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Abstract—This paper explores wireless network coding both
in case of deterministic and random point patterns. Using
the Boolean connectivity model we provide upper bounds for
the maximum encoding number, i.e., the number of packets
that can be combined such that the corresponding receivers
are able to decode. For the models studied, this upper bound
is of order

√
N , where N denotes the (mean) number of

neighbours. Our simulations show that the
√
N law is applicable

to small-sized networks as well. Moreover, achievable encoding
numbers are provided for grid-like networks where we obtain
the multiplicative constants analytically. Building on the above
results, we provide an analytic expression for the upper bound of
the efficiency of wireless network coding. The conveyed message
is that it is favourable to reduce computational complexity by
relying only on small encoding numbers, for example, XORing
only pairs, as the resulting throughput loss is typically small.

Index Terms—encoding number, network coding, random net-
works, wireless

I. INTRODUCTION

Network coding is an exciting new technique promising
improvements to the current limits of data transfer in wireless
networks. For the case of multiple unicast sessions (or flows),
the basic idea of inter-session network coding is to combine
packets belonging to different sessions within the network and
thereby to reduce the number of transmissions or equivalently
increase the throughput region of these flows. The scheme that
achieves the theoretical maximal throughput region for multi-
ple unicasts is yet unknown, but there are practical approaches
providing increased throughput. The network coding scheme
called local network coding was one of the first practical
implementations able to demonstrate throughput benefits; see
COPE in [1], [2]. The idea of local network coding is to encode
packets belonging to different unicast flows whenever it is
possible for these packets to be decoded at the next hop. The
simplicity of this scheme is promising when considering actual
implementations in real-world wireless routers. For example,
in the well-known Alice-relay-Bob scenario, the relay XORs
outgoing packets while Alice and Bob use their own packets
as keys for decoding, proving throughput improvement up to
factor 4/3 by eliminating one unnecessary transmission.

Local network coding has been enhanced with the func-
tionality of opportunistic listen. The wireless terminals are ex-
posed to information traversing the channel, and [1] proposed a

v0

Fig. 1. Local network coding. Node vo is a relay and the disks indicate the
connectivity ranges of vo and three other nodes. The shaded area shows the
possible positioning of a node resulting in a valid combination for the four
flows denoted by arrows.

smart way to make the best of this inherent broadcast property
of the wireless channel. Particularly, each terminal operates
in always-on mode, overhearing constantly the channel and
storing all overheard packets. The reception of these packets
is explicitly announced to an intermediate node, called the
relay, which makes the encoding decisions. Finally, the relay
can arbitrarily combine packets of different flows as long as the
recipients have overheard the necessary packets for decoding.

The so-called infinite wheel topology is an unrealistic ex-
ample where the benefits of opportunistic listen are maximal.
In such topology, a relay locates in the middle and all nodes
are connected to everyone else except the intended receiver.
Thus each flow needs to be relayed, but on the other hand, the
transmissions are overheard by all the others. If all possible
flows are conveniently assumed to exist and opportunistic
listen is utilised, as the number of nodes tends to infinity
network coding can improve aggregate throughput by an order
of 2 by diminishing the downlink into a single transmission;
see [3]. However, such a symmetric topology is expected to
appear rarely in real settings. Besides, the above calculations
assume that all links have the same transmission rates; thus it
takes the same amount of time to deliver a native (non-coded)
packet or an encoded one.

As a more realistic scenario, consider the wireless network
of Figure 1. Each disk indicates the connectivity range of
a node and the shaded area shows the locations where the



positioning of an additional node would form a small wheel
topology with one relay (node v0) and four nodes. In prac-
tice, existence of large combinations is rare: the bigger the
combination, the more restrictive geometric constraints. Thus,
a natural question arises: What is the expected throughput
gain of local network coding with opportunistic listening in
a wireless ad hoc network with arbitrarily positioned nodes?

