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Abstract—Ultra reliable, low latency communications
(URLLC) are currently attracting significant attention due to
the emergence of mission-critical applications and device-centric
communication. URLLC will entail a fundamental paradigm
shift from throughput-oriented system design towards holistic
designs for guaranteed and reliable end-to-end latency. A deep
understanding of the delay performance of wireless networks
is essential for efficient URLLC systems. In this paper, we
investigate the network layer performance of multiple-input,
single-output (MISO) systems under statistical delay constraints.
We provide a statistical characterization of MISO diversity-
oriented service process through closed-form expressions of
its Mellin transform and derive probabilistic delay bounds
using tools from stochastic network calculus. In particular,
we analyze transmit beamforming with perfect and imperfect
channel knowledge and compare it with orthogonal space-time
codes and antenna selection. The effect of transmit power
and number of antennas on the delay distribution is also
investigated. Our results provide useful guidelines for the design
of communication systems that can guarantee the stringent
URLLC latency requirements.

Index Terms—URLLC, 5G systems, MIMO, diversity, stochas-
tic network calculus, queueing analysis.

I. INTRODUCTION

In order to handle the ever-increasing traffic load, existing
wireless networks have typically been designed with a focus on
improving spectral efficiency and increasing coverage. The la-
tency requirements of different applications have mostly been
an after-thought. Ultra reliable, low latency communications
(URLLC) has not been in the mainstream of most wireless
networks, due to the focus on human-centric communications,
delay-tolerant content and reliability levels in the order of
95-99%. However, a plethora of socially useful applications
and new uses of wireless communication are currently en-
visioned in areas such as industrial control, smart cities,
augmented/virtual reality (AR/VR), automated transportation
and algorithmic trading. In response, new releases of mobile
cellular networks (mainly 5G new radio and beyond) are en-
visaged to support URLLC scenarios with strict requirements
in terms of latency (ranging from 1 ms to few milliseconds
end-to-end latency depending on the use cases) and reliability
(higher than 99.9999%) [1].

URLLC and device-centric communication pose significant
theoretical and practical challenges, requiring a departure
from capacity-oriented system design towards a holistic view
(network architecture, control, and data). Despite recent ef-

forts, more work is needed to better understand the non-
asymptotic fundamental tradeoffs between delay, reliability
and throughput, including both coding delays and queueing
delays.

In networking, delay is a key performance measure and
queueing theory has been instrumental in providing exact
solutions for backlog and delays in packet-switched networks.
However, queueing network analysis is largely restricted to
few interacting (coupled) queues, small network topologies
and Poisson arrivals. Classical queueing models typically
allow the analysis of average delay, failing to characterize
delay quantiles (worst-case delay) and distributions, which
are of cardinal importance in mission-critical applications.
Various efforts to combine queueing with communication
theory, such as stochastic network calculus [2]-[5], timely
throughput [6], effective bandwidth [2], and effective capacity
[7] to name a few, take on a different approach and compute
performance bounds for a wide range of stochastic processes.
These approaches promise significant performance gains - in
terms of latency, reliability and throughput - and crisp insights
for the design of low latency communication systems.

In this paper, we use stochastic network calculus, which
allows non-asymptotic statistical bounds on network layer
performance metrics, such as maximum delay and delay
violation probability. In particular, we use the (min, X ) network
calculus methodology developed in [8]. For ultra reliable
communications, we focus on multiple-input multiple-output
(MIMO) techniques, which have great potential to combat
fading (diversity), increase spectral efficiency (multiplexing),
and reduce interference. In particular, we consider three
MIMO diversity techniques: (i) maximum ratio transmission
(MRT), a transmit beamforming technique that maximizes the
received signal and realizes diversity exploiting channel state
information (CSI) at the transmitter; (ii) orthogonal space-time
block coding (OSTBC), which provides diversity with no CSI;
and (iii) antenna selection, which relies on low-rate CSI.

