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Abstract—We consider the problem of channel reconstruction
in FDD networks wherein each base-station (BS) employs a
transmit array comprising of a multitude of antenna elements
and simultaneously serves multiple different users (a.k.a. Massive
MIMO networks). In channel reconstruction the BS seeks to
reconstruct the instantaneous true channel seen by each user as
accurately as possible, which is both critical and challenging.
It is challenging since the true high-dimensional instantaneous
channel must be recovered by the BS from quantized low-
dimensional observations while fully exploiting other available
side information. It is a critical problem in that the viability of
FDD Massive MIMO directly depends on whether an effective
implementable reconstruction scheme can be found. We propose
a unified framework for channel reconstruction that combines
instantaneous quantized feedback, long-term statistical subspace
information as well other auxiliary estimates. Interestingly,
the resulting problem is an NP-hard non-convex quadratically
constrained quadratic programming (QCQP) problem that has
received wide attention in diverse areas but hitherto lacks an
efficient algorithm that meets our required stringent complexity
limits. We propose a novel approach based on the K-best method-
ology that is well suited for implementation and demonstrate that
it offers a superior performance and complexity tradeoff.

I. INTRODUCTION

The advent of Massive-MIMO has galvanized downlink
(DL) MU-MIMO which in current 4G cellular systems has
failed to realize its potential. Massive MIMO with its larger
antenna aperture size promises orders of magnitude improve-
ment in spectral efficiency [1] provided timely channel state
information (CSI) can be accurately obtained at each base-
station (BS). The latter requirement is feasible over TDD
networks that can leverage channel reciprocity but is onerous
for the more prevalent FDD networks. Indeed, over many
scenarios the loss due to inaccurate CSI in FDD massive
MIMO systems can be very significant [2]. Consequently,
realizing massive MIMO benefits in FDD or more generally
with limited training observations has become an important
area of research [3], [4].

The fundamental problem in acquiring CSI in FDD net-
works is that of provisioning resources for training and feed-
back. Since each user’s DL channel is high-dimensional due
to the size of the BS array as well as dynamic, a naive
approach of periodically sending an orthogonal pilot through
each antenna will consume unaffordable overhead (48% for
an array size of 64 [5]). Consequently pre-beamformed pilot
transmission has been standardized under which each user
observes and estimates one or more low dimesional projections
of its channel. These estimates are then separately quantized
and reported back to the BS. In this context, we note that
recovery of high-dimensional vector(s) (or a common support)
from multiple low dimensional noisy (albeit unquantized)
observations is closely related to the multiple measurement
vectors problem that is actively being studied under compres-
sive sensing. Prominent works in this area typically adopt

a grid-based approach with a finite dictionary (of structured
atoms) and model the unknown vector(s) as a linear com-
bination of a small number of atoms. However, incomplete
knowledge of the dictionary can be quite detrimental [6]. On
the other hand, gridless approaches assume a continuum of
atoms with all atoms again having an amenable structure [7].
The latter assumption can only be justified for uniform arrays.
We note here that a non-negligible fraction of massive MIMO
deployments will use irregular arrays (due to a host of reasons
such as form factor, realized patterns etc.). Consequently, there
is a need for reconstruction algorithms that do not pre-suppose
certain array geometries.

In this paper we consider a practical Massive MIMO
FDD downlink and propose a novel formulation for channel
reconstruction that can utilize disparate feedback and side-
information such as fine time-scale quantized feedback as
well as coarse time-scale subspace information. It applies
to arbitrary array configurations and entails minimizing a
weighted sum of squared ¢ norms subject to quadratic non-
convex constraints. Our problem thus belongs to the class of
non-convex QCQP that is an active research area [8], [9]. Other
important features of our work are as follows.

e We show that our non-convex optimization can be efficiently
and optimally solved in certain important special cases.

e We propose an effective sub-optimal approach to address the
general case of our problem, based on the K-best methodology
to decompose the original problem into smaller sub-problems.
Here K is a tunable parameter that controls the performance
and complexity tradeoff. We note that K-best methodology has
been used with considerable success in multiantenna multi-
user detection problems [10]. A key aspect of our K-best based
approach is that closed form solutions are derived to optimally
solve the constituent non-convex sub-problems. We believe our
K-best based approach will also be useful in other applications
involving such non-convex QCQP.

e We also derive an alternate reconstruction scheme that
builds upon a popular linear model by addressing some of
the challenges posed by quantized feedback.

e We then evaluate our schemes under practically meaningful
scenarios. We show that gain in reconstruction quality aris-
ing from our proposed formulation translates to substantial
throughput gains (over 30% in one example). Moreover,
directly adopting a conventional approach as an alternate re-
construction scheme is quite ill suited for quantized feedback.
While an enhancement we propose improves the alternate
reconstruction scheme, it still remains quite inferior to our
proposed scheme based on our novel formulation and K-best
methodology.