Deciding which packets to group together in an encoded
packet is not a trivial matter as explained in [3], [4], [5].
Specifically in ER [4] and CLONE [5], the medium is assumed
to be lossy, and the goal is to find the optimal pattern of
retransmissions in order to maximise throughput. Finding
the optimal encoding scheme can be reduced to finding a
minimum clique partition of the coding graph. Work related
to index coding has shown that this problem can be mapped
to the Boolean satisfiability problem (SAT problem) [6]. If
the coding techniques are restricted to be linear, the selection
of the minimum time transmission policy is equivalent to
filling a sampled matrix in order to minimise its rank [7]; a
problem known to be NP-hard. Moreover, the same complexity
appears when the relay node makes scheduling decisions,
i.e., selects which packets to serve and what combinations
to use; see e.g. [8]. Evidently, restricting the search on a
space of small combination sizes reduces the complexity and
hence is very desirable from the point of practical system
algorithms. Thus, the second natural question arises: What is
the loss in throughput gain if instead of searching over all
possible encoded packet combinations, we restrict our search
in combinations of size at most m?

In this paper, we show that there exist inherent geometric
properties bounding the maximum encoding number below
a number relative to the population or density of nodes.
Applying the Boolean connectivity model, it is demonstrated
that opportunities for large encoding combinations rarely ap-
pear in ad hoc wireless network. We study the maximum
encoding number in different scenarios including both regular
and random topologies. To capture the behaviour of large (or
dense) networks, the asymptotic scaling laws of the maximum
encoding number are derived. In support of our findings, recent
work [9] found evidence through simulations that in randomly
positioned wireless networks and k-tuple coding, which is a
generalisation of local coding to the multi-hop case, in most
cases mainly pair combinations appear, i.e., k = 2.

Scaling laws are of extreme interest for the network com-
munity in general because they provide valuable insights to the
system designers. In this direction, the authors of [10] study
the scaling capacity of wireless networks in a Gupta-Kumar
way taking into account complex field network coding. [11]
also consider the scaling capacity and find that network coding
cannot improve the order of throughput, i.e., the O

(
1√
n

)
law

prevails. [12] discusses the issue of scaling network coding
gain in terms of delays while [13] identifies the energy benefits
of network coding both for single multicast session as well as
for multiple unicast sessions. In [14], network coding is used
instead of power control and the benefits are characterised. In

a similar spirit, [15] investigates the use of rate adaptation for
wireless networks with intersession network coding. By util-
ising rate adaptation, it is possible to change the connectivity
and increase or decrease the number of neighbours per node.
They identify domains of throughput benefits for such a case.

Our work is in line with [16], [17], where the authors also
analyse the maximum encoding number, i.e., the maximum
number of packets that can be encoded together such that the
corresponding receivers are able to decode. They show that this
number scales with the ratio R

δ where δ is a region outside the
communication region and inside the interference region. Note
however, that this work relates the scaling law of the maximum
encoding number to specific protocol properties. In networks
with small δ, e.g., where a hard decoding rule is applied, the
bound for the maximum encoding number becomes very loose.

The main contributions of this paper are the following. First,
we prove that, assuming a Boolean connectivity model, the
nodes belonging to a valid combination can be considered
as the vertices of a convex polygon. Then, we continue by
considering fixed separation distance networks, like a square
grid, and show that in such networks, the maximum encoding
number is O(

√
N) and Ω( 4

√
N),1 where N is the number

of nodes in transmission range of the relay. Next, we study
a random network where the locations of the nodes follow a
Poisson point process on the plane. In this case, the maximum
encoding number is found to be asymptotically bounded by
λ

1
2+ε, where λ is the node density and ε > 0 arbitrary. In other

words, the law
√

E[N ] is valid again. Finally, we consider the
case where the encoder searches for combinations of at most
size m < N . We show that the throughput efficiency loss in
this case depends on the size of the network, and for small
networks the loss can be negligible. Through simulations we
show that all the derived results hold quite well even for small
networks.

The paper is organised as follows. In Section II, the model
is described and some basic properties are given. In Section
III, the main results for the grid-like networks are derived.
Then in Section IV random networks are considered. A rate
analysis is provided in Section V and simulation results are
shown in Section VI. The paper is concluded in Section VII.

