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Abstract—This paper focuses on optimizing resource allocation
amongst a set of tenants, network slices, supporting dynamic
customer loads over a set of distributed resources, e.g., base
stations. The aim is to reap the benefits of statistical multiplexing
resulting from flexible sharing of ‘pooled’ resources, while
enabling tenants to differentiate and protect their performance
from one another’s load fluctuations. To that end we consider
a setting where resources are grouped into Virtual Resource
Pools (VRPs) wherein resource allocation is jointly and dynam-
ically managed. Specifically for each VRP we adopt a Share-
Constrained Proportionally Fair (SCPF) allocation scheme where
each tenant is allocated a fixed share (budget). This budget is
to be distributed equally amongst its active customers which in
turn are granted fractions of their associated VRP resources
in proportion to customer shares. For a VRP with a single
resource, this translates to the well known Generalized Processor
Sharing (GPS) policy. For VRPs with multiple resources SCPF
provides a flexible means to achieve load elastic allocations
across tenants sharing the pool. Given tenants’ per resource
shares and expected loads, this paper formulates the problem
of determining optimal VRP partitions which maximize the
overall expected shared weighted utility while ensuring protection
guarantees. For a high load/capacity setting we exhibit this
network utility function explicitly, quantifying the benefits and
penalties of any VRP partition, in terms of network slices’
ability to achieve performance differentiation, load balancing,
and statistical multiplexing. Although the problem is shown to
be NP-Hard, a simple greedy heuristic is shown to be effective.
Analysis and simulations confirm that the selection of optimal
VRP partitions provide a practical avenue towards improving
network utility in network slicing scenarios with dynamic loads.

I. INTRODUCTION

It is widely agreed, see e.g., multiple standardization and
industrial efforts [2], [30], that enabling network slicing to
support multi-tenancy on shared infrastructure will be a key
component to enable the success of next generation wireless
networks. Network slicing allows to partition physical network
resources among multiple fully-functional and configurable
logical networks, or slices, each assigned to a tenant or service,
providing them the opportunity to customize the network
functions to their requirements. Network slicing is expected to
reduce deployment and operational expenditures by enabling
infrastructure sharing between multiple tenants, e.g., mobile
virtual network operators and over the top service providers,
as well as joint investments by infrastructure providers. It is
expected to be a critical ingredient towards tailoring distributed
compute/communication resources to meet the stringent re-
quirements of next generation applications.

resource allocation / scheduling
transferring capacity 

across distributed 
resources

load allocation / scheduling

load balancing 
across distributed 

resources

network 
slices 

resource 
sharing

elastic sharing 
of distributed 

resources

Fig. 1. Alternative mechanisms to reap the benefits of resource pooling.

A key component underlying network slicing is a scalable
mechanism for resource allocation across tenants supporting
dynamic mobile customer loads, when the infrastructure re-
sources are spatially distributed, e.g., wireless base stations,
edge computing resources. It should be efficient in that it
promotes statistical multiplexing gains while protecting tenants
from one another’s traffic load variations. Ideally one would
like the network to behave as if it were a centralized pool of
resources which can be flexibly allocated to tenants spatio-
temporal loads [35]. However, in typical wireless networks
a slice’s active customers must associate with local/proximal
resources. In turn if network resources are statically allocated,
variations in slices’ customer loads may lead to poor per
customer performance and variability. The challenge is thus
to devise dynamic resource allocation schemes which adapt to
customer loads but still provide a degree of protection amongst
slices, i.e., improve the effective pooling of resources.

Figure 1 exhibits different approaches towards achieving im-
proved resource pooling – for a taxonomy of these techniques
in the context of wireless networks see [19]. Broadly speaking
traditional approaches are of two types: “load allocation” and
“resource allocation” mechanisms. In the wireless context,
load allocation might correspond to shifting customer loads
by exploiting possible diversity in customer to base station
association, routing and other load balancing mechanisms.
Clearly the flexibility of such mechanisms in wireless net-
works is limited. Alternatively one can also consider resource
allocation mechanisms, wherein one shifts capacity to regions
where there are currently more demands. In wireless settings
this could in principle be done by borrowing spectrum, cell
breathing, borrowing cloud based compute resources from
neighboring base stations, etc. When distributed resources are
shared among multiple network slices, it is possible to capital-The work of P. Caballero and G. de Veciana was supported in part by a gift
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ize on complementary spatio-temporal demands across tenants
by dynamically shifting resource allocations within and across
slices to achieve improved per slice/customer performance.
Doing so requires joint management of allocations to tenants’
customers over sets of resources – we shall refer to these as
Virtual Resource Pools (VRPs).

