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Abstract—When the base station density is sparse, users are
often out of the coverage area of the cellular networks. In such
scenarios, the users can rely on fellow users (willing to relay) to
deliver delay tolerant information to a base station. Further, the
users (and relays) can observe independent environments, during
their traverse, if they are moving at considerable speeds. This
provides them an opportunity to (independent) search for relays
and or base stations at regular intervals of time. However, the
user should beacon (transmit short pulses and wait for response),
when it desires to be detected by the available relays in its
neighbourhood. We derive the performance of such a system,
accounting for the power utilized for beaconing, and obtain the
beaconing policies that maximize the success (user/any previously
contacted relay comes in contact with one of the base stations)
probability of message delivery. The base stations and relays (at
any given instance of time) are randomly distributed according
to a Poisson Point process.

We formulate the problem as a Markov Decision Process
(MDP) to derive optimal policies depending on the system state
(closed-loop). We show that the value function satisfies certain
monotonicity properties and the optimal policy exhibits a certain
switch-off property. We obtain an approximate solution for the
continuous control and an exact solution for the ON-OFF (two
action) control. Our investigations show that the closed-loop
ON-OFF policies perform (almost) as good as the closed-loop
continuous policies for all practically viable test cases. We further
investigate open-loop policies for ON-OFF control, the policies
that can be used when the system state is not known.
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I. INTRODUCTION

Urban areas offer wireless infrastructure to satisfy unprece-
dented data rates and user experience. However the base
station (BS) density is sparse in less populated areas (rural
areas, highways, etc.), where emphasis is on providing basic
services. But the users might still require enhanced services,
and some of the applications (file transfers, chats, emails,
etc.), can tolerate delays. Our emphasis in this work is to
improve the (uplink) services offered to the users of a sparse
network, when they can tolerate delays. Towards this we
propose an epidemic enhanced cellular network: users can
transfer messages to fellow (visible) users, if the latter is
willing to become a relay. When one such relay encounters
a BS on its path, it transfers the message to the later. We call
such users as delay tolerant or DT users. Thus we propose an
epidemic aided cellular network, which is very different from
traditional DTNs: the purpose here is to transfer the message
to any one of the base stations located on a Poisson grid.

We consider a cellular network where BSs are distributed
according to a Poison Point process (PPP) and assume that the
time required for transferring message from any BS to the final

destination is negligible. Time required to transfer the same
message to a BS (any one of them) depends on the contacts
made, which are highly random. If a BS is within the range of
a DT user, it can pass the message to BS directly which in turn
will route the message through its network to the destination
instantaneously. Otherwise, the user has to pass the message
through alternate routes and our work mainly focuses on this.

A question that arises when considering delay tolerant infor-
mation transfer via cellular networks is, whether the existing
mechanisms can aid such transfers? For example, Device to
Device (D2D) overlays, introduced in LTE Networks, allow
static users to act as relays and enable information transfer
for out of coverage users (see [3]). We propose to extend these
kind of protocols to enable mobile relays, which can convey
information to one of the encountered BSs (in future) .

Any BS regularly transmits signals to broadcast information,
which is also useful in detecting its presence. This is a
common practice in cellular networks. If a user has to be
detected by a relay (without the aid of BSs), it has to beacon
to make its presence felt. This expends power. Power is a
scarce resource, which has a great impact on the user and
the network performance. Thus an efficient power control
is required. We assume negligible power is used for actual
information transfer (occurs few times and to nearby relays),
most of the power is used for regular signalling in the form
of beacons. We thus study the control of beacon power.

The main objective is to derive optimal policies describing
the power utilized at various beaconing instances, using MDP
based (closed-loop) approach. Open-loop policies (not depend
upon state) are also considered. We discuss quantitatively the
additional advantage obtained by epidemic aided approach.
Numerical analysis and simulations are carried out comparing
closed-loop continuous, closed-loop ON-OFF (two control)
and open-loop ON-OFF policies. The ON-OFF policies per-
form almost similar to the continuous policies for all practi-
cally viable cases. Thus it is sufficient to use much simpler
ON-OFF policies. For many examples open-loop policies also
suffice (mostly when the power constraint is high).

Related research: There has been a large body of research
on the control of delay tolerant networks (DTNs). The
main objective in the control of DTNs is to use a limited
energy/power and then to minimize delays of successful
transfers, and or to maximize the system throughput. While
our work reminds the work on DTNSs, there is a fundamental
difference between the two. In DTNs one considers either
the time till a single predefined destination (peer-to-peer) is
reached or the time till a given set of destinations (broadcast)



is reached (e.g., [4], [5], [6], [7]). We consider, in contrast, the
time till the reception by one of the many base stations. We
consider a transmission to be complete when (atleast) one of
the destinations (BSs here) receive the information. This is an
important scenario which is not studied before.

