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Abstract—We study Compound TCP (C-TCP), the transport
protocol in the Windows operating system, in different buffer
sizing regimes along with Drop-Tail and Random Exponential
Marking (REM). The buffer sizing regimes we focus on are the
widely deployed bandwidth-delay rule and a small buffer regime.
The performance metrics we consider are stability of the queue
size, queuing delay, link utilisation and packet loss.

We analyse the following models: (i) a non-linear model for
C-TCP with Drop-Tail and small buffers, (ii) a stochastic variant
of REM along with C-TCP, and (iii) the original REM proposal
as a continuous time non-linear model with delayed feedback.
We develop conditions to ensure local stability and show that
variations in system parameters can induce a Hopf bifurcation,
leading to the emergence of limit cycles.

With Drop-Tail, and small buffers, the Compound parameters
and the buffer size play a key role in maintaining stability.
With the stochastic variant of REM, larger thresholds for
marking/dropping packets can destabilise the system. With REM,
an increase in the feedback delay, or variations in the queue
management parameters, can induce a Hopf bifurcation. Design
guidelines for Compound parameters, based on analysis, to en-
sure stability are provided. Packet-level simulations corroborate
some of the analysis.

Index Terms—Compound TCP, active queue management, buffer
sizing, performance.

I. INTRODUCTION

Compound TCP (C-TCP) [15] is widely deployed as it is

the default transport layer protocol in the Windows operating

system. So its evaluation can help understand the performance

of today’s networks. Network performance is also influenced

by the choice of Active Queue Management (AQM) policies

and the size of router buffers [3][10]. Thus far there is no con-

sensus on the optimal transport protocol, queue management

strategy, or buffer sizing rule.

There are numerous proposals for AQM schemes; for ex-

ample, Random Early Detection (RED) [2], the Proportional

and the PI Controller [7], and Random Exponential Marking

(REM) [1]. In this paper, we study Drop-Tail as it is commonly

used. We also study REM in some detail as it has been

proposed for both wired and wireless networks, and targets

both a desired queue size and high link utilisation. There

are two extreme asymptotic regimes for sizing router buffers:

the currently deployed bandwidth-delay rule and a small

buffer regime; see [13], [16] for more details. We focus our

evaluation of Compound, along with Drop-Tail and the REM

queue policy, in the aforementioned buffer regimes.

We consider the following models: (i) a recently proposed

non-linear model for C-TCP [14] with Drop-Tail and small

buffers, (ii) a stochastic variant of REM along with C-TCP, and

(iii) the original REM proposal as a continuous time non-linear

dynamical system with time delayed feedback. All the models

are non-linear, so we study both the local stability and the local

bifurcation properties. To that end, we develop conditions to

ensure local stability and show that these conditions would

be violated via a Hopf bifurcation [6], [9] which would lead

to periodic oscillations in the form of limit cycles. The key

performance metrics considered are stability of the queue size,

link utilisation and packet loss. Queuing delay is also a very

important metric for performance [10]; it could be significant

in routers that use the bandwidth-delay rule [3], and would be

negligible with small buffers [12].

With small Drop-Tail buffers, and with the stochastic variant

of REM, we show that the threshold for dropping packets

should be chosen in conjunction with Compound parameters

to ensure stability. The analysis offers design guidelines for

system parameters to ensure sufficient, as well as necessary

and sufficient, conditions for stability. Our analysis of the

original REM proposal shows that an increase in the feedback

delay, or variations in the REM parameters, can cause the

system to lose stability via a Hopf bifurcation. The stability

analysis can guide REM parameters to ensure locally stable

operation. Some of our analysis is complemented with packet-

level simulations, using the Network Simulator (NS2) [17],

under different traffic mixes.

The rest of the paper is organised as follows. In Section II,

we briefly discuss Compound TCP, router buffer sizing and

Active Queue Management. In Section III, we analyse the

stability and bifurcation properties of the various fluid models.

In Section IV we conduct some packet-level simulations, and

summarise our contributions in Section V.

II. COMPOUND TCP, BUFFER SIZING AND AQM

We outline some pertinent aspects of Compound, buffer

sizing and queue management as related to this paper.

