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Abstract—There have been a bulk of analytic results about
the performance of cellular networks where base stations are
regularly located on a hexagonal or square lattice. This regular
model cannot reflect the reality, and tends to overestimate
the network performance. Moreover, tractable analysis can be
performed only for a fixed location user (e.g., cell center or edge
user). In this paper, we use the stochastic geometry approach,
where base stations can be modeled as a homogeneous Poisson
point process. We also consider the user density, and derive
the user outage probability that an arbitrary user is under
outage owing to low signal-to-interference-plus-noise ratio or high
congestion by multiple users. Using the result, we calculate the
density of success transmissions in the downlink cellular network.
An interesting observation is that the success transmission density
increases with the base station density, but the increasing rate
diminishes. This means that the number of base stations installed
should be more than n-times to increase the network capacity
by a factor of n. Our results will provide a framework for
performance analysis of the wireless infrastructure with a high
density of access points, which will significantly reduce the
burden of network-level simulations.

I. INTRODUCTION

The capacity of cellular networks has been a classical and

important issue for efficient radio resource management [1].

The most improvement of the network capacity has come

from reducing the cell size by installing more base stations

such as femtocells [2], [3]. We may have a question, “How

much does the network capacity increase as we install more

base stations?” Unfortunately, answers to the question are not

trivial, in particular when it comes to the case of multiple

interfering base stations and mobile users. So far, the only

attractable approach is to rely on simulations, where various

models on radio channels and the spatial distribution of base

stations and users are used. In this paper, we tackle the issue

to derive closed form formulas for quickly answering the

question.

Many previous studies on cellular networks assumed that

base stations are positioned regularly and tractable analysis

was performed only for a fixed location user (e.g., cell center

or edge user) [1], [4]. This regular model tends to overestimate

the capacity of cellular networks owing to the perfect geometry

of base stations and the neglect of weak interference from

outer tier base stations. For this reason, we use the stochastic

geometry approach, where base stations can be modeled as a

homogeneous Poisson point process (PPP) [5]-[7]. The main

advantage of this PPP model is that we can derive the signal-

to-interference-plus-noise ratio (SINR) distribution at an arbi-

trary location considering random channel effects such as fad-

ing and shadowing. Moreover, the PPP model reflects random

location characteristics of base stations. This randomly located

base station scenario exists in heterogeneous networks where

a large number of microcell and femtocell base stations are

deployed. Particularly, user-deployed femtocells increase the

randomness. The stochastic geometry approach has recently

got much attention in particular for quantifying the co-channel

interference in the wireless network (see [8] and literature

therein). It has been applied to CDMA cellular networks [9],

cellular networks with multi-cell cooperation [10], femtocells

[11], cognitive radio networks [12] and CSMA/CA based

wireless multihop networks [13], [14].

In this paper, we derive the downlink capacity of a cellular

network, as closed form formulas, and evaluate its correctness

by means of simulations. The most relevant research to our

work is the one by Andrews et al. [5]. In that paper, the

authors used a PPP modeling for the base station distribution

but did not consider the user density. Therefore, their results

are useful for calculating the area outage probability, i.e.,

the probability that an arbitrary location is under outage

owing to the low SINR. A key observation in [5] is that

the area outage probability is independent of the base station

density in interference limited cellular networks. This means

that the network capacity linearly increases with the base

station density. However, the result can be achieved under

a assumption that every cell has saturated traffic. This is

unreasonable as the number of base stations increases; some

of the small cells do not even have any user to serve. Also,

even if the user density is sufficiently high for the saturated

traffic assumption, each base station can serve only one user

in a resource block at a given time, which makes some users

be under outage. Therefore, we define and derive the user

outage probability, the probability that an arbitrary user is

under outage considering not only the SINR level but also

the user selection.

We assume base stations and mobile users are located with

respective densities and radio channels fluctuate according to

short-term fading and pathloss. The inter-cell interference is

dependent on the frequency reuse factor but here we assume

that every channel can be reused in every cell (i.e., the

frequency reuse factor is 1). The rest of the paper contains

how we derive our results (Propositions 1, 2, 3 and 4).



Fig. 1. The base stations and mobile users modeled as Poisson point process.
The cell area of each base station forms a Voronoi tessellation.

