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Abstract—A communication receiver that wants to pull data
from a remote sensor by exploiting wireless energy transfer is
considered. The receiver has a long-term average energy budget
for this operation, and its goal is to keep the time average
of a general age penalty function as small as possible. The
channel from the source to the receiver is a two-state (ON/OFF)
communication link whose state is IID or Markovian, and known
instantaneously by the receiver. Modeling the problem as a
constrained Markov decision problem, we obtain a randomized
threshold-based decision policy that achieves the minimum possi-
ble average age penalty. We determine the optimal time average
Age of Information and age violation probabilities by exploiting
the optimality of the derived policy.

I. INTRODUCTION

Wireless energy transfer (WET) using time-varying electric,
magnetic, or electromagnetic fields, has been considered viable
for various communication systems [1]–[3]. This technology
is especially attractive in the scenario of collecting data from a
sensor that does not have a significant energy source of its own.
This implies a mode of energy harvesting, where the source
of energy is directly controlled by the node who will pull the
data from the sensor. The optimal planning of transmissions
in such a scenario has been considered in the literature (see,
e.g., [4], and references therein). In this paper, we formulate
the problem from an Age of Information (AoI) optimization
perspective.

Optimal transmission scheduling [5] is the problem of
modifying rate and power in time according to energy avail-
ability, data demand, and channel variations, to transfer data as
efficiently as possible, i.e., maximize the throughput with the
given amount of energy, satisfy certain delay constraints, etc.
Transmission scheduling to optimize AoI is relatively new.

Age of Information (AoI) was introduced in [6] and [7], in
order to quantify the freshness of information in status-update
systems and is defined as the time elapsed since the generation
time of the most recent status update packet successfully re-
ceived at the destination. In [8], general age penalty functions
were defined to represent the level of dissatisfaction with
information staleness. Optimization of non-linear age penalty
has been studied under communication constraints such as
random delays, time-varying channels and errors, in various
studies including [9]–[16].

In recent years, there has been a growing interest in the
combined analysis of information freshness and energy har-
vesting. In [17], the problem of when to generate updates
under detailed energy harvesting constraints (energy causality
constraints) was formulated and solved. Each transmission

consumes unit energy, and the goal of the transmitter is to
spread its transmissions as evenly as possible in time, while re-
specting the energy causality constraints, to minimize average
age. In [18], a stationary transmission policy was considered
for a source that harvests energy at a constant rate λ, and has
an infinite battery so that the energy causality constraints are
not binding: there is always energy available when the source
decides to transmit, as long as it does not use energy at higher
rate than λ. In this model, packets are subject to iid delays Y
in the channel. A single-server policy is maintained, hence a
new packet can only start transmission once the transmission
of the current packet is completed. Loosely speaking, then,
the long term average rate of transmissions cannot exceed
1/E[Y ]. Consequently, if the expected delay, E[Y ], exceeds
1/λ, then the transmitter will have to use energy at a rate lower
than the rate it is harvested at. Otherwise, the transmitter has
a choice to transmit at rate up to λ. The β-optimal policy
proposed in [18] computes the policy that ensures that the
arriving energy is used at rate λ whenever feasible. However,
it notices the curious phenomenon that with this policy, the
resulting age is non-monotone in the energy harvest rate λ.
This indicates that the policy is not optimal in general. The
optimal policy was shown in [8] to be one that possibly inserts
a non-zero waiting time, Z(Y ), depending on the value of
delay, even though E[Y + Z(Y )] > 1/λ. In other words, for
many delay distributions, it is not optimal in terms of average
age to transmit at the largest allowed update rate. The result
was also generalized to Markovian delay processes and general
age penalties in [8].

