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Abstract—Mobile traffic demand varies significantly in time
and space. Hence, wireless radio resources in hotspot areas
and at peak traffic hours may be scarce. Consequently, special
attention has to be paid to effects induced by admission control,
i. e., blocking of data requests by base stations in case of high
utilization or overload. Moreover, rising traffic demand requires
denser deployments and frequency reuse one. Due to the resulting
inter-cell interference, the base stations’ utilizations have to
be considered mutually dependent, which affects the admission
control performance. In this paper, we extend a flow level model
for elastic traffic, which explicitly takes into account the dynamic
mutual inter-cell interference among base stations, by admission
control. The model presented allows computing exact values for
the average base station resource utilization, flow throughputs,
and blocking probabilities. To analyze large networks containing
many cells, we extend two approximation techniques, a state
aggregation and an average interference approach, and compare
them with the exact solution. Both techniques require far less
computational effort and show remarkable accuracy. We believe
that the extended flow level model is a positive step towards
a more accurate, flexible, and holistic framework for network
analysis and planning, and self-organizing network techniques.
Index Terms—blocking probability; wireless network; inter-

ference; admission control; flow level modeling; queuing theory

I. INTRODUCTION
Advanced wireless data network planning tools and opti-

mization algorithms require models, which accurately predict
network performance metrics such as base station (BS) re-
source utilizations, user throughputs, or data request blocking
probabilities. This, in turn, requires a fundamental under-
standing of data traffic and the network behavior in case of
admission control and interference caused by neighboring BSs.
In contrast to investigating network performance on a packet

level, a notation using flows and sessions is far more ad-
vantageous when describing Internet data traffic, which has
already been highlighted by Roberts [1] in 2001. This notation
allows a more in-depth analysis of (wireless) networks based
on queuing theory and leads to simple expressions for network
key performance indicators (KPI) such as flow sojourn times
or throughputs. Applying flow level data traffic models, Fredj
et al. pointed out the importance of admission control on ses-
sion and flow level in [2]. Especially in case of high resource
utilization, the users’ perception of network performance in
terms of throughputs, may deteriorate drastically, if other

incoming data requests are not blocked. Further, Delcoigne
et al. [3] and Benameur et al. [4], [5] studied the integration
of streaming and elastic traffic and, also, explicitly stressed
the advantage of admission control when applied to both
streaming and elastic flows. Introducing blocking mechanisms
prevents excessive flow sojourn times, which would negatively
affect the users’ quality of experience. Later, Bonald [6]
showed that, under certain conditions, blocking models, such
as the popular Erlang model, are not affected by higher
moments of the service time distribution than the mean even in
the case of non-Poisson flow arrivals (insensitivity property).
This insight has been extended by Wu et al. in [7] to wireless
data networks with admission control and processor sharing
service disciplines.
Due to today’s stringent capacity requirements, current

wireless network technologies, such as 3GPP Long Term
Evolution, apply the same frequency bands in each cell, along
with rate adaptive transmission. The use of these techniques
induce complex interactions between the number of flows
being served by individual BSs. In this regard, Bonald et al. [8]
provided first and second order bounds for the mean flow
throughputs, and transfer delays under mutual interference.
Recently, studying this cell load-coupling behavior has re-
gained momentum, e. g., Majewski and Koonert [9] introduced
a conservative coupled-cell load model for network planning,
which has been further studied by Siomina et al. and Fehske
et al. in [10] and [11], respectively, and has been applied in
self-organizing network algorithms in [12] and [13].
So far, current work considers either admission control

mechanisms on isolated links in wireless network models
with some fixed interference conditions, or coupled cell load
behavior in cellular data networks without admission control,
e. g. [11]. In this paper, we combine both concepts, coupled
cell loads and admission control, and thereby generalize the
results of [11]. We derive the mean flow throughputs in the
so-called fluid and quasi-stationary regimes, the flow blocking
probabilities, and mean base station resource utilizations. Fur-
thermore, we provide two techniques, which allow for accurate
approximation of these quantities with low computational
effort. In order to detail theoretical results for elastic traffic, we
leave investigations on streaming, and application to network
planning and self-organizing networks for future publications.
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II. FLOW LEVEL MODEL WITH ADMISSION CONTROL
We consider the downlink of a wireless network con-

sisting of N base stations (BS) deployed in the cover-
age region defined by a nonempty compact set L :“�
u P R

2 | Di : pipuq ě pmin
(
. The terms pipuq ą 0,

and pmin ą 0 denote the receive powers w. r. t. BS i at
location u P L, and the minimum receive power necessary
to connect to the network, respectively. The latter is usually
determined by the receiver sensitivity of mobiles. Further, we
define the partition P of the coverage area L into N cells Li

as P :“ tL1,L2, . . . ,LNu. The partition P may be given by
Voronoi tessellation or specific user-base station association
rules that define the cell shapes.

