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Abstract—We study network utility maximization problems
in wireless networks for service differentiation that optimize
the Signal-to-Interference-plus-Noise Radio (SINR) and relia-
bility under Rayleigh fading. Though seemingly nonconvex, we
show that these problems can be solved using an optimization
decomposition where each user calculates a payment for a
given resource allocation, and the network uses the payment to
optimize the performance of the user. We study three important
examples of this utility maximization, namely the weighted sum
logarithmic SINR maximization, the weighted sum inverse SINR
minimization and the weighted sum logarithmic reliability maxi-
mization. These problems have hitherto been solved suboptimally
in the literature. By exploiting the positivity, quasi-concavity and
homogeneity properties in these problems using the nonlinear
Perron-Frobenius theory, we propose fixed-point algorithms that
converge geometrically fast to the globally optimal solution.
Numerical evaluations show that our algorithms are stable (free
of parameter configuration) and computationally fast.
Index Terms—Optimization, network utility maximization, re-

source allocation, nonlinear Perron-Frobenius theory.

I. INTRODUCTION

Utility maximization in wireless networks is more compli-
cated than its wired counterpart because of factors such as
time-varying channel fading conditions, multiuser interference
and adaptive resource allocations in the physical layer. It
is also desired that algorithms for solving wireless resource
allocation be simplified, for example with little parameter
tunings or that base stations are oblivious to individual chan-
nel conditions or user utility functions. Utility maximization
thus requires a joint optimization of resource allocation and
interference management using algorithms with good prop-
erties. However, important and commonly-used performance
metrics in the wireless utility maximization problems are often
nonconvex and highly nonlinear, and thus are generally hard
to solve. It is also challenging to design simple network
algorithms that can solve them optimally.
Network utility maximization has its roots in the seminal

work [1] by Kelly who established an optimization framework
to decompose the original problem into separable smaller
subproblems that are separately solved by individual users and
a network controller. A novelty in this optimization framework
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is the use of proportional fairness as an intermediate mecha-
nism for resource allocation, particularly to design rate control
algorithms in [1]. The authors in [2], [3] used dual decompo-
sition theory to tackle this utility maximization problem in
wireless networks. The authors in [4] studied utility that is
the sum of inverse SINR or nonlinear interference functions.
To avoid the nonconvexity, the authors in [5] proposed a
game-theoretic pricing mechanism to maximize a utility that
is a weighted sum logarithmic reliability. The authors in [6]
proposed a sum inverse SINR heuristic similarly to [4] to
solve a utility maximization problem in [2]. In [7], the authors
studied distributed Jacobi best-response algorithms that are
obtained by a partial-linearization decomposition method to
solve convexified version of the utility maximization problem.
In this paper, we study how to enable service differentiation

in wireless networks by solving several of these nonconvex
utility maximization problems, that have previously been
solved suboptimally, e.g., in [5], [6] or partially in special
cases, e.g., in [4]. By leveraging a decomposition and convex
reformulation technique, which is in part inspired by [1],
these utility maximization problems can be decomposed into
multiple user subproblems and a network subproblem that
iteratively weighs the link performance metric by the feedback
from the users, so that the entire network converges to the
global optimality. A novelty in our decomposition analysis
is the use of the nonlinear Perron-Frobenius theory in [8]
to systematically design fixed-point algorithms. These new
fixed-point analysis characterizations overcome the limitations
typically associated with the nonconvexity in these wireless
network utility maximization problems.
The main contributions of this paper are summarized as

follows.

• We propose a novel decomposition technique based on
the nonlinear Perron-Frobenius theory to solve the non-
convex utility maximization problems that hitherto have
been solved suboptimally or partially in [4]–[6].

• Our analysis demonstrates that four properties, namely
positivity, monotonicity, homogeneity and quasi-
concavity, that are inherent in these utility maximization
problems, can be exploited to design fixed-point
algorithms that converge geometrically fast.

