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The value of observations in predicting transmission

success in wireless networks under slotted Aloha
Steven Weber, Senior Member, IEEE

Abstract—We consider a wireless network of static nodes where
each transmitter–receiver pair employs slotted Aloha, electing
to transmit with a common contention probability p, and we
further assume the Rayleigh fading varies with each time slot.
The random point processes of actual transmitters in a given time
slot (along with their random fades) determine the interference
seen by a reference receiver, and the interference across time
slots is dependent due to common dependence on the underlying
set of potential interferers. It follows that observations of the
set of transmitters over several time slots (or summary statistics
of this process) may be leveraged to yield improved estimates
of the probability of success of the transmission attempted at
the reference receiver. In this paper we study the value of
several different forms of such observations in improving this
estimated success probability. Specifically, we consider five cases:
the observer has i) zero knowledge, ii) full knowledge of the point
process of potential transmitters, iii) knowledge of the number
of “nearby” potential transmitters, iv) N binary observations
under the “physical” model at the reference receiver, and v) N

binary observations under the “protocol” model at the reference
receiver.

Index Terms—slotted Aloha; wireless networks; Poisson net-
works; protocol model; physical model.

I. INTRODUCTION

The focus of this paper is on the value of observations in

estimating the probability of success of an attempted transmis-

sion between a particular (reference) transmitter–receiver (TX-

RX) pair in a static wireless network. Suppose the wireless

network is formed by placing the locations of the radios using

the Poisson bipolar model, wherein the set of potential TX

is a Poisson point process, and each potential TX is matched

with an associated RX positioned at a random location a fixed

distance away (so all TX-RX pairs are separated by a common

distance). The spatial point process of potential TX and RX,

denoted Φ, is random but is fixed in time. Suppose nodes in

this network employ the slotted Aloha protocol where each

TX elects to transmit in each time slot independently with

a common contention probability p. As is well understood

(e.g., [1], and the extensive subsequent literature) the point

processes of nodes that elect to transmit in time slots k, l, say,

are dependent on account of their shared dependence on Φ,

and the positive correlation (of, say, the interferences seen at

the origin at times k and l) increases in p. Suppose further,

as is common in the literature, that the network is subject

to Rayleigh fading, with the random fade being independent

across both nodes and time slots. There are three sources

of randomness in the network: the (fixed in time) random
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locations of the potential TX and RX, the random contention

decisions by the potential TX in each time slot, and the random

fading coefficients in each time slot. As Φ is fixed in time,

partial or full knowledge of Φ and/or network observations

(of varying forms discussed below) in different time slots may

be used to predict future network performance. Specifically, in

this paper we consider the goal of predicting whether or not an

attempted transmission by the reference TX-RX pair will be

successful under the “physical” reception model, meaning the

transmission attempt is successful if the signal to interference

ratio (SIR) at the reference RX is above a specified threshold.

In particular, we consider five different forms of knowledge

about the potential TX-RX point process Φ:

• Zero knowledge of Φ, aside from distribution parameters;

• Full knowledge of Φ, i.e., knowledge of the position of

each potential TX;

• Knowledge of the number, M, of potential interferers

within an observation radius rO of the reference RX;

• N binary observations of the success or failure of the

attempted reference transmission;

• N binary observations of whether or not an interferer was

in the observation disk around the reference RX.

The first scenario is the “baseline”, the second scenario

represents a “best case”, and the remaining three represent

various forms of partial information about Φ, of the kind that

might feasibly be gathered in a real network. The questions

to be asked are: i) how much better can we estimate the

success probability at the reference RX given full knowledge

of Φ relative to no knowledge of Φ?, and ii) how useful for

estimation are the various forms of partial knowledge of Φ?

A. Related work

Prior work by the author on a related subject was presented

at WiOpt 2016 [2] with extension [3]; various results from

[3] are leveraged in this paper. We leverage the “diversity

polynomial” of [4], and the “meta-distribution” of [5]. This

work (like [3]) is part of the literature evaluating the con-

nections between the protocol and physical reception models,

including [6], [7], and bears some similarities to the contention

probability estimation work pioneered in [8]. Several relevant

references are not discussed due to space constraints.

B. Outline and summary of contributions

The key contributions of this paper are: i) we frame the

question of how valuable are observations of a wireless net-

work in a rigorous manner; ii) we leverage results in stochastic

geometry to obtain estimates of the success probability of
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TABLE I
NOTATION

Symbol Meaning

n ambient network dimension (n ∈ {1, 2, 3})
cn volume of a unit ball in R

n

Φ homogeneous PPP with potential TX, RX locations
λ (spatial) intensity of Φ
xi RV location in R

n of TX i
zi RV location in R

n of RX i relative to TX i
rT constant TX-RX separation distance
(xi, yi) TX i at RV xi and RX i at RV yi = xi + zi
(xo, yo) RV location of reference TX and RX, with yo at origin

p slotted Aloha transmission attempt probability
Ti,k RV transmission attempt indicator from TX i at time k
Tk Random set of transmitters (with Ti,k = 1) at time k
Φk homogeneous PPP of active (TX, RX) pairs at time k
Fi,k RV for Rayleigh fade from TX i to reference RX at time k
Pi,k RV for received power from TX i at reference RX at time k
l(r) large-scale pathloss function, l(r) ≡ r−α

