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Abstract—We consider the joint minimization of queueing cost
and power consumption in a wireless network, over all power
control policies at the transmitters. Approximately optimal poli-
cies are derived through the use of a comparison to a single link
system offering lower bounds for both performance metrics. The
derived policies are of a simple form: the total power consumed
at any instant is a monotonic function of a linear combination
of the queue backlogs at that instant, while the portions of
power allocated to each transmitter are such that the resulting
link speeds are proportional to the queue backlogs. Simulations
show that the lower bounds become tight -and so the policies
become optimal- as the average power approaches the lowest
value for which stability is maintained. Moreover, these policies
are shown to perform better than gradient projection -based
power adaptive algorithms such those arising in formulations
using static optimization problems.

I. INTRODUCTION

The efficient operation of a wireless network of nodes,
whether in the cellular or the adhoc case presents a multitude
of challenges to the network engineer. In contrast to the
traditional wireline networks where network dimensioning is
not considered a part of network protocol design, even if we
disregard the intrinsic randomness of the wireless medium, the
capacity of wireless networks constantly depends on decisions
taken by multiple layers and by different users in real-time. It
is for the network protocols to both realize and manage this
capacity in an efficient and simple manner. Thus traditional
quality of service metrics such as queueing delay as well as
system-level design metrics such as power consumption are
not only both considered important in the wireless setting, but
they need to be addressed during operation.

In every system, except badly designed ones, a higher
average power expenditure will result in improved delay per-
formance. Conceptually, all possible combinations of average
power and average queueing delay achievable under different
selections of a protocols’ parameters yield a delay vs. power
tradeoff curve as in Fig.1. The particular point on the tradeoff
curve which the system will operate on is chosen based on
which type of cost (power or delay) the network operator
prefers to minimize at the expense of the other. In this paper
we seek power control algorithms that yield the best such
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Fig. 1. The tradeoff curve between average power expenditure and the
corresponding average queueing delay. The dashed line signifies the minimum
possible power such that the input load is serviceable.

tradeoff curves, i.e., we are interested in algorithms offering
the minimum average queueing delay at any given level of
average power expenditure. (Equivalently, any such algorithm
minimizes the average power expenditure for any given level
of average queueing delay.)

It is only recently that the problem of the joint minimization
of delay and energy efficiency started to be addressed [1],
[5], [3], [4], [6]. Most of these works start from a static
optimization problem involving rates and/or power as the
decision variables and then devise an iterative algorithm which
converges at an optimal solution. The queueing delays are not
taken into account explictly but it is through an identification
of the variables of the dual problem with the queue backlogs
that queueing delay is implicitly optimized as well. Moreover,
due to the static nature of the associated optimization prob-
lems, the queues’ evolution (i.e., system dynamics) is not taken
into account in the optimization.

In this paper we account for the queues’ evolution and
both types of cost by using an optimal control problem
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Fig. 2. The single queue problem: at any time t choose power level p(t)
such that the time-average cost (1) is minimized.

formulation. Although structural results of the optimal policies
for standard queueing networks have long been known (see
e.g.,[11], [10], [12]), to the best of our knowledge no similar
results exist for interfering queues. A key element in our
approach, motivated from work on the optimal control of
queues at heavy traffic (e.g., see [14], [15], the book of
Meyn [7] and references therein), is the consideration of
workload instead of queueing delay as the queueing cost. At
any time instant the workload is defined1 as the minimum time
required to serve all packets in the network queues if new
packet arrivals were to be disregarded. Naturally, queueing
delay and workload are related quantities so by optimizing
the latter one implicitly optimizes the former as well. The
benefit of using workload as the queueing cost is that then the
problem of joint minimization of queueing cost and power
can be addressed explicitly by treating the network as a
one-dimensional single queue system where the structure of
optimal controls is known. The optimal solution is expressed
as a two-step decision. In the first “power control” step the
total power to be consumed across all the transmitters at that
instant is decided. In the second “scheduling” step, the total
power is distributed to the transmitters so that the resulting
speed at every transmitter is proportional to the backlog of
it’s queue.

