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Abstract—Network function virtualization (NFV) and Compu-
tation offloading (CO) are state-of-the-art technologies for flexible
utilization of networking and processing resources. These two
technologies are closely related in that they enable multiple
physical entities to process a function provided in a service,
and the service (or end host) chooses which resources to use. In
this paper, we propose a generalized dual-resource system, which
unifies NFV service and CO service frameworks, and formulate a
multi-path problem for choosing resources to use in NFV and CO
services. The problem is reformulated as a variational inequality
by using Lagrange dual theory and saddle point theory. Based on
this formulation, we propose an extragradient-based algorithm
that controls and splits the sending rate of a service. We prove
that the algorithm converges to an optimal point where system
cost minus service utility is minimized. Simulations under diverse
scenarios demonstrate that our algorithm achieves high quality
of service while reducing the system cost by jointly considering
dual-resource coupling and service characteristics.

I. INTRODUCTION

In traditional networks, most of the network functions, such
as deep packet inspection (DPI), intrusion detection system
(IDS), firewall and charging, are implemented exclusively on
specific hardware. For instance, data accounting in LTE system
is implemented in the P-GW, and thus, all the packets to be
charged must pass through the P-GW. This paradigm possibly
results in inefficient utilization of networking resources, as
some nodes can be heavily congested while other nodes are
idle, which degrades the quality of network service. Network
function virtualization (NFV) addresses this issue by enabling
network functions to be implemented virtually in several nodes
in the network [1]. Through dynamic service chaining, a
network service can be routed to any one of multiple candidate
paths which have different characteristics of delay, throughput,
and cost. Hence, NFV has several advantages in terms of
resource efficiency, manageability, and scalability [2]. Net-
work service providers in the U.S., AT&T and Verizon, have
launched NFV-enabled core networks for multi-protocol label
switching (MPLS), wide area network (WAN) optimization
and secure connectivity in 2016 [3], [4].

Meanwhile, computation offloading (CO) enables end host
with limited processing capacity to offload computation func-
tions, such as transcoding and voice/image processing, to a
more powerful machine in the edge or remote cloud, by using
additional network bandwidths [5]. Consequently, multiple

offloading options are available to the end host, such as
processing the function locally or offloading the function to
one of the edges or remote clouds. By utilizing processing
resources in the cloud, the end host can reduce its computation
delay/cost, or increase its computation throughput.

The aforementioned NFV service and CO service are
closely related in the context as follows. There can be multiple
physical entities that can process a given function, e.g., net-
work function for NFV service and computation function for
CO service, and hence, the service (or end host) can choose
which resources to use in order to process the function it
provides [6]. This problem inherently contains the traditional
routing problem but poses additional complexity since pro-
cessing resource (such as CPU capacity) as well as networking
resource (such as link capacity) must be considered [7]. For
example, it may be hard to fully utilize a node having plenty
of processing resources, if paths to the node have limited
link capacities. Unlike the traditional routing where a path is
determined based solely on networking resources, with NFV
and CO services, a path should be determined in the form of
a series of processing and networking (i.e., dual) resources.
Then, by choosing an efficient path, resource utilization or
quality of services (QoS) can be improved. Moreover, we can
expect additional system cost reduction or QoS enhancement
if the service can utilize multiple candidate paths, simultane-
ously.

There have been various studies for dual-resource sharing.
Several metrics are proposed for efficiency and fairness of
multi-resource sharing [8]–[10], which are the generalizations
of existing metrics for single-resource sharing. Shin et al. [11]
show that conventional TCP and active queue management
(AQM) schemes can significantly lose throughput and suffer
unfairness under processing-constrained networks, and pro-
pose a new AQM scheme for a dual-resource environment. Li
et al. [6] and Obadia et al. [12] propose virtual network func-
tion (VNF) placing and single-path routing algorithms in NFV-
enabled networks. Kwak et al. [13] propose a computation
offloading policy of end user in cloud computing environment
by jointly considering dual-resources of a local device. Zhao
et al. [14] propose a load balancing algorithm for computation
offloading in data centers by jointly considering dual-resources
of cloud servers.



Although there are a number of papers addressing issues
on NFV and CO, separately, there has been little effort to in-
vestigate the aforementioned problems in a single framework.
However, in a real environment, different service types, such
as traditional routing service, NFV service and CO service,
co-exist and share networking and processing1 resources, and
hence, these services should be jointly managed in a realistic
sense. In this paper, we develop a unified framework for NFV
and CO services in a dual-resource sharing environment where
either networking or processing can be bottlenecked. Our
framework formulates the generic problem that subsumes the
traditional routing, NFV, and CO problems, and hence enables
to solve any instance of aforementioned problems regardless
of service type via an algorithm solving the generic problem.