Majority of the work mentioned above, considers informa-
tion transfer with no-relevance to cellular networks. A related
piece of work considers offloading of delay tolerant traffic of
the cellular network by other means (e.g., [1]), including the
epidemic based opportunistic forwarding (like our case). Here
the focus is on controlled offloading, which also considers fall-
back to the cellular back-bone (if required) to ensure minimal
QoS guarantees (see recent survey [1] and references there in).
While our work focuses on similar epidemic based transfers,
but, in the absence of cellular coverage.

In another recent survey ([2] and references there in),
the authors discuss mobility as an alternate communication
channel when the users are not in the coverage area and when
the information is delay tolerant. This scenario is similar to
our case, however their focus is on piggybacking relatively
large amount of data on storage devices mounted on mobile
entities that move on a well defined and well known traces
(e.g., ferry based wireless LANS). In contrast we consider data
traffic of a specific user moving in an unknown (cellular) and
sparse network and derive aid from mobile relays who are
also unaware of the network topology (e.g., the existence/non-
existence of base stations in their future trajectories).

II. EPIDEMIC ENHANCED NETWORK AND ASSUMPTIONS

If the BS is not in the range of a (high speed) moving
user, and if the user is tolerant towards delays in its message
transfer, it would search for a relay. If a relay is found, the
message is transferred to the detected relay. The relay, if it
comes across a BS before the remaining deadline, will transfer
the message to the BS. And this continues with more relays.

DTN protocol: DTNs operate with different transfer proto-
cols. A relay transfers message to one of the BSs, but not to
other relays in a two-hop protocol. Alternatively DTNs can
use full epidemics, i.e., the relays can transfer the message to
another relay. Success probability (message delivery) increases
with full epidemics, but, power consumption is high and there
might be flooding of messages. We use a two-hop protocol.

Beaconing: The DT user is travelling across a major
street/high way at considerable speeds. It continuously at-
tempts to transfer the message directly to the nearest BS,
and this is an uncontrolled part. Apart from this, information
or message transfer to a nearby relay is attempted at regular
intervals of time. Here we call this attempt (transmits short du-
ration pulses and waits for a response) as beaconing. At every
beacon instance, the DT user tries to find a relay and transfers
its message if it has found one. The range of detection, at
any beacon instance, depends on the transmission power. The
region of detection (by BS/user/relay) is assumed to be circular
with radius equal to the range of detection. If one uses more
transmit power, the radius of the detectable region increases.
However higher the power per beacon, lesser the number of
beaconing chances (as there would be a cost/constraint on the
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power used). In this context, we obtain optimal beaconing
policies, basically the sequence of transmission powers and the
number of beaconing attempts. We derive closed-loop (MDP
based) as well as open-loop policies.

We consider scenarios in which the BSs are sparsely
distributed and the chances of a direct message transfer is
negligible'. Our initial and main focus is on the events related
to epidemic aided transfer. However if a BS is found, the
user need not continue with the beaconing efforts. This can
also have an impact on the ‘optimal’ beaconing pattern. We
consider such scenarios briefly in Section VII.

More assumptions: We consider mobile relays®. At any
snapshot of time (beacon instance) and at any point in the
network, we assume that the relay positions are governed by
a Poisson Point Process (PPP). See Figure 1. For example, if
the relays are initially distributed according to a PPP and are
moving independently and in all (uniform) random directions,
their positions after any time period are again governed by a
PPP. Note that the PPP is translation invariant. Further at any
point of time, the user if detects a relay, can find the latter
moving in a random direction which is uniformly distributed
between 0-360 degrees. In other words, at any point in the
two dimensional space, one can find a street passing through
the neighbourhood (if there is one), in a direction which is
uniformly distributed.

One can use DTN concept only if the user can see different
(and independent) environments at various beacon instances.
The user is also moving at considerable (and random) speed,
such that it observers independent environments at beacon
intervals. At any beacon instance, the user transfers the
message to at most one relay.

The BSs are obviously not power deficient, transmit infor-
mation at regular intervals of time, because of which any
nearby user can detect it. In fact in cellular networks this
happens automatically, once the user enters the vicinity of a
BS. However for a communication between two users (one as
a relay), one of them (the user interested in a favor) should
transmit beacons to ensure that the other detects it.

III. PERFORMANCE

We derive some important performance measures, which
would be the ingredients for deriving the optimal policies. We
begin with the discussions related to the received power and

IChances of a relay (or user) detecting a BS can be negligible, but that by
one of the many (contacted and independent) relays can be significant.