The paper is organized as follows. In section III we in-
troduce the basic notation and system model. In section IV
we describe the MinTime scheduling algorithm and obtain
a useful characterization through the auxiliary problem of
emptying the network as fast as possible if no new arrivals
were to be considered. Section V contains the basic properties
of our algorithm obtained by considering the fluid model of
our system. The power control step is studied in section VI.
Certain issues are discussed in section VII.

II. THE SINGLE-QUEUE PROBLEM

Before moving to the general case let us consider the case
of controlling the power of a single transmitter, when no
interferers are present. Packets arrive at the transmit queue
at an average rate a as depicted in Fig. 2, which at time t
has length Q(t). One wants to apply power p(t) such that the

1A formal definition is given in (2).

average cost

lim
T

1

T

∫ T

0

(g(Q(t)) + p(t)) dt (1)

is minimized, where g(·) is an increasing nonnegative function.
Crabill first studied this problem in [11] and (not surpris-
ingly) obtained that the optimal power p(t) is given by a
nondecreasing function of Q(t), i.e., p(t) = f(Q(t)) for
nondecreasing f(·). For most cases of interest, f(·) is not
known in closed form but it can be obtained numerically
by the results in [12]. This monotonicity is generalized to
open and closed networks of queues in [10]. As explained in
the introduction, in Section V we show that under a specific
algorithm a network with many interfering queues essentially
becomes a one-dimensional system for which we will take
advatange of the monotonicity above to propose approximately
optimal power controls.

III. SYSTEM MODEL

Consider a wireless network comprised of n transmitters
indexed by i, each associated to a separate receiver i. If pi
is the instantaneous transmit power of transmitter i and p =
(pi, i = 1, . . . , n) denotes the vector of transmit powers then
the resulting rate for the i-th transmitter is

ci(p) = bi log

(
1 +

Giipi∑
j 6=iGjipj + ni

)
,

where bi > 0 a constant, Gij is the channel gain between the
i-th transmitter and the j-th receiver, while ni is the power of
the background noise at the i-th receiver.

For any power level P , the rate region R(P ) is the set of
all n-dimensional rate vectors (ci(p), i = 1, . . . , n) attained
as p ranges over all values p = (pi, i = 1, . . .) which satisfy∑
i pi ≤ P . Let ∂optR(P ) be the set of Pareto optimal, i.e.,

maximal, points of R(P ).

Lemma 1. ∂optR(P ) = {c(p)|p = (pi, i = 1, . . . , n) with∑
i pi = P}.

Proof: No rate vector c(p) ∈ R(P ) can be Pareto optimal
if
∑
i pi < P since in that case c((1+ ε)p) > c(p) and c((1+

ε)p) ∈ R(P ) for a sufficiently small ε > 0.
Conversely, by Zander [9] there is no vector c(p′) with

c(p′) ≥ c(p) and
∑
i p
′
i =

∑
i pi = P unless c(p′) = c(p).

Thus the rate region achievable for any power level P can
be parameterized by the power vectors with total power P .

For any vector of queue lengths q ∈ Rn+, the workload tP (q)
is given as the optimal value of the following problem:

tP (q) = min t (2)

such that
q

t
≤ c̃ , (3)

over c̃ ∈ Co(R(P ))

At each transmitter i, packets with unit average size are
produced for transmission towards receiver i according to a
Poisson process Ai(t) of intensity ai. Also, let Ni, i = 1, ...n

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

469



Tx 1

Tx i

Tx n

Rx 1

Rx i

Rx n

…
…

…
…

…
…

Fig. 3. The system model of n single-hop links.

be another set of Poisson processes of unit intensity and
assume that Ai, Ni, i = 1, ..., n are mutually independent.

Let p(t) = (pi(t), i = 1, . . . , n) be any nonnegative set of
powers actuated at the transmitters at time t. The number of
backlogged packets Qi(t) at the i-th transmitter at time t, is
given by the set of stochastic equations

Qi(t) = Qi(0)+Ai(t)−Ni
(∫ t

0

ci(p(s))ds

)
, i = 1, . . . , n .