The rest of this paper is organized as follows. We present
the system model in Section II. In Section III, we formulate the
utility maximization problems. In Section IV, we decompose
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Fig. 1. The system model for the 2-user case. The received signal of the lth
user is Gllpl under frequency flat fading, and this received signal is GllRllpl

under Rayleigh fading (the solid arrow line). The interference temperature
received is the sum of interference signal power and additive noise power.
The received interference temperature for the lth user is

∑
j �=l Gljpj + nl

under frequency flat fading, and this received interference temperature is∑
j �=l GljRljpj + nl (the dashed arrow line).

the general utility maximization problem into multiple simpler
subproblems. Next in Section V, by exploiting the optimality
conditions and leveraging the nonlinear Perron-Frobenius the-
ory, we propose fixed-point algorithms to solve the weighted
sum logarithmic SINR maximization, the weighted sum in-
verse SINR minimization and the weighted sum logarithmic
reliability maximization. We evaluate the performance of our
algorithms numerically in Section VI. We conclude the paper
in Section VII.
The following notation is used in our paper. Column vectors

and matrices are denoted by boldfaced lowercase and upper-
case respectively. Let ρ(A) denote the Perron-Frobenius eigen-
value of a nonnegative matrix A, and x(A) and y(A) denote
the Perron right and left eigenvectors of A associated with
ρ(A) respectively. Furthermore, we denote x ◦y as the Schur
product of x and y. We let al denote the lth column vector of
matrix A and let el and I denote the lth unit coordinate vector
and the identity matrix respectively. Let 1 = (1, . . . , 1)� ∈ R

L

be an all-one vector. The super-script (·)� denotes transpose.
For a given vector x = (x1, . . . , xL)

�
, diag(x) is a diagonal

matrix diag(x1, . . . , xL), ex denotes ex = (ex1 , . . . , exL)�,
and log x denotes log x = (log x1, . . . , log xL)�.

II. SYSTEM MODEL

We consider a multiuser communication wireless network
with L users (transmitter/receiver pairs) transmitting simul-
taneously on a shared spectrum. Let G = [Glj ]Ll,j=1 >
0L×L represent the channel gain, where Glj is the channel
gain from the jth transmitter to the lth receiver, and n =
(n1, . . . , nL)

�
> 0, where nl is the noise power at the lth

user. The vector p = (p1, . . . , pL)� is the transmit power
vector. Figure 1 shows the system model with the problem
parameters for the 2-user case. In this paper, we consider two
different scenarios of transmission using this channel model.
These two scenarios are described below and are differentiated
by the assumption whether there is a Rayleigh (fast) fading
component on each individual signal path or not.

Let us describe the first transmission scenario. Supposed that
there is no Rayleigh fading component on the signal path. The
received SINR of the lth user can be given by:

SINRl(p) =
Gllpl∑

j �=l

Gljpj + nl

. (1)

Now, we define a nonnegative matrix F with entries:

Flj =

⎧⎨
⎩

0, if l = j
Glj

Gll
, if l �= j

(2)

and the vector

v =
( n1

G11
,

n2

G22
, . . . ,

nL

GLL

)�

.

Moreover, we assume that F is irreducible, i.e., each link has
at least one interferer. Using this notation, the SINR of the lth
user can be represented compactly as: SINRl(p) = pl

(Fp+v)l
.

Next, let us describe the second transmission scenario.
Supposed that there is a Rayleigh fading component on each
signal path. The received power from the jth transmitter at
the lth receiver is given by GljRljpj where Rlj is a random
variable due to the Rayleigh fading. In particular, Rlj are
independent and exponentially distributed with unit mean, i.e.,
E[GljRljpj ] = Gljpj [9]. The received SINR of the lth user
under Rayleigh fading is thus given by:

SINRl(p) =
Rllpl∑

j �=l

FljRljpj + vl

. (3)

Note that, unlike (1) which is a deterministic fractional func-
tion of p, (3) is a random variable.
Now, an outage occurs when the received SINR of the lth

user falls below βl, a minimum SINR threshold for reliable
communication. Assuming independent Rayleigh fading at all
signals, the reliability function of the lth user is given as the
complement of the outage probability [9]:

Ol � Prob(SINRl(p) ≥ βl) = e
−vlβl

pl

L∏
j=1

(
1 +

βlFljpj

pl

)−1

.

(4)
This means that when SINRl(p) ≥ βl, the transmission
from lth transmitter to its receiver is reliable; otherwise, the
transmission fails.
In the following, we study the wireless network utility

maximization problem subject to maximum power constraints
under these two different scenarios. It should be clear from
the context that whenever we use (4), the SINR function in
(4) comes from (3) and not from (1).

III. UTILITY MAXIMIZATION PROBLEM FORMULATION
Let us denote the overall network utility in the wireless

network by U(f(p)). This is an objective function whose
argument f(p) is a vector function with entries fl(p) that is
a bijective mapping from the transmit power p to a particular



link metric of the lth user. In particular, we will study the
link metrics fl(p) given by the SINR in (1) or the reliability
function in (4) for the two different transmission scenarios
introduced in the previous section. In addition, we assume
that the overall network utility function is separable and
continuous, i.e.,

U(p) =
L∑

l=1

Ul(fl(p)). (5)

Each individual utility Ul(fl(p)) reflects the service obtained
by the lth user based on the achievable link metric fl(p). Ser-
vice differentiation in wireless networks can thus be realized
by a suitable choice of the utility and its optimization.
As an example, U(·) can be given by the α-fairness utility

[10]:

U(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L∑
l=1

log xl, if α = 1,

L∑
l=1

(1 − α)−1x1−α
l , if α > 1.