The main problem addressed in this paper centers on
devising optimal VRP partitions of infrastructure resources
to best meet tenant’s needs. Small VRP pools allow tenants
fine grain control on their resource allocations, providing
improved performance differentiation and protection. Larger
VRP pools enable the overall network to achieve improved
statistical multiplexing through elastic resource allocations,
i.e., allocations that dynamically track tenant’s customer loads.
An optimal VRP partition achieves the best overall tradeoffs by
maximizing the weighted network utility subject to protection
guarantees. In fact we shall see VRP partitions can be asymp-
totically characterized precisely in terms of how they ‘deviate’
from homogeneous centralized resource pooling solutions.

A. Related Work

As mentioned above improved resource pooling may be
realized through both load or resource allocation techniques.
Load allocation techniques include dynamic routing policies,
such as join the shortest queue, see e.g., [17], [29] or queue
with the smallest expected delay, e.g., [24]. Such mechanisms
have proven to be very effective resource pooling enablers.
Flexibility in routing wireless customers to resources (e.g.
base stations) is somewhat limited, whence our approach to
achieve resource pooling is focused on multi-tenant sharing
and resource allocation.

Resource allocation techniques, include per-resource mech-
anisms that have been designed to achieve fairness among
customers, such as Proportional Fairness and Processor Shar-
ing, and their multi-class equivalents Weighted Proportional
Fairness [3] and Generalized Processor Sharing [31] have seen
wide applicability in wireless networks. However, a focus on
resource management on a per resource basis, e.g., base sta-
tion, fails to exploit potential benefits of coupled management
across resources, see e.g. [8], [37]. Consequently, researchers
have explored joint resource management [8], [27], [5] and
have shown its effectiveness at enabling improved resource
pooling. The above-mentioned works focus on single-tenant
networks; in contrast, this paper focuses on slicing and sharing
resources among multiple tenants. Recently, some extensions
of resource allocation mechanisms for multi-tenant wireless
networks were studied in [4], [28], [16], [26]. The reader is
referred to [32] for a survey on resource slicing techniques for
virtual wireless networks.

The above multi-tenant resource allocation mechanisms
have for the most part focused in ‘elastic’ users whose sojourn
times would depend on the allocated rate. This coupling
makes the study of dynamic customer loads challenging. In
this paper, instead, we focus on customers whose network
activity is independent of their resource allocation (e.g., video,
voice and other rate-adaptive user sessions) but which also
favor higher rates/utility. In [9], [37] the Share-Constrained

Proportionally Fair mechanism adopted in this paper was
proposed, where tenants are allocated a share of the overall
network resources which is redistributed dynamically based
on the tenants customer loads. In [37] the authors showed that
this mechanism achieves improved statistical multiplexing,
resulting in capacity savings versus per-resource mechanisms
such as GPS and characterized these gains, suggesting that
load spatial distribution impacts the perceived gains as well as
the degree of tenants’ isolation and performance variability.

Although optimal network partitioning has been object of
studies for decades in several contexts with different applica-
tions [18], [14], [33], [34], this work is, to the authors best
knowledge, the first attempt at formally studying joint resource
management of network slices on VRPs.

II. SYSTEM MODEL

We start by defining our multi-tenant mobile network model.
The network is comprised of a set B = {1, 2, . . . , |B|} of
|B| resources spatially distributed and shared by a set O =
{1, 2, . . . , |O|} of |O| tenants (also denoted as network slices).

The tenants’ traffic load is assumed to be stochastic and at
a given point in time, the network supports a set of users U

(the customers or devices). For the rest of the paper, we will
assume that each user can belong to only one slice and be
served by one resource at a time. The set of users U can be
subdivided into Uo and Ub which represent respectively the
set of customers of a slice o and the set of customers served
by a resource b. Uob , which correspond to the intersection of
the previous sets, will be used to denote the set of users of
slice o at station b.

The distribution of the vector of random variables N =
(No

b : b ∈ B, o ∈ O) characterizes the marginal distribution of
the number of active users on the network and ρ = (ρob : b ∈
B, o ∈ O) denotes their mean loads. The traffic load state at
a certain instant is represented by n = (nob : b ∈ B, o ∈ O),
where nob = |Uob | represents the active number of users from
slice o at resource b.