II. PROBLEM FORMULATION

We consider a narrowband downlink wherein a base-station
(BS) having NV, transmit antennas communicates with a set of



users that are equipped with one receive antenna each. Thus,
the channel vector seen by any generic user in the downlink in
each slot, which is a time interval (1ms or less) over which that
user’s channel can be assumed to be constant, is modeled as an
N; x 1 complex-valued vector' h e @M1, Since reciprocity
does not hold in FDD, the BS has to rely on user feedback
along with possibly other available information, to accurately
reconstruct the channel vector of each user being served by it
in every slot. Our focus is on a stand-alone scenario in which
there is no slot-level coordination among different cells so that
the inter-cell interference (ICI) seen by a served user from any
other interfering BS cannot be controlled by its serving BS.
Each user reports an SINR representing a ratio of the desired
signal strength from its serving BS and the ICI it perceives.
Then, without loss of generality, we can normalize the channel
vector of each user using the average ICI strength it perceives,
and pose the reconstruction problem for that user as that
of determining its corresponding normalized channel vector.
This normalization gives us an equivalent problem (considered
henceforth) in which SINRs reported by the users represent
effective channel gains in presence of unit variance noise
at their receivers. Next, suppose that the following disparate
information is available at the BS, using which it has to
reconstruct an approximation of the (normalized) channel h.
o Direct Feedback: Conforming to the LTE standard, we sup-
pose that beamformed reference symbols (pilots) are employed
periodically by the BS to enable the user to estimate a low-
dimensional projection of its channel vector. In particular, we
let B;, 1 < i < M denote M pre-beamforming matrices.
Each matrix B; is of size NV; X m, where m is much smaller
than V;. In each slot, the user estimates th, 1<i< M
and reports its feedback, which for each ¢ comprises of a
quantized unit-norm vector g; € o 1, referred to here as PMI
vector and an effective gain v; € IR, which is a quantized
scalar. We note here that while our formulation allows for
any quantization codebook from which each PMI vector is
selected, in practise it must be one among those that have
already been defined. This essentially restricts m to be either
4 or 8. In all these defined codebooks the codewords satisfy
a constant magnitude property i.e., all elements of each code-
word vector have the same magnitude. Hence, the magnitudes
of the individual elements of any reported PMI vector will
convey no information. As shown in the sequel, this can have
a major impact on the performance of some reconstruction
schemes. On the other hand, the number of feedback reports,
M, obtained by the BS is a design parameter and allows for
trading off reconstruction accuracy and signaling overhead.
Furthermore, for any given m, M, the choice of pre-beam
matrices {B;}}, is by itself an important design choice.
However, this choice is subject to several practical constraints
and is made from a finite collection that is common for all
served users. In this work, we assume that a set of M chosen
pre-beam matrices has been provided as input, but we place
no restriction on the choice of such a set.

e Subspace Information: The BS can have information via
longer-term statistical estimation about the subspace in which
the instantaneous channel vector h is likely to be in. Let

'We drop the user and slot indices since they are unimportant for our
purposes. Each user’s channel changes across slots but the channel statistics
remain constant across several slots.

Ugw € VS be a semi-unitary matrix whose column-span
equals the said subspace. Clearly such subspace information is
useful if the instantaneous h belongs to it with high probability
and if its dimension .S is much smaller than N;. This is indeed
possible over relevant massive MIMO scenarios. For later use,
we let Pgyp, = US‘lbUiub and Péﬁb 21— UsubUIub denote
two orthogonal projection matrices. We also let R(Pgup)
(R(PZ,)) denote the range or column span of Py, (PL)).
e Auxiliary Estimate: We suppose that another estimate of
the true channel, denoted here by h, can also be available.
This estimate can be obtained for instance via another set of
possibly non-beamformed and sparser pilots. We assume that
the first element of h is real-valued and non-negative. This
results in no loss of generality as detailed below.

We formulate our re-construction problem as
Zérnggl{wlllPsubZIF +ws [Pzl + ws|h — 2|}

s.t. |g;rBsz|2 >~ i=1,---, M, (P1)

where the wi,we,ws € IR, are given weights. Some com-
ments on our formulation are in order:

o Note that our formulation has a robust flavor since it aims to
minimize weighted sum of projected channel squared ¢ norms
(or energies) and deviation from an available reference, subject
to certain constraints. A weight is assigned to each side-
information at hand which reflects its reliability. Specifically, if
the subspace information is highly reliable then we can simply
set w; = 1 and wy >> 1 to be a large value. This will
force the resulting reconstructed channel to lie in the desired
subspace. On the other hand setting w; = wsy ignores the
subspace information. Moreover, setting a large value of w;
forces the reconstruction to approach h and doing so is clearly
beneficial when the auxiliary estimate is indeed reliable.

e Notice that our formulation is applicable to arbitrary transmit
antenna array geometries. This is quite useful in practise since
arrays with irregular spacing are being found promising.

e A key problem in modeling PMI feedback is that the specific
quantization rule implemented by the user is not completely
known to the BS. In LTE networks this quantization rule is
left as an implementation issue and only one aspect has been
standardized. Specifically, the only requirement any such rule
must meet is that if the BS chooses to transmit to only that
user employing its reported PMI and the corresponding pre-
beam matrix, then the SINR observed by that user must exceed
the reported one, whenever the channel and interference
conditions do not change. The constraints we formulate in
(P1) precisely capture this requirement.