Compound TCP: The Compound protocol aims to use both

queuing delay and packet loss as feedback to regulate its

flow and congestion control algorithms. Compound maintains

both cwnd (the loss window) and dwnd (the delay window).

The loss window is the same as in the standard TCP Reno

algorithm [5], which aims to control the loss based component.

The delay window was introduced to cater for delay as an

additional feedback mechanism from the network. The sending

window w is calculated as

w = min(cwnd+ dwnd, awnd),



where awnd is the minimum window size. To estimate the

transmission delay of a packet, a variable called baseRTT is

maintained which is the the minimum round-trip time (RTT )

observed till that time. Then the number of backlogged packets

of the connection diff can be estimated as

diff =

(

w

baseRTT
− w

RTT

)

baseRTT.

The algorithm to find the value of dwnd is as follows:

dwnd(t+1) =











dwnd(t) +
(

αw(t)k − 1
)+

if diff < γth
(

dwnd(t)− ζ diff
)+

if diff ≥ γth
(

w(t)(1− β)− cwnd/2
)+

if loss,

where (z)+ is defined as max(z, 0), γth is the threshold for

diff and ζ > 0. The parameters α, β and k influence the

scalability, smoothness and responsiveness of the window

function, and their default values are α = 0.125, β = 0.5 and

k = 0.75 [15]. If diff < γth, the network path is assumed to

be under utilised and C-TCP acts aggressively by increasing

the sending rate. Otherwise, the network path is considered

to be congested and the delay based component reduces its

window. This algorithm also tries to ensure fairness among

competing TCP flows.

Buffer Sizing: In the literature, three buffer sizing regimes

have been identified [13] [16]. First, the currently deployed

large buffer regime where the buffer size B is dimensioned to

be C ∗RTT , where C is the line rate and RTT is the average

round-trip time of all flows using that link. In practice, RTT
is taken to be 250 ms [16]. Second, an intermediate buffer

regime, where B is C ∗ RTT/
√
N and N is the number of

active TCP connections. Lastly, a small buffer regime where

buffers are sized to the order of tens of packets and the

dimensioning rule does not depend on C, RTT or N . We

focus on the large buffer regime, as it is currently widely

deployed, and the small buffer regime as it is appealing not

to have network parameters influence the choice of buffer size.

Active Queue Management: In this paper, we focus on a

modern AQM like REM [1] and the commonly used Drop-

Tail policy. Drop-Tail simply drops packets only when the

buffer is full. In contrast, REM aims to control the queue

size to a predefined value while simultaneously targeting high

link utilisation. The two main design aspects of REM are (i)

Match Rate and Clear Buffer and (ii) Sum Price, which are

now briefly outlined.

Match Rate and Clear Buffer: The idea is to stabilise the

input rate around the link capacity and the queue size around

a specified target, regardless of the number of users. REM

maintains a variable called price as a congestion measure.

The price is updated on the basis of rate mismatch (difference

between input rate and link capacity) and queue mismatch

(difference between the current and the target queue size). An

increase in the number of users would cause the mismatch in

the rate and queue to increase, which would increase the price

and hence the marking probability. A high marking probability

would send a strong signal to the end-systems to reduce their

rates. For a queue indexed l, the price pl(t) is updated as

pl(t+1) =
[

pl(t)+γ
(

αl

(

bl(t)−b∗l
)

+xl(t)−cl(t)
)]+

, (1)

where (z)+ = max(z, 0), γ and αl are positive constants, bl(t)
is the aggregate buffer occupancy, b∗l is the targeted queue size,

xl(t) is the aggregate arrival rate, cl(t) is the link capacity,

xl(t)− cl(t) measures rate mismatch, and bl(t)− b∗l measures

queue mismatch. The price may increase, but the queue size

should stabilise around the predefined value.

Sum Price: The central idea is to sum all the individual link

prices, and then embed them within an end-to-end marking

probability function. Suppose a packet travels through links

l = 1, 2, ..., L which have prices pl(t), then the marking

probability ml(t) at queue l at time t is given as

ml(t) = 1− φ−pl(t).