II. COMMUNICATION MODEL

We assume a set of nodes V , located on the plane. Commu-
nications between these nodes are established via the Boolean
connectivity model with constant communication radius (see,
e.g., [18]). In this model, a link between two nodes {vi, vj}
exists if and only if |X(vi)−X(vj)| ≤ R, where X(vi) is
the location of node vi and R is the communication radius. In
this case, we say that vi is connected with vj and vice versa.
This corresponds to an undirected graph in the sense that only
bi-directional links appear.

1The symbol O() denotes that the function is bounded above by some
linear function of the expression in the brackets whereas Ω() denotes that the
expression is bounded from below.



A. Information flows

Each node vi having at least two neighbours can relay
information. By employing local network coding, unnecessary
transmissions can be avoided if decoding of packets at the
receivers can be guaranteed. To simplify the analysis, we
consider only one cell, i.e., we focus on a given node v0
and all its neighbours, see Figure 2. Thus, we restrict V0
containing all neighbours of v0, with V0 = {v1, v2, . . . , vN}
and N

.
= |V0| the number of nodes under consideration. For

a network determined by a Poisson point process with density
λ, we use correspondingly the mean number of points which
is given by E[N ] = λπR2.

Apart from the number of neighbours, the gain analysis
depends also on the activated unicast flows. In the simple
Alice–relay–Bob topology, it is possible that only the flow
going from Alice to Bob is activated, in which case the gain
is zero. In this paper we are interested in determining an upper
bound for the efficiency loss when the relay is constrained on
combinations of size m < N (e.g., if m = 2 the system is
constrained to pairwise XORing). For this reason, we consider
the maximum gain scenario, i.e., for each node designated as a
relay, we assume that all possible two-hop flows traversing this
relay are activated. This means that the node designated as a
relay, has all possible different packets from which to select an
XOR combination to be sent to the neighbours. Moreover, all
the neighbours have opportunistically listened the uplink trans-
missions and stored the overheard packets. Again, the Boolean
connectivity model determines which uplink transmissions can
be overheard, i.e., interference is neglected. Since not all
encoding combinations are possible, finding the maximum
valid combination that corresponds to the maximum encoding
number is a non-trivial task and will be the goal of this paper.
The resulting bound will help to characterise the efficiency
loss due to resorting to m-wise encoding. In real systems,
some flows might not be active and interference decreases
the possibilities of opportunistic listening. Thus the resulting
efficiency loss from m-wise encoding will be even smaller.

To make this more precise, we define source-destination
pairs designating 2-hop flows that cross the relay, similar to
[4]. Let F denote all the possible packet flows on V . Each
flow f ∈ F has a source S(f), a destination D(f), a set of
nodes H(f) ⊂ V having its packets (either by overhearing or
ownership) and a set of nodes N(f) ⊂ V needing its packets;
in our study the latter is reduced to the destination of the
flow, i.e. N(f) ≡ {D(f)}. Also, note that the set H(f) is
the set of nodes connected to the source plus the source itself.
Two flows fi, fj are called symmetric when they satisfy the
property S(fi) = D(fj) and D(fi) = S(fj).

B. Constraints

Here we focus on network coding opportunities appearing
in the described network model around the relay v0. This is
done by summarising the previous subsection in the form of
formal definitions and properties.

v0

V

network

R

Fig. 2. The relay v0 and the valid nodes located within distance R.

The following definitions guarantee that a valid flow cannot
be 1-hop flow, i.e., the source cannot transmit the packets di-
rectly to the destination and the relay v0 is needed. Moreover,
the allowed combinations of flows and the maximum size of
such sets are defined.

Definition 1. (Valid node): A node vi ∈ V is a valid node if
|X(vi)−X(v0)| ≤ R, i.e., it lies within the communication
radius of the relay v0.

Definition 2. (Valid flow): A flow f ∈ F is a valid flow if S(f)
and D(f) are valid nodes satisfying |X(S(f))−X(D(f))| >
R, i.e., they are not directly connected to each other.