A. Traffic Model and Base Station Activity
1) Flows and Sessions: We model traffic and data requests

by the users in terms of elastic flows and sessions. A data
flow represents data packets that belong to one specific object
like a web page, an email, or a general data file, whereas, a
session consists of a number of consecutive flows initiated by
a user during a specific time interval, e. g., while browsing the
Internet. Similar to the arrival of telephone calls, the arrival
of sessions can be described by a Poisson process [2].
Independent of the session structure given by, e. g., a partic-

ular distribution of the average time a user takes to think, the
flow arrival can also be modeled as a Poisson process, when
individual data requests (flows) are blocked by the BS [6]. The
Poisson arrival assumption holds as long as the users show
some specific behavior, i. e., either such a flow is ignored and
the user is inactive for some rethinking time (so-called jump-
over blocking), or the transmission of a blocked flow is re-tried
after some rethinking time with a certain probability (blocking
with random re-trial). We denote the flow arrival intensity to
BS i (in s´1) by λi with flow sizes ω following an exponential
distribution with common mean Ω (in Mbits). Further, we
introduce δip¨q, the normalized spatial user distribution in
cell Li with

ş
Li

δipuqdu “ 1.
2) Activity of a Base Station: The fact that there is at least

one active flow in a cell determines whether the corresponding
BS is active, and whether it generates interference in neighbor-
ing cells. In this regard, for ease of mathematical tractability,
we make the following assumption:

Assumption 1. If there is at least one active flow being served
in a cell, all available transmission resources are allocated to
that flow and the corresponding BS transmits at full power.

Remark 1. Assumption 1 might be understood as a rather
severe restriction compared to real mobile systems in practice,
in which users may be allocated only a fraction of frequency
resources. However, it is used here to account for varying inter-
ference with a simplified modeling of radio resource schedul-
ing. Moreover, it reflects a best-effort service discipline, which
is reasonable for elastic traffic. As explained further below
(Section IV), relaxing Assumption 1 by considering time-
average interference, i. e., scheduling maintaining an average
frequency resource utilization and, thereby, representing the

other extreme case, results in similar cellular network perfor-
mance with respect to the impact of interference.

To capture the dynamic interference variations originating
from flow dynamics, we denote a vector by y P Y :“ t0, 1u

N ,
the elements of which assume the value one if the corre-
sponding BSs are active and zero otherwise. We introduce
the set of interference scenarios, where BS i is active, by
Ai “

�
y P Y | yi “ 1

(
and collect the indices of active and

inactive BSs in the sets

N0pyq :“
�
i “ 1, . . . , N | yi “ 0

(
and (1)

N1pyq :“
�
i “ 1, . . . , N | yi “ 1

(
. (2)

B. Radio Link Model
We assume fast and slow fading effects to evolve on much

shorter, and, much longer time scales, respectively, than flow
durations, so that they are contained either as averages, or
as instantaneous values in location-dependent but otherwise
constant functions pip¨q.
1) Radio Link Quality: Further, the collection of BSs that

interfere at any given point in time, strongly affects the radio
link quality. In contrast to slow and fast fading effects, these
interference scenarios evolve on the same time scale as the
flow dynamics and, as a result, data rates as well as the
utilizations of all BSs are strongly interconnected.
Considering various interference scenarios y, we define the

signal-to-interference and noise ratio (SINR) experienced by
a data flow at location u P L w. r. t. BS i as

γipu, yq :“
pipuqř

jPN1pyqztiu pjpuq ` N0

, (3)

with N0 ą 0 denoting the noise power, and the data rate as

cipu, yq :“ aBmin
!
log2

`
1 ` bγipu, yq

˘
, cmax

)
, (4)

where B, a, b denote the bandwidth, bandwidth efficiency, and
SINR efficiency, respectively. Following the approach in [14],
we incorporate an average packet scheduling gain via the
parameters a and b, and choose corresponding values for more
spectrally efficient scheduling mechanisms, MIMO techniques,
or system specific overheads. The term cmax denotes the
maximum bit rate achievable, given by the highest modulation
and coding scheme of the system at hand.
2) Cell Capacity: In order to model important network

key performance indicators (KPIs) on flow level, we take the
metric cell capacity Ci as a starting point, which we define
as the rate provided to a user at any given point in time and
averaged over all locations within a cell. Hence, it becomes
the harmonic mean of the location-dependent rates cipu, yq
achieved within the serving area Li, i. e.,

Cipyq :“

«ż
Li

δipuq

cipu, yq
du

ff´1

. (5)