Therefore the end-to-end marking probability for the packet

is given by [1]

1−
L
∏

l=1

(

1−ml(t)
)

= 1− φ−
∑

l
pl(t), (2)

where φ > 1 is a tunable parameter, with the default value

φ = 1.001. From (2), the end-to-end marking probability is

high when the congestion measure along the path
∑

pl(t) is

large. For small pl(t), an approximation for the end-to-end

marking probability is loge φ
∑

l pl(t) [1].

III. MODELS AND ANALYSIS

In this section, we consider the following non-linear models

for our stability analysis and performance evaluation: (i) a non-

linear model for C-TCP [14] with Drop-Tail and small buffers,

(ii) a stochastic variant of REM along with C-TCP, and (iii)

the original REM queue management proposal as a continuous

time non-linear dynamical system with delayed feedback.

A. C-TCP in a small buffer regime

A many flows, non-linear, fluid model for C-TCP has

recently been proposed [14]. For notation, let w denote the

current window size, i(w) represent the increase of the win-

dow per positive acknowledgement, and d(w) represent the

decrease of the current window size per negative acknowl-

edgement. In a small buffer regime, the congestion avoidance

algorithm of C-TCP is [14]

w(t+ 1) =

{

w(t)
(

1 + αw(t)k−1
)

if no loss

w(t)
(

1− β
)

if loss,

where α, k, β are protocol parameters. Thus functional forms

for i(w(t)) and d(w(t)) may be represented as

i(w(t)) = αw(t)k−1 and d(w(t)) = βw(t). (3)

A generalised non-linear model for the congestion avoid-

ance phase of transport protocols is [12]



dw(t)

dt
=

(

i
(

w(t)
)

− d
(

w(t)
)

p(t− τ)

)

w(t− τ)

τ
, (4)

with equilibrium

i(w∗) = d(w∗)p(.), (5)

were p(.) is the packet drop probability, τ is the round-trip time

and w∗ is the equilibrium window size. If the average window

size of all flows is w(t), then the average rate at which packets

are sent is x(t) = w(t)/τ . Different forms of p(.) would be

appropriate for different queue management policies.

Substituting the functional forms (3) into equation (4) we

get the following non-linear model for C-TCP

dw(t)

dt
=

(

αw(t)k−1 − βw(t)p(t− τ)

)

w(t− τ)

τ
. (6)

Assume that p(.) is a function of w(.). Let w(t) = u(t)+w∗

and linearising (4), about equilibrium, we get

du

dt
= −au(t)− bu(t− τ), (7)

where

a =− i(w∗)

τ
(k − 2)

b =
i(w∗)

τ

w∗p′(w∗)

p(w∗)
,

were p′(w∗) = dp/dw|w=w∗ . We now recapitulate some

results pertaining to a linear delay equation [11]. Consider

the following equation

du

dt
= −au(t)− bu(t− τ), (8)

where a ≥ 0, b > 0, b > a and τ > 0. A sufficient condition

for stability of (8) is

bτ <
π

2
,

and the equation will undergo a Hopf bifurcation at

τ
√

b2 − a2 = cos−1(−a/b)

with period 2πτ/ cos−1(−a/b).
Thus the sufficient condition for local stability for (6) is

i(w∗)
w∗p′(w∗)

p(w∗)
<

π

2
, (9)

and the Hopf condition is

i(w∗)

√

(

w∗p′(w∗)

p(w∗)

)

2

− (k − 2)2 = cos−1

(

(k − 2)p(w∗)

w∗p′(w∗)

)

,

(10)

with period 2πτ/ cos−1
(

(k−2)p(w∗)
w∗p′(w∗)

)

.

As i(w∗) = αw∗k−1, both the sufficient condition and the

Hopf condition depend on the protocol parameters and the

choice of queue management policy which is represented by

p(w∗). Of course, if the queue policy also had parameters in

it then the stability conditions could also depend on them.

The queue management policy has to chosen carefully as the

stability conditions also depends on p′(w∗).