(6)

Note that the special case for 1-fairness utility is also known
as the proportional fairness in the literature [1], [10].
In addition, all the users are constrained by a weighted

power constraint set P given by:

P = {p |a�
l p ≤ p̄l, l = 1, . . . , L}, (7)

where p̄ is the upper bound for the weighted power constraints,
and al can be any positive vector. Since al is the lth column
vector of a nonnegative matrix A, (7) can also be expressed
as P = {p |A�p ≤ p̄}. As special cases, when al = el

(i.e., A = I), we have the individual power constraints P =
{p |p ≤ p̄}, and when al = 1 (i.e., A is an all-one matrix),
we have a total power constraint P = {p |1�p ≤ min

l=1,...,L
p̄l}.

The problem of maximizing the overall network utility
subject to power constraints is given as:

maximize
L∑

l=1

Ul(fl(p))

subject to p ∈ P,
variables: p.

(8)

In general, depending on the choice of the utility function
in (5), (8) can be nonconvex, and thus it may be generally
difficult to solve (8) optimally.
Next, using a logarithmic mapping of variable, for p =

(p1, . . . , pL)� > 0, let p̃l = log pl for all l, i.e., p = ep̃, (8)
can be transformed to the following equivalent optimization
problem:

maximize
L∑

l=1

Ul(fl(ep̃))

subject to ep̃ ∈ P,
variables: p̃.

(9)

In general, (9) may still be nonconvex. In the following,
we study important special cases of (9) that can be solved

optimally (and thereby solving (8) optimally). These special
cases have been hitherto tackled suboptimally in the literature
when they are viewed as the nonconvex problems in (8).
In the following, we decompose (9) in Section IV and then
apply the nonlinear Perron-Frobenius theory to link (8) and (9)
in Section V. As a consequence, fixed-point algorithms with
geometric convergence rate can be systematically obtained to
solve (8) optimally.

IV. SERVICE DIFFERENTIATION BY PROPORTIONAL
FAIRNESS DECOMPOSITION

To overcome the hurdle of nonconvexity of (8), we decom-
pose (9) and then exploit the optimality conditions of (9). Our
approach is motivated by the Kelly’s decomposition in [1], in
which time is divided into discrete slots and we iteratively
solve one of two different sets of subproblems in each slot: 1)
The user subproblem: each user computes a positive payment
associated with the current resource allocated by a centralized
network controller (for example, a base station). This payment
can be viewed as the willingness to pay for the allocated
resource. 2) The network subproblem: based on the payments
computed by all the users, the network controller maximizes
a weighted sum of proportional fairness associated with the
link metrics for all users, where the payment received from
users acts as weight. Then, the controller returns the feedback
of the updated resource allocation to all the users. The above
subproblems are solved iteratively until the network reaches
an equilibrium. At this equilibrium, we say that the resource
allocation is proportionally fair to the equilibrium payments.
In the following, we describe this Kelly’s decomposition

applied to (9). By introducing an auxiliary variable α, we
rewrite (9) as:

maximize
L∑

l=1

Ul(αl)

subject to αl ≤ fl(ep̃), l = 1, . . . , L,
ep̃ ∈ P,

variables: p̃, α.

(10)

Note that (10) is nonconvex in general. However, by using a
logarithmic transformation change of variable, i.e., α = eα̃,
(10) is equivalent to:

maximize
L∑

l=1

Ul(eα̃l)

subject to α̃l ≤ log fl(ep̃), l = 1, . . . , L,
ep̃ ∈ P,

variables: p̃, α̃.