α large-scale pathloss constant, α > n
δ characteristic exponent n/α
β SIR threshold
Σo,k RV for SIR at reference RX at time k
Io,k RV for sum interference at reference RX at time k
Hk RV for ref. TX physical model success/failure at time k
κδ convenience parameter Γ(1 + δ)Γ(1− δ)
σ convenience parameter βrαT
µh convenience function λcnκδσ

δ

I(u, δ) convenience function δ
∫ u

0
tδ

1+t
dt

rO protocol model guard zone / observation radius
Dk RV for ref. TX protocol model success/failure at time k
µd convenience parameter λcnrnO
χ convenience parameter rαO/σ = (rO/rT)

α/β
ξ convenience parameter

p

p̄
χ−δI(χ, δ)

N number of protocol / physical model observations

K
(N)
h

RV for number of physical model successes

K
(N)
d

RV for number of protocol model successes

the reference transmission under the five assumed forms of

knowledge of Φ; and iii) we present numerical results that

quantify the value of the various types of observations.

The paper is organized as follows. The mathematical model

is presented in §II, followed by analysis of each of the

four non-trivial assumptions about Φ: full knowledge in §III,

knowledge of the number of nearby potential TX in §IV, mul-

tiple physical model observations in §V, and multiple protocol

model observations in §VI. Numerical results addressing the

two questions above are found in §VII, and a short conclusion

is given in §VIII. The appendix holds the proof of Cor. 1.

II. MODEL

A. General notation

Tab. I lists key notation. Euclidean distance of a point

x ∈ R
n from the origin o is denoted ‖x‖, and the ball in

R
n centered at the origin of radius r is denoted b(o, r), with

cn ≡ |b(o, 1)| the volume of the unit ball. Natural and real

numbers are denoted by N and R, respectively. All logs are

natural. Denote {1, . . . , N} by [N ], for N ∈ N. The indicator

1A or 1{A}, for any statement A, equals 1 (0) if A is true

(false). The notation A ≡ B means A = B by definition.

Random variables (RVs) are given a sans-serif font, e.g.,

x,m. We write IID for independent and identically distributed.

Probability is written P(·) and expectation is written E[·]. A

bar denotes complement: p̄(·) ≡ 1−p(·). We will write Ber(p),
bin(N, p), Uni(A), Exp(ν), and Po(ν) to denote Bernoulli,

binomial, uniform, exponential, and Poisson distributions.

B. Transmitters and receivers, Aloha, and Rayleigh fading

Let n ∈ {1, 2, 3} denote the network dimension (i.e., linear,

planar, or 3D). Fix a reference TX-RX pair at (xo, yo), with the

reference RX at the origin, yo = o. Let Φ ≡ {(xi, zi)} ⊂ R
n

be a homogeneous bipolar PPP of intensity λ > 0 representing

the random (but fixed in time) locations of potential TX and

RX, with TXs at {xi} ⊂ R
n and RXs at {yi} ⊂ R

n, where

yi = xi + zi. Let {zi} (and zo = xo) be IID on the n-

dimensional sphere centered at o with radius rT, the TX-RX

separation distance. A realization of Φ is denoted φ.

Let time be slotted and indexed by k ∈ N. We consider

multiple time instants under the (slotted) Aloha protocol with

contention parameter p ∈ (0, 1): each potential TX attempts

transmission at each time with probability p, independently of

other nodes and independent across time slots. Let p̄ ≡ 1− p.

Define RVs T ≡ (Ti,k, (i, k) ∈ N
2) with Ti,k ∼ Ber(p),

and Ti,k = 1 denoting TX i attempts transmission at time k.

Under Aloha T is IID in nodes i and times k. Let Tk ≡ {i ∈
N : Ti,k = 1} be the random set of TXs (not including the

reference TX at xo) attempting transmission at time k.

We further assume the time slot durations and fading coher-

ence times are matched and synchronized, with the idealization

that the RVs F ≡ (Fi,k, (i, k) ∈ N
2), with Fi,k ∼ Exp(1) the

random fade from TX i to the reference receiver at o at time

k, are likewise IID across both nodes i and times k.

The process Φ generates a sequence of identically dis-

tributed PPPs (Φk, k ∈ N), with Φk ⊆ Φ the PPP of

attempted TX at time k, with intensity λp, and Ti,k = 1xi∈Φk
.

Equivalently, we view Φk = {(xi, (zi,Ti,k,Fi,k)} as the

process Φ augmented with IID marks (Ti,k,Fi,k) for each

i ∈ N. The elements of {Φk} are dependent due to their shared

connection with Φ, but are conditionally independent given Φ,

due to the independent transmission attempts and fades.

C. Physical reception model

We assume a (standard) signal propagation model for large-

scale, distance-based pathloss with Rayleigh fading, and unit

transmission power. The signal power at RX o from TX i at

time k is Pi,k ≡ Fi,kl(‖xi‖), for Fi,k as above, with l(r) ≡
r−α the pathloss function with exponent α > n, and ‖xi‖ the

(random) distance from TX i to RX o (note: ‖xo‖ = rT, by

assumption). Call δ ≡ n/α < 1 the characteristic exponent.