(4)
We say that the process of powers p(t) is feasible if it is

causal, i.e., it is adapted to the filtration generated by the queue
sizes Q(t) = (Qi(t), i = 1, . . . , n), and pi(t) = 0 whenever
Qi(t) = 0. The latter ensures Q(t) ≥ 0 for all t.

For every feasible process p(t) we consider the resulting
average cost given by

lim sup
T

1

T

∫ T

0

(
εt∑

i pi(t)
(Q(t)) +

∑
i

pi(t)

)
dt . (5)

The cost rate is the sum of the total power consumption
P (t) =

∑
i pi(t) at time t with the workload cost εtP (t)(Q(t))

The constant ε > 0 controls the tradeoff between low queueing
cost and low average power consumption: lower values of ε
give higher priority to lowering power consumption.

IV. THE MINTIME SCHEDULING ALGORITHM

In this section we introduce an algorithm for controlling the
vector of powers p(t) at every time t. For any nondecreasing
nonnegative function f : R+ → R+ with f(0) = 0, and
a constant vector λ ∈ Rn+ consider the following algorithm
which depends on the current queue lengths Q(t):

Power control: The total power expenditure at time
t is P (t) = f(tP (Q(t))), for some constant P > 0.
MinTime scheduling: Choose average service rate
c̃ ∈ Co(∂optR(P )) with c̃ ‖ Q(t) 2.

The power control step decides the instantaneous total power
expenditure across transmitters, and is given as an increasing

2For two vectors x, y we let x ‖ y denote that the two vectors are parallel,
i.e., x = αy for some scalar α. Also Co(A) denotes the convex hull of A.

function of the workload tP (Q(t)) with respect to some power
level P (with P 6= P (t) in general). In section VI we will
consider specific choices for P and f(·).

In the scheduling step a service vector c̃ is chosen
from Co(∂opt(R(P )). By Lemma 1, Co(∂opt(R(P )) is an n-
dimensional convex set. Thus there is a unique choice of
c̃ ∈ Co(∂optR(P )) giving c̃ ‖ Q(t). Observe that if c̃ is
not an extreme point of ∂optR(P ) then c̃ is not an attainable
service rate since c̃ /∈ R(P ). Nonetheless through appropriate
timesharing between extreme points of ∂optR(P ), the service
rate c̃ is effected over a longer timescale. Whenever such
timesharing is necessary, we will assume that the instantaneous
service is a random choice of one of the extreme points of
∂optR(P ) with appropriate selection probabilities such that c̃
is effected on the average. In this case the average power
consumption will be P by Lemma 1.

The choice of c̃ in the scheduling step can be interpreted
as the service vector by which the network queues will empty
in the minimum time if no further arrivals would be admitted
and the total power expenditure is limited to P , i.e., it is the
optimal solution of (2).

The dual problem of (2) is

max
λ≥0

[
2
√
λ · q − max

c̃∈Co(∂optR(P ))
λ · c̃

]
. (6)

The first order conditions for optimality give q = c̃
√
λ · q,

and so we see that it agrees with the scheduling step of the
algorithm. For any queue vector q and power level P let λq,P

denote the optimal dual variables. The service vector c̃ can
be also interpreted as the optimal solution of a variant of the
MaxWeight [2] algorithm

max
c̃∈Co(∂optR(P ))

λQ(t),P (t) · c̃ . (7)

Observe that since MinTime scheduling yields vectors c̃
parallel to q, in essence it solves the optimization problem

max
c̃∈Co(∂optR(P ))

q · c̃
||c̃||

,

as compared to MaxWeight scheduling which solves

max
c̃∈Co(∂optR(P ))

q · c̃ ,

(see also [2], [3]).

V. FLUID MODEL ANALYSIS

In this section we study the equilibrium properties of the
MinTime scheduling algorithm introduced in the last section
and establish a kind of optimality properties. We assume that
the overall power expenditure P (t) is fixed at a level P and
focus only on the effect due to scheduling.