In this paper, we consider a model where the receiver
pulls data from a sensor by sending energy to be harvested
by a transmitter connected to that sensor (see Fig. 1). This
model allows the receiver to optimize the amount of energy
it will deliver to the transmitter by taking the channel state
information into account and thus, to control the long-term
average age of information (AoI). Our aim is to derive the
average age penalty in closed form and minimize it. By
formulating minimization as a constrained Markov decision
problem, we obtain an optimal decision policy which has
minimum energy consumption and keeps the flow retrieved
from the sensor as fresh as possible.

The problem we study is closely related to the above
literature [8], [18] in the sense that it includes a finite average
energy constraint, and a delay process that is caused by the
channel state being on or off: when the transmitter makes
a decision to transmit, the update is immediately received,
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followed by a random number of ”off” slots during which
there is no opportunity to pull data and the age increases. On
the other hand, it differs from the models in [8], [18] in the
sense that successful transmissions reset the age down to a
deterministic constant. This implies zero-wait being optimal
whenever feasible, hence the interesting case to be analyzed
for this problem is the regime where zero-wait is not feasible.

There have been studies on transmission scheduling under
WET constraints: In [19], time average AoI is investigated in a
WET system with a Rayleigh block fading channel, where the
transmitter waits until its battery is completely filled and uses
all the acquired energy for a single transmission. In [9], an
energy harvesting transmitter with a finite battery is studied
in continuous time and it is shown that a threshold policy
optimizes the expected time average age penalty. Another
closely related recent work is [20], which studies the long-term
time average AoI under a constraint on the average number
of transmissions at the source node and examines standard
ARQ and hybrid ARQ (HARQ) protocols. Threshold policies
for controlling age under various energy harvesting settings
have been studied in recent literature (see [21], and references
therein.)

The main contributions of this paper are:
• We model the general age penalty minimization problem

over imperfect channels as a constrained Markov decision
process (CMDP) and show that there is a a stationary
policy that is optimal (Theorem 1).

• For IID channel states, we show that a threshold policy
is optimal if the available energy is restricted, and we
compute the optimal threshold policy in closed form
(Theorems 2 and 3). Further, we derive the optimal values
for the average AoI and age violation probability in
closed form.

• We extend our analysis to the temporally correlated
Markovian channels and reveal the optimal threshold
policy (Theorem 4).

• We simulate the performance of the optimal threshold
policy and compare it with a uniform transmission policy.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A point-to-point channel comprising a transmitter-receiver
pair is considered. The channel can be in one of two states
during any time slot: ON or OFF. The transmitter is passive,
and the receiver will decide when to send energy to the
transmitter, and pull data from it. The transmitter, which relies
solely on the energy harvested from the receiver, is only
responsible for transmitting data to the receiver on demand,
and each transmission takes one time slot duration and requires
one unit of energy. It is also assumed that the receiver has
an infinite battery, hence the energy causality constraints are
inactive as in [18]. The allowed long term average energy
usage is constrained by λ units per time slot. Transmissions
always fail while the channel state is OFF and succeed
otherwise. The random transitions of the channel states are
analyzed under two models: (i) IID in each time slot, and (ii)
Markovian.

Figure 1. System model.

Whenever the receiver receives a new packet from the
source, it resets the age to unity at the end of the slot. In
the absence of a new reception, the age increases by 1 with
every new slot. Consequently, the age at the end of time slot
t, denoted by ∆t, is known by the receiver. The state of the
system at any time t can be described by the AoI ∆t and the
channel state Ct at that time.

In order to generically quantify the staleness of data packets
under different conditions, we define a general age penalty
function g(∆) as a function of AoI. The function g : Z+ → R
is non-decreasing. In the rest of this paper, we analyze the
time average age penalty function, as described in Problem 1.
If the age penalty function is an identity function, the expected
age penalty becomes the time average AoI and if g(∆) =
1∆>γ , then expected age penalty becomes the age violation
probability; corresponding to two commonly used metrics in
the literature.