e Notice that for the purpose of scheduling and transmitting
data it suffices to know the channel up-to a phase term, i.e.,
any reconstruction z and exp(j¢)z will have the same impact
on system performance for any phase term exp(j¢), where
j = v/—1. Since PMI codebooks were designed considering
only a single PMI feedback, each PMI vector also conveys
information up-to a phase term. Indeed, given any prebeam
matrix choice, the user would obtain and feedback the same
PMI vector for any channel h as well as exp(j¢)h, for
any phase term exp(j¢). This introduces a major issue of
phase ambiguity while combining multiple PMI feedback for
reconstruction. Similarly, h can also be an estimate of h upto
a phase term. (P1) is inherently tailored to incorporate such



phase ambiguity. In particular, we simply choose the phase
term of h as the reference and have ensured that the other
terms in the objective as well as all constraints are invariant
to multiplying the vector of variables, z, by any phase term.
e (P1) has a quadratic and convex objective but non-convex
constraint sets. Notable works have shown that such non-
convex QCQP is NP-hard in general and can be optimally
solved in a tractable manner only for M < 3 [8], [11] or when
all Grammians involved are also Toeplitz [12]. Unfortunately,
for our purpose Toeplitz condition need not be met while even
existing optimal methods (for M < 3) are unsuitable since
they involve solving large-dimensional semi-definite programs
(SDPs). On the other hand, most of the existing sub-optimal
techniques that we are aware of either also involve SDP solvers
or are iterative in nature and entail input instance depen-
dent complexity. Key exceptions are [13], [14] which adopt
a successive approach to address the constraints. However,
they consider a simpler multicast beamforming setup without
subspace or auxiliary side-information and also do not propose
and develop the K-best methodology.

We now proceed to derive a sub-optimal approach to solve
(P1) that has a tunable and deterministic complexity, i.e., our
method is non-iterative and its complexity does not depend
on the input instance but only on problem dimensions and
choice of certain tuning parameter. Before that, we detail a
specific case in which an optimal solution of (P1) can be
obtained analytically. We will then use the insights garnered
and develop an effective approach for the general case.

III. AN OPTIMALLY SOLVABLE CASE OF (P1)

The specific case we consider here that can be optimally
solved, is one where w3 = 0 and all but one of the
vectors {B;g;}M, are mutually orthogonal. Further, each
one of these M — 1 vectors belongs to either R(Pgup)
or R(PL,). Then, without further loss of generality, let
us adopt a labeling of feedback for which there exists a
J € {0,---,M — 1} such that each B;g;, ¢« = 1---,J
lies in Pg,,, whereas each B;g;, i = J+1--- M — 1
lies in R(Pj{lb). There is no restriction on Bp;gn,. Next,
letting Dy = diag{1/\/71,---,1/\/77,1/\/7nm} and Dy =
diag{1/\/vs+1,--- ,1/\/7—1,1/\/7a}, obtain two QR de-
compositions

Pow[Bigi, -+ ,Bsgs, Bugn|D1 = QR,
Buy-1gv-1,Bugn|D2 = VS, (1)

where Q and V are both semi-unitary whenever they are
non-zero matrices. R = [r; ;] and S = [s; ;] are both upper
triangular with positive diagonal elements whenever they are
non-zero matrices.? Let dq and d,, denote the number of non-
zero columns (as well as ranks) of Q and V, respectively, and
note that J < d, < J+1while M —J-1<d, <M —J.
Further, let Q and V denote two matrices such that

R(Psub) = R(Q) ®R(Q) & R(Pg;) = R(V) ®R(V)

with QIQ = I & QfQ = 0 (VIV =1 & VIV = 0)
whenever Q (V) is non-zero.

1
Psub[BJ+1gJ+1a Tty

2We adopt the convention that decomposing a zero matrix in (1) yields both
Q and R (V and S) to be zero matrices. Also since R (S) can be rectangular,
we use upper-triangular to mean 7; ; = 0 (s;,; = 0) forall ¢ > j.

Proposition 1. In this special case, any optimal solution of
(P1) must lie in R(Q) & R(V).

Proof. We first expand, without loss of generality, any candi-
date reconstruction as z = Q3 + QB + Va + Va. Then, in
this special case we can simplify (P1) as follows. Recall that
B1gz = P@ubBigia Vi = 17 Tty J
Bigi = PbubBigia Vi = J+17 7M_ 1 (2)

and that all these M — 1 vectors are mutually orthogonal.
Then, using the two QR decompositions in (1) and expanding

a=[ar, - ,0q,]" and B = [B1, -+, Bq4,]", we see that
giBjz = )b Vi=1
ng3T = S s Vi =T 41 M=,
g}LwB}rvIZ = g}LijuPsubz +g}L\4B§uP§LbZ

dq du

i i
Y orirBit Yo s ] . )
=1 =1

On the other hand the objective in (P1) is equal to w; (||3]|* +
18[1?) + w2 (||ex||* + ||&]|?). Thus, since from (3) we can infer
that none of the constraints depend on &, 3, it is optimal to
set them both to zero. O

With Proposition 1 in hand, we expand the reconstruction
we seek as z = QB+ V a. Invoking (3) we can now formulate
the re-construction problem (P1) for this special case as

min

2 2
adatdv ! gapda Xl{le/B” +w2|\a|| }

st {Is]jayl” = 11077 1’{|7“”5;|2>1}J 13

dy dg

i i
Dostar—sa Y B 21
=1 =1

We offer our next result.