Each slice o requests a share sob ∈ [0, 1] of each network
resource b ∈ B. We denote the resource share request by a
vector s given by

s = (so : o ∈ O) where so = (sob1 , s
o
b2 , . . . , s

o
b|B|

). (1)

The aggregate share request for a given resource is assumed
to not exceed 1, i.e., for all b ∈ B we have that

sb ,
∑
o∈O

sob ≤ 1. (2)

This assumption is made without loss of generality, since
the shares correspond to relative quantities across entities
contending for resources, and can always be normalized.
However, the above normalization is the most natural since
provides slices with the notion that a share corresponds to a
fraction of the resource.

A. Virtual Resource Pools allocation
In this work, we aim to determine a partition P of the

resource set B into a collection of VRPs

P = {Pi | i = 1, . . . , |P|}. (3)
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Each of the subsets Pi ⊂ B of the partition will act as a
VRP. The idea underlying multi-tenant sharing of a VRP is
as follows. From a resource allocation perspective, the goal is
to provide slices with more flexible allocations by allowing to
dynamically use the requested share in a particular resource in
a different resource of the virtual pool, to better adapt to the
instantaneous traffic conditions. To this end, we will assume
that tenants have a fixed share (which may be understood as
a budget) of the virtual resource pool, which it is assumed to
be equal to the sum of their aggregated shares of the pool’s
constituent resources, i.e., slice o has a share so(Pi) at virtual
pool Pi given by so(Pi) ,

∑
b∈Pi

sob .

Note that the sum of shares over a pool are not restricted to
be less than 1. As mentioned earlier, only the relative shares
of each slices will be relevant in the sequel. Furthermore, we
will let no(Pi) ,

∑
b∈Pi n

o
b denote the number of active users

of slice o at pool Pi.
Next, we formally define our proposed multi-tenant resource

allocation for a VRP.

Definition 1. (VRP resource allocation) Each virtual pool
Pi is composed by a collection of resources shared by several
slices, each of them having a share equal to so(Pi). At any
instant, all no(Pi) users of slice o are assigned an equal
portion of so(Pi) as a weight wo(n, Pi), i.e.,

wo(n, Pi) =
so(Pi)

no(Pi)
, ∀o ∈ O, Pi ∈ P. (4)

Resource allocation among slices at each resource b in the
virtual pool Pi is performed in proportion to the weights, i.e.,
the fraction of resource b allocated to any user of slice o is
equal and given by

fob (n, Pi) =
wo(n, Pi)∑

v∈O
wv(n, Pi) · nvb · 1(nvb > 0)

. (5)

For any user u from slice o served by resource b, we can
represent its allocated service rate as

rou(n, Pi) = tu · fob (n, Pi). (6)

where tu is the achievable transmission rate of user u if the
user had the entire resource b to itself.

The transmission rate tu′ for any user u′ at resource b,
denotes a realization of a random variable Tu′ , which is a
copy of the random variable Tb that characterize the marginal
distribution of the achievable rate of any user at station b,
which is assumed to be independent across slices and users,
i.e., only time and space dependent.

We note that the notion of a VRP represents an abstraction.
Indeed, this notion can be applied to any scenario where
underlying physical resources might be at different spatial
locations they may not be interchangeable in terms of serving
a particular tenants’ users sharing the pool. We say that virtual
pool physical resource capacities may not be transferable to
adapt to spatial variations in the traffic conditions. Addition-
ally, we shall for simplicity assume that resources a user can
only be served by one resource at a time, as it is usually the
case in wireless networks.

B. Benchmark allocations

In the sequel, we will contrast the performance of a network
under VRP partition P with two benchmark partitions:

1) Generalized Processor Sharing (GPS) [31]: partition of
the resources into |B| VRPs, each with a single resource,
i.e., PGPS = {{b} : b ∈ B}.

2) Complete Pooling (CP): partition with a single VRP
containing all of the resources, i.e., PCP = {B}.

C. Share, load and capacity distributions

Next, we introduce some definitions and notation that will
be used in the sequel.

Definition 2. We define the normalized shares and the nor-
malized active number of users distributions of slice o on VRP
Pi, respectively, as follows

s̃o(Pi) = (s̃ob(Pi) : b ∈ Pi), where s̃ob(Pi) ,
sob

so(Pi)
,

ño(Pi) = (ñob(Pi) : b ∈ Pi), where ñob(Pi) ,
nob

no(Pi)
.

Definition 3. We define the overall normalized share distri-
bution over a partition P as

ŝ(P) = (ŝoPi : o ∈ O, Pi ∈ P), where ŝoPi ,
so(Pi)

s
,

where s =
∑

o∈O,b∈B
sob is the total share. We further define the

normalized load distribution over a partition P by

ρ̂(P) = (ρ̂o(Pi) : o ∈ O, Pi ∈ P), where ρ̂o(Pi) ,
ρo(Pi)

ρ
,

where ρ =
∑

o∈O,b∈B
ρob denotes the total system mean load.