This leads to the constrained Markov decision pro-
cess (CMDP) [22] formulation, defined by the 5-tuple:
(S,A, P, c, d) with the countable set of states S = Z+ ×
{ON,OFF} and the finite action set A = {0, 1}. at = 1
denotes that the transmission will be performed and at = 0
denotes that no transmission occurs. The state st consists
of the age ∆t and the channel state Ct at time t. P refers
to the transition function, where P(s′|s, a) = Pr(st+1 =
s′|st = s, at = a) is the probability that action a in state
s at time t will lead to state s at time t+ 1. The cost function
c : S ×A → IR is a non-decreasing function of the AoI at the
destination, and is defined as c(s, a) = g(∆t), for any s ∈ S,
a ∈ A, independently of action a. The transmission cost d is
related with the energy constraint λ and is identical for each
transmission, d = 1 if at = 1 and d = 0 otherwise. The age
∆t evolves as:

∆t+1 =

{
1, if Ct = ON and at = 1
∆t + 1, otherwise (1)

The evolution of the channel states is examined over two
different scenarios. In section III, we assume that the channel
state becomes ON and OFF at each time slot in an independent
and identically distributed (IID) fashion with their correspond-
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ing probability values PON and POFF .

Pr(Ct+1 = c) =

{
PON , if c = ON
POFF , if c = OFF (2)

where PON > 0 and Ct+1 is independent of the age or the
past realizations of the channel states.

In section IV, the results obtained for IID channel states are
extended by considering time-correlated channel states which
evolve as a Markovian process:

Pr(Ct+1 = c1 | Ct = c0) =


1− p10, if (c1, c0) = (ON,ON)
p01, if (c1, c0) = (ON,OFF)
p10, if (c1, c0) = (OFF,ON)
1− p01, if (c1, c0) = (OFF,OFF)

(3)

where pij ∈ (0, 1), with i, j ∈ {0, 1} indices standing for the
channel state in former and latter time slots, respectively.

A stationary policy is a decision rule denoted by π : S ×
A → [0, 1] which maps the states s into actions a with some
probability π(a|s). We try to minimize the average age penalty
under energy constraint λ, given the initial state s0 = (1,ON).
In this manner, our focus is the age penalty function g(∆t). We
can state the CMDP optimization problem as follows, where
E[·] represents expectation with respect to the distribution of
the age process induced by policy π and channel states Ct:

Problem 1.

min
π

∆π(s0) = lim
T→∞

1

T
E[

T∑
t=1

g(∆t)|s0],

s.t. lim
T→∞

1

T
E[

T∑
t=1

aπt |s0] ≤ λ.

(4)

A policy π∗ that is a solution of the above minimization
problem is called optimal, and we are interested in finding
optimal policies.

III. MINIMIZING THE AGE PENALTY FOR IID CHANNEL
STATE

Constrained MDPs with countably infinite state-spaces as
defined in Problem 1 are generally difficult to solve since a
stationary optimal policy, or an optimal policy in general, are
not guaranteed to exist [22]. Next, we show that an optimal
stationary policy exists for Problem 1 and define the structure
of the optimal policy.

Theorem 1. There exists an optimal stationary policy for the
CMDP in Problem 1 and it is randomized in at most a single
point in the state-space S.

Proof. A sketch of the proof is given as follows: First, we
show that Theorem 2.5, Proposition 3.2, and Lemma 3.9 of
[23] hold for Problem 1 by showing that Assumptions 1-4
of [23] hold. Then, by Theorem 2.5 of [23], there exists an
optimal stationary policy that is a mixture of two deterministic
policies which differ in at most one state and there exists a
randomization coefficient denoted by pθ ∈ [0, 1] such that π∗

satisfies the constraint with equality. The detailed proof can
be obtained by following the same steps as in [20].

As a result of Theorem 1, we restrict our attention to the
stationary policies in the rest of the paper.

A. Steady-State Analysis

In this section, we investigate steady-state behavior of the
Markov Chain constructed by the states st as defined in
Section II, under a reasonable stationary policy. The MC has a
unique steady state distribution if it is irreducible and positive
recurrent [24, Ch. 6].