(P2)

Proposition 2. (P2) is equivalent to a convex optimization
problem

Proof. We start by noting that only the last constraint depends
on the phases of elements of @ or B3 whereas the other
constraints and the objective are invariant to them. As a result,
without loss of optimality we can suppose that the phase of «;
(B;) equals that of s; ps— s (r;,541) for all j. Then, let us define
non-negative scalars oy = |a;s; ;|,j =1,--- ,M —J—1 and
B = Bjrjl.d =1, ,Jwithal,_; =|an—ssm—jm-|
whenever ds = M —J and 3, | = [B7117741,7+1| whenever
dy = J + 1. We can now equivalently express (P2) as

dg

o \2

Zw D wi(8)
j=1

s.t. {a >1}M J-1. ; {6 >1}J "

min
a’€lRP ™! B elRY

Isjni—al 1| |rj,a41
B;>1 (P2b)
Z |55, Z 5,41
where we have used w} = wa/ls;;|* V j and w; =
w/|rj1? ¥ j. Clearly (P2b) has a convex quadratic objective
and convex constraint sets. O



The implication of Proposition 2 is that since Slater’s
condition clearly holds for (P2b), K.K.T conditions are both
necessary and sufficient. Indeed, we can explicitly solve
these conditions to recover a globally optimally solution.
For simplicity, we outline one procedure whose complexity
scales linearly in M and remark that a faster bisection search
based one can be readily designed. We start by noting that if
ML L] +2J | Ll ’“‘ > 1 then the optimal solu-

Jj=1 [s5.5] 75,5
tion can be trivially obtained. Supposmg ZM 71 %
753

> ‘JI 1 % < 1, from K.K.T conditions we can express
2,3
optimal a;ﬁ’ Y j as

N Msjar—s]
ai(A\) = max{1,—L——_
’ |8j,5]2w}
ﬁ’(;\) = max{1 75\|Tj’J+1| Vg )
I Crjgl2wg [T

where we have explicitly indicated the dependence on A, which
is an optimal non-negative Lagrange multiplier associated with
the last constraint of (P2b) and must satisfy

|SJM gl s |TJ,J+1|
Z (A + 2:

)=1
|SJJ| ‘7’ J|

The optimal )\ can be determined by first trying A=
where A = 1. Next for this

3
dy 155, M— J\ \TJ J+1l
i, LL= +2 L

choice of A using (4) determine whether any of o (5\) and

B; (\) is equal to one. If not then we have found the optimal
3 - lsjm—gl [rj, g1l
A. Else, we update A — A — 37, ol T > Tl
where the two summations correspond to all o;(A) and 3}(A),
respectively, that were found to be one. Next using th1s A
we recompute \ = Dwve J‘QA 5> Where each
Z] Js +Z g,

wo w1y

summation in the denominator corresponds to all a}(j\) and

B; (A) that were found to exceed one. Using the recomputed A
we again determine all a;()) and f3%(\) via (4) and repeat the
process. It can be shown that A decreases across the iterations
and the process finds an optimal A in O(M) iterations.

Remark 1. We highlight one instance of (P1l) that can
be formulated as (P2) (hence its optimal solution can be
efficiently recovered), which will be evaluated in our numerical
experiments. In this case we have wi = ws and wsz = 0 with
M =3 & (B1g1) Bags = 0. Notice that since wy = wo, the
subspace information is ignored by (P1). Then, upon setting
Pouw, =1 with J = 2, it is seen (P1) is equivalent to (P2).

IV. K-BEST APPROACH

We now leverage the insights gained from the special
case elucidated above to develop an effective sub-optimal
algorithm for the general case. First, defining an /V; x M matrix
C' = [B1g17 e aBMg]Vf}dlag{l/\/ﬂv T 1/\/@}’ we
extend Proposition 1 to obtain the following one. It can be
proved in a similar fashion as Proposition 1.

Proposition 3. Any optimal solution of (P1) must lie in
R(Psub[clvh]) @R( bub[cl h])

Let II denote any M x M permutation matrix. For a suitable
column permutation of C’, C = C'II, we specify two QR
decompositions, Py,,[C,h] = QR and P.,.[C,h] = VS,
wherein R, S are both (M + 1) x (M + 1) upper triangular
matrices with non-negative diagonal elements. Q (V) is an
N; x (M + 1) matrix which contains a zero-column corre-
sponding to each diagonal element of R (S) that is zero. In
addition, if the i**,1 < i < M +1, column of Q (V) is a zero-
column then the " row of R (S) has all zeros. Furthermore,
the non-zero columns of Q (V) are mutually orthogonal
and unit-norm. Together, these conditions uniquely specify
the two decompositions for any given choice of permutation
matrix II. Henceforth, invoking Proposition 3 which assures
us that any optimal reconstruction must lie in R(Q) ©® R(V),
since R(Pyu[C', 1)) = R(Q) & R(PL,[C',h]) = R(V),
we will seek an approximately optimal reconstruction h =

QB8+ Vo, a = [ar,---,apy]",8 = [Br, -, Bus]Ts
which will be feasible (i.e., meets all constraints). Notice that
we can express each inequality constraint corresponding to the
ith 1 < i < M column of C, denoted by c;, as:

lclh? = |c/Pouh+c/PL, hf?

= ‘C Psustubh —+ CTP subh|2

sub
2

S el 21
j=1 j=1

Similarly, using the fact that |h —h? = ||Pew(h — h)|2 +

|PL,(h—h)|? the objective of (P1) can be expressed as >
wa|ex|® + w1 || BII* +
M+1
ws Y (Irjare = Bil* + Isjaren — ai’) - (6)
j=1

A. Algorithm Description

We will exploit the triangular structure of R, S to determine
a suitable permutation in a successive manner via a K-best
based algrorithm. Here K : K > 1 is a design choice
that allows us to tradeoff performance gains for complexity
reduction. Our algorithm has M steps and in each step we
keep up-to K survivors or paths, wherein each survivor is
characterized by choice of vectors «,3 and a matrix C
specifying a set of constraints that have been addressed along
that path. Key steps are summarized below:
e In the first step we consider every one of the M possible
descendants (i.e., each corresponding to one column of C’
and a constraint). For each such descendant we initialize
a,3 to be empty and C to be the corresponding column
of C’. We then update its «, 3 by solving a successive-step
subproblem using an approach that is described in the sequel.
This enables us to compute a metric for each descendant and
out of these M descendants we keep the first min{M, K}
descendants corresponding to the ones with the min{M, K}
smallest metrics. These retained descendants then become the
survivors for the next step.

