who have been offloaded from

macro nodes to small nodes, over the total number of all users

in the area of interest. As we have explained in Section I,

the offloading factor is important because as more users are

offloaded, the burden on the macro nodes will be lower. Thus,

the throughput and dropping rate for macro nodes can also be

enhanced.

We divide the simulation into two stages: design and evalu-

ation. In the design stage, we run different schemes in order to

find a deployment decision for the small nodes. Then, in the

evaluation stage, we fix the node placement of each scheme

and run Monte Carlo simulations to measure the average cell/

user throughput, and the offloading factor so that we can

compare the relative performance.

In the design stage, for the greedy EcNo and for the

Gibbs sampling schemes, we choose the total number of

users5 being 4900. Then, we run the Gibbs samping, greedy

EcNo, and greedy hotspot algorithms respectively, to obtain

the deployment locations for all small nodes.

In the real world, it is unlikely that there are as many as

4900 simultaneous users in the area of interest. However, when

there are only a small number of users, the randomness of the

user locations will lead to different throughput even after we

4We assume all the throughput in the simulation is counted as Mbps.
5A large number of users help to capture the traffic demand information.



Fig. 5. Illustration relative data traffic density in 7×7 mini-cells. The darker
the color in each mini-cell is, the heavier the traffic density is.

Fig. 6. Map for the area of interest with small nodes (red triangle) and
macro nodes (black circle)

have fixed the small node locations after the design stage.

Thus, in the evaluation stage we run the simulation with only

10 users and calculate the corresponding throughput and the

offloading factor. By repeating the 10-user simulation for 1000

times, we measure the average throughput and the offloading

factor.

Fig. 6 shows the geographical information of the area of

interest. The circles represent the 4 macro nodes. As we can

see, the area of interest (a square) is far away from the 4

macro nodes and is on the boundary of the macro cells. The

red markers inside the square represent locations of the small

nodes produced by Gibbs sampling algorithm and the numbers

represent the node index. Fig. 7, 8, and 9 show the fixed

locations of the small nodes. We can also show the randomly

generated users together with the placement of small nodes.

Due to the space limit, we put the details in our technical

report [20].

Due to the space constraints, we only discuss the deploy-

ment with 7 small nodes in the area of interest. In Figs. 7,

8, and 9, we show the deployment designs for greedy EcNo,

greedy hotspot, and Gibbs sampling algorithms. In Fig. 7, the

greedy EcNo algorithm first places small node 5 in the center

of the area, in order to greedily maximize the total EcNo value

of all users. All other nodes are deployed likewise. In Fig. 8,

the greedy hotspot algorithm places all the small nodes on

the hotspots, while ignoring all the mini-cells on the upper

side of the map. In contrast, the Gibbs sampling approach

jointly considers the user signal quality and geographic traffic

information, and results in the decision in Fig. 9. In this

deployment, near every hotspot we can find a small node,

and all small nodes are spreaded out so that the interference

is lower.

In Fig. 10, we show the cumulative distribution function of

the summation of the throughput for 1000 instances of Monte

Carlo simulation and each instance has 10 users. We can see

the median throughput improvement of the Gibbs sampling

versus greedy is 16% percent and can be as large as 0.25

Mbps. The average per-user throughputs are 1.63, 1.43, and

1.41 Mbps for the three schemes respectively and we also

see 15% improvement to the greedy EcNo solution. Fig. 11

studies the benefits of Gibbs sampling versus the number

of small nodes to be placed. As can be seen that with 7

small nodes, HetNet with Gibbs sampling offers 5 times the

throughput of the original network. When compared to the

greedy approaches, Gibbs sampling also offers 10% through-

put improvement, which is quite substantial considering the

actual cost of the node placement. Further, the throughput gap

between Gibbs sampling and the greedy approach becomes

larger when considering more small nodes, which is due to

the fact that Gibbs sampling jointly optimizes all the locations

while the greedy solution takes a myopic approach.

Fig. 12 studies the benefits in terms of offloading factors.

We see that with 7 small nodes Gibbs sampling successfully

offloaded on almost all users to the small nodes. The offloading

for greedy solutions are patchy since it places one node at a

time and does not coordinate the placements of all small nodes.

We also show that the Gibbs sampling approach can get stable

after 15 iterations. Due to the space limit, the details can be

found in [20].

VI. CONCLUSION

In this paper, we study the optimization for deployment

of small nodes in a 3G HetNet environment. To our best

knowledge, this work is the first solution for the placement of

small-cell base-stations that jointly optimizes the locations of

multiple small nodes with the goal of maximizing any given

network utility function. We first present a couple of low-

complexity greedy algorithms for which the performance can

be insatisfactory. We then propose to use Gibbs sampling to

optimize the small node deployments. The Gibbs Sampling

method intelligently balances two potentially conflicting con-

siderations: (i) placing small-cell BSs close to high-traffic ar-

eas; and (ii) avoiding co-channel interference with the macro-

cell BSs and other small cell BSs. We show that the Gibbs

sampling can be made very close to optimal. Simulation results

based on the data set from an existing 3G network show

that Gibbs sampling can consistently lead to better throughput

and better offloading factors when compared to the greedy

algorithms.

For future work, we plan to take into account additional

interference management mechanisms. For example, neighbor

cells can further schedule their transmission in the time domain

and/or adjust their transmission power to avoid co-channel

interference. It would be interesting to see what the deploy-

ment decisions should be when further taking into account the

optimal scheduling and power control mechanisms.
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Fig. 7. Deployment map for greedy EcNo
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Fig. 8. Deployment map for greedy hotspot
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Fig. 9. Deployment map for Gibbs sampling
algorithm with 7 small nodes
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Fig. 10. CDF for Gibbs sampling, greedy EcNo,
and greedy hotspot in 1000 instances of Monte
Carlo simulation of evaluation stage
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[17] P. Brémaud, Markov chains: Gibbs fields, Monte Carlo simulation, and

queues. Springer, 1999, vol. 31.
[18] “3gpp standards,” TR 36.814, 2010.
[19] F. Gunnarsson, M. Johansson, A. Furuskar, M. Lundevall, A. Simonsson,

C. Tidestav, and M. Blomgren, “Downtilted base station antennas-a
simulation model proposal and impact on hspa and lte performance,”
in VTC 2008.

[20] X. Li, X. Tang, C.-C. Wang, and X. Lin, “Gibbs-sampling-
based optimization for the deployment of small cells in 3g
heterogeneous networks,” Technical Report, Purdue University,

http://docs.lib.purdue.edu/ecetr/440/, 2013.