(11)

In this paper, we study utility functions that satisfy the
following assumption.
Assumption 1: The following are sufficient for (11) to be

convex: 1)
∑L

l=1 Ul(eα̃l) is concave in α̃l, 2) log fl(ep̃) is
concave in p̃ for all l.
Lemma 1: Both f(ep̃), i.e., SINR(ep̃) in (1) and Ol(ep̃) in

(4), satisfy the second condition in Assumption 1.
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Fig. 2. Illustration of the proportional fairness in the log SINR domain.
We use a two-user example, and the objective utility function is the α-
fairness utility function where α is equal to 3. The channel gains are
given by G11 = 0.75, G12 = 0.12, G21 = 0.13, G22 = 0.70
and the weight for the power constraints are a1 = [4.50, 5.20]� and
a2 = [2.80, 2.40]� respectively. The upper bound for the weighted power
constraints is p̄ = [1.20, 1.00]� W, and the noise power for both users are
1 W. We solve the utility maximization problem to obtain the optimal power
p�, and use this p� to calculate the proportional fairness which is wl = γ−2

l
in this case. Its perpendicular intersects the optimal solution of the utility
maximization problem at the boundary of the feasible region.

Next, we form the partial Lagrangian of (11) by introducing
the dual variable μ ∈ R

L
+:

L(p̃, α̃, μ) =
L∑

l=1

Ul(eα̃l) +
L∑

l=1

μl

(
log fl(ep̃) − α̃l

)
. (12)

By taking the partial derivative of (12) with respect to α̃l

and using Lagrange duality, we can obtain the following result.
Lemma 2: The optimal solution α̃� and p̃� of (11) satisfy

eα̃�
l = fl(ep̃�

) for all l. In other words, the optimal solution
α� and p� to (10) satisfy α�

l = fl(p�) for all l. We also have
that μ�

l = α�
l ∇αl

Ul(α�
l ).

According to the results stated in Lemma 2, we can decom-
pose (9) as follows. For any feasible power vector p, each
user calculates a payment as follows:

wl = fl(p)∇fl
Ul(fl(p)), (13)

where w denotes the payment made by the lth user to the
network controller, and ∇fl

Ul(fl(p)) is the first order deriva-
tive with respect to fl(p). Suppose the network controller
receives the payment wl from the lth user, it solves a problem
that maximizes the weighted sum of the logarithm of the link
metric fl(p) (i.e., proportional fairness), where the payment
wl acts as a weight. In particular, the network controller solves
the following problem:

maximize
L∑

l=1

wl log fl(p)

subject to p ∈ P,
variables: p.

(14)

We say that w is proportionally fair if wl =
fl(p�)∇fl

Ul(fl(p�)), where p� is the optimal solution of (8).
Interestingly, at optimality, both (8) and (14) have the same
optimal solution. Figure 2 gives a geometric interpretation of
the proportional fairness: a hyperplane intersecting the optimal
point is perpendicular to w when w is proportionally fair.
By leveraging this relationship, we propose the following
algorithm that computes the optimal solution of (9).

Algorithm 1 (Utility Maximization):

1) Each lth user updates the proportional fairness:

wl(k + 1) = fl(p(k))∇fl
Ul(fl(p(k)).

2) The controller solves the following problem:

maximize
L∑

l=1

wl(k + 1) log fl(p)

subject to p ∈ P,
variables: p,

whose optimal solution is denoted as p(k + 1).

Theorem 1: Algorithm 1 converges to the optimal solution
of (8) from any initial point p(0).
Remark 1: We make the following remarks on Algorithm 1.

At Step 1, the computation of payment can be made distributed
by each user. The optimization problem in Step 2 is solved
optimally, and further elaborated in Section V.

V. FIXED-POINT ALGORITHM FOR PROPORTIONAL
FAIRNESS

In this section, we study how to solve (14) for the weighted
sum logarithmic SINR maximization and the weighted sum
inverse SINR minimization in the first transmission scenario
and the weighted sum reliability maximization in the second
transmission scenario. It turns out that the stationarity of the
Lagrangians for these three problems share an interesting prop-
erty: they can be expressed as fixed-point problems involving
concave self-mapping functions for the optimal power p�.
This enables us to propose tuning-free fixed-point algorithms
that converge geometrically fast by leveraging the nonlinear
Perron-Frobenius theory in [8] (also see Appendix).

A. Weighted Sum Logarithmic SINR Maximization

Consider the first transmission scenario. We let fl(p) be
SINRl(p), thus (14) is the weighted sum logarithmic SINR
maximization problem given by:

maximize
L∑

l=1

wl log SINRl(p)

subject to p ∈ P,
variables: p.

(15)

In this subsection, let p� denote the optimal solution to (15).



Although (15) is nonconvex, it is equivalent to a convex
optimization problem by making a change of variable p̃l =
log pl for all l, and the equivalence is given by:

maximize
L∑

l=1

wl log SINRl(ep̃)

subject to log
( 1

p̄l
a�

l ep̃
)
≤ 0, l = 1, . . . , L,

variables: p̃.