The Hopf bifurcation: In non-linear systems, it is common

to find the emergence of limit cycles, which may themselves

be stable or unstable, with variations in model parameters. The

analysis associated with the Hopf bifurcation [6] [9] is a way

to analyse the emergence and stability of limit cycles bifur-

cating from a stable equilibrium. We now discuss the Hopf

bifurcation theory informally to convey the basic intuition.

Consider a system of differential equations dx/dt = fη(x)
on R

n, with a locally unique equilibrium x∗ that is stable for

η < ηc and unstable for η > ηc. Further assume that Df(x∗)
and the characteristic exponents at x∗ are continuous in η
and the stability changes when one pair of complex conjugate

characteristic exponents crosses the imaginary axis. Now let

ξ, ξ̄ be the corresponding eigenvectors of Df(x∗), then at ηc
the linearised system has periodic solutions lying in the plane

of Re (ξ) and Im (ξ). A geometric approach (based on the

central manifold theorem) shows that for η near ηc, there is

a 2-manifold invariant under the flow tangent to Re (ξ) and

Im (ξ). This is the place where we get to observe interesting

dynamical behaviour. It is feasible to analyse the motion on

this central manifold. One way to do it is by parametrising

the central manifold by a single complex variable, and then

essentially using the method of averaging [6] [9].

B. Small Drop-Tail buffers

When there are many flows in the system, the following

fluid level approximation has been suggested as a model for

small Drop-Tail buffers [12]

p(x) =
(

x/C
)B

, (11)

where B is the router buffer size, C is the service rate and

recall that w(t) = x(t)τ .

Using this model as a representation for the queue man-

agement policy, a sufficient condition for local stability with

C-TCP and small Drop-Tail buffers is [14]

αBw∗k−1 <
π

2
.

Note that both protocol parameters and the queue policy

parameters feature in this condition. The associated Hopf

condition, with this model, is at

αw∗k−1
√

B2 − (k − 2)2 = cos−1
(

(k − 2)/B
)

,

where the period of the bifurcating solutions is

2πτ/ cos−1
(

(k − 2)/B
)

. This condition also suggests

that protocol parameters should not be chosen independently

of the resource design parameters, at least for this choice of

queue management policy.

Design Guidelines: First note that the conditions for

stability do not explicitly depend on the parameter β.

However, to ensure stability the protocol parameters (k and

α) and the router buffer size have to be chosen carefully.

We note that the parameter B could also represent the

dropping/marking threshold for a queue management policy.

We consider three cases for the choice of parameters.



Case (i): k = 0.75, α = 0.125 (default parameter values).

The sufficient condition for local stability is

αBw∗−0.25 < π/2,

and the necessary and sufficient condition is

αw∗−0.25
√

B2 − 1.252 < cos−1(−1.25/B).

The analysis tells us that if α = 0.125, then with B = 8
local stability is easy to satisfy for large window sizes.

This is an attractive design consideration, and highlights the

importance of designing C-TCP parameters together with

network parameters.

Case (ii): k = 0. The sufficient condition is

αB/w∗ < π/2,

and the necessary and sufficient condition is

α/w∗
√

B2 − 4 < cos−1(−2/B).

If we set α = 1/B, the sufficient condition for stability

will be satisfied if the window size is greater than 2/π.

Again note that the system will be stable as the equilibrium

window sizes increase. Observe that with k = 0, we get

an Additive Increase and Multiplicative Decrease (AIMD)

response function which is similar to TCP Reno.

Case (iii): k = 1. In this case, the sufficient condition

for local stability is

αB < π/2,

and the necessary and sufficient condition is

α
√

B2 − 1 < cos−1(−1/B).

With this choice of k, the dependence of the equilibrium

window on the stability conditions are removed. Then again,

as above, choosing α = 1/B ensures that stability will not

be violated as the window size increases. Figure 1 shows the

relationship between α and B to ensure stability. Thus, if we

choose B = 15, then α = 1/15 ensures that the necessary and

sufficient condition for stability will also be satisfied.

A key conclusion is that, for stability, C-TCP parame-

ters will possibly have to be jointly designed with network

parameters like router buffer sizes (or thresholds for queue

management schemes). We now consider some refined models

which could also act as queue management policies.