Under virtualization, the entire system is viewed as a
(virtual) resource, and a service tends to use many resources
all over the system to improve the QoS. However, this can
result in additional costs, such as delay, due to the use of
remote resources and congestion due to the use of multiple
paths. To alleviate this issue, our formulation introduces a cost
function in addition to the service utility. Hence, our objective
is to minimize the system cost (caused by networking and
processing resources) minus quality of service, under given
resource capacity constraints. We reformulate our problem
into variational inequality by using Lagrange dual theory
and saddle point theory. We propose an extragradient-based
algorithm which controls the sending rate of services and
splits it into multiple candidate paths by jointly taking into
account dual-resource coupling and service characteristics.
Our algorithm has the advantages in that it can be implemented
in a distributed manner as well as it convergences to an op-
timal solution. We run simulations and evaluate the proposed
algorithm under diverse scenarios, including network services
for NFV and computation services for CO.

The contributions of this paper are summarized as follows:
• We model network function virtualization and computa-

tion offloading in a unified framework as a dual-resource
sharing system.

• We formulate the multi-path problem for unified NFV
and CO as a variational inequality.

• We develop an extragradient-based sending rate control
and multi-path routing algorithm for minimizing the
system cost minus the utility of service.

• We prove that the proposed algorithm converges to an
optimal solution.

• We thoroughly evaluate our algorithm based on simple
scenarios which provide insight on how NFV and CO
services are routed depending on system parameters, and
a real large-scale scenario to examine its applicability in
practice.

In the rest of this paper, we begin with system model
in Section II. We propose the algorithm in Section III. In
Section IV, we prove convergence of the algorithm to the

1Both network functions and computation functions may be virtualized
in the same node.

optimal solution. In Section V, we evaluate the algorithm by
simulations. Finally, we conclude this paper in Section VI.

II. SYSTEM MODEL

We consider general topology consisting of networking
resources (i.e., links) indexed by l ∈ L and processing
resources (i.e., nodes) indexed by k ∈ K. The capacities of
resources l and k are denoted by Cl (in bits/sec) and Ck (in
cycles/sec), respectively. Each processing resource supports
a set of virtual functions, e.g., network functions for NFV
service and computation functions for CO service. There are
multiple co-existing services indexed by a set W , where each
service has a source-destination pair (sw, dw)

2 and virtual
functions to be processed. Distinct from previous studies [6],
[12], [15]–[17], the service can have the same source and
destination in our model, i.e., sw = dw. This is the case for
the CO service such that processed functions are consumed by
the source of the service. When a service request w occurs,
a resource manager, which has complete knowledge on the
resource status, informs the set of candidate paths indexed
by Pw.3 Each path p ∈ Pw is composed of networking
resources Lp and processing resources Kp. The networking
resources in Lp connect the source sw and destination dw4, and
the processing resources in Kp support the virtual functions
provided by service w5. We also denote P = ∪w∈WPw as
the set of all candidate paths in our system. We assume that a
service can utilize multiple candidate paths, simultaneously
[16], [18]. The source of service w regulates sending rate
Rw ≥ 0 (in bits/sec) and splits the sending rate into multiple
candidate paths where xp ≥ 0 (in bits/sec) is the rate allocation
on path p. Then the sending rate of service w is the sum of
allocated rates to its candidate paths as follows:

Rw =
∑
p∈Pw

xp, ∀w ∈ W. (1)

A processing resource k is utilized by multiple candidate paths
of co-existing services and the virtual functions performed on
the resource k may be different for each path p. For example,
some paths use the resource k for video transcoding, whereas
other paths use the same resource for DPI. To reflect this
heterogeneity, we define ρk,p (in cycles/bit) as the required
CPU cycles in resource k for processing a single bit of task
on path p, called the processing density. Consequently, the
load (in cycles/sec) on processing resource k for path p is
ρk,pxp. Moreover, depending on the functions performed on
resource k for path p, the output bit-rates after processing on
resource k may be different. For example, if the function is
for just checking, such as data accounting and virus scanning,
the output bit-rate is the same as input bit-rate. On the

2The service with multiple source or destination also can be considered
in our framework with minor extension.

3How to choose the candidate paths in the resource manager is out of
our scope, but we discuss it in Section V.