Definition 4. We define the share weighted normalized relative
number of active users distribution as

ĝ(n,P) = (ĝb(n, Pi) : b ∈ B)

where ĝb(n, Pi) ,
∑
o∈O

ŝoPi ñ
o
b(Pi)1(nob > 0).

We adopt the convention that 0/0 = 1 if nob = no(Pi) =
0. Note that ĝ(n,P) can also be interpreted as a mixture
distribution of the ño(Pi) distributions with weights ŝoPi .

1

We define the equivalent share weighted normalized relative
mean load distribution as
ĝ(ρ,P) = (ĝb(ρ, Pi) : b ∈ B), where ĝb(ρ, Pi) ,

∑
o∈O

ŝoPi ρ̃
o
b(Pi).

III. VRP PARTITIONING

This study focuses on finding the optimal partition of VRPs
P to be chosen by the infrastructure provider. Creating such
VRPs of many resources enables the ability to absorb bursty
traffic variations by exploiting statistical multiplexing. I.e.,
by jointly managing several base stations in the same VRP,
we allow resource allocation to absorb the traffic variations

1In the definition of ĝb(n, Pi) we have abused notation when denoting the
bth component of the vector, since for clarity of reading, we identify that ĝb
depends only of Pi and not the complete partition P.
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of slices across resources transferring share from one re-
source to another, consequently improving the users expected
performance. However, pooling may reduce the ability of
guaranteeing each slice a desired degree of protection, e.g.,
by strictly enforcing the per slices shares sob at each resource.
Moreover, geographical and architectural network constraints
may need to be considered limiting the resources that can
be pooled together. Taking into account these aspects, in this
section we describe the optimal VRP partitioning problem.

A. Stochastic network utility

The optimal VRP partition will be set to maximize a certain
network statistic, that reflects the overall network performance
and which we will define by the means of a utility function.
To obtain this function, first we will define a relevant statistic
of utility per slice and pool to continue with a discussion on
how to combine the various utilities along and across slices
and pools to generate a global network statistic.

Recall that the number of active users on each slice and
resource are modeled by a random vector N. We shall define
the expected network utility as follows. We consider, as in
[20], the utility of a user as the logarithm of its rate and let
Uo(Pi) denote the expected utility of a typical user of slice o
on VRP Pi, i.e., the expected log rate of a randomly selected
user of slice o on VRP Pi. This quantity is given by

Uo(Pi) =
∑
b∈Pi

∑
u∈Uob

E
[

1

E[No(Pi)]
log(Tu · fob (N, Pi)

]

=
∑
b∈Pi

∑
u∈Uob

E [log(Tu)]

ρo(Pi)
+
∑
b∈Pi

∑
u∈Uob

E [log(fob (N, Pi)]

ρo(Pi)
.

To simplify notation, from the rest of the paper we will rely
on the following definition of effective capacities.

Definition 5. (Effective capacities) We will define the effective
capacities of the set of resources b as

c = (cb > 0 : b ∈ B), where cb = eE[log(Tu)]. (7)

At this point, it is worth noting that this effective capacity is
a mechanism to generalize the traditional concept of resource
capacity, where its various end users may have different
achievable service rates. If Tu (and therefore Tb) is a constant,
the notion of effective capacity corresponds to the traditional
notion of resource capacity.

Then, it follows that

Uo(Pi) =
∑
b∈Pi

∑
u∈Uob

log(cb)

ρo(Pi)
+
∑
b∈Pi

∑
u∈Uob

E [log(fob (N, Pi)]

ρo(Pi)

= E

[∑
b∈Pi

No
b

ρo(Pi)
log(cb · fob (N, Pi))

]
.

Recall that a “typical” user here should be viewed as a
randomly selected user of slice o on VRP Pi, whence the
utility of the user is weighted by Nob

ρo(Pi)
to reflect uneven

loads on the VRP’s resources. To deal with the case where
the number of active users is zero, i.e., No

b = 0 we have used
the convention (see e.g., [11]) 0 · log(0) , 0.