(16)

The Lagrangian associated with (16) is given by:

L(p̃, λ) = log
L∏

l=1

(
(Fep̃ + v)le

−p̃l
)wl +

L∑
l=1

λl log
1
p̄l

a�
l ep̃,

(17)
where λl ∈ R+ is the dual variable vector for
log

(
(1/p̄l)a�

l ep̃
) ≤ 0. By taking first order derivative of (17)

with respect to p̃l, setting it to zero and substituting p = ep̃

back, we have the following equations satisfied by p� in (15)
and the optimal dual variable λ� in (16):

p�
l =

wl

L∑
j=1

wjFjl

(Fp� + v)j
+

L∑
j=1

λ�
jAlj

a�
j p�

, l = 1, . . . , L, (18)

L∑
j=1

Aljp
�
l

a�
j p�

λ�
j = wl − p�

l

∑
j �=l

wjFjl

(Fp� + v)j
, l = 1, . . . , L.

(19)
Note that if λ� is the only unknown variable in (19), λ� can
be easily computed by solving a system of equations (keeping
p� fixed). Moreover, as the right-hand side of (19) is positive,
(19) is in fact a positive system of equations in p� and λ�.
Next, let us define the following nonnegative matrix:

B(p) = F +
L∑

l=1

λ̂�
l

p̄l
va�

l , (20)

where λ̂
� ∈ R

L
+ is the normalized dual variable vector (i.e.,

λ̂
�

= λ�/1�λ�). Note that B defined in (20) is a function of
p, since λ� in (19) depends on p.
According to complementary slackness, since λ̂�

l > 0 ⇒
(1/p̄l)a�

l ep̃ = 1 or λ̂�
l = 0 ⇒ (1/p̄l)a�

l ep̃ < 1, only those
tight constraints at optimality participate in forming B. This
leads to

∑L
l=1(λ̂l/p̄l)va�

l ep̃ = 1, i.e., Fep̃ + v = Bep̃.
Furthermore, using B in (20) and the complementary slack-

ness condition, (16) can then be rewritten as:

minimize
L∏

l=1

(
(B(ep̃)ep̃)l

ep̃l

)wl

subject to log
( 1

p̄l
a�

l ep̃
)
≤ 0, l = 1, . . . , L,

variables: p̃.

(21)

Theorem 2: The optimal power p� of (15) satisfies

p�
l =

wl

L∑
j=1

wjBjl(p�)/(B(p�)p�)j

, l = 1, . . . , L. (22)

Moreover, p̃�
l = log p�

l solves (21) for all l.
Observe that the righthand-side of (22) is positive, homo-

geneous of degree one and quasi-concave. Therefore, it is a
concave function. We can exploit this fact together with the
nonlinear Perron-Frobenius theory in [8] (also see Appendix)
to propose the following fixed-point algorithm that computes
the optimal solution of (15) in Theorem 2.

Algorithm 2 (Weighted Sum Log SINR Maximization):

1) Compute λ(k + 1) by solving the following equations
for a given p(k):
L∑

j=1

Aljpl(k)
a�

j p(k)
λj(k + 1) = wl − pl(k)

L∑
j=1

wjFjl

(Fp(k) + v)j
,

l = 1, . . . , L.

2) Normalize λ(k+1) to λ̂(k+1) and update the nonneg-
ative matrix B(k + 1):

λ̂(k + 1) = λ(k + 1)/1�λ(k + 1),

B(k + 1) = F +
L∑

l=1

λ̂l(k + 1)
p̄l

va�
l .

3) Update the power pl(k + 1) for the lth user by:

pl(k + 1) =
wl

L∑
j=1

wjBjl(k + 1)/(B(k + 1)p(k))j

.

4) Normalize p(k + 1):

p(k + 1) ← p(k + 1)/ max
l=1,...,L

{a�
l p(k + 1)/p̄l}.

Corollary 1: Algorithm 2 converges geometrically fast to
the fixed point p� in Theorem 2 from any initial point p(0).
We study the weighted sum inverse SINR minimization

problem in Section V-B. This problem is intimately related to
(15) (through the arithmetic-geometric mean inequality [11]).

B. Weighted Sum Inverse SINR Minimization

Consider the first transmission scenario. Let us study the
weighted sum inverse SINR minimization problem given by:

minimize
L∑

l=1

wl
1

SINRl(p)
subject to p ∈ P,
variables: p.