2Qur analysis is applicable for highway kind of scenarios which are
characterized by: a) low base station density; b) all the entities are mobile,
i.e., one rarely finds a stationary element.



the detectable distance. Power received by a relay depends on
the distance from the transmitting user d, power transmitted p

(e.g. [81), [P if d < do
Prx(pad) - {Ptm(;lo)ﬂ GISG, (l)

where dj is the lossless distance (usually around 10 meters)
and f is the propagation co-efficient (see Figure 2). We are
considering short range communications and sparse connec-
tivity (thus no interference), and hence this free space model
will suffice. The path-loss factor 5 depends on the wireless
medium and usually ranges between 2 to 4.

A. Detectable distance (dp):

Relay detects the user only if the received power is greater
than a given threshold 6. We define the detectable distance as
the maximum distance until which a relay can detect the user.
Clearly if power transmitted itself is less than 6, no relay can
detect the user and hence the detectable distance is 0. On the
other hand if p > 6, then the mobile is detected at a distance
d, if the received power P,, at that point is greater than or
equal to 6. Thus from (1), the maximum distance up to which
a user can be detected, with transmit power p, equals:

1
dy = do (g) " Loy @)
B. Beaconing policy and relay detection

We consider a T-time slot problem, wherein one needs to
decide the beaconing powers for each time slot. We refer a se-
quence of powers m = (P, --- , Pr_1) as a beaconing policy,
where P; is the power used for beaconing at the beginning of
t-time slot. As seen from (2) the range of detection depends
on the power spent for detection. As the transmit power
increases, the range (area of detection) increases resulting in a
better chance of detecting a relay. The mobiles usually operate
under power budget. So, if more power is used per beaconing
attempt, then we may be able to beacon only fewer times. Thus
one requires a good beaconing policy. These power choices
can depend on the appropriate system state and hence we
consider an MDP based approach to derive optimal policies in
the next section. The open-loop policies are in later sections.

Relay Detection: The relays are Poisson distributed in the
network with parameter \,. Thus the probability of finding &
relays in the region A is Poisson distributed with parameter
Ar|A| and hence equals: R O] A"

kK
where |A| represents the area in two dimension and length
in one dimension. When mobile beacons using power P, the
area covered equals wd%, where dp is the detectable distance
given by the equation (2). Hence no relay is detected by the
user if there are zero relays in a disc of radius dp. Thus the
probability of failure to detect a relay (in two dimensions) in
time slot ¢, with policy 7 equals (see (2)):

PT (UL, 5) = e P — <P it ¢ 1= A, d2n/6%/%, (3)
where P7 is the probability under policy 7 = (Py,- -+, Pr—1)

and U!_p is the event that the user has detected zero relays
at the beginning of the time slot ¢.

C. Overall Failure Probability

Whenever the DT user is within a radius r;, (reference radius
up to which the BS can be detected by the users) from a
BS, it can directly transfer the information to the BS and
the BS will route it through its network and deliver it to
the destination. As already mentioned, such chances are rare,
and we initially neglect these chances. In later sections, we
consider the influence of detecting a BS directly. Note that 7,
is the same distance within which any relay can also detect a
BS, however since our aim is to contact considerable number
of relays, the chances of one of the relays contacting one of
the BSs can be significant (based on the beacon policy) and
our initial focus is precisely on these events.

The user is moving at considerable speeds and hence
we assume it to observe independent environments at the
beginning of different time slots. The relays are also moving
at considerable speeds but in different directions and hence
the events related to the relays (those contacted) of different
time slots will also be independent. We use the independence
of these events to derive the probability of failure of message
transfer before deadline, in-spite of the relay contacts.

The DT user will try to communicate with one of the
relays, in case one of them is within the contact radius created
by the transmitted beacons. Upon a successful contact and
subsequent message transfer in the #*" beacon attempt, the
recipient relay will attempt to pass on the information to a BS
during the leftover time. Thus the message is not transferred
within the deadline if the following events occur (neglecting
direct transfer chances): a)

1) User has detected zero relays in all the beacon chances,
ie., the event NU! x;

2) User has detected a relay at some time slot ¢, but all
such relays could not transfer the message within the
left over (deadline) time, the later event represented by
Rf’LOB S

Thus the probability of failure for the delivery of message for
any beaconing policy 7 is given by:
T

Pr=P" (ML [Unon {(Ulon) N Riops}]) . @)

D. Relay failure

Let v+ = P(R! ) be the probability that a relay fails to
transfer the message to one of the BSs in the remaining time
before deadline, t> = (T — s)D, with D the duration of one
time slot. Note that these probabilities do not depend on the
policy , but depends only on the mobility profile of the relays
and the density of BSs. One can assume these constants are
given in general. Below we compute these probabilities for
one example scenario. One can compute such probabilities
even when the relays are randomly wandering as modelled by
a Brownian motion or when the mobility pattern of different
relays can be of different nature.