Then, the overall expected network utility is given by a
weighted combination of the slices’ utilities per VRP. We
define the overall expected utility to account for slices shares
of the network resources. The typical user utility of a slice
with a higher share per user load, i.e., so(Pi)

ρo(Pi)
, should be

given a higher weight. Furthermore, if the slice has a higher
load ρo(Pi) should be prioritized thus the overall weight is
ρo(Pi)

so(Pi)
ρo(Pi)

= so(Pi). This gives an overall utility

U(P) =
∑
Pi∈P

∑
o∈O

ŝoPi U
o(Pi) =

∑
o∈O

Uo(P). (8)

where we have defined the utility of a tenant Uo(P) as the
share weighted combination of their expected utility of a
typical user per VRP Pi,

Uo(P) =
∑
Pi∈P

ŝoPi U
o(Pi) (9)

and we have included the division by the normalization
constant s (independent of P) for clarity of future results.

In summary, the overall expected network utility accounts
for the slices loads and share per load on various resources by
weighting the relative importance of each slices users’ utility.

B. Slices protection guarantees

Classical allocation schemes, such as GPS provide protec-
tion, i.e., for slice o on resource b it ensures an allocation of
at least sob (since

∑
o∈O

sob ≤ 1). However, in a multi-resource

network, the inability of the resource allocation to adapt to the
traffic variations across resources indicates that fair allocation
schemes may benefit from a network-wide view [8] where an
example of this is the resource allocation proposed for a VRP.

Naturally, adopting a pool-wide allocation scheme may
compromise such guarantees among slices of GPS. Thus, it is
desirable to provide slices with a pool-wide notion of relaxed
performance isolation. Hereby, we define the following VRP
notion of protection, that ensures that if a slice share request
is appropriately chosen in proportion to its traffic demands, it
will always benefit from sharing.

Definition 6. (Slice protection) We say a slice is protected
at a VRP if, as long as the slices’ number of active users is
proportional to its share, i.e., if for all b ∈ Pi, nob ≈ γsob , it is
possible to ensure that∑
b∈Pi

∑
u∈Uob

log (tuf
o
b (n, Pi)) ≥

∑
b∈Pi

∑
u∈Uob

log

(
tu
sob
nob

)
(10)

i.e., that a slice can obtain, at least, a utility at each pool
greater than if the slice would receive at each resource a
fraction of resource equal to its share sob .

We say that a slice is protected at the network if the
condition in Eq. (10) is fulfilled for every VRP Pi in P.

Note that under this notion of protection, a slice whose loads
align with its share requests is guaranteed better utility through
VRP pools, irrespective of the number of active users on other
slices. A sufficient protection condition (both per pool and per
VRP) is presented in the following lemma.
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Lemma 1. A sufficient condition to ensure protection for a
slice o in a VRP Pi is

H (̃so(Pi)) = −
∑
b∈Pi

sob
so(Pi)

log

(
sob

so(Pi)

)
≥ log(s(Pi)),

(11)
where H (̃so(Pi)) is the entropy of the normalized share
distribution of slice o on pool Pi and s(Pi) =

∑
o∈O,b∈Pi

sob

is the total VRP share.
Therefore, the set of partitions that provide protection at the

network to slice o are given by:

Cop = {P ∈ PB | H (̃so(Pi)) ≥ log(s(Pi)),∀Pi ∈ P} (12)

The proof of this result has been relegated to the extended
version of this paper in [10].

We note that protection only depends on the share distri-
bution of slice o, and aggregated shares of the slices on each
pool. Remarks on the protection condition are presented next.

Remark 1. Note that the entropy of a discrete distribution
is bounded by log of the cardinality of the support [13] 0 ≤
H (̃so(Pi)) ≤ log(|Pi|). We can thus conclude that

1) If the share distribution of slice o is uniform, the entropy
is maximized H (̃so) = log(|Pi|) and the protection
condition will always be fulfilled irrespective of the
aggregate share s(Pi), since s(Pi) ≤ |Pi|

2) If the slice share requests in a pool are maximal, i.e.,
s(Pi) = |Pi| the protection condition is only fulfilled
if the demand distribution of slice o is uniform, i.e.,
H (̃so(Pi)) = log(|Pi|) only if s̃o(Pi) = 1

|Pi| .

3) If s(Pi) ≤ 1, and thus log(s(Pi)) ≤ 0 the protection con-
dition will always be fulfilled irrespective of the demand
distribution of slice o, since the entropy is positive. In
such scenario, there is enough slack in the VRP shares
to ensure protection at all times.

4) The finest grain partition PGPS always achieves protec-
tion, as a direct consequence of the previous point.