4For the CO service w, it is possible to have Lp = φ for the path p ∈ Pw

using only local computing.
5For the traditional routing service w which does not require any virtual

function, Kp = φ for all path p ∈ Pw .



other hand, if the function converts the input data, such as
encryption, transcoding and packet aggregation, the output bit-
rate may change. Note that the change of rate is seen only after
processing, and thus seen at the link which is the successor
of processing resource on the path. To take into account the
change of bit rate after processing, we introduce the parameter
σl,p defined as bit conversion ratio seen at networking resource
l if traffic on path p is nonzero. Therefore, the load (in bits/sec)
on networking resource l for path p is σl,pxp. For the given rate
allocation xp for all paths p ∈ P , the total loads on networking
resource l denoted by Fl (in bits/sec) and processing resource
k denoted by Fk (in cycles/sec) can be written as follows:

Fl =
∑
p∈Pl

σl,pxp and Fk =
∑
p∈Pk

ρk,pxp, (2)

where Pl (and Pk) is the set of paths that the networking
resource l (and processing resource k) belongs to. Note that
although the expressions of Fl and Fk have similar form,
the fundamental bases for the expressions are different as
we aforementioned. Next, we define cost functions Dl(Fl) on
networking resource l and Dk(Fk) on processing resource k,
which can be delay, energy or monetary costs. We assume
that Dl(Fl) and Dk(Fk) are convex, increasing in Fl and Fk,
respectively, and they have the bounded second derivatives.
Define Uw(Rw) as the utility function of service w and
assume that Uw(Rw) is concave and increasing in sending
rate Rw, and it has the bounded second derivative. The utility
function represents the quality of service which depends on
the sending rate Rw regardless of how the sending rate is
split into candidate paths.

III. COST-UTILITY OPTIMAL ALGORITHM IN
DUAL-RESOURCE SHARING

A. Problem Formulation

In this section, we formulate the sending rate control and
multi-path routing problem under dual-resource sharing. Our
objective is to minimize the total cost of networking and
processing resources minus total utility of services subject to
capacity constraints of dual-resources.

(P1): min
x

(
G(x)=

∑
l∈L

Dl(Fl)+
∑
k∈K

Dk(Fk)−V
∑
w∈W

Uw(Rw)

)
,

subject to


xp ≥ 0, ∀p ∈ P,
Fl ≤ Cl, ∀l ∈ L,
Fk ≤ Ck, ∀k ∈ K,

(3)

where x = (xp,∀p ∈ P) is called a primal variable. The
constant V is a trade-off parameter between system cost
minimization and service utility maximization. Note that the
objective function considers only the aggregate rate at the
source or resource, i.e., it is not “strictly” convex on x, and
consequently, there can be multiple optimal solutions achiev-
ing the same objective value [19]. In this type of multi-path
problem, optimizing only the utility of sending rate can incur
unpredictable system cost, such as delay. Hence, our objective
of cost-utility minimization enables to find an efficient solution

achieving high service utility and low system cost6. (P1) is a
convex optimization problem where the objective is convex
on x and the constraints are affine inequalities. We denote
x∗ = (x∗1, · · · , x∗|P|) ∈ X

∗ as any rate allocation vector in
the optimal primal solution set X∗ for (P1).

The Lagrangian dual problem, which is generally used in
convex optimization to handle constraints [20, ch. 5], can be
formulated as follows:

(P2): max
λ

(
min
x
L(x,λ)

)
, (4)

subject to


xp ≥ 0, ∀p ∈ P,
λl ≥ 0, ∀l ∈ L,
λk ≥ 0, ∀k ∈ K,

(5)

where λ = (λl, λk,∀l ∈ L, k ∈ K) is called dual variable,
and L(x,λ) is a Lagrangian function defined as

L(x,λ) = G(x) +
∑
l∈L

λl (Fl−Cl) +
∑
k∈K

λk (Fk−Ck) . (6)

Let λ∗ ∈ Λ∗ be any vector in an optimal dual solution set Λ∗

for (P2). Then, it is known that minimizers of L(x,λ∗) are
also primal optimal, i.e., argminx≥0 L(x,λ