It is of high importance to understand, why the weighted
harmonic mean instead of an arithmetic mean is applied here.
Usually, a user at location u requests a specific amount of data
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in Mbit to be transferred. This data volume along with his or
her rate cipu, yq ultimately determines the time for transmis-
sion (data amount divided by the rate). Therefore, the lower the
rate cipu, yq, the longer it will take to transfer the data. As a
result, users with a lower rate at cell edges are more likely to be
active for longer periods of time thereby decreasing the cell’s
capacity. This fact in explicitly considered, since the harmonic
mean is more sensitive to outliers. This problem usually occurs
when averaging rates or speeds for given quantities, e. g., data
to be processed or transferred, or distances to be traveled. A
more elaborate derivation of the cell capacity as the harmonic
mean of rates can be found in [15].
Note further that, since the individual achievable

rates cipu, yq within a cell highly depend on the collection of
active neighboring BSs, the cell capacity Cipyq is a function
of the interference scenario y, as well, and is lower under
mutual interference.
3) Handover Mechanisms: Usually, the users’ mobility

along with the slow fading process triggers handover events.
Here, we assume that a flow remains connected to a single
serving BS during its entire lifetime, since user mobility
and slow fading commonly occur on longer time scales. We,
therefore, disregard modeling handover mechanisms in detail.

C. Resource Sharing and Admission Control
In wireless networks, the cell’s capacity is typically bounded

by some limiting bandwidth and is shared among several users.
Particularly, in high traffic regimes with many users initiating
various data flow requests, congestion may occur in some
of the cells. As a result, network performance, in terms of
throughput and delay, deteriorates drastically. Therefore, it is
beneficial to block single user requests in order to maintain the
performance of ongoing data transmissions of other users. As a
consequence, network operators introduce admission control in
order to prevent congestion. In the following, we assume that,
in each cell i, resources are shared equally among at most Li

users according to the egalitarian processor sharing (EPS)
discipline [16], i. e., BS i admits at most Li concurrent flows
and blocks all further requests. Note that applying the EPS
discipline is equivalent to the assumption of a blind scheduling
policy, for instance the well-known Round Robin scheduler.

D. Flow Level KPIs under Static Interference
In order to reflect the network’s quality of service more

precisely, we concentrate on flow level metrics, in particular
on flow throughputs and on the number of requests rejected,
as opposed to classical network performance metrics, such as
SINR and rate distributions. For this purpose, we use basic
queuing theoretic concepts and thereby avoid extensive Monte
Carlo simulations.
We interpret some BS i as a single server with a queue

of maximum length Li and an interference-dependent mean
service rate μipyq :“ Cipyq{Ω. Let Xiptq P t0, . . . , Liu denote
a continuous time random process representing the number
of active flows in a cell i at time t. Then, for some fixed
interference scenario y, a BS i can be described by an

M/M/1/Li EPS queuing system, and its load ρipyq is given
as the ratio of arrival and service rates

ρipyq :“
λi

μipyq
“

λiΩ

Cipyq
. (6)

Note that in contrast to the derivations in [11], we clearly
distinguish between the cell load and the resource utilization
of the serving BS. Since there may exist flow requests that are
not admitted and thus blocked, we have to exclude them when
computing the BSs’ utilization. Hence, the resource utilization
of a BS i is given by

ηipyq “ ρipyq
`
1 ´ Pb,ipyq

˘
“ ρipyq

1 ´ ρipyqLi

1 ´ ρipyqLi`1
(7)

where the flow blocking probability Pb,i in cell i depends on
the maximum number Li of flows being served concurrently
and on the interference scenario y, as well:

Pb,ipyq “

`
1 ´ ρipyq

˘
ρipyqLi

1 ´ ρipyqLi`1
. (8)

The mean number ni of active flows in a system with finite
buffer size Li can be given as

nipyq “
ρipyq

1 ´ ρipyq
´

pLi ` 1qρipyqLi`1

1 ´ ρipyqLi`1
, (9)

and used in the equation to compute the average flow through-
put ripyq w. r. t. BS i, under interference scenario y, i. e.,

ripyq “
ηipyqCipyq

nipyq
, (10)

which is basically the average utilized capacity divided by the
mean number of active flows. [15]–[17]
In the following, we drop the assumption of y being fixed.

E. Flow Level KPIs under Variable Interference

Let Xptq :“
`
X1ptq, . . . , XN ptq

˘
P S denote the vector

process of the number of active flows in N cells with state
space S and transition rates from state x to state x1

qpx, x1q “

$’’&’’%
λi for x1 “ x ` ei, x1

i ď Li,

μipyq for x1 “ x ´ ei, xi ď Li

0 else,
(11)

where ei denotes the N -dimensional unit vector with the ith

component equal to one. With the definitions above along
with Assumption 1, we are able to restate the definition
of the vector of active BSs as y :“ sgnpxq. As a result,
the interference scenario y itself becomes a random process,
capturing the dynamic effect of inter-cell interference and,
hence, the correlation between the BSs’ quality of service
provided to the mobile users.
Since many system KPIs, such as a BS’s resource utiliza-

tion, flow throughput, or blocking probability, can directly
be deduced from the state probabilities, we are interested in
characterizing the joint stationary state distribution πpxq of the
vector process Xptq. It can be obtained by solving the system
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of balance equations [11]¨̋ ÿ
nPN0pyq

λn `
ÿ

nPN1pyq

λn ` μnpyq‚̨πpxq “

“
ÿ

nPN0pyq

μnpy ` enqπpx ` enq`

`
ÿ

nPN1pyq

`
λnπpx ´ enq ` μnpyqπpx ` enq

˘
.