We can define the set of protection constraints as follows

Definition 7. (Protection constraint set) Considering Ô ∈ O

as the set of slices that demand protection constraints at the
network, the protection constraint set can be defined as

Cp =
⋂
o∈Ô

Cop. (13)

C. Design constraints

Even with the protection constraints satisfied, some parti-
tions may be impractical/inefficient for the network infras-
tructure provider. Realizing VRPs requires an exchange of
information within the resources, which may impose some
architectural or design constraints. For instance, a virtual con-
troller may have capacity to coordinate a maximum number of
resources K̄. To capture design constraints associated with the
limitations of the architecture in terms of pooling management
capacity, we will define the following constraint

Cc = { P ∈ PB | |Pi| ≤ K̄, ∀Pi ∈ P }. (14)

Also, in some settings, it may be desirable that the creation
of VRPs is based on resources that are nearby, which decreases
the impact of users handoffs, or physically interconnected,
which increases the information sharing capacity. To that
end consider a graph G(N,E) whose nodes are N = B

and the edges ei,j ⊂ N × N denote resources that are
neighbors or interconnected. A partition P = (P1, P2, . . . PP)
can be viewed as the partition of G(N,E) into a collection
of subgraphs Gi(N,E) whose Ei = E ∩ (Pi × Pi). A
logical architectural requirement on the partition could be
that Gi(N,E) are connected subgraphs. We will abstract this
constraint as follows

Cl = {P ∈ PB | p(Gi(Pi, Ei)) = 1, ∀Pi ∈ P}. (15)

where p(Gi(Pi, Ei)) is equal to 1 if the subgraph is connected.

D. Optimal VRP Partitioning

Joining the constraints from previous subsections, we can
define the partition constraints as C = Cp ∩ Cc ∩ Cl where
Cp, Cc, Cl are defined in Eqs. (13)-(15) respectively. We can
write the optimal spatial pooling problem as the following
optimization.

Definition 8. (Optimal VRP Partitioning Problem (OVP))
The Optimal VRP Partition is given by

max
P

{ U(P)
∣∣ P ∈ C }. (16)

Unfortunately, finding the solution of OVP is a complex
problem for several reasons: (i) evaluating the utility function
implies finding the expected value of a non-linear function
of random variables, which is per se a hard problem and
(ii) the possible number of feasible of partitions that need
to be considered in order to find the optimal pooling increases
exponentially with the number of resources (in accordance to
the Bell numbers [6]). In fact, this is already a problem even in
the case where the loads are not stochastic. The combinatorial
aspect of this problem can be translated into a more formal
notion of algorithmical complexity.

Theorem 1. Optimal VRP Partitioning is NP-Hard.

The technical proof of this result has been relegated to [10].
In order to overcome the high complexity of finding the

exact solution for the OVP, we propose an algorithm based on
the idea of cost-benefit greedy algorithm [22].

E. Greedy algorithm for OVP

The algorithm is initialized by a GPS partition P(GPS),
which is always feasible Then it iteratively considers merging
VRPs so as to ensure the fulfillment of the constraints while
maximizing benefit to cost ratio. We define the benefit as the
utility improvement and the cost H(P̂i,j) as the inverse of

the share entropy, i.e., H(P) =

( ∑
Pi∈P

∑
o∈O

H (̃so(Pi))

)−1
.

Therefore, the gain over cost ratio of joining Pi and Pj is

δU(P̂i,j , P̂) =
U(P̂i,j)− U(P̂)

H(P̂i,j)
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where P̂i,j = {P̂\{Pi, Pj}}∪{Pi∪Pj}. This is motivated by
the fact that, despite our aim is to maximize network utility, a
low share entropy may impact the ability to meet the protection
constraints in future possible merges. In order to evaluate the
utility improvement of a possible merge, one must evaluate the
expected network utility U(P̂i,j), which can be performed by
Monte Carlo sampling methods or appropriate approximations.

This is repeated until the algorithm does not find any
beneficial merge or all resources has been aggregated into a
single pool, i.e., the partition is equal to PCP .

IV. UTILITY ANALYSIS

To provide insights the different factors that impact utility
when choosing a partition, we focus on analyzing the asymp-
totic case when capacities and loads grow linearly, reducing
the load variations around the mean. To this end, we consider
a sequence of networks, indexed by β, as follows.

Assumption 1. (Linear scaling) Consider a share vector s >
0, a load vector ρ > 0 and resource capacity vector c > 0 and
a sequence of networks indexed by β. For the βth network,
the stochastic numbers of active users N(β) = (N

o,(β)
b : o ∈

O, b ∈ B) are mutually independent and Poisson distributed
with strictly positive means β ·ρ, i.e., No,(β)

b ∼ Poisson(β ·ρob)
and the resource capacities c(β) = βc such that c(β)b = βcb.
We let U (β)(P) denote the expected network utility, given Eq.
(8), of the βth network.