Computation of {: }+ for uniform relay velocities: As relay
velocity is random, we condition on the same to obtain relay
message delivery failure probabilities {v;}:. We assume that
the velocity of the relay is uniformly distributed between



Vinaz = V and V,,;, = V. By conditioning on velocity of
relay, we have (with t!. ;= (T — t)D):

v v
o 7>\(rbvtt‘) _ / 7)\(7‘bvt ) av dv
= e T v)dv =
i /z s v V-V

e AV o= AVt

(V — V) Arptt

In the time (t!) remaining before the deadline, the relay
covers a cylindrical area of length vt! and breadth r, plus
a semicircular area at the end of radius 7, minus a similar
area’ in the beginning, if it travels at velocity v and hence the
first equality in the above set of equations. It fails to transfer,
if no BS is found in the above described area.

IV. CLOSED-LOOP (MDP) POLICIES

If one can estimate/track some important status information
(e.g., the time remaining till deadline, the power remaining at
the decision time slot, chances of successful message delivery
because of previous events, etc.) related to the system, one
can design a good beaconing policy. The successful mes-
sage delivery can, for example, depend upon the number of
successful relay contacts till that period and the chances of
these successful relays reaching the BS within the remaining
deadline etc. In case we were already successful in contacting
sufficiently large number of relays, it may be optimal to
preserve power. On the other hand, if the user had only
succeeded in contacting few/zero relays it might be optimal to
beacon few more times. It might be optimal to beacon with
different power levels in different situations. The aim is to
derive optimal policies, which depend upon an appropriate
state of the system and we use the framework of Markov
Decision Processes (MDPs) for this purpose. We consider a
T- time horizon problem, i.e., the deadline is divided into T’
time slots, each of duration D. The precise details of MDP
formulation are as follows:

State: Let Py, represent the probability of failure of message
delivery within deadline, when all the relays contacted during
the first ¢ — 1 time slots fail. If a relay is contacted in the time
slot ¢ then similar probability for the next time slot decreases
by a factor v, ie., Py, = Py, else Py, = Py. To
summarize, Py, is the anticipated probability of failure because
of all the events up to time ¢. The mobile would know the
relays contacted in the previous time slots and Py, is obtained
using these events.

Action: Recall a relay is detected with probability 1 —e™°*
(see (3)), if power a is used for beaconing at the beginning
of ¢-th time slot. This influences further evaluation and hence
is the variable to be controlled. We consider a compact action
space, A C {0} U [0, @] for some ¢ < oo.

Transition Probabilities: Upon beaconing in time slot ¢, i.e.,
if the action were to beacon at non-zero power, there is a
possibility to contact a relay (which happens with probability

2/8

3The user contacts a relay only because the later has not detected a BS and
hence the first circular area is not considered.

B .
1 — e—ca” ) and then Py, improves. Thus the controlled
transition probabilities can be summarized as below:

P(Py, ., :p/f/Pft, =py, At = a)

_ca?/B
e when p; =ps

= 1—e*"  when Py = psye
0 else.

Reward/Costs: These depend upon two factors: i) The
factor proportional to beaconing powers utilized in all the
(T' — 1) time slots; and ii) The probability of successful
message delivery or equivalently the eventual probability of
failure (see (4)). We thus have/consider the following running
cost and terminal costs:

re(Pf,, Ar) = CIA?/B and g7 (Pyp) = Pyp,

where « represents the trade-off between the two factors
and A; € A is the power used in time slot ¢. Let 1 =
[a1,az, .....ar_1], represent a typical deterministic policy?,
i.e., for any (¢,py), ai(ps) = a for some a € A and equals
the the action chosen if Py, = py.

Let the initial state be, Py, = py,. Usually one can py, =1,
but one can also accommodate the chances of direct transfer
(to BS) through this initial condition. But if in case the user
manages to find a BS before deadline, it would obviously
be optimal to stop further beaconing and optimal policies
designed based on this stopping would in general be different
and are considered in Section VII. Thus we are interested in
the following optimization (E, ' is conditional expectation,
conditioned on Py, = py, and 71')

u(pp) = minJ(ps,,m) where

J(ps,m) Pfl er Pr, Ae) + gr(Prp) |- ()

The well known dynamic programming (DP) equations ([9])
provide the value function and optimal control:

ur(pf) = pyandforanyt<T—1 (6)
w(py) = 51615 hi(pg, xa) where with 2, := a*/# (7)
he(pr,z) = ax+e “Tura(py) + (1 — e )upa(prn)-

If there is an minimizer a* in equation (7) for any (¢,py) then
it forms the optimal control ([9]), i.e., af(py) = a*.

A. Some structural results

Below we obtain some structural properties of the optimal
policies and the value function. We have the following results
whose proofs are in Appendix A.