A. Related Work

Despite the extended literature on MIMO techniques at the
physical layer, only few attempts have been made to character-
ize the upper layer performance of multi-antenna techniques
taking into account the queueing effects. In [9] the service
process of an adaptive MIMO system with Poisson arrivals is
characterized. Bounds on the delay violation probability have



been derived for MIMO multiple access with bursty traffic
in [10], while [11] provides an asymptotic analysis of the
diversity-multiplexing tradeoff for MIMO systems with bursty
and delay-limited information. Using large deviations, [12]
analyzes the queueing performance of queue-aware scheduling
in multiuser MIMO systems. Bounds on the tail of delay
of MIMO communication systems have been derived using
the effective capacity framework [13]-[15]. Using Markov
chains to reproduce the state of Gilbert-Elliott fading channels,
the flow-level performance of MIMO spatial multiplexing has
been analyzed using stochastic network calculus in [16], [17].
Nevertheless, to the best of our knowledge, there is no work
that considered the delay performance of MIMO schemes
using stochastic network calculus for wireless fading channels.

B. Contributions

We investigate the upper layer delay performance of mul-
tiple input, single output (MISO) diversity communication
in the presence of statistical delay constraints. We consider
MRT transmit beamforming at the physical layer and derive
probabilistic delay bounds using tools from stochastic network
calculus. For that, we provide a statistical characterization
of the cumulative service process for MISO beamforming
channels with both perfect and imperfect CSI through closed-
form expressions of its Mellin transform. The impact of
transmit antennas, signal-to-noise ratio (SNR), and imperfect
CSI on the delay distribution of MISO MRT systems is
characterized. We then show that our mathematical framework
can be applied to the statistical characterization of various
MIMO service processes, including antenna selection and
OSTBC. This allows us to compare the delay performance
of transmit beamforming with alternative diversity-achieving
techniques with less stringent CSI requirements. Interestingly,
MISO MRT is shown to reduce the delay violation proba-
bility as compared to single-antenna transmissions even with
imperfect CSI. The derived delay bounds enable us to assess
the robustness of MISO MRT delay performance with respect
to channel imperfections. Our results also show under which
operating parameters other diversity-techniques are preferable
than MRT in terms of delay violation probability. In addition,
we provide an asymptotic statistical characterization of the
service process in the low/high SNR regime and for large
number of antennas.

The rest of the paper is organized as follows: In Section
II, we provide our system model and in Section III, a brief
background on the (min,x) network calculus is presented. In
Section IV, the delay performance analysis of MISO diversity
systems is derived. Section V provides the delay performance
in asymptotic regimes. Numerical results are presented in
Section VI, followed by conclusions in Section VIIL.

II. SYSTEM MODEL

We consider data transmission over a point-to-point vector
communication channel, where a transmitter with M antennas
sends the queued data bits to a single-antenna receiver. Time
is divided into time slots of duration 7" (discrete-time model),

and at each slot ¢, the source generates a; data bits and stores
them in a queue. Each slot contains L + L,, symbols, where
L denotes the complex data symbols and L,, the metadata
(headers, training, estimation, acknowledgments, etc.).

A. Signal model

The received downlink signal y; € C at slot ¢ in a MISO
wireless channel is given by

y; = /snr - hi'x; +n; (1)

where h; € CM*! is the flat-fading channel between the
transmitter and the receiver at the ¢-th slot, which is circularly-
symmetric complex Gaussian distributed h ~ CA(0,1)
(Rayleigh fading). The transmitted vector is denoted by x; €
CM>1 and n; ~ CN(0,1) is the additive background noise
that may also include (Gaussian) interference from neighbor-
ing systems. Our model and analysis can be extended to take
into account interference using tools from [18]. A block-fading
model is assumed, where the channel remains constant during
one slot and varies independently from slot to slot.

Since we focus on ultra-reliable communications, we con-
sider one of the most prominent multi-antenna diversity tech-
niques, namely transmit beamforming, which refers to sending
linearly weighted versions of the same signal on each antenna.
The transmitted signal can be written as x; = w;s;, where s;
is the zero-mean data signal at slot ¢ with power E [|s|2] =1,
and w; € CM*1 is the unit-norm beamforming vector. Note
that, since noise is assumed to have unit power, snr represents
the average received SNR, whereas the instantaneous SNR in
the i-th slot is given by 7; = snr|hflw,|2.

B. Transmission technique

The performance target is to maximize the instantaneous
SNR of the MISO channel. This can be achieved by sending
information only in the direction of the channel vector h, as
information sent in any orthogonal direction will be nulled
out by the channel anyway. We thus consider maximum ratio
transmission [19], which is equivalent to eigen-beamforming
since beamforming along the dominant (and only) eigenmode
of the M x 1 vector channel is performed.