Definition 3. (Valid combination): A set of valid flows is
a valid combination if any combined XOR-packet sent by
the relay can be immediately and correctly decoded by the
destination nodes.

Definition 4. (Maximum encoding number): The maximum
encoding number Cmax is the maximum cardinality among all
valid combinations C ⊆ F .

Note that if the locations of the nodes are random, then
Cmax is evidently a random variable. We could also impose
additional constraints. For example, if a flow can be routed
more efficiently through a node other than v0, then this flow
should be excluded from the set of valid flows. This would
further restrict the set of valid combinations and thus, by
omitting this constraint we derive an upper bound for Cmax.

Next we state the properties that a set of flows need to
satisfy in order to be usable in local network coding.

Lemma 1. If a subset of flows C ⊆ F is a valid combination,
then every pair of flows fi, fj ∈ C, fi 6= fj satisfies

(i) D(fi) ∈ H(fj),
(ii) D(fi) 6= D(fj),
(ii) S(fi) 6= S(fj).

Proof: (i) Consider a pair of flows f1, f2 ∈ C. Then the
relay could send a packet f1⊕f2. However, if D(f1) 6∈ H(f2)
such message could not be decoded at node D(f1). This would
contradict the assumption that all XOR combinations within C
can be immediately and correctly decoded. Cases (i) and (ii)
can be proved analogously.



When the set of sources is identical to the set of destinations,
the combination consists of symmetric flows only. Trivially,
the size of such combination must be even. Next, we show
that in order to calculate an upper bound of the network
coding combination size, it is enough to resort to the case
of symmetric flows.

Lemma 2. For any valid combination there exists at least
one combination of the same or larger size that contains only
symmetric flows.

Proof: We will show that for any flow we can add the
symmetric one without invalidating the combination as long
as it is not already counted.

In a bipartite graph with all the nodes V0 on one side and
the destinations of C on the other, consider a directional link
`f , between the source of flow f and its destination, for each
f ∈ C. Note now that the nodes having out-degree one, i.e.,
the active sources in C, may or may not be identical to one
of the destination nodes. We can make a partition of the set
of active sources by assigning those with the above property
to the set Tsym and the rest to the complementary set Tsym.
If Tsym = ∅, then the Lemma is proved since C is a valid
combination with symmetric flows only. If not, then we can
create a new combination C′ which has more flows than the
original one using the following process. For each transmitter
in Tsym, say S(fi) the transmitter of flow fi, add one extra
flow f ′i with S(f ′i) = D(fi) and D(f ′i) = S(fi). This flow
does not belong to C (because S(fi) ∈ Tsym) and it does not
invalidate the combination due to the bidirectional properties
of the model. Note that f ′i is a valid flow because S(f ′i) cannot
be connected to D(f ′i) due to validity of fi. Note also that
S(f ′i) is connected to D(f) for all f ∈ C since this is again
required for the decoding of the original flows. Thus, for any
flow we can add the symmetric one without invalidating the
combination.

In graph theory terms, a valid combination with symmetric
flows can be thought of as a graph created by a clique of C+1
nodes, minus a matching with C

2 edges, with all symmetric
flows defined by this matching activated. The node with zero
degree in the matching is the relay node. This graph is called
in [1] wheel topology.

Finally, we provide a result on the topology of a valid
combination. Let XC represent the set of locations of all nodes
being either the source or destination of a flow belonging to
a valid combination C.

Lemma 3. For any valid combination C of size 3 or larger,
there exists a convex polygon with the set of vertices equal to
XC .

Proof: Consider a valid combination defined by flows

C = {fi, i = 1, . . . , C} ,

where C ≥ 3. Consider also the set of nodes that are sources
and/or destinations in C

VC = ∪iS(fi) ∪i D(fi)

and the induced set of locations XC such that we have a
bijective mapping for each element vj ∈ VC with an element
X(vj) ∈ XC .