All states in the MC are reachable from the ∆ = 1 state,
because for any k ≥ 1; if the channel state is OFF between t
and t+ k, then age increases by k with probability 1. Hence,
Pr(∆t+k = k + 1 | ∆t = 1) ≥ P kOFF . To show that the
∆ = 1 state is positive recurrent, we consider the expected
time between consecutive transmissions. If the expected time
is infinite, then the average energy cost would be 0 and such a
policy would obviously be inferior to the ones that satisfy the
constraint in (4) with equality. If the expected time between
the transmissions is finite, then expected return time to ∆ = 1
state is finite and the MC is positive recurrent. Consequently,
there are policies that lead to a steady-state distribution and we
focus on such policies. The resulting MC is illustrated in Fig.
2. We use Pr(∆ = k) to denote the steady-state probability
of the age being equal to k.

B. Structure of the Optimal Stationary Policy

In Problem 1, if there was no energy constraint (λ →
∞), the transmitter would be able to take advantage of all
transmission opportunities. Note that, if λ ≥ PON , such an
unconstrained policy is feasible (due to the infinite battery
assumption, the transmitter will never have to idle at a trans-
mission opportunity.) Any policy that misses a transmission
opportunity can only do worse, because in any sample path of
the channel state process consisting of random realizations of
ON and OFF slots, the age graph of a policy that exploits all
the ON slots will be dominated by any other feasible age plot.
That is, as the zero wait policy brings the age down to unity
at all ON slots, its age will be below or equal to that of any
other feasible age graph attainable on the same sample path.
Therefore, unlike in [8], [18], in the case that λ ≥ PON , the
optimal policy is a zero-wait policy.

Having made this observation, for the rest of the paper, we
focus on the nontrivial case λ < PON . In the following, we
show the optimality of a threshold policy that fully utilizes the
energy constraint for remaining cases:

Theorem 2. Let Θ be an integer for which there exists a
stationary policy, π∗, such that

(i) Pr(a = 1 | ∆ < Θ, C = ON) = 0

(ii) Pr(a = 1 | ∆ > Θ, C = ON) = 1

(iii) Pr(a = 1 | C = OFF ) = 0

(iv) Pr(a = 1) = λ
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Figure 2. Markov chain representation of the joint age and channel state, where aj stands for the probability of transmitting when age is equal to j and the
channel is ON. Green arrows represent transitions from successful tranmsissions and red arrows indicate otherwise.

when π∗ is employed. Then, π∗ is optimal for Problem 1 such
that for any stationary policy π;

∆π(s0) ≥
∞∑
k=1

g(k)h(k) (5)

where h(k) is defined as:

h(k) =

{
λ, k ≤ Θ

(1− λΘ)PONP
k−Θ−1
OFF , k ≥ Θ + 1

(6)

Furthermore, (5) is tight when π ≡ π∗.

In this theorem, the optimal age penalty and the properties
of the optimal policy are stated. The first two conditions on π∗

suggest a threshold policy, while the latter conditions ensure
that the policy does not waste energy.

Before laying out the proof of the theorem, we investigate
the steady state distribution of the AoI. At any time t, the
relation between Pr(∆t = k) and Pr(∆t+1 = k + 1) can be
derived using (1):

Pr(∆t+1 = k + 1) = Pr(∆t = k)(1− PON Pr(at = 1 | st = (k,ON)))

(7)

As we restrict attention to stationary policies (without loss of
optimality, by Thm. 1), the above equation can be rewritten
as:

Pr(∆ = k + 1)

Pr(∆ = k)
= 1− PON Pr(a = 1 | s = (k,ON)) (8)

From (8), Pr(∆ = k+1) ≤ Pr(∆ = k) and therefore the PMF
of AoI at steady state is monotonic. The following Lemma
uses the monotonicity to establish a lower bound on the age
violation probability.