II. SYSTEM MODEL

Consider a downlink cellular network consisting of base

stations (BSs) and mobile users (MUs). Many previous studies

on cellular networks assumed that BSs are positioned regu-

larly. However, in reality, it is not true and there are some

random characteristics. To remedy the model, we apply a

homogeneous PPP to the spatial distribution of the BSs such

as [5]-[7]. Besides, we consider the density of MUs, where the

MUs are randomly distributed according to some independent

homogeneous PPP with a different density. One can argue that

the MU distribution may not be best modeled as the PPP.

However, this is a tractable and reasonable approach as was

also used in [15].

The spatial distribution of BSs follows PPP Φb with the

density λb, over which MUs are positioned with PPP Φu

with the density λu. Each MU is served by the nearest BS.

This means that the cell area of each BS forms a Voronoi

tessellation [16] as in Figure 1. We assume that the radio

channel attenuation is dependent on pathloss and Rayleigh

fading in our analysis (Section IV). Further, we consider log-

normal shadowing as well in our simulations (Section V).

We consider only one resource block at a given time and

assume that only one MU is scheduled in the resource block.

In other words, if there are multiple MUs in the Voronoi cell of

a BS, then the BS can serve only one of them in the resource

block. The resource block can be interpreted as a time slot

(in time division multiple access systems), a sub-carrier (in

frequency division multiple access systems) or a scheduled

slot (in code division multiple assess systems). We assume that

selection probabilities of the MUs within a Voronoi cell are

equally likely (i.e., random selection with equal probability)

for the fairness. On the other hand, there might be some BSs

that do not have any MU to serve. In that case, the BSs will

not transmit any signal (i.e., inactive). The inactive probability

may increase with the number of BSs.

III. INACTIVE BASE STATION PROBABILITY AND USER

SELECTION PROBABILITY

In this section, we derive two important probabilities, inac-

tive BS probability and user selection probability. The inactive

BS probability refers to the probability that a randomly chosen

BS does not have any MU in its Voronoi cell. This probability

will be used for calculating the aggregate inter-cell interference

in Section IV. The user selection probability denotes the one

that a randomly chosen MU is assigned a resource block at a

given time and is served by the nearest BS.

A. Inactive Base Station Probability

At a given time, there can be some BSs that do not have any

MU in their Voronoi cells. This happens when the BS density

is high, e.g., femtocells. Those BSs are inactive. We start with

the probability density function of the size of a typical Voronoi

cell, which was derived by the Monte Carlo method [17]:

fX (x) =
3.53.5

Γ (3.5)
x2.5e−3.5x, (1)

where X is a random variable that denotes the size of the

typical Voronoi cell normalized by the value 1/λb. Using (1),

we can derive the probability mass function of the number of

MUs in a typical Voronoi cell:

Lemma 1: Let the random variable N denote the number of

MUs in the Voronoi cell of a randomly chosen BS. Then, the

probability mass function of N is

P [N = n] =
3.53.5Γ (n+ 3.5) (λu/λb)

n

Γ (3.5)n! (λu/λb + 3.5)
n+3.5 .

Proof: Using the law of total probability and the function

(1), the probability mass function of N is given as

P [N = n] =

∫ ∞

0

P [N = n|X = x] · fX (x) dx

=

∫ ∞

0

(

λu
x
λb

)n

n!
e
−λu

x
λb · fX (x) dx

=
3.53.5

Γ (3.5)

(λu/λb)
n

n!

∫ ∞

0

xn+2.5e−(λu/λb+3.5)xdx

=
3.53.5

Γ (3.5)

(λu/λb)
n

n!
Lxn+2.5 (λu/λb + 3.5)

=
3.53.5Γ (n+ 3.5) (λu/λb)

n

Γ (3.5)n! (λu/λb + 3.5)
n+3.5 ,

where Lf(x) (s) denotes the Laplace transform of f (x).

Using Lemma 1, we derive the inactive BS probability as

follows:

Proposition 1: The probability (pinactive) that a randomly

chosen BS does not have any MU in its Voronoi cell is

pinactive = P [N = 0] =
(

1 + 3.5−1λu/λb

)−3.5



B. User Selection Probability

Now we calculate the probability that a randomly chosen

MU is selected for service at a given time. To derive the

probability, we need the following property:

Lemma 2: The probability density function (fY (y)) of the size

of the Voronoi cell to which a randomly chosen MU belongs

is

fY (y) =
3.54.5

Γ (4.5)
y3.5e−3.5y,

where Y is a random variable that denotes the size of the

Voronoi cell normalized by the value 1/λb.