Assume that there is a node vj ∈ VC which is an interior
point of the convex hull2 of XC . Its location X(vj) can be
written as X(vj) =

∑
i 6=j αiX(vi) where

∑
i 6=j αi = 1 and

αi ≥ 0 for all i.
On the other hand, there is a unique vj∗ ∈ VC , which is the

communicating pair (source or destination) of vj in at least
one flow, so that

|X(vj)−X(v∗j )| > R. (1)

All the other nodes (destinations or sources) in VC should
be able to reach the node vj∗ directly. Thus,

|X(vj)−X(v∗j )| ≤
∑
i6=j

αi|X(vj)−X(v∗j )| ≤
∑
i 6=j

αiR ≤ R,

which is a contradiction to (1). Consequently the node vj , as
well as all other nodes of the combination, necessarily lie on
the perimeter of the convex hull. Thus, the nodes of a valid
combination are the vertices of a convex polygon.

III. ANALYSIS IN GRID-LIKE TOPOLOGIES

In this section we focus on networks where the nodes are
deterministically located on a square lattice or a different form
of a grid. Grid topologies often offer an insightful first step
approach towards the random positioning behaviour. Also,
the investigation of grids answers the question whether it is
possible to achieve high network coding gain by arranging the
locations of the nodes.

We therefore assume a network with the additional property
|X(vi)−X(vj)| ≥ d, for any pair of nodes vi, vj ∈ V ,
where d is minimum Euclidean distance of any two nodes in
the network. A topology satisfying this geometric property is
called fixed-separation network. This pertains to regular grids
such as the square, the triangular and the hexagonal grid as
well as other grids with non-uniform geometry. We impose
nevertheless the property that the node density is the same
over all cells and thus the geometry should be homogeneous.
The number of nodes inside a disk of radius R will be
N = O

(
(Rd )2

)
for these networks and the corresponding node

density λgrid = O
(
( 1
d )2
)
.

Theorem 1. (Upper bound) The maximum encoding number in
fixed-separation networks is O

(√
N
)

where N is the number

of nodes or equivalently O
(√

λgrid
)

.

Proof: From Lemma 3 we know that the nodes belonging
to the maximum combination form a convex polygon. Any
such polygon fitting inside the disk of radius R must have
perimeter smaller than 2πR. Since the nodes on the perimeter
should be at least d away from each other, we conclude that
the maximum encoding number is

Cmax <
2πR

d
.

2The convex hull of points X is the minimal convex set containing X .



This combined with N = O
(
(Rd )2

)
or respectively λgrid =

O
(
( 1
d )2
)

yields the result.
So far we have shown that any network with fixed separation

distance d and uniform density, will have maximum encoding
number upper bounded by O(

√
N), where N is the number

of nodes connected to the relay. A particular case of the above
bound is the square grid. The number of nodes inside the disk
is N = π

(
R
d

)2
+ e

(
R
d

)
where e

(
R
d

)
≤ 2
√

2πRd is an error
inversely proportional to d. Thus, we obtain an upper bound

Csquare
max <

√
4πN.

This gives us for the square grid a constant of 2
√
π. however,

our numerical studies show that the actual maximum encoding
number is approximately half of that calculated above. The
reason for that is basically that the valid polygon is always
smaller than the disk of radius R and often close to the
size of a disk of radius R

2 . In particular, the constant can be
determined for any given grid.

It is interesting to bound the achievable maximum encoding
number from below as well. To obtain intuition about this
bound we start with a non-homogeneous topology, the cyclic
grid. We construct concentric cyclic groups of radius Ri = id,
i = 0, 1, . . . , bRd c that fall inside the disk of radius R.
Each cyclic group has as many nodes as possible such that
the fixed separation distance condition is not violated. Such
a topology exhibits different behaviour depending on the
selected origin (it is not homogeneous), nevertheless it helps
identify a particular behaviour of the achievable maximum

encoding number. The cyclic group at Ri has
⌊

2π

arccos(1− 1
2i2

)

⌋
nodes. Thus, the grid of radius R will have

N = 1 +

bR
d c∑
i=1

⌊
2π

arccos
(
1− 1

2i2

)⌋ .
A very good approximation is

N ≈ 1 + 6

bR
d c∑
i=1

i ≈ 3
R2

d2
.