∗) ∈ X∗, called
zero duality gap, when the primal problem is convex optimiza-
tion [20, p. 226]. By using this technique, we can eliminate
the capacity constraints in (3) which cause coupling issues
among rate allocations. More precisely, when we develop an
iterative projection algorithm, the projection of primal variable
x onto the capacity constraints (3) (which is complicated and
hard to decentralize) can be transformed into the projection
of dual variable λ onto positive domain (5) (which can be
implemented in a distributed manner7). Typically, to find the
solution of dual optimization problems, a gradient projection
algorithm is used [15]. However, the convergence of gradient
projection algorithm is guaranteed only when the primal
objective function in (P1) is strictly convex on x because this
condition makes the objective function in (P2) be differen-
tiable on λ [15], [19]. Alternatively, a sub-gradient method
[17] can be used for non-strictly convex problems, but in our
scenario, it is difficult to know the exact sub-gradient value
at each iteration, i.e., solving minx L(x,λ) directly for given
λ is not easy because we consider multiple candidate paths
for each service. Therefore, we take an alternative approach
based on saddle point theorem presented in the following.

Lemma 1 (Saddle point theorem). [21, prop. 5.1.6]. Finding
the optimal primal and dual solutions (x∗,λ∗) for (P2) is
equivalent to a saddle point problem which finds (x∗,λ∗) ≥
(0,0) satisfying

(P3): L(x∗,λ)≤L(x∗,λ∗)≤L(x,λ∗), ∀x ≥ 0,λ ≥ 0.(7)

Proof. Please refer to our technical report [22].

By reformulating (P2) into (P3), we can regard the dual

6We show the simulation results for the utility-maximal and cost-utility-
minimal algorithms and demonstrate the effectiveness of our objective.

7We proposed a distributed projection algorithm in Section III.



variable λ being independent of primal variable x.

Lemma 2 (Variational inequality problem). [23, ch. 3.5].
Finding saddle points (x∗,λ∗) for (P3) is equivalent to a
variational inequality problem which finds (x∗,λ∗) ≥ (0,0)
satisfying

(P4): ((x,λ)−(x∗,λ∗))>f(x∗,λ∗)≥0, ∀x ≥ 0,λ ≥ 0, (8)

where f : {(x,λ)|x ≥ 0,λ ≥ 0} 7→ R|P|+|L|+|K| defined as

f(x,λ) =

(
∇xL(x,λ)
−∇λL(x,λ)

)
. (9)

Proof. Please refer to our technical report [22].

Lemmas 1 and 2 show that problem (P4) is equivalent
to (P1). From now on, we will concentrate on deriving an
algorithm to find the solutions of (P4).

B. Deriving Algorithm

In this section, we propose an extragradient-based [24,
ch. 12] sending rate control of services and multi-path routing
algorithm in dual-resource sharing. From the initial state
(x0,λ0) ≥ (0,0), the algorithm iterates the process as
follows:

(xt+1,λt+1) =
[
(xt,λt)− γf(xt+1/2,λt+1/2)

]+
, (10)

where (xt+1/2,λt+1/2) =
[
(xt,λt)− γf(xt,λt)

]+
, (11)

and γ is a constant step size for the iteration and [·]+ is an
orthogonal projection onto {(x,λ)|x ≥ 0,λ ≥ 0}. Unlike
gradient-based approaches, (10) moves (xt,λt) to the gradient
direction at (xt+1/2,λt+1/2) not (xt,λt).

To implement the algorithm (10), the value of
(xt+1/2,λt+1/2) should be known to each part of the system,
including sources of services and networking/processing
resources (See (11)). To this end, we separate the computations
(10) and (11) in one iteration into a series of two iterations,
i.e., performs (11) in odd-numbered time slots and (10) in
odd-numbered time slots, and hence, the algorithm operates
in a distributed manner.

Extragradient-based sending rate control and multi-path
routing algorithm.

Initial state: x0 ≥ 0,λ0 ≥ 0, step size: γ,
At each iteration τ = 1, 2, ...

1: Substitute (x,λ) as follows:

(x,λ) =

{
(xτ−1,λτ−1), if τ is odd,

(xτ−2,λτ−2), otherwise.
(12)

2: Each networking resource l ∈ L and processing resource
k ∈ K updates λl and λk, respectively, as follows:

λτl =
[
λl − γ

(
Cl − F τ−1l

)]+
,

λτk =
[
λk − γ

(
Ck − F τ−1k

)]+
,

(13)

3: Each source of service w updates xp for all p ∈ Pw as
follows:

xτp =

xp − γ
∑
l∈Lp

σl,p(D
′
l(F

τ−1
l ) + λτ−1l )

+
∑
k∈Kp

ρk,p(D
′
k(F

τ−1
k ) + λτ−1k )− V U ′wp

(Rτ−1wp
)

+

,

(14)