Proof: Consider a typical Voronoi cell and let I ∈ {0, 1}
denote the random variable that a randomly chosen MU is

located in the Voronoi cell. If the randomly chosen MU is

located in the Voronoi cell, then I = 1. Otherwise, I = 0.

Consider the probability P [I = 1 |X = x ], where X is a

random variable that denotes the size of the typical Voronoi

cell as in Equation (1). Using the fact that the probability is

proportional to x, we can get the following equations:

P [I = 1 |X = x ] =
fX,I (x, 1)

fX (x)
= cx

→ fX,I (x, 1) = cxfX (x) , (2)

where c is a constant value. Note that fY (y) = fX|I=1 (y)
by definition. Therefore, we can derive fY (y) as follows:

fY (y) = fX|I=1 (y) =
fX,I (y, 1)

P [I = 1]
=

cyfX (y)

P [I = 1]
= c′yfX (y) ,

where c′ is another constant value. Finally, using the fact that
∫∞

0
fY (y) dy = 1, we get the probability density function in

this lemma.

The difference between fX (x) and fY (y) comes from the

fact that large Voronoi cells have more chance to cover a

given fixed point (a randomly chosen MU), which is well

explained in [18]. Using Lemma 2, we derive the user selection

probability as follows:

Proposition 2: The probability (pselection) that a randomly

chosen MU is assigned a resource block at a given time and

is served by the nearest BS is

pselection =
1

λu/λb

(

1−
(

1 + 3.5−1λu/λb

)−3.5
)

.

Proof: The user selection probability given the number

of the other MUs (i.e., N ′ = n) is equal to 1/ (n+ 1), and

the location of the other MUs follows the reduced Palm distri-

bution with the PPP Φu (Slivnyak’s theorem [19]). Therefore,

using the law of total probability, pselection is given as

pselection =

∞
∑

n=0

1

n+ 1
· P [N ′ = n]

=

∞
∑

n=0

1

n+ 1
·
∫ ∞

0

P [N ′ = n|Y = y] · fY (y) dy

=

∫ ∞

0

∞
∑

n=0

1

n+ 1

(

λu
y
λb

)n

n!
e
−λu

y
λb · fY (y) dy

=

∫ ∞

0

λb

λu
y−1

∞
∑

k=1

(

λu
y
λb

)k

k!
e
−λu

y
λb · fY (y) dy

=

∫ ∞

0

λb

λu
y−1

(

1− e
−λu

y
λb

)

· fY (y) dy

=
3.54.5

Γ (4.5)

λb

λu

∫ ∞

0

y2.5e−3.5y − y2.5e
−
(

3.5+λu
λb

)

y
dy

=
3.54.5

Γ (4.5)

λb

λu

(

Ly2.5 (3.5)− Ly2.5

(

3.5 +
λu

λb

))

=
1

λu/λb

(

1−
(

1 + (3.5)
−1

λu/λb

)−3.5
)

.

To verify our analysis, we conduct simulations with 105

independent samples of the location of BSs and MUs. We

set the user density λu = 30. We numerically calculate the

probability density functions of the Voronoi cell size fY (y)
(Lemma 2), the inactive BS probability pinactive (Proposition

1) and the user selection probability pselection (Proposition 2)

in terms of the BS density λb. Figure 2 shows the results,

which exactly coincide with Equation (1), Lemma 2, and

Propositions 1 and 2.

IV. PERFORMANCE ANALYSIS OF CELLULAR NETWORKS

In this section, we analyze the capacity of cellular networks

as a function of MU and BS density, and the target service

quality. We define service success probability and service ca-

pacity as performance metrics. The service success probability

refers to the probability that the cellular network succeeds

in serving an arbitrary MU. It is composed with two parts,

user selection probability (Proposition 2) and the transmission

success probability which is defined in this section. The

service capacity refers to the density of MUs with success

transmissions.