C. A stochastic REM variant

We first consider a model for a stochastic marking function

and then a stochastic variant of REM with C-TCP. Suppose

that the work load arriving at the resource over a time-period

δ is Gaussian, with mean xδ and variance xδσ2, and that a

packet is marked on arrival if the workload present in the

queue is larger than a threshold B. Then from the stationary

distribution for a reflected Brownian motion [4], we get [8]

p(x) = exp

(−2B(C − x)

xσ2

)

. (12)
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Fig. 1: Stability chart for α versus B in Drop-Tail with C-TCP

for the protocol parameter k = 1.

Thus p′(x) can be obtained and simplified as

p′(x) = p(x)
2B

σ2

C

x2
.

With the aforementioned queue management policy, a suf-

ficient condition for local stability of C-TCP is

αw∗k−1 2B

σ2
<

π

2
.

There are a few interesting design considerations that arise.

First is that the larger the threshold for marking/dropping

packets, the greater the chances for violating the stability

conditions. Interestingly, variability of the traffic at the packet-

level also influences stability. Once again, we observe the inter-

play between protocol and resource management parameters to

ensure stability. This clearly highlights the need for the joint

design of transport protocols embedded in end-systems and

algorithms that are usually implemented in network routers.

Choosing the C-TCP parameter α to be the inverse of

the threshold marking parameter B does help to ensure local

stability. Such a relationship was also readily deduced from

the previous small buffer Drop-Tail approximation.

We now consider some stability properties of a stochastic

variant of REM with C-TCP. Suppose we mark a packet with

a probability of 1 − exp(−qW ), where W is the workload

already present, then the probability that a packet is marked

can be shown to be [8]

p(x) =
qxσ2

qxσ2 + 2(C − x)
.

We can deduce that a sufficient condition for local stability

of C-TCP, with the stochastic variant of REM, is

αw∗k−1 2

qσ2
<

π

2
.

Note the relation between 1/q and the threshold B in the

above stochastic marking function. The relation between these

two is readily seen as randomly choosing the threshold level

upon each arrival, according to an exponential distribution with

mean q−1. Thus, even with refined models for the queue, the

basic insight that queue policy thresholds can readily impact

stability still holds.



Following on from the analysis, we highlight two points.

First, the precise choice of buffer size, or the thresholds used

in queue management schemes, can readily influence stability.

Using packet-level simulations, later in the paper, this point

will be corroborated. Then, we wish to reiterate the importance

of the joint design of transport protocols, and their parameters,

along with resource design functions, and their parameters, in

providing stability and performance.

In the models considered thus far, we did not model the

queue dynamics explicitly. Instead, the focus was on an

operating regime where the transport protocol was acting to

control the distribution of the queue size. The resource design

functions were considering a regime where stochastic effects,

relevant on a queuing time-scale, form an essential component

of the system dynamics. Such stochastic effects were assumed

to be averaged out over the time-scale of round-trip times.

We now analyse the original proposal of REM [1], where

we model the instantaneous queue size along with a dynamical

representation of the price which represents the congestion

measure at the resource.

D. Non-linear model for REM

We now consider the original REM proposal; however, as a

continuous time non-linear model with time delayed feedback.

Consider the following non-linear model for REM:

dpl(t)

dt
= γ

(

αl

(

bl(t)− b∗l
)

+ xl(t− τ)− CI{pl(t)>0}

)

dbl(t)

dt
=xl(t− τ)− C, if bl > 0

(13)

where xl(t) = D(pl(t)) with D(pl), pl ≥ 0, a non negative,

continuous, decreasing demand function. Here bl(t) is the

aggregate buffer occupancy at the queue, b∗l is the target queue

size, pl represents the price as the congestion measure which

takes the notion of clear buffer and match rate into account.

C is the total link service rate, γ and αl are positive REM

constants, and τ is the round-trip time of the users. Note that

the queue dynamics are represented by an integrator, and not

by the distribution of the queue size.