It turns out that the behaviour of a stochastic system
in the long-term can be described by the so-called “fluid
model” deterministic equations, which arise by disregarding all
randomness in system dynamics. Thus, we treat arrivals as the
continuous arrival of “fluid” at the same rate a as before, and
look at the average effect c̃ of randomization by extreme points
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c(p(t)) of R(P (t)). For more on fluid models and their relation
to the stochastic system, see [7]. The fluid model for (4) is

q̇(t) = a− c̃ , t ≥ 0 , (8)

where c̃ ∈ Co(∂optR(P )) and is such that any solution satisfies
q(t) ≥ 0.

A basic question is whether for this power expenditure the
network queues can ever empty. The answer is affirmative
provided the condition tP (a) < 1 holds, where tP is defined
in (2). Intuitively, this is true since the queues would not be
stable if a unit time’s worth of arrivals cannot be cleared at
the same time - see [7]. We note here that if in the stochastic
system (4) the power expenditure is kept fixed at P , then
(stochastic) stability is characterized by the same condition
[8]. We say P∗ is critical for the arrival rate vector a if
tP∗(a) = 1. In this case the fluid model will never empty
its’ queues under any algorithm with

∑
i pi(t) ≥ P .

Now consider the case of MinTime scheduling with critical
power P∗. The algorithm will give power vectors p(t) which
satisfy c̃(p(t)) ‖ q(t). Since P∗ is critical the queues will
never empty but their sizes will vary and reach any of a set
of possible nonzero equilibria:

Proposition 1. Under the MinTime scheduling at critical
power level P∗ for a, for any initial queue vector q(0) the
queue sizes converge toward the set I = {q ≥ 0|q ‖ a} of
equilibria.

Proof: The function V (q) = ||q||2||a||2 − (q · a)2 ≥ 0 is
a Lyapunov function for the system with respect to I . This is
because

V̇ (q) = −2
(
||a||2q · c̃− (q · a)(a · c̃)

)
≤ −2||a||2 (q · c̃− ||q|| · ||c̃||) = 0

where the equality holds because q ‖ c̃ for MinTime schedul-
ing. The inequality is strict except if q ‖ a in which case c̃ ‖ a
(by q ‖ c̃) and so q · a = ||q|| · ||a||, a · c̃ = ||a|| · ||c̃||.

Now we provide a lower bound to any power control
algorithm operating under a constant P , with respect to a linear
combination of the queue sizes. Define the localized workload
at the queue vector q as wP (q) = λa,P · q, where λa,P is the
optimal dual variables in (6) for parameters q = a and P .

For any choice of service vector c̃(t) ∈ Co(∂optR(P )), t ≥ 0
we have

ẇP (q(t)) = λa,P · a− λa,P · c̃(t)
≥ λa,P · a− max

c̃∈Co(∂optR(P ))
λa,P · c̃ , (9)

where the last expression is algorithm independent, and by (7)
the c̃ where the maximum is attained satisfies c̃ ‖ a. Thus
if we consider the one dimensional system with state wP (t)
evolving as

ẇP (t) = wP (0) + λa,P · a− max
c̃∈Co(∂optR(P ))

λa,P · c̃ ,

if wP (t) > 0 , (10)

then wP (q(0)) ≥ wP (0) implies wP (q(t)) ≥ wP (t) for all t ≥
0 and any power selection algorithm with power expenditure
P .

For the case of the MinTime algorithm if q(0) ∈ I then
c̃(0) ‖ a as does the optimal c̃ in (9). Moreover this will
be true for all times after t since by Proposition 1 I is an
invariant set for q(t). Thus wP (q(t)) = wP (t) holds with
equality if q(0) ∈ I and this leads us to the following property
which states that the MinTime algorithm attains lower values
for wP (q(t)) than any algorithm when both are started at states
of equal value of workload.