A. Service Success Probability

Service success probability (pservice) is defined as

pservice
∆
= pselection · psuccess, (3)

which means the probability that the cellular network suc-

ceeds in serving an arbitrary MU with some target signal-to-
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Fig. 2. (a) The probability density function fX(x) of the size of a typical Voronoi cell and the probability density function fY (y) of the size of the Voronoi
cell where a randomly chosen mobile user is located. (b) The inactive base station probability pinactive and the user selection probability pselection as a
function of the base station density λb (the mobile user density is λu = 30).

interference-noise ratio (γ̂).1 The transmission success prob-

ability (psuccess) is the one that the MU’s received signal to

interference-noise ratio (γ) is higher than γ̂. We derive the

transmission success probability in the following lemma:

Lemma 3: The transmission success probability (psuccess) is

psuccess =

πλb

∫ ∞

0

e
−πλb

(

1+
(

1−(1+3.5−1λu/λb)
−3.5

)

k
)

x−
γ̂σ2

Nxα/2

s dx,

where σ2
N and s denote the noise and the transmitted signal

powers, respectively. The value α denotes the pathloss expo-

nent and k = γ̂2/α
∫∞

γ̂−2/α 1/
(

1 + uα/2
)

du.

Proof: From the result of [5], we get the transmission

success probability as follows:

psuccess = πλb

∫ ∞

0

e−π(λb+λik)x−
γ̂σ2

Nxα/2

s dx, (4)

where λi denotes the density of the BSs interfering with the

given MU. Note that λi is equal to λi = λb · (1− pinactive)
by Proposition 1.2 Then, we get the result of this lemma.

The closed form formula (psuccess) can be obtained when

the pathloss exponent α is 4. Unfortunately, to the best of our

knowledge, the other values of α do not give us such closed

1The definition of pservice is based on the assumption that pselection
and psuccess are independent. Unfortunately, there is dependency between
the two. If a MU is selected, then it is more likely to belong to a small
cell, and thus interferes are likely to be closer. However, this dependency is
negligible, which will be verified by the good match between theoretical and
simulation results (Figure 3).

2The process of the BSs interfering with the given MU will be a dependent
thinning of the initial BS process Φb owing to the difference in cell size
and shape. For mathematical tractability, however, we assume that it is an
independent thinning of Φb with the thinning probability pinactive (in an
average sense).

form. Using Proposition 2 and Lemma 3, we derive pservice
in the following proposition:

Proposition 3: The service success probability (pservice) is

pservice =
πλ2

b

λu

(

1−
(

1 + 3.5−1λu/λb

)−3.5
)

·
∫ ∞

0

e
−πλb

(

1+
(

1−(1+3.5−1λu/λb)
−3.5

)

k
)

x−
γ̂σ2

Nxα/2

s dx.

If we assume that the noise is negligible (i.e., interference

limited system) and α = 4, then pservice is reduced to the

following closed form formula:

pservice =
1−

(

1 + 3.5−1λu/λb

)−3.5

λu/λb

(

1 +
(

1− (1 + 3.5−1λu/λb)
−3.5

)

k′

) , (5)

where k
′

=
√
γ̂
(

π/2− arctan
(

1/
√
γ̂
))

.

B. Service Capacity

Service capacity (Cservice) is defined as

Cservice
∆
= λu · pservice. (6)

It is interpreted as the density of MUs with success transmis-

sions. Using Proposition 3, we derive Cservice in the following

proposition:

Proposition 4: The service capacity (Cservice) is

Cservice = πλ2
b

(

1−
(

1 + 3.5−1λu/λb

)−3.5
)

·
∫ ∞

0

e
−πλb

(

1+
(

1−(1+3.5−1λu/λb)
−3.5

)

k
)

x−
γ̂σ2

Nxα/2

s dx.
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Fig. 3. Performance metrics as a function of the base station density λb: (a) The service success probability pservice. (b) The service capacity Cservice (the
mobile user density is λu = 30, the pathloss exponent is α = 4, the target signal to interference-noise ratio is γ̂ = 0dB, and interference limited system).

Again, if we assume that the noise is negligible and α = 4,

then Cservice is reduced to the following closed form formula:

Cservice =
λb

(

1−
(

1 + 3.5−1λu/λb

)−3.5
)

1 +
(

1− (1 + 3.5−1λu/λb)
−3.5

)

k′

, (7)

where k
′

is given in (5).