Theorem 2. Under Assumption 1, the expected network utility
under partition P is given by

U (β)(P) = log

(
c

ρ

)
+ D(P)−M(P)− S(P)

β
+ o

(
1

β

)
, (17)

where D(P) = DKL (̂s(P)||ρ̂(P)) , M(P) = DKL (ĝ(ρ,P)||ĉ) ;
where DKL stands for the KL divergence [23]. Also,

S(P) = 〈ŝ(P),q(P)〉+ 〈ρ,h(P)〉 (18)

where q(P) =
(
(ρo(Pi))

−1 : o ∈ O, Pi ∈ P
)
,

h(P) = (hob(P) : o ∈ O, b ∈ B),

hob(P) =
∑
b′∈B

∂2 (ḡb′(x, Pi) log (ĝb′(x, Pi)))

∂(xob)
2

∣∣∣∣∣
ρob

and ḡb′(x, Pi) =
∑
v∈O

ŝv(Pi)

ρv(Pi)
xvb′ .

The proof of this result and the subsequent Facts 2 and 3
in this section are technical and has been relegated to [10].

To better understand the above result, we will analyze the
impact of the different components in the utility function.

Remark 2. The utility U (β)(P) serves to rank a partition P

based on the load, shares and capacity distributions as well
as by how statistical multiplexing is realized in its associated
VRPs. Let us consider Eq. (17) in more detail.
i) The homogeneous perfect pooling utility log(c/ρ)

corresponds to the utility of a system where the total
effective network capacity c (i.e., the sum of the effective
capacities of all resources in B) is pooled and equally
divided among its mean total number of users ρ.

ii) The slice differentiation gain is such that

D(P) = DKL (̂s(P)||ρ̂(P)) ≥ 0

and only equals zero if the per slice and partition normal-
ized shares ŝ(P) and loads ρ̂(P) distributions coincide.
When the distributions diverge, the term increases result-
ing in slice differentiation gains relative to log(c/ρ).

iii) The load misalignment loss is such that

M(P) = DKL (ĝ(ρ,P)||ĉ) ≥ 0

and equals zero if the weighted normalized load distri-
bution ĝ(ρ,P) and normalized capacity distributions

ĉ =
(cb
c

: b ∈ B
)
,

are equal, otherwise the losses increase as they diverge.
iv) The stochastic pooling losses S(P)/β capture a utility

loss arising from the variation in the number of active
users relative to their mean loads. Each partition exploit
statistical multiplexing differently, resulting into different
stochastic pooling losses. The losses decrease with β,
vanishing as β →∞, since under Poisson distribution as
β →∞ the number of active users concentrates.

For a general network, the expected utility of a VRP
partition will reflect the ability to differentiate performance
(typical user utilities) across slices and resources, i.e., inter
and intra slice differentiation as well as the balancing of load
and statistical multiplexing losses.

Note that, in general, D(P)−M(P) can be either negative
or positive, as we can observe in the following scenarios.

1) Consider a network where the loads are proportional to
the shares, i.e., ρob = γsob and DKL (̂s(P)||ρ̂(P)) = 0 but
the capacities are not aligned with the share weighted
loads. Given the proportionality of loads and shares, the
misalignment term M is independent of P.
Fact 1. If the loads are equally in proportion to the shares
ρob = γsob , the share weighted pool load is independent
of the partition, i.e., ĝ(ρ,P) = ĝ(ρ) = 1

ρ

∑
o∈O ρ

o
b .

Then the utility is given by

U (β)(P) = log

(
c

ρ

)
−DKL(ĝ(ρ)||ĉ)− 1

β
S (P)+o

(
1

β

)
.

In this case, we can see that the network deviates from
acting as a single pool since the resource capacities across
resources are misaligned with the share weighted load
distribution. Note that this occurs since once deployed the
resources of a network, with their respective capacities,
these capacities are non transferable among resources. 2

2) If resource capacities were transferable among resources
or were engineered to coincide with the share weighted

2Note that, despite we are not considering that capacities are transferable
among resources; in cellular networks, certain resource capacities transferabil-
ity can be achieved in several ways as for example by having a C-RAN [12]
that use its computational capabilities to perform Baseband Unit Pool Planning
to align the capacities [36] and/or by appropriate admission control. Although
exploiting jointly network slicing and capacity transferring capabilities is an
interesting problem, it is out of the scope of this study.
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Fig. 2. Load distribution of the illustrative scenarios.

mean traffic loads, then M(P) = 0 and the expected
network utility is given by

U (β)(P) = log

(
c

ρ

)
+ D(P)− 1

β
S (P) + o

(
1

β

)
.