(23)

In this subsection, we denote the optimal solution to (23) by
p�. Although (23) has a different objective from (14), it is
closely related to (15), which can be viewed as an alternative
for solving (15) [12], [13]. Furthermore, (23) provides a useful
upper bound to (15), which is discussed later in this section.
Similar to the convexification technique used on (15) to get



(16), (23) is equivalent to:

minimize
L∑

l=1

wl
1

SINRl(ep̃)

subject to log
( 1

p̄l
a�

l ep̃
)
≤ 0, l = 1, . . . , L,

variables: p̃.

(24)

The optimization problem in (24) is convex. By introducing
the dual variable λ ∈ R

L
+, we form the Lagrangian for (24),

given by:

L(p̃, λ) =
L∑

l=1

wl(Fep̃ + v)le
−p̃l +

L∑
l=1

λl log
1
p̄l

a�
l ep̃. (25)

Taking the partial derivative of (25) with respect to p̃l, setting
it to zero and substituting p = ep̃ back, we have the following
equations satisfied by the optimal power p� in (23) and the
optimal dual variable λ� in (24):

p�
l =

√
wl(Fp� + v)l∑

j �=l wjFjl/p�
j +

∑L
j=1 λ�

jAlj/a�
j p�

, l = 1, . . . , L,

(26)
L∑

j=1

Aljp
�
l

a�
j p�

λ�
j =

wl(Fp� + v)l

p�
l

−p�
l

∑
j �=l

wjFjl

p�
j

, l = 1, . . . , L.

(27)
Note that (27) is a system of equations in p� and λ� with a
positive right-hand side, and hence a positive system.
Recall the same definition of B in (20). In this case, λ̂

� ∈
R

L
+ is the normalized dual variable for (24). Notice that (24)
can be further rewritten as:

minimize
L∑

l=1

wl
(B(ep̃)ep̃)l

ep̃l

subject to log
( 1

p̄l
a�

l ep̃
)
≤ 0, l = 1, . . . , L,

variables: p̃.

(28)

Theorem 3: The optimal power p� of (23) satisfies

p�
l =

√
wl

∑
j �=l Blj(p�)p�

j∑
j �=l wjBjl(p�)/p�

j

, l = 1, . . . , L. (29)

As in the previous, the following algorithm computes the
optimal solution of (23) by using the nonlinear Perron-
Frobenius theory in [8].

Algorithm 3 (Weighted Sum Inverse SINR Minimization):

1) Compute λ(k + 1) by solving the following equations
for a given p(k):

L∑
j=1

Aljpl(k)
a�

j p(k)
λj(k + 1)

=
wl(Fp(k) + v)l

pl(k)
− pl(k)

∑
j �=l

wjFjl

pj(k)
, l = 1, . . . , L.

2) Normalize λ(k+1) to λ̂(k+1) and update the nonneg-
ative matrix B(k + 1):

λ̂(k + 1) = λ(k + 1)/1�λ(k + 1),

B(k + 1) = F +
L∑

l=1

λ̂l(k + 1)
p̄l

va�
l .

3) Update the power pl(k + 1) for the lth user by:

pl(k + 1) =

√
wl

∑
j �=l Blj(k + 1)pj(k)∑

j �=l wjBjl(k + 1)/pj(k)
.

4) Normalize p(k + 1):

p(k + 1) ← p(k + 1)/ max
l=1,...,L

{a�
l p(k + 1)/p̄l}.

Corollary 2: Algorithm 3 converges geometrically fast to
the fixed point p� in Theorem 3 from any initial point p(0).
Remark 2: We connect the weighted sum logarithmic SINR

maximization in Section V-A with (23). In particular, by
applying the arithmetic-geometric mean inequality and the
Friedland-Karlin inequality in [14], we have

L∑
l=1

wl
(B(p)p)l

pl
≥

L∏
l=1

(
(B(p)p)l

pl

)wl

≥ ρ(B(p)). (30)

The equality holds for both the first and the second inequalities
in (30) if and only if (B(p)p)1/p1 = · · · = (B(p)p)L/pL,
i.e., SINR1(p) = · · · = SINRL(p).
Interestingly, the weighted sum inverse SINR minimization

in (23) has the same optimal solution p� as the weighted sum
logarithmic SINR maximization in (15) when

w = x(B(p�)) ◦ y(B(p�)), (31)

where x(B(p�)) and y(B(p�)) are respectively the Perron
right and left eigenvectors ofB(p�), and x(B(p�))◦y(B(p�))
is a probability vector.
Finally, the same technique as in Section V-A and V-B can

be used to solve the weighted sum logarithmic reliability max-
imization problem in Section V-C, i.e., finding a concave self-
mapping, and then leveraging the nonlinear Perron-Frobenius
theory (also see Appendix) to propose a fixed-point algorithm.