Assuming that both transmitter and receiver have perfect
CSI, the MRT beamforming vector is given by w; =
In that case, the instantaneous SNR is ~y; = snr||/h;||?, which
is gamma distributed with shape parameter M and scale pa-
rameter snr, i.e. y; ~ Gamma(M,snr). When the transmitter
does not fully know the actual channel vector h (imperfect
CSI), we can model its channel knowledge as h=nh+ e,
where e ~ CN(0,02I). MRT is then performed based on the
channel estimate, so that w = ﬁ Particularizing [20, Eq. 7]
to the MISO case, the instantaneous SNR is gamma distributed
with shape parameter M and scale parameter (, i.e.

h;
[hi]l

1402\
vi ~ Gamma(M, () with g:(a§+ :;w%> . @

This additive error model is consistent with time-division
duplex (TDD) operation, where uplink and downlink trans-



missions take place at the same frequency, in different time
instants; assuming they fall within the coherence interval of the
channel, then channel reciprocity can be used to estimate the
downlink channel from uplink pilot signals. This model also
applies to frequency-division duplex (FDD) operation with
analog feedback [21]. We only account for the effect of CSI
error in MISO beamforming, which reduces the achieved SNR
(SNR loss) because of not transmitting exactly in the direction
of the actual channel; as we explain in the next subsection
there could be another penalty in the rate selection process.

C. Data transmission

A codeword of length L symbols and rate R; (in bits per
symbol) is transmitted at each slot 7. The transmitter selects
a rate adapted to v; and we consider that no errors occur;
the achievable rate is equal to the Shannon capacity of the
channel, R; = log,(1 + ~;). That is valid for MISO systems
with knowledge of the fading coefficients of the vector channel
and the SNR realization at each slot, which makes the MISO
channel behaving equivalently to an AWGN channel with SNR
snr||h||?. Perfect knowledge of the SNR realization implies
that the transmitter can adapt the rate to it with no errors.
Thus, we only account for the channel estimation error as an
SNR penalty. The case of imperfect rate selection in MISO
systems, which goes beyond the scope of this work, can be
analyzed using for instance the techniques developed in [22].

D. Queuing model

For the analysis of queuing systems, we consider a system-
theoretic stochastic model as in [8], which is widely used
in the stochastic network calculus methodology. The arrival
process a; models the number of bits that arrive at the queue
at a discrete time instant . For successful transmissions, the
service process s; is equal to LR;; in case of transmission
errors, the service is considered to be zero as no data is
removed from the queue. The departure process d; describes
the number of bits that arrive successfully at the destination
and depends on both the service process and the number of bits
waiting in the queue. Note that acknowledgments and feedback
messages are assumed to be instantaneous and error-free.

We define the cumulative arrival, service and departure
processes during time interval [7,¢) for any 0 < 7 <, as

t—1 t—1 t—1
A(rt)=> ai, S(rt)=> si, D(r,t)=> d.

For lossless first-in first-out (FIFO) queuing systems, the
delay W(t) at time ¢, i.e. the number of slots it takes for
an information bit arriving at time ¢ to be received at the
destination, is defined as

W (t) = inf{u > 0: A(0,£)/D(0,t +u) < 1}. 3)
The delay violation probability is given by A(w,t) =
P[W(t) > w].

Using the dynamic server property (i.e. D(0,t) > AxS(0,t)
where the (min,+) convolution operator **’ is defined as

(f*9)(7,1) = inf, <uze {/(r, w) + g(u, 1)} [2]). the delay can
be characterized through the cumulative arrival and service
processes, which we have so far described in the so-called bit
domain. As it is more convenient for the analysis of wireless
fading channels, we follow [8] and analyze these processes in
the exponential (or SNR) domain.

III. STOCHASTIC NETWORK CALCULUS IN THE SNR
DOMAIN

A remarkable feature of stochastic network calculus is that it
allows to obtain tight bounds on the delay violation probability
based on statistical characterizations of the arrival and service
processes in terms of their Mellin transforms. For fading
channels, it is more convenient to map and analyze these
processes into a transfer domain (SNR domain [8]).