In (13), to update a dual variable λτl or λτk which represents the
congestion price, the corresponding networking or processing
resource requires the load on the resource. Note that from the
given λl (or λk) determined by (12), λτl (or λτk) becomes larger
than λl (or λk) when the total load on resource l (or k) exceeds
its capacity and vice versa. As seen in (14), if the congestion
price increases, the load on the congested resource is likely to
decrease. To update the sending rate of service w and split the
sending rate into the candidate paths Pw, the source requires
the first derivatives of costs, and congestion prices on dual-
resources along with the candidate paths. The source tries to
decrease xτp to reduce the system cost and congestions, and
increase xτp to improve the service utility. Because the cost
functions Dl(·) and Dk(·) are convex and increasing, their
derivatives D′l(·) and D′k(·) are positive and increasing. Hence,
the rate decrement is dominated by the bottleneck resources
which cause a huge amount of cost and congestion. Moreover,
for the same amount of cost and congestion, the rate decrement
is dominated by the resources with high bit conversion ratio
σl,p or processing density ρk,p. On the other hand, because the
utility function Uw(·) is concave and increasing, its derivative
U ′w(·) is positive and decreasing. Hence, when the sending
rate of service w is low, the source actively increase the
rate allocation for all the candidate paths in Pw. Moreover,
when our objective is biased towards the utility, i.e., large
V , the source aggressively increases the rate allocation. Note
that each source and resource need memory to store their
own information at τ − 2 (See (12)) which is the additional
overhead of the extragradient algorithm compared to gradient
algorithms.

IV. THEORETICAL ANALYSIS

In this section, we prove that our algorithm converges to
the optimal solution of (P4), i.e., the optimal solution of (P1).
First, we introduce two properties of f(x,λ) defined in (9),
called pseudo-monotonicity and Lipschitz continuity.

Definition 1 (Pseudo-monotonicity). A function g : Z 7→ Rn
is pseudo-monotone on a set Z ⊂ Rn with respect to a set
Z∗ ⊂ Z , Z∗ 6= φ if for any z∗ ∈ Z∗, the following property
holds:

(z − z∗)>g(z) ≥ 0, ∀z ∈ Z. (15)

Lemma 3 (Pseudo-monotonicity of f ). Our function f defined
in (9) is pseudo-monotone on {(x,λ)|x ≥ 0,λ ≥ 0} with
respect to (X∗,Λ∗).

Proof. Please refer to our technical report [22].



Lemma 4 (Lipschitz continuity of f ). f(x,λ) is Lipschitz
continuous on (x,λ) ≥ (0,0) with some constant A > 0, i.e.,

‖f(x1,λ1)− f(x2,λ2)‖2 ≤ A‖(x1,λ1)− (x2,λ2)‖2,
∀(x1,λ1), (x2,λ2) ≥ (0,0),

(16)

Proof. Please refer to our technical report [22].

Next, we introduce a well-known projection theorem.

Lemma 5 (Projection theorem). Z ⊂ R
n is a non-empty,

closed, convex set and [x]+ is an orthogonal projection of
vector x ∈ R

n onto Z , i.e., [x]+ = argminz∈Z ‖z − x‖2.
Then we have

y = [x]+, if and only if (z − y)�(x− y) ≤ 0, ∀z ∈ Z.(17)

Because our domain {(x,λ)|x ≥ 0,λ ≥ 0} is also non-

empty, closed and convex, Lemma 5 holds. Next, we derive a

property of iteration (10) using Lemma 3, 4 and 5.

Lemma 6. The sequence (xt,λt) generated by iteration (10)

and (11) has following relationship.

‖(xt+1,λt+1)− (x∗,λ∗)‖22 ≤ ‖(xt,λt)− (x∗,λ∗)‖22
−(1− γ2A2)‖(xt+1/2,λt+1/2)− (xt,λt)‖22.

(18)

Proof. Please refer to our technical report [22].

Theorem 1. For the step size γ ∈ (0, 1/A), the sequence
(xt,λt) generated by (10) and (11) converges to a solution
in (X∗,Λ∗).

Proof. Please refer to our technical report [22].

Theorem 1 shows that our iterative algorithm finds optimal

sending rate control and multi-path routing for (P1). Note that

a general gradient algorithm does not guarantee convergence

to the optimal solution because it requires strong monotonicity

[23, prof. 5.4] of f(x,λ) which is a stronger condition than

the one in Lemma 3.