Lemma 1: (Monotonicity) The value function is monotone
in state and time, i.e., for any py > p’f and any t < T

ur—1(pf) < ur(py) and ug(py) > ue(py). u

The above property is used to derive the following important
result and other results.

“These type of policies are sufficient as explained in [9].



Lemma 2: (Switch off Threshold) If for some (¢,py), the
optimal control a;(py) = 0 then a;,,(ps) = 0. |
Thus by Lemma 2 there exists a switch off threshold (Z, )
for any state p; in the following sense:

a;(pf) =0 forany t>t,r5(ps) and
a;(pf) >0 f(?r t <tors(ps), where,
tors(py) = min{t:ai(py) = 0}.

Basically given a state py there exists a time slot number ¢,
beyond which it is optimal not to beacon.

We now derive optimal policies and towards this we con-
sider two sub-cases. We assume that continuous power control
is possible in the first sub-case considered in the next sub-
section. i.e., we assume action space A = 0U [0, ¢], where ¢
is the maximum power that can be used. Later we consider
ON-OFF control where A = {0, ¢}.

B. Continuous control and approximate solution

When 6 is close to 0 one can approximate (domain of
optimization) the DP equations (6)-(7) and rewrite them as:

u(py) =~ onin, he(ps,za)

= mmin

oin {(H e (upr1(py) — wer1(prye)) + uz+1(10f’Yt)}~

If domain of optimization were not bounded, by equating the
first derivative to zero and showing that the second derivative
is negative (by Lemma 1, w;41(ps) — wer1(pyye) > 0) the
optimal z} (or equivalently a;) would have been (recursively):

e (ps) o or

c(ui1(pr) — wes1(pyye))
1 log (C(Ut+1(pf) - Ut+1(pf’7t))) )

zy =
i (pf) c o
However when one considers optimization over a € [0, ¢] by
convexity of the problem, the optimizer and the value function
would be:

2 (py) = min {6*/2 max {0, (p)} }, ai(ps) = (51 (ps))*""
ui(py) = ha(py, @i (pf))- ©

Using the above one can recursively compute the required
solution. The above solution is exact, if for all (t,py), the

above af(py) € {0} U [0, 9]

Switch off Threshold: By Lemma 2 there exists a switch
off threshold for any p;. We compute the same under the
approximation used in this sub-section. Since ur(ps) = py,
we have after changing the domain to {a > 0}:

ur—1(ps) & min {az + e “ps(1 = vr—1) + pyvr-1}

If cpr(1—yr—1) < o, then 71 (py) = 0 and then uy_;(py) =
pr. And now if cps(l — yr—2) < « then z3 ,(pf) =
0 and then u}_,(py) = py. One can continue to obtain switch

off threshold (Lemma 2):
torf(ps) =max{t <T —1:cpr(l—n) > al,

and for all £ > ¢, including ¢t = ¢,y + 1 we have:
x; (py) = 0 and then u; (pf) = py.

C. Exact optimal policy with ON-OFF control

We now specialize to a case with .4 = {0, ¢} where ¢ > 6.
For this case we have exact characterization of the optimal
policy and the same is provided below with proof in Appendix:

Theorem 1: For any t <T — 1

. if >
ar(pf) = { g els]::f Ve and
ui(pg) = pyif pr <.

where {1, }+<7_1 are increasing constants as given below:

Py = & (10)

N with ’?t:(l—e_cmqs)(l—’}/t). | |
Yt

Numerical Comparison

One obviously expects that continuous control (approximate
solution (9)) can provide superior performance in comparison
with ON-OFF control (Theorem 1), as the domain of opti-
mization is smaller in the later case. One might still consider
ON-OFF control, as it would be a more practically viable
solution. However we observe, in Tables I-II, that the loss
by considering ON-OFF control is negligible in all practically
viable test cases. In this sub-section we discuss only the
closed-loop policies (last two columns of the tables) while
others (columns) are discussed in Section VI.

Firstly the performance of closed-loop policies with con-
tinuous and ON-OFF control is almost the same when we
consider examples that are practically interesting (first two and
first three rows respectively in Tables I and II). Continuous
action space improves significantly in comparison with ON-
OFF (closed-loop), when we have lot of power (the last rows
of the two tables with ¢ = 20000 and ¢ = 5000 respectively).
This amount of power in fact implies that the user detectability
radius (by relay) is much larger than the BS detectability
radius. This definitely is not an interesting case.

We conducted experiments with more case studies and the
observations are exactly similar for all cases. The reason for
this behaviour is that, most of the optimizers in DP equations
(convex objective function over (almost) convex compact set)
are at a boundary. Thus we conclude that, ON-OFF control
is sufficient, and continue further with only these controls.