A transmission between the reference TX-RX pair o is

considered successful under the physical interference model

if the (random) SIR1 at the reference RX, denoted Σo,k,

exceeds an SIR threshold β > 0, with Σo,k ≡ Po,k/Io,k, and

Io,k ≡
∑

i∈Tk
Pi,k the (random) sum interference power at RX

o at time k. The Bernoulli RV Hk ≡ 1{Σo,k ≥ β} represents

1To simplify the presentation we assume throughout there is no noise at the
receiver, i.e., the SINR equals the SIR. However, this assumption is inessential
and the results are easily extensible to include noise.
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physical model success or failure of the reference transmission

o in Φk at time k. We also employ the convenience functions

κδ ≡ Γ(1 + δ)Γ(1− δ), σ ≡ βrαT
µh ≡ λcnκδσ

δ, I(u, δ) ≡ δ
∫ u

0
tδ

1+t
dt

(1)

The probability of the reference transmission attempt being

successful under the physical model in some time slot k, say,

is denoted pH(1) = P(Hk = 1), and is given by

pH(1) = exp
(

−λpcnκδσ
δ
)

= e−µhp. (2)

This follows from standard stochastic geometry arguments on

the outage probability of the power law pathloss function with

Rayleigh fading for a PPP [9, p. 104] (c.f., [3, Lem. 1]).

D. Protocol reception model

We also employ a (standard) protocol interference model,

characterized by a guard zone distance rO. A transmission

between TX-RX pair o is considered successful under the

protocol interference model iff there are no interfering TX’s

within distance rO of the reference RX at o. The Bernoulli RV

Dk ≡ 1{‖xi‖ ≥ rO, ∀i ∈ Tk} represents the success or failure

under the protocol model of the reference transmission o in

Φk at time k. We also employ the convenience functions

µd ≡ λcnr
n
O, χ ≡

rαO
σ

=
1

β

(

rO

rT

)α

, ξ(p) ≡
p

p̄
χ−δI(χ, δ).

(3)

The probability of the reference transmission attempt being

successful under the protocol model in some time slot k, say,

is denoted pD(1) = P(Dk = 1), and is given by

pD(1) = exp (−λpcnr
n
O) = e−µdp. (4)

E. Observations

Let N ∈ N be the number of prior observations, in each

of which the reference transmission has been attempted. We

consider separately the cases when these observations indicate

success or failure under the physical model (denoted h(N) =
(h1, . . . , hN ) ∈ {0, 1}N ), and the protocol model (denoted

d(N) = (d1, . . . , dN ) ∈ {0, 1}N ). In particular, hk = 1 (0),

indicates that the reference transmission attempt was (not)

successful under the physical model at time k ∈ [N ], and

dk = 1 (0) indicates that the reference transmission attempt

was (not) successful under the protocol model at time k ∈ [N ].

Observe K
(N)
h ≡

∑

k∈[N ] hk and K
(N)
d ≡

∑

k∈[N ] dk are

sufficient statistics for h(N) and d(N), respectively. Given

either K
(N)
h or K

(N)
d , the observer is asked to predict the

outcome under the physical model hN+1 ∈ {0, 1}. The

corresponding RVs are denoted HN+1,K
(N)
d ,K

(N)
h .

III. FULL KNOWLEDGE OF POTENTIAL TRANSMITTERS

Given full knowledge of the locations of the potential

transmitters, i.e., Φ = φ (i.e., knowledge of the realization

xi = xi for i ∈ N), the event that the reference TX attempt is

successful under the physical model in a given time slot, say

k, is a function of the remaining RVs in the model, namely,

the transmission decisions Tk and the fading coefficients Fk.

Proposition 1. The physical model feasibility RV Hk given

Φ = φ (i.e., xi = xi for i ∈ N) has distribution

pH|Φ(1|φ) ≡ P(Hk = 1|Φ = φ) =
∏

i∈N

1 + p̄σ|xi|
−α

1 + σ|xi|−α
. (5)

Proof: The definitions in §II-C give

pH|Φ(1|φ) = P(Σo,k > β|Φ = φ)

= P(r−α
T Fo,k > βIo,k|Φ = φ)

= P(Fo,k > σIo,k|Φ = φ)

= E[P(Fo,k > σIo,k|Φ = φ, Io,k)|Φ = φ]

= E[e−σIo,k |Φ = φ] (6)

Note Io,k, given Φ = φ, equals
∑

i∈N
|xi|

−αTi,kFi,k, where

the TX locations (xi) are known, while the TX decisions Tk

and fades Fk are random. Thus

pH|Φ(1|φ) = E

[

exp

(

−σ
∑

i∈N

|xi|
−αTi,kFi,k

)∣

∣

∣

∣

∣

Φ = φ

]

= E

[

∏

i∈N

exp
(

−σ|xi|
−αTi,kFi,k

)

∣

∣

∣

∣

∣

Φ = φ

]

=
∏

i∈N

E
[

exp
(

−σ|xi|
−αTi,kFi,k

)∣

∣Φ = φ
]

(7)

It is simple to compute, for T ∼ Ber(p) and F ∼ Exp(1), that

E
[

e−sTF
]

=
1 + p̄s

1 + s
. (8)

Substitution of (8) into (7) yields (5).