The cumulative processes in the SNR domain, denoted by
calligraphic letters and converted from the bit domain through

the exponential function, are
A(r,t) =Y D(r,t) =P S(r,t) = 5D,

From these definitions, an upper bound on the delay vio-
lation probability can be computed by means of the Mellin
transforms of A(7,t) and S(,t):

polw) = inf {K (s, ~w)} = Aw) @

where K (s, —w) is the steady-state kernel, defined as

t—o0

t
K(s,—w) = lim ZMA(1+s7u,t)M3(1—s,u,t+w) 5)
u=0

where M x (s) = E [X*~!] denotes the Mellin transform of a
nonnegative random variable X for any s € C for which the
expectation exists.

A. Mellin transform of arrival and service processes

Assuming that A(7,t) has stationary and independent in-
crements, the Mellin transform becomes independent of the

time instance, i.e.
-1 s—1
E (H e‘“)
i=T

_E [ea(sq)}t” = Mo ()T

MA(S,T,t)

where we have defined o« = e®, the non-cumulative arrival
process in the SNR domain. We consider the traffic class
of (z(s), p(s))-bounded arrivals, whose moment generating
function in the bit domain is bounded by [2]

élogE[e“‘“’”] <p(s)- (t—7)+2(s) 6)

for some s > 0. Restricting ourselves to the case where p is
independent of s and z(s) = 0, we have
Mq(s) = P, (7)

For the service process, we start by rewriting s; =
Blogg(v), where B = L/log?2 and g(v) = 1+ ~. Assuming



that different s; are independent and identically distributed
(i.i.d.), we can express the Mellin transform of the cumulative
service as

M5(877—7 t) =

E (Hg(’y)3>

t—1
E [g(y)¢1]
= Mg(“/) (1+ B(s— 1))t_T . (3

B. Delay Bound

Plugging (7) and (8) into (5), the steady-state kernel can be
rewritten as [8]
_ My (1 = B-5)]"

1—M,(1+ S)Mg(w)(l —B-s)’
for any s > 0 under the stability condition M, (1+s)Ms(1—
s) < 1. The delay bound (4) thus reduces to

M 1 _ B . w

py(w) = inf M) o] . (10)

s>0 | 1— Ma(l + S)Mg(,y)(l - B- S)

K(s,—w) 9)

IV. DELAY PERFORMANCE: EXACT ANALYSIS

In this section, we derive closed-form expressions for the
steady-state kernel K(s,—w) of MISO diversity schemes
based on the exact distribution of the instantaneous SNR.
We start by providing a general result on the Mellin trans-
form of the service process when the instantaneous SNR
is gamma distributed. Obtaining the steady-state kernel for
MRT beamforming with both perfect and imperfect CSI is a
particularization of this result, which is shown to apply, as
a byproduct, for obtaining the performance of other diversity
techniques, including MISO OSTBC.

Consider the instantaneous SNR to be a gamma distributed
random variable v ~ Gamma(M, () with shape parameter
M, scale parameter ¢ and pdf

e S0 1
fry(@) = TN T2 (11)
where T'(t) = [“a'"'e™®dx is the (complete) gamma

function; we have dropped the subindex since SNRs are inde-
pendent and ergodic. First, we derive the Mellin transform of
g(7), i.e. My (s) = E [g(~)*~*]. For notation convenience,
in the remainder we assume B = L/log2 = 1, however in
Sec. VI we give again relevant values to this parameter in
order to obtain meaningful numerical results.

Preliminary result 1. The Mellin transform of g(v) =1+,
where v ~ Gamma(M, ¢) with M € NT and ¢ > 0, is given
by

My (s) = ¢ M UMM +5,¢) (12)

where Ul(a,b, z) is Tricomi’s confluent hypergeometric func-
tion [23, Eq. 13.2.5] (also called confluent hypergeometric
Sunction of the second kind and denoted by ¥(a;b; z)).