C. Weighted Sum Logarithmic Reliability Maximization
Consider the second transmission scenario. Let fl(p) be

the reliability Rl(p). Then the weighted sum logarithmic
reliability maximization problem is given by:

maximize
L∑

l=1

wl log Ol(p)

subject to p ∈ P,
variables: p.

(32)

In this subsection, let p� denote the optimal solution to (32).
Through a logarithmic transformation change of variable on

(32), we obtain:

maximize
L∑

l=1

wl log Ol(ep̃)

subject to log
( 1

p̄l
a�

l ep̃
)
≤ 0, l = 1, . . . , L,

variables: p̃.

(33)



Next, let us define the nonnegative matrix C with the entries
(that are functions of p):

Clj(p) =

⎧⎨
⎩

0, if l = j,
pl

βlpj
log

(
1 +

βlFljpj

pl

)
, if l �= j.

(34)

We then form the Lagrangian for (33) by introducing the
dual variable λ ∈ R

L
+ for the L inequality constraints in (33):

L(p̃, λ) =
L∑

l=1

wl

(
vlβle

−p̃l +
L∑

j=1

log
(
1 + βlFlje

p̃j−p̃l
))

+
L∑

l=1

λl log
( 1

p̄l
a�

l ep̃
)
.

(35)
Taking the partial derivative of (35) with respect to p̃l,

setting it to zero and then substituting p = ep̃ back, we have
the following equations for the optimal power p�:

p�
l
2

L∑
j=1

Alj

a�
j p�

λj = wlvlβl +
∑

j �=l

wlβlFljp
�
jp

�
l

p�
l + βlFljp�

j

−p�
l
2 ∑

j �=l

wjβjFjl

p�
j + βjFjlp�

l

, l = 1, . . . , L.

(36)
As in the previous, (36) is a positive system of equations in
p� in (32) and λ� in (33) that characterizes the optimality
conditions of (32).
In Section V-A, dual variables are used to construct a non-

negative matrix B in (20). Likewise, we define a nonnegative
matrix D given by:

D(p) = C(p) +
L∑

l=1

λ̂�
l

p̄l
va�

l , (37)

where λ̂
� ∈ R

L
+ are the normalized dual variables of (33) such

that λ̂
�

= λ�/1�λ�. We can then rewrite (33) as

minimize
L∑

l=1

wl
(diag(β)D(ep̃)ep̃)l

ep̃l

subject to log
( 1

p̄l
a�

l ep̃
)
≤ 0, l = 1, . . . , L,

variables: p̃.

(38)

Theorem 4: The optimal power p� of (32) satisfies

p�
l =

√√√√√√√√√
wl

∑
j �=l

(
vlβlâj(p�)p�

j +
βlFljp

�
jp

�
l

p�
l + βlFljp�

j

)
∑
j �=l

wj

(
vjβj âl(p�)/p�

j +
βjFjl

p�
j + βjFjlp�

l

) (39)

for all l, where â is given by â =
∑L

l=1(λ̂
�
l /p̄l)al.

Similar to (20), the function of â involving λ̂�
l is also a

function of p�. Moreover, p̃�
l = log p�

l solves (38) for all l.
It can be verified that the righthand-side of (39) is positive,

quasi-concave and homogeneous of degree one, and hence it
is concave. We thus leverage the nonlinear Perron-Frobenius

theory in [8] to propose the following algorithm that computes
p� in Theorem 4.

Algorithm 4 (Weighted Sum Log Reliability Maximization):

1) Compute λ(k + 1) by solving the following equations
for a given p(k):
L∑

j=1

Aljpl(k)
a�

j p(k)
λj(k + 1) = wlvlβl/pl(k)

+
∑
j �=l

wlβlFljpj(k)
pl(k) + βlFljpj(k)

−
∑
j �=l

wjβjFjlpl(k)
pj(k) + βjFjlpl(k)

,

l = 1, . . . , L.

2) Normalize λ(k + 1) to λ̂(k + 1) and update the vector
â(k + 1):

λ̂(k + 1) = λ(k + 1)/1�λ(k + 1),

â(k + 1) =
L∑

l=1

λ̂l(k + 1)
p̄l

al.

3) Update the power pl(k + 1) for the lth user by:

pl(k + 1)

=

√√√√√√√√√
wl

∑
j �=l

(
vlβlâj(k + 1)pj(k) +

βlFljpj(k)pl(k)
pl(k) + βlFljpj(k)

)
∑
j �=l

wj

(
vjβj âl(k + 1)/pj(k) +

βjFjl

pj(k) + βjFjlpl(k)

) .