The product in (5) has an infinite number of terms, over

i ∈ N, yet very accurate approximations of pH|Φ(1|φ) are

obtainable by computing the product for only the nearest R
(say) interferers, i.e., over points {1, . . . , R} when the points in

Φ are labeled such that |x1| < |x2| < · · · . This approximation

is employed in §VII-C where R = Φ(An
l ) is the (random)

number of points from Φ lying in the (bounded) arena An
l .

The protocol model RV Dk given Φ = φ has distribution

pD|Φ(1|φ) ≡ P(Dk = 1|Φ = φ) = p̄M , (9)

where M = M(φ) = φ(b(o, rO)) is the number of potential

interferers within the observation disk b(o, rO).

IV. KNOWLEDGE OF NUMBER OF NEARBY POTENTIAL

TRANSMITTERS

Instead of full knowledge of the locations of the potential

transmitters, i.e., Φ = φ, suppose instead we are given only

knowledge of the number of potential transmitters within

the observation radius, rO, i.e., M = Φ(b(o, rO)). Define

pH|M(1|M) ≡ P(Hk = 1|M = M) as the conditional

distribution on Hk given M = M . This quantity is given in

Prop. 2, from recent prior work by the author, [3, Thm. 2].

Proposition 2 (Thm. 2 in [3]). The physical model feasibility

RV Hk given M = M has distribution

pH|M(1|M) = eµdp(1−χ−δ(κδ+I(χ,δ)))(1 + ξ)M p̄M .(10)

The proof is found in Appendix G (proof of Thm. 2) in [3].
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There is an intuitive tradeoff in the selection of the observa-

tion radius rO. First, for small rO the observation ball b(o, rO)
will be empty with high probability, in which case the typical

observation M = 0 of Φ carries little information about the

success probability of the reference transmission under the

physical model, Hk. But, if the ball is nonempty (M > 0)

it will signal the presence of one or more strong (nearby)

interferers, and in turn will indicate the likely (at least for

large p) failure of the reference transmission under the physical

model, Hk = 0. Second, for large rO the ball b(o, rO) will

be nonempty with high probability, in which case the typical

observation M > 0 carries little information about the success

probability of the reference transmission under the physical

model, Hk. But, if the ball is empty, i.e., M = 0, this will

indicate the likely success of the reference transmission under

the physical model, Hk = 1. The correlation between physical

and protocol model observations is addressed in [3, §4], and

we leverage the main result, Prop. 2 in that work, which gives

the correlation ρH,D(χ) as a function of χ = χ(rO) = rαO/σ,

a reparameterization of the observation radius rO. The radius

rO will be selected to maximize this correlation in §VII-D.

V. MULTIPLE PHYSICAL MODEL OBSERVATIONS

Suppose that the observer sees K physical model suc-

cesses out of N observations, i.e., sees h1, . . . , hN corre-

sponding to the realizations φ1, . . . , φN (recall §II-E). Define

pH|Kh
(1|K) ≡ P(HN+1 = 1|K

(N)
h = K) as the conditional

distribution on HN+1 given the observation of K out of

N physical model successes. The distribution pH|Kh
(1|K) is

given in Cor. 1, a simple extension of [4, Thm. 1], which

gives the probability of N successes under the Aloha protocol

in terms of the diversity polynomial Dh(k, p, δ) in (12) below.

Whereas [4] gives i) the probability of N successes (§III-A),

ii) the conditional probability of success/failure given a single

previous success/failure, iii) the probability of one or more

successful transmissions out of N , and iv) the conditional

probability of failure given N previous failures (§III-D), our

formulation below gives the (slightly) more general probability

of success conditioned on K successes in N attempts.

Corollary 1 (of Thm. 1 in [4]). The distribution of the physical

model feasibility RV HN+1 given K
(N)
h = K out of N physical

model successes were observed is

pH|Kh
(1|K) =

∑N−K
j=0

(

N−K
j

)

(−1)je−µhpDh(K+j+1,p,δ)

∑N−K
j=0

(

N−K
j

)

(−1)je−µhpDh(K+j,p,δ)

(11)

for µh ≡ λcnκδσ
δ , and Dh [4, Def. 1], defined, for k ∈ N,

0 < p < 1, and 0 < δ < 1, as:

Dh(k, p, δ) ≡
k

∑

l=1

(

k

l

)(

δ − 1

l − 1

)

pl. (12)

The proof is given in App. A. For a given realization Φ = φ
of the potential transmitters, we compute pH|Φ(1|φ) in (5),

denoted here by the shorthand ph(φ). We may then use it to

compute E[pH|Kh
(1|Kh)|Φ = φ], where, conditioned on Φ =

φ, the RV Kh has a binomial distribution with parameters N
and ph(φ), i.e., Kh(φ) ∼ Bin(N, ph(φ)), yielding:

E[pH|Kh
(1|Kh)|Φ = φ] =

N
∑

K=0

(

N

K

)

ph(φ)
K p̄h(φ)

N−KpH|Kh
(1|K). (13)

This quantity is, for a given realization φ, the expected esti-

mate of the success probability of the reference transmission

under the physical model, where the expectation is with respect

to the random number of observed successes, Kh(φ).