(12)

Remark 2. Note that, in accordance with the admission
control policy, the state probabilities πpxq in Eqs. (12) are
zero, whenever any element xn is larger than the maximum
number Ln of flows concurrently being served.

Unfortunately, the service rates μipyq vary among the states
in a manner such that the queuing network is not partially
reversible. As a result, techniques used to obtain a closed
product form of the stationary probability distribution πpxq
are not applicable. However, since the state space is finite, as
opposed to the system without admission control as in [11],
the system of balance equations (12) can be solved for
stationary state probabilities πpxq with standard numerical
tools. In the following, we provide the derivation of important
network KPIs from the stationary state probabilities along with
approximations obtainable with low computational effort.
With regard to Assumption 1 and the PASTA (Poisson

Arrivals See Time Averages) property of systems with Poisson
arrivals [18], the probability that at least one flow is active
in some cell i is equivalent to the BS’s resource utilization
and the blocking probability corresponds to the probability of
exactly Li flows being active. Hence, both can be computed
by

ηi :“
ÿ
xPS
xiě1

πpxq and Pb,i :“
ÿ
xPS

xi“Li

πpxq, (13)

and the mean number of active flows in cell i becomes

ni “
Liÿ
j“1

ÿ
xPS
xi“j

jπpxq. (14)

In order to determine flow throughputs, we have to consider
the speed with which interference varies and, hence, the
number of interference scenarios experienced during the entire
transmission of a flow. The two limiting cases, i. e., a flow
observes infinitely many state transitions, or just only one
interference scenario y, is provided by the fluid and quasi-
stationary regimes, respectively, where the former overesti-
mates and the latter underestimates system performance in
terms of throughputs [3]. Introducing σipyq as the probability
of a flow in cell i experiencing interference scenario y as

σipyq “

ř
xPS

sgnpxq“y
πpxqř

xPS
xiě1

πpxq
, (15)

the average flow throughput rqsi (in the quasi-stationary setup)
can be computed by the harmonic mean of interference-

dependent throughputs given by Eq. (10), i. e.,

r
qs
i “

»– ÿ
yPAi

ripyq´1σipyq

fifl´1

. (16)

Since, in the fluid regime, a flow observes all interfer-
ence scenarios y infinitely often, it experiences a mean
rate

ř
yPAi

cipu, yqσipyq and the cell capacity becomes

Cfli “

«ż
Li

δipuqř
yPAi

cipu, yqσipyq
du

ff´1

. (17)

The mean flow throughput in the fluid regime can then be
calculated by inserting ni, ηi and Cfli into Equation (10).
Note that the argument for taking the harmonic rather than

the arithmetic mean previously given for Eq. (5) is also true
for Eqs. (16) and (17).

III. APPROXIMATION TECHNIQUES

For a large state space S, i. e., a large number of BS N and
flows Li allowed concurrently, the computation of network
KPIs as described above may be cumbersome, since the order
of the system of balance equations (12) grows fast with N

and Li (see III-C). We, therefore, provide approximation
techniques in the following.

A. Approximation by State Aggregation

The service rates μipyq are state-dependent in general, but
are equal in states, where the same BSs are active, i. e., where
we can observe the same interference situation. Based on the
definition of the interference situation y :“ sgnpxq, we can
aggregate these states by Spyq :“

�
x P S | sgnpxq “ y

(
.

Conditioned on observing the network being in states within
one aggregate, the system essentially behaves like a network of
independent queues, since the service rates do not vary in the
specific states. Therefore, we consider a separate investigation
of the transition rates within and among aggregates as in [11].
We apply and extend the procedure in [11] by admission
control, i. e., by limiting the state space S. However, to ensure
brevity, the approach in [11] is not elaborated upon. The
approximate state probabilities rπpxq, conditioned on being in
aggregate Spyq, become

rπpxq “

$&%
ś

nPN1pyq
p1´ρnpyqqρxn´1

n
pyq

1´ρ
Ln
n pyq

σpyq for y ‰ 0,

σp0q for y “ 0,

(18)
where σpyq denotes the probability of observing interference
scenario y and, hence, of being in aggregate Spyq. In order
to determine σpyq, we proceed by substituting the exact
state probabilities πpxq with the approximate state probabili-
ties rπpxq in Eqs. (12) and by summing up terms that corre-
spond to individual aggregates. We then obtain the transition
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rates among aggregates:

ppy, y1q “

$’’&’’%
λn for y1 “ y ` en,

μnpyq ´ λn
1´ρLn´1

n
pyq

1´ρ
Ln
n pyq

for y1 “ y ´ en,

0 else.