V. OPEN-LOOP POLICIES

The closed-loop policies can perform better, however it
might be complicated to keep track of the status of the system.
The open-loop policies are useful in such a context. Here we
again discuss optimal beaconing policies, however now the
power utilized in any time slot depends only upon the time
slot and not on any system information. By independence of
events (relay detection in different time slots, different relays
successfully transferring the message to one of the BSs etc)
as discussed already, the probability of failure for message
delivery for any open-loop beaconing policy 7 from (4) equals:

T

Pf = H [P(U’VtLOR) + (1 - P(U’:LOR))P (R:LOBS)]

t=1

_ep,2/8 _ep2/8
= H{e P (= e e

3

(11)

o~
-



Open Loop ON-OFF Soft

[
1000

Open Loop ON-OFF Hard

Closed Loop ON-OFF | Closed Loop Continuous

P, E[P] Total cost

P, E[P] Total cost

P, E[P] Total cost P, E[P] Total cost

0.1 0.48 208 0.69 0.53 167 0.70 0.50 167 0.66 0.50 166 0.66
0.5 0.29 313 0.60 0.36 252 0.61 0.27 252 0.52 0.27 251 0.52
20 0.38 287 0.67 0.33 348 0.68 026 348 0.60 021 273 0.48

TABLE I
0=1e % N =26 A\ =2 7,dyg =10, « = .001, 8 = 3.5,V = 35,V = 2, r, = 1000, D (TIME SLOT DURATION) = 50, T = 20

ﬁ%o Open Loop ON-OFF Soft | Open Loop ON-OFF Hard Closed Loop ON-OFF | Closed Loop Continuous
P, E[P] Total cost P, E[P] Total cost P, E[P] Total cost P, E[P] Total cost
0.1 0.50 125 0.75 0.53 110 0.75 0.50 110 0.72 0.50 109 0.72
0.2 043 145 0.72 045 135 0.72 041 135 0.68 041 134 0.68
0.5 036 174 0.70 0.37 167 0.70 031 167 0.65 0.33 156 0.64
5 0.53 130 0.79 047 164 0.80 041 164 0.74 0.31 164 0.63
TABLE II

0 =1.0e7% X\ =279, X\ =297, dp =10, &« = 0.002, 8 = 3.5,V =35,V = 2, 7, = 1000, r, = 1000, D =20 AND T = 15

As already discussed, one needs to consider an optimal
trade-off between the power utilized for beaconing and the
message successful delivery chances, while designing the
policies. We consider two optimization problems: 1) with a
hard constraint on a term proportional to the powers spent in
various time slots; 2) which optimizes a joint cost of the two
factors. Using (11) we define the two problems as below:

Problem 1: min, [, e—eP?? (1- e’CPfQ/B)%) ,
s.t. Zth_ll Ptz/ # < B (a hard power constraint)

_ep2/8
e e )%)

. T—1 _cP2/B
Problem 2: min, [[, ' (e "

ta L PP

We would like to compare the open-loop policies with closed-
loop policies. Towards this we consider the hard constraint
problem, Problem 1: one can set the bound B as the power
utilized by the optimal closed-loop policy, and then compare
the failure probability performance of open and closed-loop
policies when both use the same power.

ON-OFF control: As concluded in previous section, we
consider only ON-OFF control, i.e., one can either beacon
using power ¢ > 6 or remain silent, i.e., P, € {0, ¢} for each
t. It is well known that randomized policies are optimal for
constrained problems (Problem 1). Thus we redefine policy
m as the sequence of probabilities @ = [p1,--- ,pr—1], one
for each time slot, where p; is the probability with which
we beacon (with non-zero power ¢) in time slot ¢. Define
qg:=(1- 6%4)2/5) to rewrite the problems as:

+(1-

Problem 1: min, Hth_ll ((1 —qpt) + ptqw)y

s.t. 232_11 pe¢?/? < B (a hard power constraint)

Problem 2: ming HtT:jl ((1 —qpt) + PtQ’Yt)
+a X ped®”

Solution for Problem 2: By monotonicity (v, increases with
t) it is easy to see that equivalently we need to find an integer
n* and a (randomized/probability) p* € [0, 1] which minimizes

n—1

(1 —q(1 - %)) (1= gp(1 —vn)) + a(n + p)¢*/*

t=1
n—1
= H (1 —q(1— ’yf,)) + and)wﬂ -+ p&n with
t=1
n—1
& = a¢”’—q(1l-m) [] (1 —q(1 *%))-
t=1

The above is a piecewise linear function with respect to p,

with slopes &, increasing with n. Thus clearly p* = 0 and

0 =(T = Der_, <oy +min{n: & > 0} iery501) Ligr>0p
12)

the first time slope becomes positive ((if at all) and there exists
one such n* only if the slope were positive in the end. If all the
slopes are positive it is optimal to never beacon (i.e., n* = 0).