V. EVALUATION

In this section, we present simulation results for our sending

rate control and multi-path routing algorithm in dual-resource

systems. We first simulate the proposed algorithm in simple

scenarios in order to validate the generality of our model and

the effect of our algorithm. We also examine our algorithm

in a real large-scale scenario to examine its applicability in

practice.

A. Simulation in simple scenarios

Topology description. We consider two simple scenarios

where three nodes and four directed links are connected

as in Fig. 1. In scenario 1, two services with different

source/destination require virtual functions in triangular topol-

ogy, e.g., NFV service scenario. Each service can use one-

hop path using two resources and two-hop path using three

resources as described in Table. I. In scenario 2, one service

with the same source/destination requires virtual functions in

serial topology, e.g., CO service scenario. The path using

Fig. 1: Topologies of two simple scenarios.

(a) Utility over iterations under differ-
ent initial rate allocations x0.

(b) System cost over iterations under
different initial rate allocations x0.

Fig. 2: Comparison of our algorithm with utility-maximal algorithm
in scenario 1 when Ck1 = 2 GHz, V = 20 and γ = 1

200
.

only resource k1 models local computing, the path using

resources k2 models computation offloading to edge clouds,

and the path using resource k3 models computation offloading

to remote clouds. In this scenario, the cloud node has the

largest processing capacity, i.e., Ck1
< Ck2

< Ck3
, but

requires the least cost for the same processing load, i.e.,

Dk1(F ) > Dk2(F ) > Dk3(F ). The detailed descriptions of

two simple scenarios are summarized in Table I.

Impact of cost-awareness in scenario 1. To observe the

impact of cost-aware resource management, we compare

our cost-utility-minimal algorithm with the utility-maximal

algorithm derived assuming no cost term, i.e., Dl(F ) =
Dk(F ) = 0 for all l ∈ L, k ∈ K. Fig. 2 shows the service

utility and system cost of our algorithm and utility-maximal

algorithm over iterations when Ck1
= 2 GHz, V = 20

and γ = 1
200 , i.e., completely symmetric topology. We run

the algorithms under four different initial rate allocations

x0 ∈ {(0, 0, 0, 0), (0, 1, 0, 1), (1, 2, 1, 2), (2, 2, 2, 2)} Mbps. In

Fig. 2(a), both algorithms converge to the maximum utility

regardless of initial rate allocations. Note that the maximum

utility can be achieved as long as the sending rate of each

service reaches 2 Mbps, i.e., R1 = R2 = 2 Mbps. In

Fig. 2(b), in addition to maximum utility, our algorithm also

converges to the minimum system cost which can be achieved

only when the two services do not share any resources, i.e.,

xp11 = xp21 = 2 Mbps and xp12 = xp22 = 0 Mbps. On the

other hand, depending on the initial rate allocations, the utility-

maximal algorithm converges to the different system costs

which are not minimum. As mentioned above, there are several

8The processing densities of typical computation functions are within the
range [0.5, 20] Kcycles/bit [13].



TABLE I: Detailed description of two simple scenarios.
Scenario 1 Scenario 2

source/destination different same

number of services |W| = 2 |W| = 1

candidate paths

p11 : k1 → l3
p12 : l2 → k2 → l4
p21 : k2 → l4
p22 : l1 → k1 → l3

p11 : k1
p12 : l1 → k2 → l2
p13 : l1 → l3 → k3 → l4 → l2

resource capacity

(Mbps or GHz)

Cl = 2, ∀l ∈ L
Ck1

∈ {1.3, 1.4, · · · , 2.3}, Ck2
= 2

Cl = 2, ∀l ∈ L
Ck1

= 2, Ck2
= 20, Ck3

= 40

resource cost
Dl(Fl) = Fl, ∀l ∈ L
Dk(Fk) = Fk, ∀k ∈ K

Dl(Fl) = Fl, ∀l ∈ L
Dk1

(Fk1
) = Fk1

, Dk2
(Fk2

) = 1
2
Fk2

, Dk3
(Fk3

) = 1
3
Fk3

service utility Uw(Rw) = log(0.1 +Rw)− log(0.1) Uw(Rw) = log(0.1 +Rw)− log(0.1)

processing density8

(Kcycles/bit)
ρk,p = 1, ∀k ∈ Kp, p ∈ P ρ ∈ {1, 2, · · · , 20}

ρk,p = ρ, ∀k ∈ Kp, p ∈ P
bit conversion ratio

(bits/bit)
σl,p = 1, ∀l ∈ Lp, p ∈ P

σ ∈ {0.05, 0.1, · · · , 1}
σl1,p12 = 1, σl2,p12 = σ

σl1,p13 = 1, σl3,p13 = 1, σl4,p13 = σ, σl2,p13 = σ

(a) Optimal rate allocations for each
path under different values of Ck1

.
(b) Optimal rate allocations for each
service under different values of Ck1

.