(19)

Introducing the matrix P “ rpijs with arbitrary ordering
i ÞÑ ypiq, pij :“ p

`
ypiq, ypjq

˘
, and pii “ ´

ř2N

j“1 pij , we
can compute the probabilities σpyq by solving the system of
equations given by

Pσ “ 0, (20)

where the vector σ contains individual aggregate probabili-
ties σp¨q in corresponding order. Once the System (20) has
been solved for σpyq, the approximate probabilities rπpxq are
computed via Eq. (18). Network KPIs of interest can now be
calculated as outlined in Section II-E by substituting πpxq withrπpxq.

B. M/M/1/L Approximations and Performance Bounds
1) Fluid Approximation based on Average Interference:

In order to compute the mean flow throughputs and blocking
probabilities for large networks with many BSs, we resort
to another approach (introduced in [9]) for systems without
blocking and further studied in [10] and [11]. We extend these
approaches by introducing admission control. We assume,
that each data flow experiences time-average interference
conditions, such that the individual queues are decoupled. The
notion of time-average interference thereby relaxes Assump-
tion 1.
The SINR and the achievable rate become

γipu, ηq :“
pipuqř

j‰i ηjpjpuq ` N0

and (21)

cipu, ηq “ aBmin
!
log2

`
1 ` bγipu, yq

˘
, cmax

)
, (22)

respectively. Using Eqs. (6) and (7), the load and resource
utilization are

ρipηq :“
λiΩ

Cipηq
, with Cipηq :“

«ż
Li

δpuq

cipu, ηq
du

ff´1

and

(23)

ηipρiq :“ hipρiq “ ρi
1 ´ ρLi

i

1 ´ ρLi`1
i

, (24)

respectively.
Since the cell load ρi is a function of the BS utilization η

through the interference coupling effect, the definition of the
utilization ηi can be rewritten as ηi :“ fipηq “ phi ˝ ρiqpηq,
where phi ˝ρiq denotes the composition of the functions hip¨q
and ρip¨q. Further, we define the corresponding vector func-
tion fp¨q “

`
f1p¨q, . . . , fip¨q, . . . , fN p¨q

˘
. Note that the BS

resource utilization ηi is given only in an implicit form;
however, the system of equations η “ fpηq can be solved
numerically via a fixed point iteration, which is stated in the
following theorem (the proof is detailed in the appendix):

Theorem 1. For any initial utilization vector η0 P R
N
`

with η0i ă 1, the sequence ηk`1 :“ fpηkq for k “ 0, 1, 2, . . .

converges to a unique fixed point η.

Once, the resource utilization η has been obtained, the
blocking probability and the mean number of active flows
can be computed via Eqs. (8) and (9) with loads ρipηq as
arguments. Finally, inserting the mean number of active flows,
the resource utilizations η, and the cell capacity Cipηq into
Eq. (10), yields the mean flow throughput under the average
interference assumption.
2) First Order Bounds: For comparison, we also state upper

and lower bounds for the performance metrics of interest and
assume either minimum or maximum interference conditions,
respectively. In these cases, there is no dynamic load coupling
among the cells, and in order to compute network KPIs, it
is sufficient to insert either y “ 0 or y “ 1 into Eqs. (5) -
(10), respectively. These bounds correspond to the first order
bounds derived in [2] and [19] for systems without admission
control.
3) Second Order Bounds: Following [19], it is assumed

that the process Xi depends on all other processes Xj , j ‰ i,
but the latter evolve either under minimum or maximum
interference scenarios. Suppose η̂i and η̌i are derived from the
first order upper and lower performance bound, respectively.
Then the probability that a flow in cell i sees interference
situation y is

pσipyq “
ź

jPN0pyq
j‰i

`
1 ´ η̂j

˘ ź
jPN1pyq

j‰i

η̂j (25)

for the first case. In the second, qσipyq can be calculated
by using the equation above and by substituting η̂i by η̌i.
The second order upper bound combines the fluid regime
and the probabilities pσipyq by inserting the latter into Cfli
and by using M/M/1/L EPS equations (Eqs. (6) - (10)). The
second order lower bounds for the mean flow throughput and
blocking probability can be determined via the quasi-stationary
throughput Eq. (16) combined with qσipyq and byqPb,i “

ÿ
yPAi

Pb,ipyqqσipyq. (26)

C. Complexity Analysis
Clearly, the finiteness of the state space S (finite Li)

allows for an exact computation of the steady state probabili-
ties πpxq; however, the order of the System (20) to be solved
is
śN

i“1 pLi ` 1q. To compute the KPIs for a standard two-tier
hexagonal network with 57 cells and with at most nine flows
being served in each cell concurrently, the order becomes 1057,
which essentially renders the computation infeasible.
In contrast, the aggregation model only requires the solution

of a linear system of 2N equations, which is feasible for a
moderate number N of BSs. Far less computational effort is
needed by the average interference model, where N nonlinear
equations are to be solved iteratively. Hence, the approxima-
tion with the aggregation model can be very beneficial for
performance evaluation of networks with a moderate number
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of BSs, whereas the average interference approach allows
analysis of large networks with several tens or hundreds of
cells.