Proof: Tt can be obtained from [14], where the effective
capacity of a MISO system is investigated. In particular, it
follows by applying a change of variables to [14, Eq. 9]. =

A. MISO MRT

The Mellin transform derived above applies directly to the
service process with MISO MRT transmission. Using this
expression together with the transform of the arrival process,
we obtain the kernel and consequently the bound on the delay
violation probability as follows

(M UMM+1-5,(1))" 3
1—ers¢M . UM,M+1-s,(1) )

pelw) = inf

Although U (a, b, z) is implemented in standard software for
mathematical calculations, we provide below an alternative
expression for the Mellin transform in terms of the simpler
upper incomplete gamma function. The following expression
can be obtained by noticing that M is a positive integer and
applying the binomial theorem:

. M-1 .
My = ¢t 3 (i
7=0
. —1

(M =) +1)

where T'(s,z) = [7“t""'e~'dt is the upper incomplete
gamma function. Note that, for the SISO case, letting M =1
and ¢ = snr in (14) we obtain M,(,)(s) = ex - snr*~! .
['(s,snr~!) which is the same expression reported in [8].

The above expressions allows us to obtain bounds on the
delay violation probability for different system parameters
without resorting to Monte Carlo simulations. However, due to
the complexity of the kernel function, no closed-form solution
for the minimum s can be found, and we must resort to
numerical methods. In some asymptotic cases, we can have
simpler expressions of the Mellin transform that make this
process easier, as we will show later in Section V.

B. OSTBC

Orthogonal space-time block coding has been a very suc-
cessful transmit diversity technique because it can achieve
full diversity without CSI at the transmitter and need for
joint decoding of multiple symbols. It is characterized by the
number of independent symbols L, transmitted over 1" time
slots; the code rate is R, = Ls/T. When the transmitter uses
OSTBC with M transmit antennas, code parameter 7', and
the receiver performs MRC with N antennas, the equivalent
SNR ~ = 5¥||H|| is gamma distributed with shape parameter
MN and scale parameter (snr/M)~! [24, Eq. 3.43]; here
H denotes the MIMO channel matrix of N x M complex
Gaussian entries. Particularizing (12) for the case of MISO
OSTBC, we have the following result.

Result 1. The Mellin transform of the service process of a
MISO system employing OSTBC is given by

B snry —M
ot (8) = (ﬁ) U (M, M +s,M/snr).  (15)



C. Antenna Selection

Antenna selection is a low-complexity, low-rate feedback
diversity technique, in which the transmitter and/or the re-
ceiver select a subset of transmit/receive antennas for trans-
mission/reception. It can be used in conjunction with other
diversity techniques and can improve the performance of open-
loop MIMO at the expense of very low amount of feedback.
We consider here transmit antenna selection (TAS), in which
the transmitter selects to transmit on the antenna (one of M)
that maximizes the instantaneous SNR. The amount of CSI
required to be fed back to the transmitter is [log, M| bits
(index of best antenna), where [z] denotes the smallest integer
larger than z. The instantaneous SNR can be expressed as

YTAS = SNIYmax. Where ymax is the largest channel gain,
ie. Ymax = max |h|?. Since h; ~ CN(0,1), we have
1<i<M

that |h;|? is exponentially distributed with unit mean and pdf
f|hl‘2(x) =e T
Result 2. The Mellin transform for a MISO system employing
TAS is given by

M—-1

M—-1
FRCERTISD Sl (e [T
k= (16)
e < k+1
a5

Proof: Suppose that X1, ..., X, are n independent con-
tinuous variates, each with cdf F(x) and pdf f(z). The pdf
of the r-th order statistic Xy, r =1,...,n is given by [25]

1
0@ = Femn—rs1)

Fr=H (@)1 = F(2)]" ™" f(2). (A7)
Therefore, the pdf of ymax = 7(ar) is given by f,  (z) =
M f(z) FM =1 (z). Since 7 ~ Exp(1) in the case of TAS with

pdf f,(x) = e~ *, we have that

B =M [ (14 o) @B o

0o (13)

= M/ (14 ¢x)te™@(1 — e ®)M1dg.
0

Applying binomial theorem and solving the resulting inte-
gral we finally obtain

M—-1

M—-1
FRCERTEED Sl G [T
k41 h=0 (19)
e < k+1
<arrt ()
| |

V. DELAY PERFORMANCE: ASYMPTOTIC ANALYSIS

In the previous section, we have provided analytical ex-
pressions for the Mellin transform of the service process for
various multi-antenna diversity techniques. The exact results
are mainly given in terms of special functions and alternating
series. To explore further the delay performance of MISO

MRT, we derive in this section simplified expressions for
various asymptotic regimes: low/high SNR and large M. Ad-
ditionally, we obtain a general result for a Gaussian distributed
service process; as we will show, the MISO MRT service
process converges to this distribution as M grows large.