VI. MULTIPLE PROTOCOL MODEL OBSERVATIONS

Suppose now instead that the observer sees K protocol

model successes out of N observations. Define pH|Kd
(1|K) ≡

P(HN+1 = 1|K
(N)
d = K) as the conditional distribution

on HN+1 given K out of N protocol model successes. The

distribution pH|Kd
(1|K) is given in Prop. 3 below, taken from

recent prior work by the author, [3, Prop. 10].

Proposition 3 (Prop. 10 in [3]). The distribution of the

physical model feasibility RV HN+1 given K
(N)
d = K out of

N protocol model successes were observed is: pH|Kd
(1|K)

= eµdp(1−χ−δκδ+ξ(p))Dd(µd(1 + ξ(p)), p̄,K + 1, N −K)

Dd(µd, p̄,K,N −K)
.

(14)

for χ ≡ rαO/σ, ξ(p) ≡ p
p̄
χ−δI(χ, δ), µd ≡ λcnr

n
O, and2

Dd(ν, a; k, l) ≡
l

∑

j=0

(

l

j

)

(−1)je−ν(1−ak+j). (15)

The proof of Prop. 3 is in Appendix H in [3].

For a given realization Φ = φ of the potential transmitters,

we compute pD|Φ(1|φ) in (9), denoted here by the shorthand

pd(φ). We may then use it to compute E[pH|Kd
(1|Kd)|Φ = φ],

where, conditioned on Φ = φ, the RV Kd(φ) has a binomial

distribution with parameters N and pd(φ), i.e.,

E[pH|Kd
(1|Kd)|Φ = φ] =

N
∑

K=0

(

N

K

)

pd(φ)
K p̄d(φ)

N−KpH|Kd
(1|K). (16)

This quantity is, for a given realization φ, the expected esti-

mate of the success probability of the reference transmission,

where the expectation is with respect to the random number

of observed successes, Kd(φ), under the protocol model.

A. Estimating M from K successes in N protocol observations

Protocol model observations provide estimates of the suc-

cess probability of the reference transmission under the phys-

ical model by giving improved estimates of the number of

potential transmitters M = φ(b(o, rO)) within the observation

ball. An improved estimate of M improves the estimated

2Dd in (15) is denoted by fd in our prior work [3] (c.f., Eq. (32) in that
work). The change is to emphasize that Dd plays a role in Prop. 3 similar to
that of Dh in Cor. 1, while preserving notation for Dh used in [4].
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success probability relative to not having the protocol obser-

vations. Prop. 4 gives the expected value of M conditioned on

observing K successes out of N protocol model observations.

Define a variant on Dd in (15):

D̃d(ν, a; k, l) ≡
l

∑

j=0

(

l

j

)

(−1)jνak+je−ν(1−ak+j). (17)

Proposition 4. Given K protocol successes in N trials of the

reference TX, the conditional expectation of M is

E[M|Kd = K] =
D̃d(µd, p̄;K,N −K)

Dd(µd, p̄;K,N −K)
. (18)

Proof: Lemma 8 in [3] gives

P(M = m|Kd = K)

P(M = m)
=

gd(m, p̄;K,N −K)

Dd(µd, p̄;K,N −K)
, (19)

for gd(m, a; k, l) ≡ (am)k(1 − am)l and M ∼ Po(µd).
Substitution of (19) gives E[M|Kd = K]

≡
∞
∑

m=0

mP(M = m|Kd = K)

=

∑∞
m=0 mP(M = m)gd(m, p̄;K,N −K)

Dd(µd, p̄;K,N −K)

=
E[Mgd(M, p̄;K,N −K)]

Dd(µd, p̄;K,N −K)
(20)

Application of the binomial theorem to mgd gives

mgd(m, p̄;K,N −K) =

N−K
∑

j=0

(

N −K

j

)

(−1)jm(p̄K+j)m.

(21)

Application of Lemma 6 in [3] to the case g(m) = m and

M ∼ Po(µd) gives, for a > 0:

E[M(ab)M] = e−µd(1−ab)abµd. (22)

Replacing the numerator in (20) with the expectation (with

respect to M ∼ Po(µd)) of (21), and substituting (22) (with

ab = p̄K+j) yields (18).

Following the same argument used in support of (16), we

can take an expectation with respect to the conditional dis-

tribution of Kd(φ) ∼ bin(N, pd(φ)), to yield the expectation

(with respect to Kd(φ)) of E[M|Kd(φ)]:

E[E[M|Kd]|Φ = φ] =
N
∑

K=0

(

N

K

)

pd(φ)
K p̄d(φ)

N−K
E[M|Kd = K]. (23)

Use (23) to define the expected error in the estimate of M:

η̃M ≡ E[|M− E[E[M|Kd]|Φ]|]. (24)

The outer expectation may be computed numerically by a

Monte-Carlo average over realizations of Φ.3

3In fact, as Kd(φ) depends upon φ only through M(φ), it suffices to simply
take the expectation with respect to M ∼ Po(µd).