3Note that for notational convenience we have implicitly assumed QT Q
and VTV to be identity matrices. This however results in no loss of generality
due to our construction of R, S and the subsequent analysis is applicable to
the general case where QT Q and V1TV are diagonal matrices whose diagonal
elements are either zero or one.
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Fig. 1. K-Best Schematic for M = 4, K = 3.

Selected descendants are colored orange and chosen permutation is specified.

e At each subsequent step 7 : 2 < j < M —1, we consider each
one of the survivors and expand all of its possible descendants
(i.e., columns of C’ corresponding to constraints that have
not yet been addressed along that survivor). Then for each
descendant, we initialize its C, , 3 to be those of its parent
survivor. We then add the column of C’ associated with that
descendant to C and update o, 3 by solving the corresponding
successive-step subproblem, thereby computing a metric for
the descendant of interest. It can be verified that at the j** step
we have exactly (M —j+1) descendants for each survivor. Out
of all these descendants (across all survivors) we keep the first
K descendants corresponding to the ones with the K smallest
metrics as survivors. If the total number of descendants is
smaller than K we retain all of them. Notice here that the
metric of each descendant maps to a sub-optimal solution
of a relaxation of (PI) in which only constraints considered
along that descendant are included. Hence, these retained
descendants (which become the survivors for the next step)
are deemed most promising candidates thus far.

e On the other hand, at the final step, j = M, we obtain
metrics for all possible descendants (by solving a successive
sub-problem as in previous steps), but now we simply select
the descendant with the minimal metric. We then use the
updated C, o, 3 associated with this minimal metric descen-
dant (which we note has addressed all constraints in (P1)) to
compute the channel reconstruction.

We have illustrated an example with M = 4 and K = 3 in
Fig. 1. Note that there are M = 4 steps and in each of the first
M —1 steps we retain K = 3 descendants, whereas at the last
step we select only one descendant. Further, the descendants
of any survivor correspond to the remaining constraints that
have not been so far addressed along that survivor.

B. Successive Step

To illustrate the sub-problem that needs to be solved, con-
sider any survivor in the i* step so that its associated matrix
C has i —1 columns from C’ and we have the decompositions
of Pyu»[C,h] = QR & P, [C,h] = VS available. Recall
that metric computation conducted for this survivor determined
vectors & = [a, -+, -1, & aT,8=1[B1, -, Bi_1,B]" such
that h = QB+ V« is a sub-optimal solution to a relaxation of
(P1) containing only constraints corresponding to ¢—1 columns
of C. Let ¢’ denote any column from the remaining M —i+1
unselected ones in C’ so that it represents a descendant of
our survivor. Computing a metric for this descendant entails
updating and expanding «« and (3 to obtain a solution to
a tighter relaxation of (PI) in which the additional con-
straint has been incorporated. The challenge here is to ensure
tractability without compromising the quality of the obtained
solution too much. The former can be ensured by reducing

the number of optimization variables (by fixing others to their
previously determined values), whereas the latter pushes us
to jointly optimize over as many variables as possible. To
meet this challenge, we first obtain the updated decompositions
P..[C,c’,h] = QR & PL,[C,c',h] = V'S’ and note
that the first i—1 columns of Q' (V") are identical respectively
to the first ¢ — 1 columns of Q V). Similarly, the associated
principal submatrix of R’ = [r; ;] (S" = [s] ;]) also coincides
with that of R (S). We recall the form of each constraint (5)
and the objective (6) and let & = [yay, - ,yai_1,a,]"
and 3 = [yB1, -+ ,7Bi—1,0,5']T denote the updated and
expanded «, 3, where v, a, 8, o/, B are five complex variables
that are determined by solving the following sub-problem:

{118 + wslal? + wi |8 + wsla’ [+

min
V0, 8,0/ ,8’€C
ws (| — 7”§+1,i+1|2 + |o — S;’+1,i+1‘2) +
i1
w3 (18 = i1 * + o = 8111 2) + D (P (wil 5 + walay]?)
=1
 ws(78; = 1P+ ey = 80 |
st |y > 1;
2
i1
VY ()85 + () ) + ()B4 (s1.)Ta| >1
7j=1

In formulating (7) we have made a useful observation that
imposing |y| > 1 ensures that the i — 1 constraints corre-
sponding to C that have previously been satisfied by o, (3,
remain so even by o', 3. Upon inspecting (7) it is evident
that we can separately minimize over ', 3’ and accordingly
let T' = min, 5/@{w1|ﬁ’| +ws | |2 +ws (| — i1, il?
o' —siyy +1\ )}. The optlmal o/, 3" are immediately seen to
. Thus, (7) reduces to:

“’37’L+1 it1

w357+1 i+l /o
be o/ = B = P

wa+ws

I' + min {w1|6|2+w2|0¢|2+w3(|5 ”+1|
~v,a, 86

i—1
o= i )+ Y (Pl + walay ) +
j=1
wo(178) = 1) i + e = 5 a )
st [y 2L ®)
-1 2
YY) 8+ () ) + (1)1 + (s )| =1
j=1

We propose solving (8) by considering two related sub-
problems. The first one is the following one that is obtained
upon dropping the magnitude constraint on 7.