Let p∗l and b∗l denote the equilibrium, and let pl(t) = u1(t)+
p∗l and bl(t) = u2(t) + b∗l . We now linearise the non-linear

system (13) to obtain

du1(t)

dt
= γαlu2(t) + γD′u1(t− τ)

du2(t)

dt
=D′u1(t− τ),

(14)

where D′ = D′(p∗l ) < 0. The characteristic equation, obtained

by looking for exponential solutions, associated with the

linearised system is

λ2 + ζ1λe
−λτ + ζ2e

−λτ = 0, (15)

where ζ1 = −γD′ > 0, ζ2 = −γαlD′ > 0.

Consider the associated characteristic equation

λ2 + ζ1λe
−λτ + ζ2e

−λτ = 0,

Hopf condition

ζ
2

ζ
1

Fig. 2: Local stability chart for a non-linear model of REM,

equation (13), where ζ1 = −γD′ > 0 and ζ2 = −γαlD′ > 0.

where ζ1 > 0, ζ2 > 0 and τ ≥ 0. We start by assuming that

λ = iω, ω > 0 is a root of the above characteristic equation

for some τ . We get

−ω2 + ζ1ω sin (ωτ) + ζ2 cos (ωτ) = 0

ζ1ω cos (ωτ)− ζ2 sin (ωτ) = 0,
(16)

which yields

ω4 − ζ21ω
2 − ζ22 = 0,

giving

ω =

√

ζ21 +
√

ζ41 + 4ζ22
2

.

We need to satisfy the transversality condition of the Hopf

bifurcation, i.e. we need to determine the sign of the derivative

of Re(λ(τ)) at the points where λ(τ) is purely imaginary.

From the characteristic equation we have

(

2λ+ [ζ1 − τ(ζ1λ+ ζ2)] e
−λτ

) dλ(τ)

dτ
= λ(ζ1λ+ ζ2)e

−λτ .

Instead of dλ(τ)/dτ , we can analyse
(

dλ(τ)/dτ
)−1

. Thus

(

dλ(τ)

dτ

)−1

=
2λeλτ + ζ1
λ(ζ1λ+ ζ2)

− τ

λ
,

and

λ2eλτ = −(ζ1λ+ ζ2).

Hence

sign

(

Re
(

dλ(τ)
)

dτ

)

∣

∣

∣

∣

λ=iω

= sign

(

Re

(

(

dλ(τ)

dτ

)

−1
))

∣

∣

∣

∣

λ=iω

= sign

(

Re

(

−2λ

λ3
+

ζ1

λ(ζ1λ+ ζ2)

)) ∣

∣

∣

∣

λ=iω

= sign

(

2

ω2
−

ζ21

ζ2
2
+ ζ2

1
ω2

)

= sign
(

2ζ22 + ζ
2

1ω
2
)

> 0.

In our equation, with ζ2 > 0, only one imaginary root exists.

Hence the only crossing of imaginary axis is from the left to



the right as τ increases. From (16) we get

τc =
θ

ω
where 0 ≤ θ ≤ 2π and

cos(θ) =
ζ2ω

2

ζ22 + ζ21ω
2

sin(θ) =
ζ1ω

3

ζ22 + ζ21ω
2
.

We now collect the above analysis in the form of a Theorem.

Theorem: The non-linear model for REM, equation (13), is

locally asymptotically stable for τ = 0, is stable until τ < τc,

undergoes a Hopf bifurcation at τ = τc and is unstable for

τ > τc.

This shows that it would be hard to ensure local stability of

REM in networks where the delays may be large. See Figure

2 for the associated stability chart. The condition for stability

is also influenced by REM parameters, and so variations in

REM parameters may violate the stability conditions.

The models analysed so far have represented fluid approx-

imations to the underlying packet-based system. In the next

section, we conduct packet-level simulations to complement

some of the analytical results.

IV. PACKET-LEVEL SIMULATIONS

We now conduct some packet-level simulations using the

Network Simulator (NS2) [17]. The topology we use is a

single bottleneck, with a capacity of 100 Mbps. We use the

default parameter values of REM: γ = 0.001, αl = 0.1, and

φ = 1.001, and the default parameter values of Compound.

We use the REM scripts available in NS2 version 2.35.