VII. NUMERICAL RESULTS

The results give the probability of success of the reference

transmission under the physical model conditioned on five

distinct forms of knowledge of the realized point process

of potential interferers, φ: i) §II-C zero knowledge of φ,

aside from the model parameters (λ, p, δ), with pH(1) in

(2); ii) §III full knowledge of φ, with pH|Φ(1|φ) (5) in

Prop. 1; iii) §IV knowledge of the number of nearby potential

interferers M(φ) = φ(b(o, rO)), with pH|M(1|M) (10) in

Prop. 2; iv) §V K successes out of N observations of the

reference transmission attempt under the physical model, with

estimate pH|Kh
(1|K) (11) in Cor. 1 for a given K, and

E[pH|Kh
(1|Kh)|Φ = φ] (13) the expectation with respect to

the distribution of Kh conditioned on Φ = φ; and v) §VI K
successes out of N observations of the reference transmission

attempt under the protocol model, with estimate pH|Kd
(1|K)

(14) in Prop. 3 for a given K, and E[pH|Kd
(1|Kd)|Φ = φ]

(16) the expectation with respect to the distribution of Kd

conditioned on Φ = φ.

A. Figures of merit

We define four figures of merit to quantify the relative

value of these different forms of knowledge, with the outer

expectation in all cases taken with respect to the random Φ.

i) The expected error in the reference TX success probabil-

ity under the physical model for no knowledge of φ:

ηφ ≡ E[|pH(1)− pH|Φ(1|Φ)|]. (25)

ii) The expectation of the cost in the accuracy of estimating

the probability of success of the reference TX under the

physical model from knowing only M(φ), relative to full

knowledge of φ (observe ηM is distinct from η̃M in (24)):

ηM ≡ E
[

|pH|M(1|M)− pH|Φ(1|Φ)|
]

. (26)

iii) The expectation of the cost in the accuracy of estimating

the probability of success of the reference TX under the

physical model from N physical model observations, relative

to full knowledge of φ:

ηh ≡ E
[

|E[pH|Kh
(1|Kh)|Φ]− pH|Φ(1|Φ)|

]

. (27)

iv) The expectation of the cost in the accuracy of estimating

the probability of success of the reference TX under the

physical model from N protocol model observations, relative

to full knowledge of φ:

ηd ≡ E
[

|E[pH|Kd
(1|Kd)|Φ]− pH|Φ(1|Φ)|

]

. (28)

The outer expectation in the four metrics will be computed

via Monte-Carlo simulation, as explained below.

B. Simulation methodology

Fix the network dimension n ∈ {1, 2, 3}, and restrict

the network domain from R
n to the bounded arena An

l ≡
[−l/2, l/2]n with side length l, area ln, and the origin o at the

center of the arena. Fix the TX-RX separation distance rT,

the pathloss exponent α > n, the transmission probability p,

the observation radius rO, and the spatial density of potential
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TABLE II
SIMULATION PARAMETERS

Number of simulations S 10, 000
Network dimension n 2 (planar)
Arena side length l 1, 000 (meters)
Spatial intensity of Φ λ 1/1000
Constant TX-RX separation distance rT 10 (meters)
Slotted Aloha TX probability p {1/10, 1/4, 1/2, 1}
Large-scale pathloss constant α 4
SIR threshold β 5

interferers λ. Let S ∈ N be the number of independent realiza-

tions of the interference process to be used in the simulation,

and let (Φ(1), . . . ,Φ(S)) be the IID random realizations of the

potential interferer locations, so that Φ
(s)
k gives the random

interferers seen at time k under potential interferers Φ(s). Let

the Poisson RV Rs ≡ Φ(s)(An
l ) ∼ Po(λln) count the number

of potential interferers from Φ(s) in An
l , and recall that,

conditioned on R(s), the points Φ(s) ∩ An
l are independently

and uniformly distributed within An
l . Thus each (truncated)

random realization is in fact obtained by first generating

R(s) ∼ Po(λln), and then placing R(s) points independently

and uniformly at random in An
l . Let (φ̃(1), . . . , φ̃(S)) denote

the realizations of these truncated random PPPs.

For each realization φ̃(s) compute: i) pH|Φ(1|φ̃
(s)) (5) in

Prop. 1 where the number of terms in the product is the (almost

surely) finite number R(s) = |φ̃(s)|; ii) pH|M(1|M
(s)) (10) in

Prop. 2 where M (s) = φ̃(s)(b(o, rO)); iii) E[pH|Kh
(1|Kh)|φ̃

(s)]

(13); and iv) E[pH|Kd
(1|Kd)|φ̃

(s)] (16). Next, use these four

numbers to compute the quantities inside the outer expecta-

tions in (25), (26), (27), and (28). Finally, average each metric

over the S realizations to approximate the expectation over Φ.

The simulation results below were obtained with parameters

given in Tab. II. We employed a planar network (n = 2) with

the network arena a square with side length of 1 km, and

a spatial intensity of λ = 1/1000. Thus R(s) = Φ(An
l ) is

Poisson with on average E[R(s)] = 1, 000 potential TX in the

arena. S = 10, 000 independent realizations were generated.

The “zero-knowledge” probability of success of the refer-

ence TX under the physical model for the four p values are

p 1/10 1/4 1/2 1
pH(1) 0.8955 0.7589 0.5759 0.3317

. (29)

The decrease of pH(1) (c.f. (2)) in p is due to the average

intensity of the interfering point process, λp increasing in p.