min {w1|ﬁ|2 + walof® + w3 (|8 — T;,i+1|2 +|a— S;,i+1|2)
v,a,BC

i—1
+ > (P (w85 + walay*) +
j=1
wo(17B; = a2+ Py = 1)} ©)
i—1 2
st |1 (05,0785 + (.0 ag) + (11,) 1B + (s )| =1



Upon defining x = [, a, 5] with
T
v = ZT]16T+ZS7'L ]’ 117 ;7i ’
i—1
D = diag{ > ((wi +ws)|B* + (wz + ws) oy ),
j=1
wy + w3, w1 + w3}
T
i—1
qQ = ws Z(ﬁ ] 1+1 + O‘;S] z+1) ;,i+17 r;,iJrl
j=1

we see that (9) can be expressed (after dropping constant
terms) as

min {xTDx —q'x—x q} st. xTvwix >1

@3)(1 (10)

We note that the quadratic programming problem in (10) is
non-convex (due to the constraint) but can still be optimally
solved (cf. [8]). Directly applying the known generic results
will however require us to solve for the root of a non-linear
function (via some iterative method such as Newton-Raphson).
In the following proposition, by exploiting the particular
structure of (10), specifically the fact that the Grammian in
the constraint is rank one, we show that an optimal solution
can be directly obtained in closed-form via simple analytical
expressions. For brevity, we will focus on ¢ > 2 and assume
D = 0 with |g'D~!v| > 0. The remaining cases can be
handled similarly and indeed are simpler.

Proposition 4. An optimal solution of (10) is given by

. D lq, If [gf D7 1v| > 1
X = ~ ~ —1
(D — Avvi)~lq, where \ = %, Else

Proof. We will prove this result by showing that strong duality
holds for (10). First note that the unconstrained solution to
(10), x = D~ !q, is also feasible (and hence optimal) when-
ever [q'D~'v| > 1. Suppose now that |q'D~'v| < 1. Let
A denote the non-negative Lagrangian parameter associated
with the sole constraint and form the Lagrangian L(x, \) =
Ax(D-Avv!)x—qfx—xTq. To obtain the dual function we
need to minimize L(x, A) over all x. It can be shown that the
dual function, denoted by g(\), is finite only if D—Avv' >~ 0.
Under the latter condition we obtain that the minimizing x,
denoted by %4 as

(1)

from which we get g(\) = A — qf (D — Avv’)~1q. We now
need to maximize the dual function over all A > 0. This can
be accomplished by defining ¢ = D~1/2q,v = D~'/2y and
using rank-1 inverse update rule to write the dual function as

9N = A-d'@-xwvh'q

= AT+ M9/ -N¥|P)Ha 12

4We do not explicitly indicate the dependence of % on ).

We can now determine the unique non-negative A maximizing

the dual function as \ = 1“51‘2‘7' = 1_‘,‘?];]2;1"'. The
corresponding X (evaluated using (11) at A = 5\) satisfies
vwix = qf(D - Avvh)lwwi(D = Avvh) g
qf (@ = Wvh)levf (1 - Avvh) g
2 atv |2
o~ Rt~ ~t~ q'v
= |a'v+AatvleIR/atv| = | =1
lafv]

Thus, X is feasible for (10) and since complementary slackness
also holds we see that strong duality holds, i.e.,

g(A) =x'Dx — ¢fx — xq
which shows that X is also optimal. O

The next subproblem of (8) that we consider is one where
any arbitrary v € € : |y| = 1 has been specified and is held
fixed. Thus, we have the following subproblem:

H}gln {w1\5|2+w2|a|2+w3(\,@ ”+1| +Ja — ”+1‘2)}

A (0B + (54
= )8+ (s

constant. Then~ upon defining X = |[q, ﬁ] , where & =
Vws + wsa, = Jwi +wsf along with 8 = [01,92]

n w3s;, it w4
Where 0, = 710 = and 92 = Jwrws We can show that
this subproblem is equivalent to

{||s< - é||2} st |AN L xf92 > 1

Yal* > 1,

where A )Ta] is now a

min
ig[)2><l
where v = [(s};)/v/wz2 + ws, (r];)/v/w1 +ws]". The fol-

lowing proposition provides an optimal solution to (13).

13)

IA’roposition 5. An optimal solution of (13), X, is given by
x = VX, where V is a 2 X 2 unitary matrix obtained via the
Eigen- decomposmon vt = VAV, Further, defining 6

(61, 92] = V10, we can specify elements of x = [, zg}T as
To = 92 and

0, 1 |AT+ [9)6]] > 1
I =

h\ S 1 ~ T

%,Where A= % Else
Proof. Adopting the notation defined in the proposition, we
note the key point that vv' is rank one so Viv = [||v]|],0]7.
As a result upon performing a coordinate rotation using VT
we obtain that an gptimal solution in rotated coordinates, X,
must satisfy o = 65, since the constraint can be seen to only
depend on ;. Further, the constrained optimization to obtain
the remaining complex variable Z; is the following one

(14)

m£{|x—él|2} st AT+ 2|92 > 1. (15)
(15) can be solved by first checking whether the unconstrained
solution 2 = 0 is feasible, which is done in the first condition
of (14). Otherwise, we know that the optimal solution must
satisfy the constraint with equality and can be recovered after
some careful algebra. [