In subsection A, we conduct simulations of C-TCP, with

Drop-Tail and REM, in large and small buffers. The large

buffer regime (bandwidth-delay rule) translates into 2084
packets. This is because the link capacity is 100 Mbps, and in

practice a value of 250 ms is used irrespective of the actual

delays of the TCP flows. In the small buffer regime, parameters

like the link capacity, feedback delays and the number of users

do not influence the choice of buffer size. In this regime, we

vary buffers in the range of 15 to 100 packets, as guided by our

stability analysis. The traffic consists of 60 long-lived C-TCP

flows, each with a 2 Mbps link feeding into the bottleneck.

The packets have a size of 1460 bytes.

In subsection B, we explore the ability of REM to control

queue sizes and maintain high link utilisation with C-TCP. We

use the large buffer regime as this is widely deployed. In this

simulation, the traffic mix is a combination of FTP, UDP and

HTTP flows. The traffic consists of 55 FTP flows, each with a

2 Mbps link, 8 UDP flows contributing a total of 8 Mbps, and

50 short-lived (HTTP) flows which arrive and depart randomly

and contribute an average of 2 Mbps. The packet sizes vary

between 1000− 1500 bytes. The REM parameters are chosen

to target a desired queue size of 15 and 100 packets. The

average round-trip time of the FTP flows present is varied

between 10 and 200 ms.

A. C-TCP, REM & Drop-Tail, Small & Large buffers

With small buffers, as router buffer sizes vary from 15 to

100 packets, with both Drop-Tail and REM we see stable limit

cycles in the queue size. See Figure 3(a) (buffer size = 15
packets) and Figure 3(b) (buffer size = 100 packets). Our

analysis with Drop-Tail predicted the loss of local stability,

via a Hopf, as buffers got larger; see Figure 1 in Section III

A. In such a small buffer regime, the transport layer protocol

acts to control the distribution of the queue size and thus it

is plausible that REM effectively degenerates into Drop-Tail.

With small buffers, the simplicity of Drop-Tail appears to be

preferable to the more involved REM.

With large buffers, REM finds it difficult to control the

queue size to a desired value, especially with larger round-

trip times; see Figure 3(c). With large delays we witness the

formation of limit cycles in the queue size, which also hurt

link utilisation. Thus the twin objectives of REM of controlling

the queue size to a desired value and maintaining a high link

utilisation need not be satisfied. Drop-Tail, with large buffers,

is expected to have full link utilisation but this comes at the

cost of enormous queuing delays.

B. C-TCP, REM, Large buffers: varying queue thresholds

Large buffers are widely deployed, and thus a queue man-

agement policy should be able to ensure low latency, stability

of queue sizes, and decent link utilisation. We conduct two

simulations, where the desired queue size in REM is specified

to be 15 and 100 packets respectively; see Figure 4(a) (15
packets) and Figure 4(b) (100 packets). The traffic consists of a

combination of 55 FTP flows, each with a 2 Mbps link, 8 UDP

flows (contributing 8 Mbps) and 50 HTTP flows (contributing

a total of 2 Mbps). With smaller round-trip times for the FTP

flows, we observed full link utilisation and no evidence of

instabilities in the queue size. With larger round-trip times,

the queue sizes developed limit cycles which in turn hurt link

utilisation. Even with the presence of UDP and HTTP flows,

the emergence of limit cycles was rather evident. So while

latency could be reduced, link utilisation would be adversely

impacted. We observe that the simple model of REM, analysed

in Section III D, alerted us to the fact that large delays could

be destabilising to the system.

Clearly, the combination of Compound, queue management

schemes and buffer size impacts network performance. Buffer

size appears to play a central role, as variations in it influ-

ence both latency and queue stability. With the analysis and

simulations thus far, there appears to be no clear advantage of

using REM in either small or large buffers. However, a study

of the stochastic variant of REM merits further investigation.