IV. NUMERICAL EVALUATION
In order to quantify the accuracy of the approximations, we

use a toy network scenario, which is depicted in Fig. 1. We
utilize five cells and restrict the number of flows being served
concurrently in each cell to three. We apply a bandwidth B of
10 MHz and uniform spatial traffic distributions δip¨q. Receive
powers pip¨q are generated by the Okumura-Hata path loss
model [20] and cell areas Li are formed by a user association
rule according to strongest receive power. We evaluate the light
blue central cell in Fig. 1(a), since it is surrounded by the other
four cells and strongly affected by inter-cell interference.
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Fig. 1. (a) Cell areas and (b) receive powers of the network used for numerical
evaluation.

Remark 3. The reason why to choose such a small network
is that the exact computation of the network KPIs requires
high computational effort as stated in Section III-C. However,
from our experience of using the model, we can affirm that
the following observations also hold for larger networks.

A. General Observations
Flow throughputs and blocking probabilities, in general,

highly depend on the traffic demand, which is shown in
Figs. 2(a) and 2(b). We observe that the exact solution and
both its approximations, the aggregation and the average
interference model, approach the first and second order bounds
for low and high traffic, respectively. In contrast, for moderate
traffic situations, the interference-coupling behavior can be
clearly identified: The higher the traffic demand, larger the
resources that have to be allocated by a BS and higher the
interference generated in the surrounding cells. This, in turn,
decreases the cell capacity of other BSs. As a consequence,
more resources have to be allocated to serve a given demand
and fewer resources are left for the individual users, thereby,
decreasing their data throughputs.

B. Accuracy Considerations
Figs. 2(c) -2(e) depict the errors of the approximations and

second order bounds w. r. t. the exact flow blocking probabil-
ities (absolute errors), and the flow throughputs in the fluid
and quasi-stationary regimes (relative errors), respectively.

Computing the blocking probabilities, the aggregation model
is superior to the average interference approach for very high
traffic. It is more likely to find the system in a state, where
all BSs are active, i. e., y “ 1, and where blocking most
likely occurs. Therefore, the transitions among the aggregates
play a minor role, and the blocking probabilities are well
approximated by the system conditioned on being in aggregate
described by y “ 1 and the decoupled queue therein. The
aggregation model approximates the flow throughput well,
both in the fluid and the quasi-stationary setup. The low effort
average interference approach provides a good approximation
of flow blocking probabilities and throughputs, as well. Since
the throughput approximation lies in between the fluid and
quasi-stationary regimes, which constitute limiting cases with
regard to the variation speed of the interference, the average
interference model can be accepted as a very accurate approx-
imation.

V. SUMMARY AND FIELDS OF APPLICATION
In this paper, we extend a wireless network flow level

model for elastic traffic by introducing admission control
functionality into base stations. In contrast to other existing
work, the queuing theory-based model presented explicitly
takes into account the dynamic mutual interference among
all base stations instead of assuming some fixed interference
level. As opposed to the system without admission control,
the extended model allows for computing exact values for
flow blocking probabilities in all cells and for mean flow
throughputs in fluid and quasi-stationary regimes. In addition
to the exact solution, we adapt two approximation techniques,
a state aggregation and an average interference approach, to
a system with admission control. Both approximations allow
analyzing wireless networks containing several tens or even
hundreds of cells, with low computational effort, and show
remarkable accuracy. Specifically, the average interference
approach is a convenient trade-off between accuracy and low
complexity for performance evaluation of very large networks.
In high traffic scenarios, special attention has to be paid to

effects induced by admission control, i. e., blocking of data
requests and users, as well as, varying guaranteed throughputs
by limiting the number of users. Such effects may worsen the
users’ perception of the network quality drastically. In this
regard, we believe that the flow level model with blocking
is a positive step towards a more accurate and more flexible
analysis of quality of experience metrics of wireless multi-
cell networks. Also, we think that it will contribute to more
effective network planning and (self-) optimization techniques,
such as adaptive service-type dependent admission control.
Another area to apply an extended version of the model may

be planning of future 5G networks, in which sporadic low rate-
low latency and human initiated high data rate applications
will run concurrently. The model is capable of computing
data flow sojourn times (as the inverse of the throughput) and,
hence, of characterizing latency. The model may help ensuring
low latency by freeing resources, which can be achieved by
blocking high data rate users.
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Fig. 2. (a) Comparison of the flow blocking probability and (b) mean flow throughput computations. (c) Absolute errors w. r. t. exact flow blocking probability,
and (d)-(e) relative errors w. r. t. fluid regime and quasi-stationary regime flow throughputs for increasing traffic demand. Note that both legends in figures (c)
and (d) apply jointly for figures (c)-(e).
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APPENDIX