In order to solve (8) we adopt the following two step
procedure. In the first step, we solve (9). If the obtained



optimal solution to (9) yields a 4 : |§| > 1, then clearly we
have obtained the optimal solution to (8) as well. Otherwise,
we move to step two. Here, if || is above a threshold” then we
solve (13) using v = % Finally, if |¥| is below that threshold,
we instead solve (13) after initializing it with v = 1. We found
this procedure to be quite competitive compared to one where
a more exhaustive search is done in step two by repeatedly
solving (13) over several different phase values of +.
V. ALTERNATE RECONSTRUCTION

In this section we adapt a popular least-squares based
alternative. If we directly apply the modeling used with
(unquantized) analog observations (cf. [4]) to our case, we
would model each feedback as

where 1; is (spatially white) additive noise. Here instead of
this naive approach, we assume that each feedback can be
modeled as follows.

exp(j0i)v/igi =Blh+mn;, i=1,---

where {exp(j6;)}}, are unknown phase-terms. This permits
us to pose an alternate reconstruction formulation that we
describe next. Towards this end, let us define

g(0) = [exp(j61)ymel, - exp(jOn)yTngy)” as the
observation vector, which is defined for any choice of 8 =
(01,09, ,00]T, along with B = [By,---,By]. Then,
in order to utilize the subspace information at hand let us
enforce that h = Ug,,z for some z € @°*', Notice here we
are imposing that the reconstructed channel must lie in the
subspace so if the reliability of the subspace information is in
doubt, we should increase R(Ugyp,) by appending columns to
Ugup. Consider the least squares problem

{llg(6) — B Usupz|*}

M, (16)

M, a7

min

18
za@S*1 9¢0,2n|M (18)

Note that in (18) we are choosing the best possible phase
ambiguity with respect to minimizing the squared error norm.
Keeping 6 fixed, we can solve for z to obtain an optimal
z, denoted by z(0), as 2(0) = (B'U.y)tg(0), where
(BT Ugup )t is the pseudo-inverse of Bf Ug,y,. Substituting this
optimal solution (which itself depends on the choice of 8) into
(18) we obtain

pomin (1= B Uy (B'Uss) H)g(0)]1*)
Further defining G = BlkDiag{,/71g1, - ,/Ymgn} and
noting that T — BT U, (BT Ugy,) T is a projection matrix, we
can express (19) as

i 0)GHI - AAT)G 0
Ge[rg}lzr;w{exp(] )'GT( )G exp(j0)}

19)

(20)

where we have used A = BfU,,;, and

exp(j0) = [exp(jb1),- -+ ,exp(jfar)]T. The problem in (20)
can be readily solved for M = 2 and after some effort
for M = 3 as well. However, for general M it is known
to be an NP-hard problem which requires us to devise sub-
optimal albeit efficient techniques. Notice that if we relaxed
(20) and allowed optimizing over arbitrary vectors under an /o
norm-constraint, we would get the solution to be any (scaled)

SWe used 0.01 in our simulations.

Eigen-vector corresponding to the minimal Eigenvalue of
GT(I— AA1)G. We could then simply pick the phase-terms
of all elements in that vector to obtain a sub-optimal solution
to the original problem in (20). Here, we have modified our
K-best approach for the objective in (20), which we found
outperforms the approach based on the minimal Eigen-value.
Once a (sub-)optimal solution of (20), say 8, is recoverg:d
we can determine our reconstruction as Uy, (Bt Ugu,) Tg(8).
Also note that if we choose to employ the naive model in (16)
we will obtain the reconstruction to be Ugy, (BT Ugy,) T g(0)
(i.e., we are supposing no ambiguity and fixing the unknown
phase terms to be all zeros).
VI. SIMULATION RESULTS

We consider the downlink of a single-cell in which the BS
(equipped with N; = 32 transmit antennas) communicates
with 10 single receive antenna users. We adopt the popu-
lar single scattering ring channel model and simulate sum
rate performance averaged over 30 drops. Each drop entails
generating a fresh set of user locations followed by large-
scale fading coefficients. Keeping the coefficients so generated
fixed, within each drop sum-rate is averaged over thousand fast
fading realizations. The average sum-rates corresponding to
different drops are then averaged together to obtain the overall
sum-rate. The key simulation aspects are discussed next.

e Prebeam Matrix Design: We suppose that a collection of pre-
beam matrices, {B,}, is given out of which M = 3 matrices,
B, By, Bs, are assigned to the user of interest. Each pre-beam
matrix in the collection is 32 x 8 and comprises of a group
of 8 columns from a (possibly over-sampled) Fourier matrix
with 32 rows. We consider two cases. The first one is referred
to here as the orthogonal design. In this design the first four
matrices in the collection, {B,}}_, correspond to a partition
of the 32 x 32 uniformly sampled (hence unitary DFT) Fourier
matrix into 4 groups (each comprising of adjacent columns)
so that B, has columns with indices {8(¢ — 1) +1,---,8(}
for £ = 1,---,4. Each one of the remaining matrices in
the collection, contains four columns from any two out of
these four groups. The second design is referred to as the
non-orthogonal design. Here we consider a 32 x 64 over-
sampled Fourier matrix with oversampling factor 2. Then,
the first eight pre-beam matrices in the collection, {B,}5_;
correspond to a partition of the aforementioned 32 X 64 matrix
into 8 groups (each comprising of adjacent columns) so that
B/, has columns with indices {8(¢ — 1) + 1,---,8¢} for
£=1,---,8. Each of the remaining matrices in the collection,
contains four columns from any two out of these eight groups.
Notice that the non-orthogonal design entails a higher pilot
overhead. Further, with either design upon pre-beamforming
the pilot signals, each user estimates an 8 x 1 pre-beamformed
channel vector and thereby employs the standardized 8-port
quantization codebook to obtain its PMI vector report.