To verify Propositions 3 and 4, we conduct simulations with

105 independent samples of the location of BSs and MUs. We

assume an interference limited system and set the user density

λu = 30, the pathloss exponent α = 4, the target signal to

interference-noise ratio γ̂ = 0dB. We numerically calculate

the service probability pservice (Proposition 3) and the service

capacity Cservice (Proposition 4). Figure 3 shows the results.

In Proposition 3 and 4, we consider pathloss and Rayleigh

fading in our channel model. On the other hand, we add the

shadow fading in our simulations. Therefore, there is small

gap between our analysis and the simulation result as the BS

density increases. However, the general shape of the curves

exactly match each other.

In Figure 3-(b), we see that the service capacity is a concave

function of the number of BSs. In other words, the average

quality of service may not increase rapidly with the installation

of additional BSs, after some point. This is because some of

small cells cannot have any user to serve as the number of

BSs increases. Moreover, increase of co-channel interference

by a large number of BSs leads to decrease of the marginal

capacity.

The numerical results (Figures 3) are based on the pathloss

exponent α = 4, where the closed form formula is available.

For the other cases, we need to calculate the numerical inte-

gration part of Propositions 3 and 4. However, this burden is

much less than the system level simulations. Figure 4 contains

our results where the pathloss component varies between 2
and 4. In the figure, we see that the capacity of networks
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Fig. 4. The service capacity Cservice for various pathloss exponents α (the
mobile user density is λu = 30, the target signal to interference-noise ratio
is γ̂ = 0dB, and interference limited system).

increases as the pathloss exponent becomes higher. This is

due to the fact that the higher pathloss will filter co-channel

interference among the cells [20]. On the other hand, we see

that the behavior of diminishing the marginal capacity remains

the same as in Figure 3-(b).

C. Asymptotic Cases

To get simpler closed form formulas, we consider two

asymptotic cases. The first is the one that the density of BSs is

much higher than that of MUs (i.e., λb ≫ λu) like femtocells.

In this case, the user selection probability can be approximated

to one (i.e., pselection ≈ 1) and the density of the transmitting

BSs can be approximated to that of the MUs (i.e., λi ≈ λu).

Therefore, service success probability and service capacity are



given as follows:

pservice ≈ πλb

∫ ∞

0

e−π(λb+λuk)x−
γ̂σ2

Nxα/2

s dx,

Cservice ≈ πλbλu

∫ ∞

0

e−π(λb+λuk)x−
γ̂σ2

Nxα/2

s dx. (8)

Moreover, if we assume that the noise is negligible and α = 4,

those are reduced to:

pservice ≈
λb

λb + λuk
′
, Cservice ≈

λbλu

λb + λuk
′
. (9)

The second is the case that the density of the MUs is much

higher than that of the BSs (i.e., λu ≫ λb). This scenario is for

the highly congested area like downtowns. In the case, inactive

probability can be approximated to zero (i.e., pinactive ≈ 0)

and the density of the transmitting BSs can be approximated

to that of the existing BSs (i.e., λi ≈ λb). Therefore, service

success probability and service capacity are given as follows:

pservice ≈
πλ2

b

λu

∫ ∞

0

e−πλb(1+k)x−
γ̂σ2

Nxα/2

s dx,

Cservice ≈ πλ2
b

∫ ∞

0

e−πλb(1+k)x−
γ̂σ2

Nxα/2

s dx. (10)

Similarly, if we assume that the noise is negligible and α = 4,

those are reduced to:

pservice ≈
λb

λu (1 + k′)
, Cservice ≈

λb

1 + k′
. (11)

V. CONCLUSIONS

In this paper, we used the stochastic geometry approach

and derived useful distributions and probabilities for cellular

networks (Propositions 1, 2 and 3). Using these, we calculated

the density of success transmissions in the downlink cellular

network that was defined as the service capacity (Proposition

4). A key observation is that the success transmission density

increases with the base station density, but the increasing

rate diminishes. If the MU density is much higher than the

BS density (i.e., saturated traffic condition) and the noise

is negligible (i.e., interference limited system), however, the

success transmission density linearly increases with the BS

density (Equation (11)).

The limitation of our current work is as follows: First, we

did not consider the shadow fading in the channel model

of our analysis. Even though we verified our results using

simulations, extension to the shadow fading case seems to

be necessary in particular shadowing are correlated [21].

Second, the user selection is equally likely in each base

station. However, we may consider more realistic scheduling

algorithms into the analysis.
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