Solution for Problem 1: One can find this solution in a
similar way and it is easy to see that:

B—-n"¢
n* = 2 and p* = — (13)
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VI. NUMERICAL RESULTS

We first continue with examples of Tables I-II. The sec-
ond major column reports the results under open-loop pol-
icy with soft constraint, i.e., Problem 2, with same « as
that used in closed-loop policies (solution (12)). We are
setting the bound in the hard open-loop problem equal to
the optimal power utilized by the closed-loop (ON-OFF)
policy to compare open and closed-loop policies and the
results are in third major column (solution (13)). We notice



that in all cases, without fail, closed-loop policies outper-
form the open-loop policies. There is significant improve-
ment in some cases (especially the last rows, i.e., ones with
large ¢ or power). Interestingly the total cost, E[Py, +
ay., Pf/ o |, under hard as well as the soft constraint prob-
lem is almost the same (when total cost is computed for hard
problem also using the same «) for all examples. However the
hard problem is better w.r.t. the power utilized while the soft
problem provides better failure probability, Pf, in most cases.

We also notice that message delivery chances improve
significantly with epidemic aided protocol. From the tables,
it is seen that Py can be as low as 0.27.

We consider another set of examples in Figures 3 - 4 and
make almost similar observations as in the Tables. We further
notice that open-loop policies perform almost as good as
the closed-loop polices for small «. We consider only hard
constraint problem here. Open-loop soft constraint problems
are considered in Figures (5)-(6), are compared with closed-
loop policies and the observations are exactly similar.

In Figures (5)-(6), we further consider two different values
of T' (the number of beacons). The blue curves in both the
figures correspond to 7' = 22 case while the black ones
correspond to 7" = 11 case, with the duration of the time
slots in the former case equal to half that in the latter case.
Thus the total time duration is maintained the same, but the
number of beaconing instances is varied. We notice that more
number of beaconing choices improves the performance.
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One can observe one more important aspect from these
figures. When one utilizes the same power for both the 7T,
the bigger T provides better Pj:
a) from Figure 5, with closed-loop policies, the failure prob-
ability P; ~ 0.455 for T' = 22 and P} ~ 0.475 for T' = 11
for almost all «;
b) from Figure 6 the power consumed with o = 0.0001 and
T = 11 is almost the same as the power consumed with
a = 0.0081 and T' = 22; and
¢) one can make similar observations with open-loop policies.
However we should recall here that one can’t increase the
beaconing instances to a large extent as then the independence
(independence environments at various beaconing instances)
assumption is lost and then ‘diversity’ like benefits are lost.
We recall from all the examples that the performance
improvement by CL policies is not very significant for small
value of trade-off factor «. It is obviously much simpler to
implement an open-loop policy. One just needs to remember

(n*,p*) provided by solution (12) or (13). Thus we have
another important suggestion: one can use much simpler open-
loop and ON-OFF policies when power constraint is high.

VII. WHEN A BS CAN BE FOUND DIRECTLY

We now consider a brief discussion on the scenario in which
the user can directly detect a BS in every time slot. Say this
happens with probability p in each time slot independent of
other time slots and the other events. This is like an optimal
stopping finite horizon problem. If the user detects a BS itself,
it would obviously stop searching for relays using beaconing.
To consider this aspect, we modify the state process to include
an extra state named A, to indicate absorption. That is, the
state at time ¢ denoted by Y; equals: i) p; € [0,1], the
probability of failure in spite of all relay contacts till time
t —1, if the user has not yet contacted a BS directly; or equals
ii) A if the user has already contacted a BS. Thus the DP
equations change as below:

ur (y) yl{y+a} and for any t < T'

w(A) = 0 and with z, := a?/?

u(y) = C}Ielfﬁt hY*(y, x,) for any y # A, where
hi*(y,z) = px0

+(1 = p) (az + e Pur(y) + (1 — e )ura(ymn)) -

ON-OFF Control: With ON-OFF control, we have exactly
the same optimal policy as in Theorem 1 with the only change
being in the thresholds. The new thresholds are (additionally
(1 — p)T~* is included in the denominator):

bs )

t = — — .
(1=p)" (1 —emem) (1 —n)
The above expressions are correct as long as 1?* are mono-
tone. Other wise, we need to make some corrections, this and
further analysis is a part of future work.
CONCLUSIONS

We discussed the idea of augmenting cellular networks with
epidemic inspired transfer of (delay tolerant) messages via
fellow users in regions of sparse BS density. In previous works,
authors consider such epidemic aided transfer, either when
a message has to be transmitted from a single source to a
single destination (peer to peer) or when a message has to be
broadcast from a single source to multiple destinations. The
proposed epidemic aided cellular network requires transfer
between a single source and one of the base stations, which are
distributed according to a (stationary) Poisson Point process.