e Prebeam Group Assignment: The BS obtains estimates of
{E[HBZhHQ]}ZL:l, where L = 4 (L = 8) for orthogonal
(non-orthogonal) design. We note that these quantities need
to be obtained over a coarser time-scale and only those
above a configurable threshold are of interest. The BS then
assigns two groups corresponding to the two largest among
these L computed values. The third assigned prebeam matrix
is formed by concatenating four columns of the assigned
matrix corresponding to the maximal computed value and four



TABLE I
ORTHOGONAL PREBEAM DESIGN: QUANTIZED FEEDBACK

Reconstruction Scheme

Sum Rate (b/s/Hz) | Percentage Gain (over baseline) |

TABLE III
ORTHOGONAL PREBEAM DESIGN: QUANTIZED FEEDBACK PLUS
SUBSPACE

(PT) with optimal 14.1381 32.84% Reconstruction Scheme | Sum Rate (b/s/Hz) | Percentage Gain (over baseline) |
(PT) with K-best 14.1273 32.74% (PI) with K-best 20.8534 1521%
Alternate Reconstruction w/o phase opt. | 9.6678 -10.09% Alternate Reconstruction w. phase opt. [ 19.2483 6.34%
Alternate Reconstruction w. phase opt. 11.9999 12.75% Baseline 18.001 0%
Baseline 10.6429 0%
TABLE 11 B. Quantized Information plus Subspace

NON-ORTHOGONAL PREBEAM DESIGN: QUANTIZED FEEDBACK

Reconstruction Scheme

Sum Rate (b/s/Hz) | Percentage Gain (over baseline) |

(PT) with K-best 20.0048 35.06%
Alternate Reconstruction w/o phase opt. | 10.4539 -29.45%
Alternate Reconstruction w. phase opt. 14.5731 -1.65%

Baseline 14.8115 0%

columns of the second assigned one with the second largest
value.

o MU-MIMO Scheduling: In each slot the BS obtains a
reconstruction of each user’s channel and then selects a subset
of users that it decides to serve in that slot. The user selection
we use is a practical one which assumes each reconstructed
channel to be accurate and proceeds to employ the greedy
zero-forcing method [15] that has been found to be effective.
e Baseline: The Baseline method we compare against en-
tails assiging one pre-beam matrix, B, corresponding to the
maximal value among {F [||]§zhH2]}ZL:1, to each user. The
reconstructed channel is obtained by solving (P1) where now
M =1, in the absence of any auxiliary estimate (so ws = 0)
but with or without subspace information. If reliable subspace
information is not avaialble, we set w; = wo, = 1 to determine
the baseline solution as %Blgl. On the other hand, with
reliable subspace information we can enforce h = Pg,,h (by
considering wy, >> wi) and then solve (P1) to obtain the

- ion as — VL
baseline solution as 55" Psu,B1g1.

A. Only Quantized Information

We first introduce our results in which only multiple
quantized feedback are employed for reconstruction without
utilizing subspace information. We solve (P1) where M = 3
after setting w; = wy = 1 and ws = 0. We use our
proposed K-best reconstruction described in Section I'V-A with
K = 3. To benchmark we also plot the performance of
the described baseline as well as the alternate reconstruction
scheme of Section V. For the latter scheme we consider both
phase optimization as well as no phase optimization which
ignores the phase ambiguity problem. In Table I we present
the sum rates of K-best and alternate reconstruction schemes
for orthogonal pre-beam design. In addition, recalling Remark
1 in Section III that (P1) is optimally solvable in this case, we
follow the methodology of Section III to obtain the optimal
reconstruction and plot its resulting sum-rate. From Table 1
we see that our proposed K-best reconstruction is almost
the same in performance as the scheme that optimally solves
(P1). Further, our framework offers substantial gains over the
baseline and the alternate reconstruction schemes. In partic-
ular, the popular alternate reconstruction scheme that ignores
phase ambiguity is completely unsuited to realistic quantized
feedback. In Table II we present our results for non-orthogonal
pre-beam design. In this case we only solve (P1) via the K-best
scheme since there is no efficient method to obtain its optimal
solution. The substantial througput improvement provided by
our scheme is evident.

We now consider combining the intantaneous quantized
feedback and subspace information. Utilizing the available
Ugup we solve (P1) after setting w; = 1 & ws = 600
with ws = 0. We evaluate the reconstruction obtained upon
solving (P1) with K-best scheme and present our results in
Table III for the orthogonal pre-beam design. Notice that the
gains are good even though the baseline itself incorporates
knowledge of subspace and has significantly improved. Even
larger gains were obtained with non-orthogonal pre-beam
design. In either case the alternate reconstruction scheme
(with phase optimization) yielded strictly inferior performance
compared to our proposed one based on (P1).

Simulations with M = 2 pre-beam matrices per-user were
also obtained. These results (which are skipped due to space
constraints) also reinforced the superior performance of our
reconstruction scheme. We also noticed over multiple different
scenarios that a small value of the number of survivors
parameter, K, is enough to capture most of the available gains.

VII. CONCLUSIONS

We proposed a new formulation for channel reconstruction
that combines fine time-scale quantized feedback and coarse
time-scale subspace information. We derived an efficient algo-
rithm to solve the resulting non-convex quadratic programming
via a K-best methodology and demonstrated its efficacy.
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