A. Proof of Theorem 1

For better readability, we omit the bar and write ρpηq instead
of ρ̄pηq; however, by ρ we always mean the load derived with
the average interference approach, see Eq. (23). We also omit
the indices i at some places and write h, ρ, and L instead.
First, we show properties of the individual functions ρip¨q
and hip¨q, which imply positivity, the nondecreasing property,
and concavity of their compositions fi :“ phi ˝ ρiq.

a) Properties of the function ρipηq: The loads ρipηq are
nondecreasing and strictly concave in the utilization vector η.
This has already been shown in the proof of Theorem 1 in [11].

b) Properties of the function hipρiq: The second deriva-
tive of the function hpρq (see Eq. (24)) is

h2pρq “

ahkkkkkkkkkkkkkkikkkkkkkkkkkkkkj
ρL´1p1 ´ ρL`1qpL ` 1q ˆ

bhkkkkkkkkkkkikkkkkkkkkkkj”
ρL`1pLρ ´ L ´ 2q `

chkkkkkkkikkkkkkkj
pL ` 2qρ ´ L

‰
p1 ´ ρL`1q4loooooomoooooon

d

(27)

We show concavity by studying h2pρq for three cases:
ρ “ 0: Substituting, we observe that h2p0q “ 0, which implies
concavity of the function hpρq for ρ “ 0.
ρ Ñ 1: In the limit, we obtain limρÑ1 h

2pρq “ ´LpL`2q
6pL`1q ă

0,@L ą 0. Hence, the function hpρq is strictly concave
for ρ Ñ 1.
ρ ‰ 0, ρ ‰ 1: We further observe

i) a ž 0 for ρ ż 1,
ii) b ž 0 for ρ ž L`2

L
and b “ 0 for ρ “ L`2

L
,

iii) c ž 0 for ρ ž L
L`2

and c “ 0 for ρ “ L
L`2

.

Therefore, the function hpρq is strictly concave for
ρ P

´
0, L

L`2

ı
and ρ P

”
L`2
L

,8
¯
. For ρ P

´
L

L`2
, 1
¯
, a ą 0
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holds, and for strict concavity, b ` c ă 0 is to be shown, which
can be deduced from the assumption L

L`2
ă ρ ă 1. For

ρ P
´
1, L`2

L

¯
, a ă 0 holds, and for strict concavity, b ` c ą 0

is to be shown, which can be proved by using induction over L.
Hence, the function hpρq is concave for ρ “ 0 and for ρ Ñ 8,
and strictly concave for ρ P p0,8q. The first derivative of the
function hpρq is

h1pρq “
1 ´ pL ` 1qρL ` LρL`1

p1 ´ ρL`1q2
, (28)

which, in the limit, becomes limρÑ8 h1pρq “ 0. Since the
function hp¨q is nondecreasing in the limit and strictly concave
for ρ P p0,8q, it must be increasing for ρ P p0,8q. Moreover,
for ρ “ 0, we obtain h1p0q “ 1 ą 0.

c) Properties of the function fipηq: For λi,Ω ě 0 and
Cipηq ą 0, all functions ρipηq produce positive results for
η ě 0. By inspection, one can see that the functions hipρiq
are positive for any ρi ě 0. Hence, their composition fi is
positive for η ě 0. Further, for all η1 satisfying ρipη

1q “ 1,
the limit becomes limηÑη1 fipηq “ Li

Li`1
ą 0,@Li. Since the

functions hipρiq are nondecreasing and the functions ρipηq are
positive and nondecreasing for η ě 0, the compositions fipηq
must be nondecreasing for η ě 0. This follows from
f 1
ipηq “ phi ˝ρiq

1pηq “ h1
i

`
ρipηq

˘
¨ρ1

ipηq. Moreover, since the
functions hipρiq are increasing and concave for finite ρi ě 0,
and the functions ρipηq are strictly concave for η ě 0, their
compositions fipηq must be strictly concave, which is a con-
sequence of f2

i pηq “ h2
i

`
ρipηq

˘
¨
`
ρ1
ipηq

˘2
`h1

ipρipηqq ¨ρ2
i pηq.

d) Convergence to the unique fixed point: If fpηq is a
so-called standard interference function (SIF), then Theorem 1
holds [21], which is true if it has the following properties:
1) Positivity: fpηq ě 0 for η ě 0,
2) Monotonicity: η ě η1 ùñ fpηq ě fpη1q,
3) Scalability: αfpηq ą fpαηq for α P R, α ą 1.
Positivity and monotonicity of the functions fipηq imply the
same properties for the vector function fpηq. Proving scalabil-
ity, we use the same argument as in the proof of Theorem 1
in [11], i. e., positivity and concavity of the elements fip¨q
imply scalability of the vector function fp¨q.