Proposition 2. Let qMT(t), q(t) be the respective evolutions of
queues of systems under MinTime scheduling and any power
selection algorithm, both having equal power expenditure
P . Then wP (qMT(0)) = wP (q(0)) implies wP (qMT(t)) ≤
wP (q(t)) for all t ≥ 0.

What happens if we compare algorithms for the same initial
states, i.e., qMT(0) = q(0)? Clearly wP (q(t)) < wP (qMT(t)) is
then possible for all t. Nevertheless, the lower bound wP (t) al-
ways satisfies wP (t) ≤ wP (qMT(t)), if wP (0) = wP (qMT(t)),
and hence wP (t) ≤ wP (qMT(t)) holds for all t. In what
follows we argue that actually this holds with (approximate)
equality, i.e., wP (t) ≈ wP (qMT(t)) will hold for all t after
some long initial period, if P = P∗. This is due to the
randomness in the arrival and service times which the fluid
model analysis ignored: the fluid model provides an accurate
description of the system dynamics over not very long time
periods.

To see what happens over longer timescales we argue
informally as follows. If the initial queues QMT(0) at the actual
(i.e., nonfluid) system have sizes proportional to some large
scalar parameter n indicating the size of the system, then over
the time interval [0, nt] the queue sizes will change by amounts
proportional to n since the number of arrivals and departures
over that period are themselves proportional to n. Thus,
(QMT(nt)−QMT(0))/n = t(a− c̃(p))+O(

√
n)/n provided p

does not change significantly during [0, nt]. The O(
√
n) term

is due to the random deviations about the mean values in the
arrival and service times. Thus at or near the equilibrium set
of states I , QMT(nt)−QMT(0) = O(

√
n) holds. Over a longer

period [0, n2t] we will have (QMT(n
2t)−QMT(0))/n = O(1),

i.e., the accumulated random deviations will have a O(1) effect
after time O(n2), and thus should not be ignored if one is
interested in equilibrium properties. Notice that QMT(n

2t) will
never be more that O(n) away of I , since because of the
nonzero drift towards I , corrections of the size O(n2) over
the time period [0, n2] will be into effect.

Now wP∗(QMT(n
2t)/n will also change by an O(1) amount

because w(·) is a linear function. The accumulated noise that
drive the excursions around means is zero mean3, so the
system effectively performs a random walk over the set I ,
viz. the direction a. At some finite time this random walk
will hit 0, and so it will couple with the lower bound w(t)

3It is a martingale.
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Fig. 5. The phase-space diagram of the queue evolution in Fig. 4

process or any other localized workload process started at
lower workload levels. Since the fluid analysis guarantees
wP∗(t) ≤ wP∗(Q(t))/n (modulo o(n) terms) for the actual
queue sizes under any algorithm, we have wP∗(QMT(n

2t)) ≤
wP∗(Q(n2t)) (again modulo o(n) terms) for all sufficiently
long t.

In Figs. 4- 5 we simulate the trajectories of the queue
sizes in a network of two symmetric links where Q1(0) =
0, Q2(0) = 100 for a specific power control (see the “sqrt”
rule at the end of the next section). The arrival rates at the
two links are the same, so one expects that the queue sizes
will equalize. The initial phase prior to the system hitting the
invariant set I is short.

VI. OPTIMIZING THE TOTAL POWER EXPENDITURE

In the previous section we argued that the MinTime algo-
rithm attains the least possible value of workload (modulo
some small deviations due to randomness) in a pathwise
sense, compared to any other algorithm using the same fixed
power expenditure P . Here we allow P (t) to vary in order to
minimize the average cost criterion (5).

This power can never fall below the critical level P∗ required
for queue stability. On the other hand, as ε in (5) tends to

zero, the optimal behavior essentially drives average power to
the lowest possible level since it becomes increasingly more
expensive than the queueing cost. Thus for small ε we expect
the total power selection by the optimal algorithm to give
values P (t) ≈ P∗, and so wP∗(qMT(t)) is an approximate
lower bound for the localized workload of any other algorithm
started at the same state, as explained in the last section.