C. Simulation results (1): impact of full knowledge of φ (ηφ)

Fig. 1 shows histograms of the sucess probability of the ref-

erence transmission under the physical model conditioned on

knowledge of φ (left) and of the absolute value of the change in

the estimate relative to the “zero-knowledge” estimate pH(1).
The vertical lines on the left show pH(1) from (29), while

the vertical lines on the right are the average change, i.e., ηφ
(25). As is evident, the average improvement in the estimate

from full knowledge of φ, i.e., ηφ, is increasing in p, with full

knowledge of φ affording an average 25% improvement in the

estimation of the success probability over pH(1) for p = 1.
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 1. Histograms of pH|Φ(1|φ) (left) and |pH(1)− pH|Φ(1|φ)| (right) for

TX probabilities p ∈ {1/10, 1/4, 1/2, 1} (four rows), for S = 10, 000
independent realizations of Φ. The solid curves are the beta distribution ap-
proximation of the SIR meta-distribution [5] (left) and the derived distribution
of the distance from the mean (right).

The RV pH|Φ(1Φ) has the SIR “meta distribution” [5]

(see Acknowledgment), which may be approximated by the

beta distribution [5] (§II-F). Fig. 1 shows the approximation

provides an excellent match to the histogram. The left proba-

bility density function (PDF) in Fig. 1 is the beta distribution

fu(u;µ, β) on u ∈ [0, 1] with parameters (µ, β) (such that

E[u] = µ and var(u) = µµ̄2

β+µ̄
) . The parameters (µ, β) are

expressible in terms of the model parameters via µ = e−λκδβ
δp

and β = (µ−M2)µ̄
M2−µ2 , for M2 = e−λκδβ

δ(2p+(δ−1)p2) [5]. The

right PDF is fv(v;µ, β) for v ≡ |u− µ|, and is expressible in

terms of fu(u):

fv(v) =















fu(µ+ v) + fu(µ− v), 0 ≤ v ≤ min{µ, µ̄}
fu(µ+ v), µ ≤ v ≤ µ̄
fu(µ− v), µ̄ ≤ v ≤ µ
0, max{µ, µ̄} ≤ v ≤ 1

(30)

D. Simulation results (2): impact of knowledge of M (ηM )

Recall the discussion of the tradeoff inherent in the selec-

tion of the observation radius rO in §IV. Fig. 2 shows the

correlation ρH,D(χ) as a function of χ = χ(rO) = rαO/σ for

various spatial intensities λp, with p ∈ {1/10, 1/4, 1/2, 1}.

The decrease in correlation in p indicates the presence or

absence of a “nearby” interferer more strongly correlates with

physical model success or failure for small effective spatial

intensities. As evident from the figure, while the optimized

correlation level is sensitive to χ, there is little sensitivity in

the maximizing choice of χ, and χ = 1.67, corresponding to

rO = 17 meters, is near-optimal for all p, and as such we

henceforth fix this value for all remaining results.

Fig. 3 quantifies the value in knowing M(φ) in estimating

the probability of success of the reference transmission under
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independent realizations of Φ.

the physical model. Specifically, the left (right) column shows

histograms for pH|M(1|M) (|pH|M(1|M)−pH|Φ(1|φ)|) for each

p ∈ {1/10, 1/4, 1/2, 1}. The vertical lines on the left are the

“blind” estimates pH(1), while those on the right are ηM in

(26). The histogram bars on the left are for each possible value

of M (with M = 0 and M = 1 labeled). The average changes

(relative to zero knowledge) in the estimated probability of

success due to knowledge of M for the four values of p are:

p 1/10 1/4 1/2 1
E[|pH|M(1|M)− pH(1)|] 0.048 0.107 0.176 0.241

(31)

The right side shows the histogram of “costs” of only knowing

M(φ) relative to knowing all of φ, and their average, ηM . In

summary, for p = 1 we see that knowledge of M(φ) results in

average improvement in the success probability of 24%, and

an average cost due to partial knowledge of 11%.

E. Simulation results (3): physical model observations (ηh)

Fig. 4 shows the impact of physical model observations, as

described in §V, on the estimate of the success probability of
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$%&' 4. Impact of physical model observations. Left: the average success
probability of the reference transmission under the physical model having
observed the outcomes of N attempted reference transmissions vs. N , for
p ∈ {1/10, 1/4, 1/2, 1}; the horizontal gridlines show the average success
probability with full knowledge of φ. Right: the average cost of partial
knowledge due to physical model observations ηh relative to full knowledge
of φ (27) vs. the number of observations N .

the reference transmission under the physical model. In par-

ticular, the left plot shows E[pH|Kh
(1|K)|Φ] vs. the number of

observations N , for the four values of p ∈ {1/10, 1/4, 1/2, 1},

where the horizontal gridlines are E[pH|Φ(1|Φ)], the average

success probability given full knowledge of φ. The right plot

computes the third peformance measure, ηh (27), the average

cost of partial knowledge of φ, in the form of the N physical

model observations, relative to full knowledge of φ. As is

evident from the plot, the cost of partial knowledge decays

rapidly with the number of observations. For example, with

p = 1 the gap in the estimate falls from 16.5% for N = 1
observation down to 1.5% for N = 25 observations. Moreover,

the decay in the cost of partial knowledge in N appears

to be somewhat insensitive to the value of p, at least for

these parameters. Moreover, it is worth noting that a moderate

number of physical model observations suffice to achieve near

perfect estimation of the success probability of the reference

transmission, i.e., N = 25 physical model observations are

almost as good as full knowledge of φ. Finally, the results

in Fig. 4 were computed using only S = 10 simulations (vs.