Fact 2. The term D(P) = DKL (̂s(P)||ρ̂(P)) is maximized
when P = PGPS . Therefore, for large β, an upper
bound on the utility is given by Ū = log (c/ρ) +
DKL

(
ŝ(PGPS)||ρ̂(PGPS)

)
.

The general expression for the stochastic pooling losses is
complex and it is hard to obtain insight and further closed-form
expressions. Some properties of S(P) are presented next.

Fact 3. The term S(P) = 〈ŝ(P),q(P)〉+ 〈ρ,h(P)〉, where
the inner product 〈ŝ(P),q(P)〉 is maximized when P = PGPS

and 〈ρ,h(P)〉 = 0 when P = PGPS .

Given the properties detailed in Fact 3, it is intuitive that
the stochastic pooling losses are reduced as the cardinality of
the partition grows, i.e., as virtual pools aggregate resources,
resulting in statistical multiplexing gains.

To conclude, we summarize our main observations next.

Remark 3. The optimal partition is dependent on the capacity,
loads and shares distribution as well as on the variability in the
number of active users and it is the result of a tradeoff between
differentiation and statistical multiplexing. On the one hand,
creating large VRPs achieves better statistical multiplexing but
on the other hand creating small VRPs preserves the ability
to differentiate slice performance. Therefore, a partition that
includes virtual pools with similar load and share profiles is
most beneficial, since it allows slices to reap the benefits of
statistical multiplexing through sharing without compromising
their ability to differentiate.

V. PERFORMANCE EVALUATION

We have conducted a set of simulations to emulate a cellular
network following the IMT Advanced evaluation guidelines
for dense ‘small cell’ deployments [1]. The network is com-
posed by 57 resources with identical capacities, disposed in

a hexagonal cell grid layout with an intersite distance of
200 meters and shared among four slices. Unless otherwise
specified, shares are configured to be uniform and equal to
sob = 1/4. A fixed set of users move around the network
region, by combining users following two mobility models:
(i) Random Waypoint model (RWP) which generates almost
uniform distributions of mobile users over the network [7] and
(ii) SLAW model [25], a human walk based mobility model
which generates space uneven load distributions. A combi-
nation of both models generates uneven load distributions
across resources. We explored 4 different scenarios of 4 slices
described next and for which the average load distributions
per resource are displayed in Figure 2 for the case of L = 4:

1) Uniform: homogeneous slices with uniform spatial loads.
2) Aligned: homogeneous slices with non-uniform loads.
3) Complementary: heterogenous slices with orthogonal

non-uniform loads.
4) Mixed: 2 heterogenous slices with complementary non-

uniform spatial loads and 2 with uniform spatial loads.
In Figure 3, we display the capacity savings of the optimal

VRP partition versus GPS and CP for different scenarios.
As can be seen, the gains over GPS are maximized in the
scenarios where the mean load distributions across slices do
not coincide, i.e., in the complementary and mixed where the
gains can go up to 50%. With respect to CP, the capacity
savings (except for the uniform) are very high since creating
a big partition with all the resources eliminates the ability of
slices to differentiate, resulting in resource allocations which
exploit statistical multiplexing but are not able differentiate to
slices’ users performance. The reader is referred to [10] for
an extended set of simulations and numerical evaluations.

VI. CONCLUSIONS

We have addressed the problem of finding a good com-
promise between (i) allowing tenants to shift resources across
base stations, thus providing more flexible allocations, and (ii)
protecting individual tenants from others’ customer loads. The
adopted solution finds a tradeoff by the shifting of allocations
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Fig. 3. Capacity savings for the different scenarios vs GPS and CP for uniform shares as a function of the mean offered load.

to sets of resources (VRPs) that are chosen to ensure slices
are protected. Our optimal VRP partitioning problem creates
jointly managed resource pools so as to optimize overall
expected network utility while enabling network slice perfor-
mance differentiation and isolation. Our results indicate that
pooling resources on which slices have similar shares and load
distributions is beneficial since it does not harm slices ability
to differentiate their performance while allowing the pool
to reap benefits from statistical multiplexing. Moreover, the
analytical and numerical evaluations demonstrate that adequate
partitioning provides substantial capacity savings as compared
to GPS per resource sharing.
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