Lemma 1. For any γ ∈ Z+,

Pr(∆ ≥ γ + 1) ≥ 1− λγ (9)

with equality if and only if
(i) Pr(a = 1 | ∆ < γ,C = ON) = 0

(ii) Pr(a = 1 | C = OFF ) = 0
(iii) Pr(a = 1) = λ

Proof. The state of ∆ = 1 corresponds one-to-one to the
successful transmissions by the transmitter and the probability
of a transmission occurring on average must not be greater
than λ. Hence,

Pr(∆ = 1) ≤ Pr(a = 1) ≤ λ (10)

Equality in (10) holds iff1 a successful transmission happens
with probability λ at steady state. In other words, the energy
constraint shall be fully utilized and available energy shall
not be wasted on transmitting while the channel is OFF,
corresponding to the second and third properties. Due to the
monotonicity, Pr(∆ = k) ≤ λ for any k as a result of (10).
Finally,

Pr(∆ ≥ γ + 1) = 1−
γ∑
k=1

Pr(∆ = k) ≥ 1− λγ (11)

Equality in (11) holds iff Pr(∆ = k) = λ for all k < γ.
In order for this to happen, there must be no successful
transmission while the age is smaller than γ due to (8),
yielding the first condition.

Lemma 1 describes a lower limit on the age violation
probabilities for small violation thresholds. If γ is larger than

1if and only if
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1/λ, then 1 − λγ would be negative and the inequality in
Lemma 1 would be loose. In order to support larger violation
thresholds, we present Lemma 2.

Lemma 2. For any γ,m ∈ Z+; if γ > m, then

Pr(∆ ≥ γ + 1) ≥ P γ−mOFF (1− λm) (12)

with equality if and only if

(i) Pr(a = 1 | ∆ < m,C = ON) = 0

(ii) Pr(a = 1 | ∆ > m,C = ON) = 1

(iii) Pr(a = 1 | C = OFF ) = 0

(iv) Pr(a = 1) = λ

Proof. Let k be an arbitrary positive integer. If the channel
state is OFF and AoI is k at time t, AoI at time t+ 1 is k+ 1
with probability 1. Therefore,

POFF Pr(∆ = k) ≤ Pr(∆ = k + 1) (13)

Through induction, we can show that for any r ∈ Z+,

P rOFF Pr(∆ = k) ≤ Pr(∆ = k + r) (14)

holds. Using this property, following relation between Pr(∆ ≥
k + 1) and Pr(∆ = k) is obtained:

Pr(∆ ≥k + 1) =

∞∑
r=1

Pr(∆ = k + r)

≥
∞∑
r=1

P rOFF Pr(∆ = k) =
POFF
PON

Pr(∆ = k)

(15)

The fact that Pr(∆ ≥ k)−Pr(∆ ≥ k + 1) = Pr(∆ = k) can
be used to rewrite (15) as:

POFF Pr(∆ ≥ k) ≤ Pr(∆ ≥ k + 1) (16)

Through induction,

P rOFF Pr(∆ ≥ k) ≤ Pr(∆ ≥ k + r) (17)

follows for any r ∈ Z+. From Lemma 1,

Pr(∆ ≥ m+ 1) ≥ 1− λm (18)

For k = m+ 1 and r = γ −m in (17), we obtain:

Pr(∆ ≥ γ + 1) ≥ P γ−mOFF Pr(∆ ≥ m+ 1) ≥ P γ−mOFF (1− λm)
(19)

Equality holds in (13) iff a transmission happens with proba-
bility 1 at s = (k,ON) state. Equality in (14)-(17) holds iff a
transmission always takes place when the channel state is ON
and the AoI is greater than or equal to k. Due to the choice of
k = m+1, (ii) is required for an equality. Rest of the equality
conditions follow from (18) and Lemma 1.

Finally, we prove Theorem 2 using Lemmas 1 and 2.