REFERENCES
[1] J. W. Roberts, “Traffic Theory and the Internet,” IEEE Communications

Magazine, vol. 39, no. 1, pp. 94–99, 2001.
[2] S. Ben Fredj, T. Bonald, A. Proutiere, G. Régnié, and J. W. Roberts,

“Statistical bandwidth sharing: A study of congestion on flow level,”
in Proceedings of the 2001 conference on Applications, technologies,

architectures, and protocols for computer communications - SIGCOMM
’01, vol. 31, no. 4. New York, New York, USA: ACM Press, Aug.
2001, pp. 111–122.

[3] F. Delcoigne, A. Proutière, and G. Régnié, “Modeling integration of
streaming and data traffic,” Performance Evaluation, vol. 55, no. 3-4,
pp. 185–209, Feb. 2004.

[4] N. Benameur and S. B. Fredj, “Integrated admission control for
streaming and elastic traffic,” Quality of Future Internet . . ., 2001.

[5] N. Benameur, S. Ben Fredj, S. Oueslati-Boulahia, and J. Roberts,
“Quality of service and flow level admission control in the Internet,”
Computer Networks, vol. 40, no. 1, pp. 57–71, Sep. 2002.

[6] T. Bonald, “The Erlang model with non-poisson call arrivals,” ACM
SIGMETRICS Performance Evaluation Review, vol. 34, no. 1, p. 276,
Jun. 2006.

[7] Y. Wu, C. Williamson, and J. Luo, “On processor sharing and
its applications to cellular data network provisioning,” Performance
Evaluation, vol. 64, no. 9-12, pp. 892–908, Oct. 2007.

[8] T. Bonald, S. Borst, N. Hegde, A. Proutiére, and A. Proutière, “Wireless
data performance in multi-cell scenarios,” Tech. Rep. 1, Jun. 2004.

[9] K. Majewski and M. Koonert, “Conservative Cell Load Approximation
for Radio Networks with Shannon Channels and its Application to LTE
Network Planning,” in 2010 Sixth Advanced International Conference
on Telecommunications. IEEE, 2010, pp. 219–225.

[10] I. Siomina and D. Yuan, “Analysis of Cell Load Coupling for LTE
Network Planning and Optimization,” IEEE Transactions on Wireless
Communications, vol. 11, no. 6, pp. 2287–2297, Jun. 2012.

[11] A. J. Fehske and G. P. Fettweis, “Aggregation of variables in load
models for interference-coupled cellular data networks,” 2012 IEEE
International Conference on Communications (ICC), pp. 5102–5107,
Jun. 2012.

[12] I. Siomina and D. Yuan, “Load balancing in heterogeneous LTE:
Range optimization via cell offset and load-coupling characterization,”
2012 IEEE International Conference on Communications (ICC), pp.
1357–1361, Jun. 2012.

[13] A. Fehske, H. Klessig, J. Voigt, and G. Fettweis, “Concurrent load-aware
adjustment of user association and antenna tilts in self-organizing radio
networks,” Vehicular Technology, IEEE Transactions on, vol. 62, no. 5,
pp. 1974–1988, 2013.

[14] P. Mogensen, W. Na, I. Z. Kovacs, F. Frederiksen, A. Pokhariyal,
K. I. Pedersen, T. Kolding, K. Hugl, and M. Kuusela, “LTE Capacity
Compared to the Shannon Bound,” in 2007 IEEE 65th Vehicular
Technology Conference - VTC2007-Spring, no. 1. IEEE, Apr. 2007,
pp. 1234–1238.

[15] T. Bonald, “Flow-level performance analysis of some opportunistic
scheduling algorithms,” European Transactions on Telecommunications,
vol. 16, no. 1, pp. 65–75, Jan. 2005.

[16] L. Kleinrock, Queueing Systems Vol. II: Computer Applications. Wiley
Interscience, 1975.

[17] J. Virtamo, “Queuing theory lecture notes,” Online:
http://www.netlab.tkk.fi/opetus/s383143/kalvot/english.shtml, last visited
on Jan 13, 2014.

[18] R. W. Wolff, “Poisson arrivals see time averages,” Operations Research,
vol. 30, no. 2, pp. 223 – 231, 1982.

[19] A. J. Fehske and G. P. Fettweis, “On Flow Level Modeling of Multi-Cell
Wireless Networks,” in WiOpt, Tsukuba City, 2013.

[20] COST Hata pathloss model, Online: http://www.lx.it.pt/cost231/ fi-
nal_report.htm, last visited on 6/27/2013.

[21] R. Yates, “A framework for uplink power control in cellular radio
systems,” IEEE Journal on Selected Areas in Communications, vol. 13,
no. 7, pp. 1341–1347, 1995.

Fifth International Workshop on Indoor and Outdoor Small Cells 2014

158