A. High SNR regime

We investigate here how statistical delay constraints affect
the MISO performance at high SNR. We assume that this also
implies large ¢, which is true as long as o2 does not increase'
with the SNR.

Corollary 1. In the high SNR regime, the Mellin transform of
the service process scales as

¢HEY s>1-M

s () =4 ¢M 7”%(_15__5?4) s<1-M (20)
CfMlogI(‘(f]\z/[I;)]\/f) s=1—-M

where 1(x) denotes the Digamma function [23, Sec. 6.3].

Proof: The three branches are obtained after direct appli-
cation of the asymptotic properties of the U(a, b, z) function
listed in [23, Sec. 13.5]. The first branch can be also derived
by considering the approximated service process s; =~ log(7;),

which gives that M} (s) = (*7'T'(s+M —1) for s+M > L.
|

B. Low SNR regime
At low SNR, we have the following result:

Corollary 2. In the low SNR regime, the Mellin transform of
the service process is approximately given as

My (s) = (1= (s = 1)),

Proof: At low SNR, we use the first order Taylor series
expansion log(1l + x) ~ x. In that case, the service process
can be approximated as s; = v; = g(y) ~ €7, hence

My (s) = B[] ~ (1 (s = 1))~

s<(1—1. @D

(22)

using the moment generating function (MGF) of a gamma
random variable. ]

C. Large antenna regime

The distribution of the mutual information of a Rayleigh
fading MIMO system is generally rather complicated, there-
fore approximations have been used in the literature. For
example, in the large antenna regime (M — oo) and using
the Central Limit Theorem (CLT), it can be shown that
the distribution of the mutual information Z converges to a
Gaussian distribution; see for instance [26] and references
therein. Using similar arguments here, we can obtain simpler
expressions for the Mellin transform of the service process. In
general, we can obtain results of the form

aI_M d

M = N(0,1)

(23)
oM

'As a matter of fact, most frequently and in practice o2 o< 1/snr.



where convergence is in distribution, p = E(Z), oy is a
variance term, and « is a measure of the convergence speed
(normally 0.5). This means that, for large M, an accurate
approximation of the distribution is given by Z ~ N (u,0?)
with 02 = 02,/M*®. The mean and the variance terms can
be obtained in closed form from [27]. Note that, for brevity,
throughout this section we will use the natural logarithm, and
thus all rates are in nats.

Result 3. The Mellin transform of a service process with rate
following a Gaussian distribution with mean (v and variance
o? is given by

S S— " S— 2ﬁ
My (s) = et 24

Result 4. For the MISO MRT case, as the number of antennas

grows large, we have

lim M;('Y)(S) — (1 =+ CM)Sil.

M — o0

(25)

Proof: The mutual information can be written as 7 =
log(1 + ). Rewriting (24) and applying Jensen’s inequality

s (s) = e(s=DEllog(14+7)]  ,(s=1*F (o)

< e(smDIg(HEND | o(s=D*F (77

= (1ML (28)

MZ¥ (4 cm)t (29)

where the last equality follows from the fact that lim o2 =0
— 00

[26], [27]. [ |

Note that using standard tools (e.g. continuous mapping
theorem and Chebyshev inequality), it can be shown that the
bound is asymptotically tight. Furthermore, the asymptotic
convergence can be obtained without resorting to the Gaus-
sian approximation by showing that convergence in distri-
bution implies convergence in M) (s). Let y1,92,... be
a sequence of positive random variables that converges in
distribution to a positive random variable y. For s > 0,
we have lim M, (s) = M,(s). By Lebesgue’s domi-
e I

P
E([h]7] — 1, we have that

nated convergence theorem and
lim M) (s) = (14 pM)* .

M —o00

Interestingly, we observe that for large M, Z?,y)(s) ~
(¢M)*~1, which is related to the so-called channel hardening
effect, i.e. the channel behaves equivalently to an AWGN
channel with SNR (M. In the low SNR regime, the number of
transmit antennas affects linearly the service process, while at
high SNR, the Mellin transform of the service process grows
superlinearly with M (for s > 1).