V. CONCLUSIONS

The presence of queuing delay in the Internet is detrimental

to the development of low latency applications. Recent pa-

pers have the following strongly worded one line abstracts:

“Networks without effective AQM may again be vulnerable

to congestion collapse” [3], and “A modern AQM is just

one piece of the solution to bufferbloat” [10]. These papers



i) Drop-Tail ii) REM

(a) With 15 packet buffers, the queues with C-TCP and Drop-Tail do not exhibit limit cycles. This is in agreement with the stability analysis presented
in Section III A. Figure 1 shows the relationship between α (a C-TCP parameter) and the buffer size to maintain local stability. With small buffers,
REM effectively degenerates into Drop-Tail and thus we observe similar performance. The target queue size for REM was set to 10 packets.

ii) REMi) Drop-Tail

(b) With 100 packet buffers, the stability analysis in Section III A shows that larger buffer sizes could destabilise the system. With both queue
policies, note the emergence of limit cycles in the queue size with larger feedback delays. These non-linear oscillations can start to hurt link
utilisation. The target queue size for REM was set to 15 packets.

i) Drop-Tail ii) REM

(c) With large buffers, both queue policies show degraded performance. Drop-Tail has full utilisation, but no control over latency. With larger
feedback delays, with REM, the limit cycles also hurt link utilisation. The target queue size for REM was set to 100 packets.

Fig. 3: Performance of C-TCP, with Drop-Tail and REM, in a small and a large buffer regime. The traffic consists of 60
long-lived C-TCP flows, each with a 2 Mbps link, over a single bottleneck with capacity 100 Mbps. The average round-trip

time was varied between 10 ms and 200 ms. The REM and Compound parameters were maintained at their default values.
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Fig. 4: REM, in large buffers, with a mix of FTP, UDP and

HTTP flows. The left panel has a target queue size of 15
packets and the right panel has a target of 100 packets. In both

cases, larger feedback delays give rise to stable limit cycles

in the queue size which clearly also hurt link utilisation. Note

that larger threshold values tend to have a destabilising effect.

highlight the importance of the latency problem, that the

problem is expected to get worse, and that as yet there has

been no acceptable resolution.

We conducted a performance evaluation of Compound TCP

coupled with Drop-Tail and REM operating over a large

(bandwidth-delay product) and a small buffer regime. Our

study was based on a combination of analysis, of numerous

fluid models, and packet-level simulations using NS2. The

analysis used queuing models coupled with control and bi-

furcation theory. The performance metrics considered were

stability of queue sizes, latency, link utilisation and packet loss.

We first analysed a non-linear model for C-TCP along with

small Drop-Tail buffers. Stability was found to be very sensi-

tive to the precise choice of buffer size. Variations in the buffer

size could readily induce a Hopf bifurcation. The analysis

highlighted the relationships between C-TCP parameters and

buffer sizes to maintain local stability. With small buffers we

can get low latency and stable queue sizes, but have no explicit

control over link utilisation. The analytical insights, for C-TCP

over small Drop-Tail buffers, were corroborated using packet-

level simulations. A key performance metric turned out to be

stability of the queue size. Formation of limit cycles in queues

causes packet losses to occur in bursts, which synchronises

TCP flows, and this in turn leads to a loss in link utilisation.

The analysis of Compound with a stochastic variant of REM

provided two key observations. First, that smaller REM thresh-

olds for marking/dropping packets would help to maintain

stability. Second, that for system stability both C-TCP and

REM parameters should be jointly designed.

We finally modelled the original REM proposal as a set of

continuous time, non-linear, equations with delayed feedback.

For this model, we derived the necessary and sufficient con-

ditions for local stability. The analysis showed that variations

in delays, or in REM parameters, can destabilise the system.

With large feedback delays, we explicitly characterised the

loss of local stability to occur via a Hopf bifurcation.

With large buffers, with C-TCP, Drop-Tail is unable to

ensure low latency whereas REM was unable to stabilise the

queue sizes. In small buffers, REM does not appear to offer

any clear advantage over Drop-Tail. In this regime we also

suggested guidelines for the C-TCP parameters to be designed

in conjunction with Drop-Tail router buffers to ensure stability.

Avenues for further research

It is important to enhance the mathematical understanding

of the models. One certainly needs to analytically characterise

the stability of the limit cycles that were predicted in theory,

and observed in packet-level simulations. The performance

analysis of Compound with other queue management propos-

als, in different buffer sizing regimes, will help in building a

comprehensive understanding of network performance.
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