Theorem 2. (Lower bound) In networks with nodes d away
from each other and cell radius R, an achievable maximum
encoding number is

1) Ccyclic
max = Ω(

√
N) for cyclic grid with rem (R, 2d)→ 0,

2) Ccyclic
max = Ω( 4

√
N) for cyclic grid with rem (R, 2d)→ d

and
3) Csquare

max = Ω( 4
√
N) for the square grid of d,

where rem(x, y) is the remainder of the division x/y.

Proof:
For the cyclic grid when rem (R, 2d)→ 0: By focusing on

the cyclic group with inf{i : Ri >
R
2 }, note that each node

is R
2 + ε from the center and thus the desired connectivity

properties are satisfied for all nodes on the cyclic group. In
this case, we can calculate the number of nodes in the group

d

R

R/2+δ
ω(δ)

φ(δ)

Fig. 3. Sketch for the proof of Theorem 2.

as

Ccyclic
max =

⌊
2π

arccos
(
1− 2d2

R2

)⌋ ,
which for large N is bounded from below by some linear
function of

√
N .

For the cyclic grid when rem (R, 2d)→ d: Now each node
is R

2 + d− ε away from the center and thus we need to select
those nodes satisfying the property of valid combination. For
this it is enough that we leave an empty angle φ such that if
AOB is a diameter and AOC this angle, then CB ≤ R. By
solving this for the maximum number of points satisfying this
property we get

Ccyclic
max =

 2π

arccos

(
R2

2(R
2 +d)

2 − 1

)
 ,

which for large N is bounded from below by some linear
function of 4

√
N .

For the square grid: we construct a ring around the circle
of R

2 radius. The width of the ring is δ wide enough to fit a
whole square of dimensions d× d. Such a square is bound to
contain exactly one node of the grid. Using Figure 3, and the
triangles relative to the small square, we calculate δ as

δ =

√
R2 + d(5d+ 4R)−R

2
.

Thus, we can show that d ≤ δ ≤ 3d
2 . If we use the largest

possible value that guarantees that the ring contains one node
at each step, namely δ = 1.5d, we can compute the angle that
contains at least one node, which is of the order of d:

φ(δ) = arcsin

( √
2d√

d2 +R2

)
.

Then, we compute the angle which should be left empty in
the valid combination such that any node outside this angle is
reachable by the most distant node (the one at the bottom).

ω(δ) = arcsin

(
R√

2(R+ 1.5d)

)
.



This angle is of the order of
√
d. Finally, an achievable

combination is obtained if we alternate φ and ω until we fill
the circle.

Csquare
max =

⌊
2π

φ(δ) + ω(δ)

⌋
,

which is bounded from below by a linear function of 4
√
N .

Note that the sparseness of the combination is due to ω(δ)
and a possible reasoning is that the bound is constructed to
cover all the cases, thus also the case that the uncomfortable
positioning of nodes matches the second case of the cyclic
grid above.

In [19], relative results on convex polygons in constrained
sets guarantee the existence of convex polygons of size
Ω( 4
√
N) when the N thrown nodes are kept separated by some

distance.

IV. STOCHASTIC ANALYSIS

Building on the insight acquired from the deterministic grid
settings, we move to stochastic topologies. Assume that the
locations of the nodes are determined by a Poisson point
process with density λ. The connectivity properties of this
model are well studied in the literature (see e.g. [20], [21]).
As in the deterministic case, we assume that a relay is located
at the origin. For a Poisson point process this assumption does
not change the distribution of the other points. Our main result
is an asymptotic upper bound in probability for the maximum
encoding number.

Theorem 3. In a random network determined by a Poisson
point process with density λ, the maximum encoding number
corresponding to combinations having the relay at the origin
satisfies

lim
λ→∞

P

(
Cmax(λ)

λ1/2+ε
< δ

)
= 1,

for any ε > 0 and δ > 0.