The approximation s; ~ AN (u,c?) allows us to simplify
the delay violation probability expression (13), however its
relevance and applicability goes beyond, as it allows analyzing
the delay violation probability of any system whose service
rate can be approximated by a Gaussian random variable.
Additionally, it can provide very simple expressions for the
effective capacity.
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Figure 1. Delay violation probability and associated bounds as a function of
the target dealy, p = 24 kbps and snr = —2 dB.

VI. NUMERICAL RESULTS

In this section, we provide numerical evaluation of the
performance of MISO communication systems based on the
above analysis. Unless otherwise stated, the duration of a slot
is set to T" = 1 ms, the overhead is disregarded (L,, — 0),
and the blocklength is assumed to be L = 168; consequently
B = L/log2 # 1, and we reincorporate this parameter into
the equations.

We start by validating our analysis with Monte Carlo
simulations. In Figure 1, we compare the delay violation
probability and its bound with p = 24 kbps and snr = —2 dB.
We corroborate that the bounds follow the trend of the original
curve, and we point out that the maximum difference in the
x-axis seems to be of about 1 ms.

Figure 2 plots the violation bound for MISO MRT as a
function of the target delay w with p = 24 kbps and snr =
5 dB. It shows the effect of varying the number of antennas
and the accuracy of the CSI. We observe the strong decrease
of the delay violation probability when increasing the number
of antennas: with perfect CSI, the probability of exceeding
1 ms delay roughly decreases by three orders of magnitude
when adding an extra antenna.

In Figure 3, we compare the delay performance of MISO
MRT with OSTBC and TAS. We can see that MRT generally
performs better when the quality of the CSI is good: above a
certain value of 02, TAS and OSTBC outperform MRT. The
values at which this change takes place seem to be dependent
on the number of antennas.

In Figure 4, we investigate further the effect of adding
antennas, and compare it to that of increasing the power. For
a target delay of 1 ms at 0 dB, we can see that going from
three to four antennas seems to have only slightly less impact
than doubling the power; at 5 dB, however, this is not the
case anymore: 3 dB of extra power decrease the violation
probability by one order of magnitude, but adding one antenna
decreases it by two orders of magnitude.
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Figure 2. Delay violation probability bound as a function of the target delay,
p = 24 kbps and snr = 5 dB.
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Figure 3. Delay violation probability bound as a function of the target delay
for different diversity techniques, p = 24 kbps and snr = 5 dB.

As explained in Section IV, it is important to have simple
expressions for the kernel when possible. In Figures 5 and
Figure 6, we illustrate the accuracy of the Gaussian approx-
imation for M = 3 and M = 10; as expected, the error is
large for the former and negligible for the latter. This justifies
the use of the much simpler expression (24) whenever M is
relatively large.

In Figure 7 we test the accuracy of the high and low SNR
approximations derived in Section V. We can see that the high
SNR approximation becomes asymptotically tight as the SNR
increases, and that, remarkably, the low SNR approximation is
reasonably accurate for most SNR values; this makes the low
SNR approximation particularly interesting given its simple
expression.

VII. CONCLUSIONS

In this work, we characterized the delay performance of
MISO diversity communications under statistical delay con-
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Figure 4. Bound on the probability of exceeding 1 ms delay as a function
of the number of antennas,p = 256 kbps.
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Figure 5. Mellin transform (left) and kernel (right) as a function of s, M = 3,
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Figure 7. Bound on the probability of exceeding 2 ms delay, p = 200 kbps.

straints. Using stochastic networks calculus, we derived a
statistical characterization of the service process in term of
Mellin transform for multi-antenna fading channels and pro-
vided probabilistic delay bounds. We showed how the number
of transmit antennas and transmit SNR may affect the delay
performance. MISO MRT is shown to reduce the delay viola-
tion probability as compared to single-antenna transmissions
even with imperfect CSI. Nevertheless, as channel imperfec-
tions increase, other diversity-techniques, such as OSTBC and
antenna selection, perform better than MRT in terms of delay
violation probability. Future work could consider the effect of
imperfect CSI at the receiver and limited feedback in FDD
MIMO systems. Further extensions of this framework may
include the analysis of MIMO spatial multiplexing, MIMO
channels with co-channel interference, and multiuser MIMO
systems.
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