Fig. 3: Impact of resource availability for our algorithm in scenario
1 when V = 20.

utility-optimal points and these points may attain different

system cost such as delay. Simulation results clearly show

that with NFV or CO services, it is desirable to consider cost

function as well as throughput performance, like our algorithm

does.

Impact of resource availability in scenario 1. To observe

the behavior of our algorithm under different resource avail-

abilities, we change the capacity of processing resource k1,

i.e., Ck1
, from 1.3 GHz to 2.3 GHz. Fig. 3 shows optimal rate

allocations of our algorithm for each path (Fig. 3(a)) and each

service (Fig. 3(b)) under different values of Ck1
. In the region

Ck1 ∈ {1.3, · · · , 2.0} GHz where the processing resource k1
is a bottleneck, rate allocation shows different characteristics

for Ck1
∈ {1.3, · · · , 1.8} GHz and Ck1

∈ {1.8, · · · 2.0} GHz.

In the region Ck1
∈ {1.3, · · · , 1.8} GHz, service 1 uses

both candidate paths p11 and p12, and processing resource

k2 and networking resource l4 are shared by the two services.

The reason is when each service uses only its one-hop path,

i.e., p11 and p21, there is a huge gap between sending rates

of two services, which leads to low total utility. Note that

because the two-hop path p12 incurs higher cost than the one-

hop path p21 (if the same rate is assigned to both paths),

the rate allocation for service 2, i.e., R2, is higher than that

for service 1, i.e., R1 (See Fig. 3(b)). For the same reason,

R2 increases faster than R1 as the capacity Ck1 increases.

In the region Ck1 ∈ {1.8, · · · , 2.0} GHz, service 1 does

not use the path p12 anymore and the two services do not

share any resources. It is because the increment of total utility

is no higher than the increment of system cost when the

path p12 is activated. In other words, high utility can be

achieved without using the expensive path p12. In the region

Ck1 ∈ {2.0, · · · , 2.3} GHz where the networking resource l3
is a bottleneck, rate allocations are not changed because path

p11 is fully utilized and (as mentioned above) using p12 only

decreases the objective value.

Impact of service characteristics in scenario 2. To observe

the behavior of different service parameters, we change the

processing density ρ and bit conversion ratio σ for the required

computation function9. Fig. 4 shows the total throughput

of the service served by local computing, and computation

offloading to edge and remote cloud. The total throughput

decreases as ρ and σ increase because the service, with high

processing density ρ and bit conversion ratio σ, requires

more system cost to achieve the same amount of utility.

In Fig. 4(a), under low processing densities, the service is

mainly served by local computing because local processing

resource is sufficient to handle computation functions with low

processing density and thus achieve high throughput without

resorting to resources at the edge or remote cloud which

only require excessive networking costs. As the processing

density increases, the service is mainly served by edge cloud

(when ρ ∈ {4, · · · , 11} Kcycles/bit) and remote cloud (when

ρ ∈ {12, · · · , 20} Kcycles/bit). In this case, in spite of

additional networking costs, computation offloading to edge

and remote cloud can achieve higher throughput and lower

processing costs than local computing. Next, we separate the

cases when the processing density is low (ρ = 1 Kcycles/bit)

and high (ρ = 10 Kcycles/bit) and observe the total throughput

for different bit conversion ratios σ in Fig. 4(b) and 4(c).

For the low processing density in Fig. 4(b), local computing

9Please refer to Table I to see how ρ and σ affect ρk,p and σl,p in
scenario 2.



(a) Throughput of service under different process-
ing density ρ when σ = 1.

(b) Throughput of service under different bit con-
version ratio σ when ρ = 1.

(c) Throughput of service under different bit con-
version ratio σ when ρ = 10.

Fig. 4: Impact of service characteristics for our algorithm in scenario 2 when V = 10 .

(a) Geographical topology. (b) Topology represented by dual-resource
graph.

Fig. 5: The real Internet topology in the U.S. (by MCI [25]).

(a) Normalized cost and throughput
under different numbers of candidate
paths P .