4) Normalize p(k + 1):
p(k + 1) ← p(k + 1)/ max

l=1,...,L
{a�

l p(k + 1)/p̄l}.

Corollary 3: Algorithm 4 converges geometrically fast to
the fixed point p� in Theorem 4 from any initial point p(0).
In summary, the three problems studied in this section

exhibit the following features: 1) They can be reformulated
as optimization problems involving a suitably constructed
nonnegative matrix B or D; 2) Leveraging the nonlinear
Perron-Frobenius theory (also see Appendix), concave self-
mappings can be associated with them to design fixed-point
algorithms to solve these problems optimally.

VI. NUMERICAL EXAMPLES

In this section, we evaluate the performance of Algorithm
1 numerically to solve (8) for U(·) being the 1-fairness utility
function in (6) by replacing Step 2 of Algorithm 1 with the
fixed-point algorithms in Section V. Since we connect (15)
and (23) (cf. (31)), we compare the convergence of these two
different problems that have the same optimal solution. We
consider a three-user case, using the following channel gain
matrix: G11 = 0.71, G12 = 0.13, G13 = 0.12, G21 = 0.11,
G22 = 0.73, G23 = 0.14, G31 = 0.15, G32 = 0.16 and
G33 = 0.69, and the following weights for the power con-
straints: a1 = (0.93 0.72 0.74)�, a2 = (0.63 0.86 0.93)�
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Fig. 3. Illustration of the convergence of Algorithm 1 with two different
network utility functions. We plot the power evolution for the three users that
run Algorithm 2 in (a) and Algorithm 4 in (b) respectively for 50 iterations
in the inner loop. We can observe that both Algorithm 2 and Algorithm 4
converge in each inner loop, and Algorithm 1 converges in the outer loop.

and a3 = (0.98 0.86 0.78)�. We set p̄ = (1.50 1.00 1.10)�

W, and the noise power of each user is 1 W.
Figure 3 plots the evolution of the power for three users

that run Algorithm 1 with only 6 outer loops. Note that the
network utility used in (a) and (b) of Figure 3 are, respectively,
in terms of fl(p) as given by (1) and (4). In Figure 3(a), we set
the initial power vector to p(0) = [0.45 0.80 0.54]�, and run
Algorithm 2 for 50 iterations as an inner loop of Algorithm
1. The optimal power p� is [0.38 0.42 0.48]�. In Figure 3(b),
we set the initial power vector to p(0) = [0.50 0.38 0.42]�

W, and run Algorithm 4 for 50 iterations as an inner loop of
Algorithm 1. The optimal power p� is [0.46 0.41 0.38]� W.

VII. CONCLUSION

We studied network utility maximization problems for ser-
vice differentiation in wireless networks. These problems are
nonconvex, and thus are generally hard to solve. Using the
Kelly’s decomposition and a logarithmic change-of-variable
technique, we decomposed the utility maximization problem
into separable user subproblems and the network subproblem.
Maximizing the weighted sum logarithmic SINR, minimiz-

ing the weighted sum inverse SINR and maximizing the
weighted sum logarithmic reliability are three special cases
solved optimally by our technique. These three special cases
have hitherto been solved suboptimally in the literature. We
exploited a shared optimality feature in these three special
cases, which are positive, homogeneous and quasi-concave
self-mappings related to the stationarity of the Lagrangian. The
nonlinear Perron-frobenius theory is applied to these concave
self-mappings to design fixed-point iterative algorithms that
converge geometrically fast. Numerical examples verified that
these fixed-point algorithms are computationally fast and have
good convergence property.

APPENDIX
A. Nonlinear Perron-Frobenius Theory [8]
Let ‖ · ‖ be a monotone norm on R

L. For a concave
mapping f : R

L
+ → R

L
+ with f(z) > 0 for z ≥ 0, the

following statements hold. The conditional eigenvalue problem
f(z) = λz, λ ∈ R, z ≥ 0, ‖z‖ = 1 has a unique
solution (λ∗, z∗), where λ∗ > 0, z∗ > 0. Furthermore,
limk→∞ f̃(z(k)) converges geometrically fast to z∗, where
f̃(z) = f(z)/‖f(z)‖.
For all the results in this paper, we can define a monotone

norm on R
L as max

l=1,...,L
{a�

l p/p̄l} and suitably identify a
nonnegative concave mapping f(p) in order to use the result
in [8].
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