S = 10, 000 used in the previous sections), on account of

the high computational cost in evaluating (13). The restriction

to at most N = 25 observations is likewise due to the high

computational cost in evaluating (11) for large N .

F. Simulation results (4): protocol model observations (ηd)

Recall from §VI-A that protocol model observations serve to

estimate the success probability of the reference transmission

under the physical model by giving estimates of M(Φ), the

number of potential interferers located in the observation ball

b(o, rO), and the expected error in this estimate of M was

defined in η̃M in (24). Fig. 5 (left) shows this quantity vs. the

number of observations N for the four values of p. As evident

from the figure the expected error is in general decreasing

in N , with a decreasing marginal value of each observations

(measured by the decrease in the expected error) in both N
and p. As is intuitive, there is little to no value in additional

protocol model observations beyond the first one for p = 1.

Finally, recall a protocol model observation simply indicates

whether or not one or more interferers was active in a time slot,

not the number of such interferers, and as such it is natural that

the error η̃M may not go to zero as N ↑ ∞, since knowledge

of 1M>0 provides an imperfect estimate of M.
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Finally, Fig. 5 (right) shows the fourth and final performance

metric, ηd, the expected error in the estimate of the probability

of success relative to the estimate with full knowledge of φ,

vs. the number of observations N , for p ∈ {1/10, 1/4, 1/2, 1}.

The gridlines show ηM in (26), the error given full knowledge

of M . Observe ηM is a lower bound on ηd for all N . It appears

from the figure that ηd approaches ηM as N ↑ ∞, at least for

p small, but this may not hold for larger p, consistent with the

discussion of the error in estimating M from 1M>0 in Fig. 5.

VIII. CONCLUSION

We have i) defined a framework for valuation of network

observations, ii) provided estimates of the reference transmis-

sion success probability under the various observations, and

iii) shown numerical results that quantify observation value.
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APPENDIX

Define the vector of RVs I
(N)
o ≡ (Io,j , j ∈ [N ]) as the

interference seen at the reference RX at o at each time j ∈ [N ].
Define Io(A) =

∑

j∈A Io,j as the sum interference at o over

time indices A ⊆ [N ] (with Io(∅) ≡ 0), and Io([k]) as the sum

interference over k ∈ [N ] times. Let (Σo,j , j ∈ [N ]) be the

SIR at the reference RX at each time j. Let A
(N)
K be the set of

all subsets of [N ] of cardinality K. Define RVs ph,j(I
(N)
o ) ≡

P(Σo,j ≥ β|I
(N)
o ) for j ∈ [N ], and p̄h,j(I

(N)
o ) ≡ 1−ph,j(I

(N)
o ).

Lemma 1. The probability of K physical successes in N trials

is:

P(K
(N)
h = K) =

(

N

K

)N−k
∑

j=0

(−1)jL[Io([K + j])](σ). (32)

The probability of success in trial N + 1 and K successes in

the first N trials is: P(HN+1 = 1,K
(N)
h = K)

=

(

N

K

)N−k
∑

j=0

(−1)jL[Io([K + j + 1])](σ). (33)

Proof of Lem. 1: We show (32); the proof of (33) is

similar. Condition on the collection of RVs I
(N)
o :

P(K
(N)
h = K) = E[P(K

(N)
h = K|I(N)

o )]. (34)

Conditioned on I
(N)
o , the trials are independent but not iden-

tically distributed. The probability of K of N successes with

success probabilities (ph,j(I
(N)
o ), j ∈ [N ]) is: P(K

(N)
h = K)

= E







∑

A∈A
(N)
K

∏

j∈A

ph,j(I
(N)
o )

∏

j∈[N ]\A

p̄h,j(I
(N)
o )






. (35)

Use ph,j(I
(N)
o ) = P(Fo,j ≥ σIo,j |I

(N)
o ) = e−σIo,j , apply the

definition of Io(A), use linearity of expectation, and use the

definition of the Laplace transform: P(K
(N)
h = K)

= E







∑

A∈A
(N)
K

e−σIo(A)
∑

B⊆[N ]\A

(−1)|B|e−σIo(B)







=
∑

A∈A
(N)
K

∑

B⊆[N ]\A

(−1)|B|L[Io(A ∪B)](σ) (36)

The (unconditioned) outcomes at each time are identically

distributed, and as such L[Io(A ∪ B)](σ) depends upon the

(disjoint) index sets A,B only through their cardinalities of

|A| = K and |B| = j ∈ {0, . . . , N −K}. Observe |A
(N)
K | =

(

N
K

)

and there are
(

N−K
j

)

subsets B of {K + 1, . . . , N} of

each possible size |B| = j, proving (32).

Proof of Cor. 1: The conditional distribution is the ratio:

pH|Kh
(1|K) =

P(HN+1 = 1,K
(N)
h = K)

P(K
(N)
h = K)

. (37)

Substitute expressions from Lem. 1, then use the expres-

sion for the log Laplace transform logL[Io([k])](s) =
−µh(s)pDh(k, p, δ) [4, Thm. 1], for µh(s) ≡ λcnκδs

δ ,

evaluated at s = σ, to obtain (11).
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