(b) Normalized cost and throughput
under the different set of candidate
paths Pw .

is fully utilized regardless of σ because it is highly cost-

efficient and independent of σ, i.e., local computing does not

use any networking resources. However, due to the limited

processing capacity of local computing, edge cloud is also

utilized partially depending on its cost-efficiency which is a

function of σ, i.e., the lower the bit conversion ratio, the

more edge cloud is used. For the high processing density

in Fig. 4(c), the computation offloading policy is rapidly

changed between edge cloud and remote cloud within the

range σ ∈ {0.65, 0.70} bits/bit. In this case, both processing

resources in edge and remote cloud are not limited, and thus

the service is served by only the most cost-efficient path.

B. Simulation in a real large-scale scenario

Topology description. We consider a real dataset of the

Internet topology in the U.S. in 2011 by MCI [25] as in

Fig. 5(a). This dataset contains 19 nodes with their locations

and 45 wired links with their bandwidths. Because the dataset

does not specify node processing resources, we synthetically

generate them as follows. For each node k, we calculate the

total bandwidth of the links connected to the node, denoted

by zk. A node with many neighbors and high link bandwidths

may be the hub of the Internet with high processing capacity.

Thus the capacity of processing resource for node k is chosen

by the Normal distribution N(zk/2, zk/2) which is truncated

by [0, zk]. The resulting dual-resource graph is presented in

Fig. 5(b) where the capacities of networking and processing

resources are figured by the width of links and size of nodes,

respectively. We define 9 virtual functions with different com-

binations of processing densities ρ ∈ {1, 4, 10} Kcycles/bit

and bit conversion ratios σ ∈ {1, 0.5, 0.1} bits/bit, and each

node supports a random set of virtual functions where the

number of supported functions is proportional to the node’s

processing capacity. We consider 20 services where the source,

destination and required function of each service are chosen

randomly. As the cost functions of dual-resources, we use

Dl(Fl) = Fl

Cl−Fl
and Dk(Fk) = Fk

Ck−Fk
which represent the

average packet delay of M/M/1 queue [26, p. 434].

Impact of candidate path selection. For simplicity, we use

the same number of candidate paths for all services, i.e.,

|Pw| = P, for all w ∈ W . We simulate our algorithm

under the real large-scale topology by changing the value

of P ∈ {1, 2, · · · , 6}. For given P , the candidate paths are

chosen randomly from 8-shortest paths for each service by the

resource manager10. Fig. 6(a) shows the normalized system

cost and average service throughput of our algorithm under

different numbers of candidate paths. The average throughput

of services increases with the number of candidate paths

without incurring additional system costs. As the number of

candidate paths grows, the sending rate (and thus utility) can

be increased, however this will also increase the cost because

more paths contribute to the cost. Hence, rate allocation on

each candidate path should be carefully determined. This result

10We apply this randomness in order to avoid the situation where some
resources are used by the most of candidate paths.



shows that our algorithm can exploit multiple paths in order
to increase the service utility while keeping the system cost
unchanged. However, the effect of increasing P diminishes as
P increases, e.g., the throughput increment from P = 1 to
P = 2 is 0.13, whereas it is only 0.02 from P = 5 to P = 6.
Note that larger P requires higher computation overhead of our
algorithm, and hence, the number of candidate paths should
be carefully determined to balance between the improvement
of system performance and computation overhead. Fig. 6(b)
shows normalized system cost and average service throughput
of our algorithm under different sets of candidate paths.
Although the number of candidate paths is the same, the
achievable service throughput and system cost highly depend
on the selection of candidate paths. Moreover, the system
performance with more candidate paths can be worse than
that with fewer candidate paths. Thus, it is also important to
find an appropriate set of candidate paths incurring low cost,
e.g., a short path or less overlapped path with other paths, and
supporting high service throughput, e.g., a path composed of
high capacity networking and processing resources. We leave
this issue for our future work.

Please refer to our technical report [22] to see more simu-
lation results in the large-scale scenario.

VI. CONCLUSION

In this paper, we studied quality of service and cost opti-
mization problem in a dual-resource system where dynamic
service chaining for network function virtualization and of-
floading policy for computation offloading are modeled in
a unified framework. Based on this problem, we developed
an extragradient-based algorithm that iteratively decides the
sending rate of service and multi-path routing. Our algorithm
jointly considers dual-resource coupling and service-dependent
properties to efficiently handle the resource and service. We
proved that our algorithm converges to an optimal solution.
Simulation results demonstrate the importance of cost-aware
multi-path routing and candidate path selection. Our results
in this paper give an insight into how different kinds of co-
existing services that require multiple resource types can be
viewed and managed in a unified framework.
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