Proof: First, consider a fixed λ and cover the area
[−R,R] × [−R,R] by boxes of size λ−1/2 × λ−1/2. The
number of nodes inside the disjoint boxes are denoted by
Ni(λ), i = 1, . . . , n(λ), where n(λ) = 4dR

√
λe2. By Lemma

3, the nodes belonging to the valid combination form a convex
polygon. Since the convex polygon is located inside the disk
of radius R, its perimeter is covered by at most 4×d2πR

√
λe

boxes. Thus

Cmax(λ) ≤ 4× d2πR
√
λe max

i=1,...,n(λ)
Ni(λ) a.s.

Next consider an increasing sequence of λ. Since for
any given λ, the Ni(λ) are identically and independently
Poisson(1) distributed, there is a sequence In(λ) such that

lim
λ→∞

P

(
max

1≤i≤n(λ)
Ni(λ) = In(λ) or In(λ) + 1

)
= 1, (2)

where In = O
(

logn
log logn

)
(see [22], [23]). Then, for any δ > 0

and ε > 0, there exists λ̃ > 0 such that

4× d2πR
√
λe

λ1/2+ε
(In(λ) + 1) < δ ∀λ > λ̃.

Consequently,

Cmax(λ)

λ1/2+ε
< δ

maxiNi(λ)

In(λ) + 1
∀λ > λ̃ a.s.

and the proof is completed by applying equation (2).

V. RATE EFFICIENCY OF A NETWORK CODING
COMBINATION

Given the characterisation of the maximum encoding num-
ber, we now consider to the performance loss induced by
restricting to small combinations. We focus on the downlink
of a valid combination of size C. Without loss of generality,
assume that the rate vector r = {ri}i=1,2,...,C is ordered, i.e.,
r1 < r2 < · · · < rC , and that the flow set is permuted
accordingly so that over the link (v0, D(fi)) packets are
transferred at a rate ri.

The data rate is computed as the number of packets of
size P transmitted in a virtual frame over the time needed
for these transmissions. Since an encoded packet is always
transmitted at the lowest rate decodable by all receivers
and assuming max-min fair allocation3, we can deduce the
maximum throughput rate with network coding as

rNC(C) =
CP
P

min{r}
= Cr1.

The rate without network coding would be

rw(C) =
CP

P
r1

+ P
r2

+ · · ·+ P
rC

= C

(
C∑
i=1

1

ri

)−1
= rh,

where rh is the harmonic mean of r. It is easy to see that if the
criteria for valid combinations are fulfilled for a combination
of size C then they are fulfilled for all its subsets. Choosing
any m ≤ C and allowing for combinations of size m at most,
gives an achievable rate of

rm(C) =
CP∑b C

mc
i=1

P
rm(i−1)+1

+ 1{rem(C,m)>0}
P

rC−rem(C,m)+1

= C

b C
mc+1{rem(C,m)>0}∑

i=1

1

rm(i−1)+1


−1

,

Next, we derive the network coding gain for the maximum
combination (C) and for the constrained group (m ≤ C).

g(C)
.
=
rNC(C)

rw(C)
= C

r1
rh
.

Note that the gain is a linear function of C and depends on
the particularities of the rate vector. Also, for the restricted

3This condition of fairness provides the best network coding opportunities
and it is usually the balance point where network coding gain is computed in
multiclass networks.



Fig. 4. Examples of valid combinations for C = 6 and C = 8 in a square
grid with N = 81.
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Fig. 5. Maximum encoding number of a square grid inside a disk.

case holds

gm(C)
.
=
rm(C)

rw(C)
=
C

rh

b C
mc+1{rem(C,m)>0}∑

i=1

1

rm(i−1)+1


−1

≥ C

rh

(⌈
C
m

⌉
r1

)−1
≥ (m− 1)

r1
rh
,

where in the first inequality we have used that r1 is the mini-
mum rate, and in the second we have used m−1 ≤ C

d C
me
≤ m.