Proof of Theorem 2. Expected age penalty can be written in
terms of the steady state probabilities of ∆:

lim
T→∞

1

T
E

[
T∑
t=1

g(∆t)

]
=

∞∑
k=1

g(k) Pr(∆ = k)

=

∞∑
k=1

g(k)(Pr(∆ ≥ k)− Pr(∆ ≥ k + 1))

= g(1) +

∞∑
k=1

(g(k + 1)− g(k)) Pr(∆ ≥ k + 1)

(a)

≥ g(1) +

Θ∑
k=1

(g(k + 1)− g(k))(1− λk)

+

∞∑
k=Θ+1

(g(k + 1)− g(k))(1− λΘ)P k−Θ
OFF

= λ

Θ∑
k=1

g(k) + (1− λΘ)PON

∞∑
k=Θ+1

g(k)P k−Θ−1
OFF

(20)

where (a) follows from Lemma 1 and Lemma 2.

Corollary 1. If the function g is strictly increasing, then
equality in (5) holds if and only if the conditions (i)-(iv) are
satisfied. In this case, π∗ becomes the optimal stationary policy
and π∗ is unique.

C. Derivation of the Threshold

In the previous section, we showed what the transmission
probabilities should be under an optimal policy, except that
we did not find the value of Θ. We also did not reveal the
transmission probability of π∗ when the age is equal to Θ.
In this section, we fully derive the policy π∗ that satisfies the
conditions of Theorem 2. This policy is expressed in Theorem
3.

Theorem 3. The optimal policy π∗ for Problem 1 under IID
channel states is a randomized threshold policy, which can be
written as:

π∗(at = 1 | st = (∆t, Ct)) =

 1, ∆t > Θ and Ct = ON
pΘ, ∆t = Θ and Ct = ON
0, ∆t < Θ or Ct = OFF

(21)

where threshold Θ and randomization coefficient pΘ are given
as:

Θ =

⌊
1 +

1

λ
− 1

PON

⌋
(22)

pΘ = Θ−
(

1

λ
− 1

PON

)
(23)

Proof. In the proof, we shall derive the values of Θ and pΘ.
Note that there can be two different choices of thresholds
depending on whether pΘ ∈ [0, 1) or pΘ ∈ (0, 1]. We assume
pΘ ∈ (0, 1] without loss of generality to ensure that there
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PON
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Figure 3. State diagram under the threshold policy

exists a unique threshold and a unique set of parameters as a
result of our analysis.

In Fig. 3, the state diagram for the policy above is illus-
trated. Corresponding state transition probabilities and total
probability equation are as follows:

Pr(∆ = k) = Pr(∆ = 1) if k ≤ Θ (24)

Pr(∆ = Θ + 1) = Pr(∆ = Θ)(1− pΘPON ) (25)

Pr(∆ = k) = Pr(∆ = k − 1)POFF if k ≥ Θ + 2 (26)

∞∑
k=1

Pr(∆ = k) = 1 (27)

Note that the probability of making a succesful transmission
and returning to the state ∆ = 1 is zero while the age is less
than Θ, leading to (24). We obtain a closed-form solution of
Pr(∆ = k) by solving these equations together, with the first
element of the series being equal to:

Pr(∆ = 1) =
1

Θ− pΘ + 1
PON

(28)

Due to the conditions (iii) and (iv) in Theorem 2, Pr(∆ =
1) = λ. Therefore,

1

Θ− pΘ + 1
PON

= λ (29)

Finally, we use the fact that Θ is an integer and pΘ ∈ (0, 1]
to derive the unknown parameters as in (22) and (23).

Corollary 2 (Optimal Age Violation Probability). If g function
is set as g(∆) = u(∆−γ) where u(·) is the unit step function
such that u(x) = 1x>0, expected age penalty would be equal
to the age violation probability with a violation threshold γ.
The optimal threhold policy π∗ derived in Theorem 3 mini-
mizes the age violation probability and optimal age violation
probability can be computed in closed form as in the following:

Pr(∆ > γ) ≥
{

1− λγ, γ ≤ Θ

P γ−Θ
OFF (1− λΘ) , γ ≥ Θ.