After an initial period, when the queues under MinTime
scheduling converge to I , the value of wP∗(qMT(t)) will
change according to ẇP∗(qMT(t)) = λa,P∗ ·α−C(P (t)), where

C(P ) = max
c̃∈Co(∂optR(P ))

λa,P∗ · c̃ . (11)

Thus the workload wP∗(t) evolves similarly to the contents
of a single controlled queue with unit rate arrivals and a
service rate C(P ) controlled through the total average power
expenditure P , i.e., ẇP∗(t) = 1−C(P ), where P is the control
input. The optimal policy of choosing P (t) with respect to the
average cost criterion

lim sup
T

1

T

∫ T

0

(εwP∗(t) + P (t)) dt ,

would produce the minimum average cost also for (5). if
wP∗(t) ≈ tP (t)(QMT(t)) held exactly. As explained in Sec-
tion II, we know that the optimal policy for the average cost
criterion (5) is such that the instantaneous service rate is a
nondecreasing function of the current queue size. Moreover,
the service rate is always at least the arrival rate. Motivated
by this, we heuristically consider policies which select the
total power level P (t) based solely on the current workload
tP (t)(Q(t)) ≈ tP∗(Q(t)), i.e., P (t) = f(tP∗(Q(t))) for
increasing functions f with f(x) ≥ P∗ if x 6= 04.

In Fig. 6 we obtain the tradeoff curves by simulating a net-
work of two symmetric links with G11 = G22 = 0.8, G12 =
G21 = 0.3. For power control we use f(x) = P∗ + ε

√
x

(“sqrt”) and f(x) = P∗ + ε log(x) (“log”), and compare with
two algorithms based on the following problems of power
minimization: The “Primal” algorithm solves

min
∑
i

pi + εD(p)

iteratively for the penalty function D(P ) =
∑
i(ci(p)−ai)−1,

motivated from the average queueing delay in an M/M/1
queue. The “Primal” algorithm is just gradient projection, and
the different points of the tradeoff curve are obtained by vary-
ing ε. The “Primal-dual” algorithm is again gradient projection
on the Lagrangian over both primal and dual variables of the
following problem:

min
p≥0

ε
∑
i

pi such that c(p) ≥ a.

The tradeoff curve is obtained by varying ε.
Notice that both sqrt and log with MinTime yield uniformly

better operating points than the others. The primal-dual algo-
rithm has the worse performance and this may be due to the

4f(0) = 0 of course.
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fact that it short queues are very noisy signals -and hence not
very informative- of the value of dual variables. That is, the
correspondence between dual variables and queues shown to
exist in deterministic models, it breaks down in the presence
of large noise. The results in Fig. 6 are generally robust in the
choice of f . Thus, simple stationary rules may be adequate
for balancing delay and power.

VII. DISCUSSION

The problem of solving the optimization problem (7) in-
volved in MinTime scheduling is not touched in this paper.
In [16] the authors show that (2) is NP complete and it
is even hard to approximate in polynomial time. Thus we
cannot hope for a computationally efficient algorithm for
solving (2) in every case. Nevertheless, there are some initial
thoughts of how to do this in specific cases such as in the
“low SNR” regime, i.e., when no timesharing is necessary.
For example, observe that the Foschini-Miljanic distributed
power control algorithm [13] computes the minimum power
expenditure under which the constraint (3) is satisfiable for
any pair of queue length vector w and value for t. If this
expenditure matches P , then this means that t is indeed the
value of workload at q; if the expenditure exceeds P then
the network can empty within time t only at a higher than
P power consumption. Thus, t in fact underestimates the true
workload tP (q) and so one could run the Foschini-Miljanic
algorithm again for a higher t value this time, and continue
until the power expenditure to empty by t converges to P .
We plan to pursue this idea further and provide an extension
of the Foschini-Miljanic algorithm which also computes the
workload for any given vector of queue sizes.

We believe that the conceptual approach in this paper is
valuable, in that it shows how the power control part of
the problem can be decoupled into a scheduling and total
power expenditure selection step and solved easily because
it collapses to a single dimension where structural results for
optimal policies are available.
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