If we choose equal rates, then we readily get g(C) = C and
max {gm(C)} = m as the maximum gain for both. Finally, we
can symbolise that g(C) = Θ(C) and moreover the difference
g(C)− gm(C) = O(C −m). Therefore, the efficiency loss is
at most of the order of

√
N −m.

VI. NUMERICAL RESULTS

In this section we present some numerical results that pro-
vide further evidence and insight for our work. For simulation
purposes we consider a disk of radius R = 1 and a node v0
serving as a relay situated at the center of the disk. Initially
we consider a square grid of nodes over this disk and we
investigate the maximum coding number, i.e., a set of nodes
that satisfies the constraints of section II. Then, the scenario
of uniformly random thrown nodes is considered.

A. Experiments with square grids

Figure 4 showcases examples of combination sizes C = 6
and C = 8 (Cmax = 8 in this case). During these experiments

Fig. 6. Examples of valid combinations for C = 6 and C = 8 in a network
with N = 21 and N = 70 nodes respectively, randomly located.
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Fig. 7. Maximum encoding number for randomly positioned nodes in a disk.

we identified an interesting property. We noticed that the
maximum encoding number depends only on the number of
nodes inside the disk and not on the actual d used. In particular,
for all {d : N is fixed}, Cmax is constant. In Figure 5 we
present the (deterministic) values for the maximum encoding
numbers in case of the square grid. The actual values seem
to be closer to the lower bound than to the upper, leading
to an order closer to 4

√
N (notice the logarithmic scale of

the figure). As a guideline, for grids where nodes have up to
100 connections, looking for combinations larger than 8 seems
futile. Nevertheless, the oscillating effect due to the interplay
between the radius and the number of nodes is evident.

B. Experiments with randomly positioned nodes

Next, we throw N uniform random nodes inside the disk of
radius R = 1. Examples of valid encoding combinations are
showcased in Figure 6. It is noted from these examples that
large combinations tend to appear in a δ–ring form where the
inner side of the ring is a disk of radius R

2 and the outer side
is a disk of radius R

2 + δ.
The simulated values of the maximum encoding number

are illustrated in Figure 7. The observed maximum encoding
number was within the gray area in 98% of the experiments.
The mean behaviour of the maximum encoding number is
obtained by averaging over 1000 random samples. The

√
N

behaviour is also depicted in this picture. Figure 8 shows the
probability of existence of at least one coding combination
of size C in a network of N uniformly thrown nodes. For
example, the maximum component size for 20 ≤ N ≤ 50 is
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Fig. 8. Probability of existence of at least one coding combination of size
C in a network of N uniformly thrown nodes.

either 4 or 6 in the majority of cases.
As a summary, these simulation results indicate that the

probabilistic asymptotic bound derived in Theorem 3 predicts
quite well the qualitative performance also in random networks
of moderate size.

VII. CONCLUDING REMARKS

By considering the Boolean connectivity model, we showed
that there are certain geometric constraints bounding the max-
imum number of packets that can be encoded together in local
network coding with opportunistic listening. Particularly, due
to the convexity of any valid combination, the sizes of combi-
nations are at most of order of

√
N , N denoting the number of

neighbours, for all studied network topologies. The convexity
property is strongly linked to the specific connectivity model
and it does not necessarily hold for other communication
models. However, the underlying geometric constraints are
typically quite similar to those studied in this paper, though
the additional details of protocol and interference modelling
may allow also non-convex valid combinations.

The derived qualitative and asymptotic behaviour of the
maximum coding number is already a strong evidence that
the focus should be on developing efficient algorithms that
opportunistically exploit local network coding over a wide
span of topologies using small XOR combinations rather
than attempting to solve complex combinatorial problems in
order to find the best combinations available. In order to
evaluate the actual (small) quantitative performance loss due to
limited combination sizes, one should extend the analysis, for
example, to average encoding components with more realistic
traffic models. Such study is beyond the scope of this paper
and is left for further studies.
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