We obtained beaconing policies for delay tolerant infor-
mation transfer. We investigated policies that maximize the
probability of successful message delivery, while accounting
for the power utilized for beaconing purposes. We formulated
the problem as a Markov Decision Process to derive opti-
mal policies that depend on system state (closed-loop). We
showed that the value function satisfies certain monotonicity
properties, and the optimal policy exhibits a certain switch
off property. We obtained approximate solution for continuous
control and an exact one for ON-OFF (two action) control.



Our investigations show that the closed-loop ON-OFF poli-
cies perform on par with the closed-loop continuous policies,
for all practically viable test cases. Thus it is sufficient to use
ON-OFF policies. We further investigated open-loop policies
for ON-OFF control, the policies that can be used when the
system state is not known. Detailed numerical analysis and
simulations are carried out comparing various policies. The
numerical analysis further demonstrated that for many cases
the open-loop policies perform as good as the closed-loop
policies (this is mostly true when the power constraint is high).
However, in many other scenarios there is a good improvement
with the closed-loop policies.

We have closed-form expressions for ON-OFF policies (and
these are shown to be sufficient). Thus one can obtain optimal
policies for any given configuration and then can chose an
optimal configuration. For example, one can chose optimal
number of beacons or optimal power utilized.

Towards the end, we briefly discussed a scenario in which
the user stops beaconing immediately after it (directly) finds
a base station. The optimal (ON-OFF) policy for this case has
similar structure as before. We have closed-form expressions
for the optimal policy under some assumptions.
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APPENDIX A: MDP RELATED PROOFS

Proof of Lemma 1: From the DP equation (7) note that
hi(pf,0) = usr1(py) and hence that monotonicity in time is
obvious. We prove the monotonicity in state through backward
induction. For any py > p’f, clearly,

ur(py) = py > ps = ur(p}).
Assume the result is true for any ¢t +1 < T, i.e., assume:
upy1(pr) > w1 (py) whenever py > pls.

Then for py > p/; and with z := a?/P,

—C$)

u(pg) = min {az + e “ura(ps) + (1 — e “urra(prye) }

—Cﬁ)

> min {ox + e u (py) + (1 — e e (Phe) }

= ut(p}). [ |

Proof of Lemma 2: Fix a p; and define h,(z) := hi(py, z),
for any ¢ < T, for shorter notation. By hypothesis u.(ps) =
h(0) = u¢11(py) and hence for any a > 0,

urr1(ps) < he(a?®?). (14)

Now for any a > 6 with = := a®/# and using monotone
properties of Lemma 1:

hi(z) = az+e “ua(py) + (1 —e “)ueri(prye)
oz + e Curpa(pr) + (1 — e )urga(psye)
ax + e Curpa(pr) + (1 — e )ursa(pryer)
hit1(z).
Further using (14), for any a > 6,

hi1(a®P) > hi(a®7) > upya (py),

INIA

which in turn implies that a;,,(py) = 0. ]

Proof of Theorem 1: It is easy to compute the optimal
control at t = T'—1 as below. From the DP equations (6)-(7):

ur—1(py) = min{ps, hr_1(ps, 4)}
= pf+min{0, Ozl’¢—pf’7T—l},

where pr_g := (1 —e™®*)(1 — yp_y) for any k. Hence
aly

ar-1(pf) = Olgp;sur g} Yro1 = o and
are +pr(l —Hr— if pr > r_
ur-1(ps) = { pf¢ s ) else{c v

When ¢t = T—2and if py < ¢p_1, we have up_1(py) = py
as well as up_1(pyyr—2) = pyyr—2. Hence again from DP
equations (7) for any py < Up_;:

ur—2(py) = py+min<0, azy —pfi/T_g} and so
" . ox
ar_o(py) ¢1{Pf<wT—2} with ¢p_o = — ¢
N1 -2

Note here that yp_1 > ~pr_o and hence that ¥p_1 > P _s.
In other words
if ’LbeQ <pr < wal

ar_s(py) = { (‘f if pr < brs and,
Wi a(pp) = ary +ps(l —yr—2) if hr—2 <py <Pr_1
T—2\Pf - pr if pr < Pr_a.

For any py > ¢p_1 we have a%_,(ps) > 0, and, hence by
Lemma 2 and because of two controls, we have for all such

by @§_y(py) > 0 and so ai_,(py) = ¢.
: if pr > r—
Inall, ar-2pf) = g el£f Yroz 4
ur—o(ps) = pyif pr < Y7o

By backward induction (using similar logic) and first consid-

ering o

Q. . _ —cx
P <tPpp1:=—, withF =(1—-e “*)(1—-v) (15
Yt+1
and then using Lemma 2 one can complete the proof. ]