(30)

Corollary 3 (Optimal Time Average AoI). The threshold
policy π∗ derived in Theorem 3 minimizes the time average
AoI, when g function is set as the identity function such that

g(∆) = ∆. Then, optimal time average AoI can be computed
in closed form as in the following:

lim
T→∞

1

T
E

[
T∑
t=1

∆t

]
≥ 1

PON
+ λΘ

(
1

λ
− 1

PON
− Θ− 1

2

)
.

(31)

IV. OPTIMAL POLICY FOR TIME CORRELATED
MARKOVIAN CHANNELS

In this section, we alter the system model and extend our
analysis to the case of Markovian channels. In this case, the
channel states evolve as in (3). The optimal policy for this
model is given in the following:

Theorem 4. The optimal policy π∗ for Problem 1 under
Markovian channel states is a randomized threshold policy,
which can be written as:

π(at = 1 | st = (∆t, Ct)) =

 1, ∆t > Θ and Ct = ON
pΘ, ∆t = Θ and Ct = ON
0, ∆t < Θ or Ct = OFF

(32)

where the age threshold Θ is the greatest integer that satisfies
the following inequality:

θ − caθ ≤ b (33)

where

a = 1− p10 − p01

b =
1

λ
− 1

p01
+

1

p01 + p10

c =
1

p01
− 1

p01 + p10

and the randomization coefficient pΘ is:

pΘ =
b− θ + caθ

1 + caθ − caθ+1
(34)

We defer the proof of this theorem to the full version of this
paper [25]. Note that in the special case of p01 + p10 = 1, the
channel states become IID and Theorem 4 becomes identical
to Theorem 3.
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Figure 4. Age violation probability vs average energy rate

V. NUMERICAL RESULTS

We compare the performance of our threshold policy to
a uniform transmission policy that performs a transmission
at any time with probability λ

PON
while the channel state is

ON. The value of λ
PON

is chosen such that the time average
energy constraint is fully utilized by both policies and a fair
comparison can be made, however, two policies converge to
a zero-wait policy as λ approaches PON with diminishing
differences in terms of performance. Note that, we assume
λ to be smaller than PON , as explained in Section III-B.

We run Monte Carlo simulations for 106 time slots with 100
iterations and for PON = 0.5. Fig. 4 depicts the age violation
probability of the optimal threshold policy and uniform trans-
mission policy for a violation threshold of 15 time slots. We
observe that the age violation probability is reduced substan-
tially compared to the uniform policy, especially when λ is
between 0 and PON and far from both extremes. The results
were verified to be consistent with the theoretical findings.
In Fig. 5, the optimal time average age penalty is illustrated
for linear (g(∆) = ∆) and exponential (g(∆) = 1.5∆−1) age
penalty functions. We observe that optimal average age penalty
changes linearly when the threshold Θ stays fixed within a
limited range of λ, however, the plots resemble a geometrical
decay over a long range of λ in which Θ changes with λ, as
in Fig. 4.

VI. CONCLUSION

We designed a point-to-point information retrieval policy
that minimizes a generalized age penalty, on a binary ON/OFF
channel with a power constrained information pulling receiver.
Modeling the problem as a CMDP, we showed that there
exists a threshold policy that is optimal for the problem.
We computed the threshold. The optimal time average Age
of Information and age violation probabilities were found
as corollaries to our main findings. We also unveiled an

Figure 5. Time average age penalty under different penalty functions

optimal policy for temporally correlated channels. Finally, we
illustrated the performance impact of using this age-optimized
policy, by comparing it to a benchmark uniform policy with
the same energy expenditure. In the future, learning scenarios
can be explored where the channel status information is not
available at the nodes.
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