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Abstract—Throughput extremization is an important facet of
performance modeling for low-power wide-area network (LP-
WAN) wireless networks (e.g., LoRaWAN) as it provides insight
into the best and worst case behavior of the network. Our
previous work on throughput extremization established lower
and upper bounds on throughput for random access channel
assignment over a collision erasure channel in which the lower
bound is expressed in terms of the number of radios and
sum load on each channel. In this paper the lower bound is
further characterized by identifying two local minimizers (a load
balanced assignment and an imbalanced assignment) where the
decision variables are the number of radios assigned to each
channel and the total load on each channel. A primary focus is
to characterize how macro-parameters of the optimization, i.e.,
the total number of radios, their total load, and the minimum
load per radio, determine the regions under which each of the
local minimizers is in fact the global minimizer.

Index Terms—wireless; random access; throughput; channel
assignment; optimization.

I. INTRODUCTION

Hallmark traits of wide-area Internet of Things (IoT) net-
works include: i) a large number of low cost, low power, and
long range radios, utilizing random access transmissions to an
access point (AP) and ii) the opportunity for the AP to assign
these radios to separate wireless channels. As the offered load
increases, it is evident that the system performance, measured
in this paper as the AP’s expected throughput, will depend
upon how the radios are assigned to the available channels.

The investigation is motivated in part by currently deployed
IoT systems commonly termed Low Power Wide Area Net-
works (LPWANs). The LoRaWAN random access medium
access control (MAC) protocol, for example, supports 64
channels, each with a spreading factor between 7 and 12.

A. System model and results summary

Extending prior work by the authors [1], [2], the following
system aspects are assumed: (see Fig. 1):
• The AP assigns each radio to one channel, and the

channels are independent and identically distributed;
• Each radio has an infinite backlog of packets for uplink

to the AP, i.e., the transmission queue is never empty;

Support from the National Science Foundation through awards CNS-
1730140, CNS-1816387, and CNS-1828236 is gratefully acknowledged. The
contact author is S. Weber.

Fig. 1. The multi-channel random access erasure collision channel consists
of i) N radios employing random access transmissions, with contention
probability pi; ii) each radio assigned to one of M uplink erasure channels
with nonerasure probability qij ; and iii) a single AP at which simultaneous
arrivals of multiple packets on a channel are lost, but single packet arrivals
on separate channels are successfully received.

• The contention and message nonerasure probability of
each radio on the network is independent across radios,
channels, and time, and independent across time;

• All transmission attempts are synchronized to a common
clock and have common duration;

• The arrival at the AP of multiple packets on a given
channel leads to collision and loss of all such packets,
but single packet arrivals on separate channels are each
successfully received.

Motivated by providing more tractable lower and upper bounds
on the difficult combinatorial optimization problem of assign-
ing heterogeneous users (radios) to channels so as to extremize
throughput of the given multi-channel random access system
(§III-C), the paper is focused on the minimization of the
average per-channel expected throughput lower bound T

¯
(n, µ)

in Cor. 1. Specific contributions include:

• Partial characterization of the optimal quasi-uniform al-
location in the many small users regime (Prop. 2);

• Partial characterization of optimality between balanced
and imbalanced allocations over two channels (Prop. 5).
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B. Previous and related work

Previous work by the authors focused on i) extremizing
throughput bounds for a single channel M = 1 [1] and ii)
finding preliminary results for the two channel scenario [2].
The latter paper introduced both lower and upper bounds on
the system throughput which translated the associated channel
assignment problem from a combinatorial problem to a lower
dimensional nonlinear program (NLP). The contribution of this
paper is to partially characterize the minimization of the lower
bound on system throughput.

Related work on throughput optimization of multi-channel
random access systems is too extensive to meaningfully
summarize here, and so only a small number of the most
relevant references known to the authors are mentioned here.
Maximizing throughout through distributed price signalling in
non-cooperative game was investigated in [3]. Slotted Aloha
in which a radio continues to transmit until a collision occurs
is considered in [4]. A seminal work on coordinated and
uncoordinated throughput maximization, focused on machine
to machine (M2M) communications is presented in [5]. Fur-
thermore, a joint optimization technique based on spreading
factor (SF) assignment, energy harvesting (EH) time duration
and transmit power to maximize minimum throughput in
LoRa networks was investigated in [6]. A Bayesian online
backoff algorithm was proposed for studying throughput and
random access delay distribution of unslotted ALOHA systems
in LPWAN setting in [7]. An optimal resource allocation
policy based on spectrum map and radio conditions in the
LoRaWAN setting is studied in [8]. A mathematical model
which accurately estimates how packet error rate depends on
the offered load is proposed in [9]. Network level performance
under the ALOHA protocol using autonomous sensing scheme
allowing independent transmissions of CR users is investigated
in [10]. Random Access Technology (RAT) selection for het-
erogeneous networks (HetNet) using a non-cooperative game
framework is proposed in [11].

C. Outline

The rest of this paper is organized as follows: the system
model is defined in §II, the throughput bounds are reviewed in
§III, throughput minimization in the many small users regime
is addressed in §IV, minimization over M = 2 channels is
addressed in §V, numerical results are given in §VI, and a
conclusion is in §VII. Some proofs are in the Appendix. Table
I summarizes the most common notation.

II. THE RANDOM ACCESS ERASURE COLLISION CHANNEL

The model is from [1], [2]. RV denotes random variable
and IID denotes independent and identically distributed.

General Notation. Let a ≡ b denote equal by definition.
Write [m : n] ≡ {m, .., n} for m,n ∈ N and [n] for [1 : n].

Radios, users, and uplink channels. There are N ∈ N radios,
indexed by i ∈ [N ], each with a wireless uplink to a shared
access point (AP) or base station (BS). Radios are henceforth
termed users. The users and AP have M ∈ N independent
and identically distributed uplink channels. The AP assigns a

TABLE I
SUMMARY OF NOTATION.

Notation Interpretation

M # channels provided by access point (AP)
N # users to be served by AP
Σ sum offered load across all users
R ≡ Σ/M average per-channel load
X
¯

minimum load of a user
X̄ maximum load of a user
Nj users i assigned to channel j
xj = (xij , i ∈ Nj) loads of users assigned to channel j
τ(xj) expected throughput on channel j
µ(xj) average per-user load on channel j
π(xj) congestion on channel j
τ
¯
, τ̄ bounds on per-channel throughput
x = (xj , j ∈ [M ]) user loads assigned to each channel
T (x) average per-channel expected throughput
T
¯
, T̄ bounds on average per-channel throughput

(n, µ) # users and average load for each channel
A feasible set of (n, µ) chanel assignments
Pmin,Pmax combinatorial channel assignment problems
P
¯
, P̄ nonlinear optimization problems

channel j ∈ [M ] to each user i ∈ [N ] and (user, channel)
indices are denoted as (i, j). All packets are the same size, all
transmission have the same duration, and time is slotted into
synchronized packet transmission slots.

Channel erasures. The uncertainty of the wireless channel is
modeled by Bernoulli RVs where qi ∈ (0, 1) is the probability
of non-erasure of a transmission from user i on any channel j,
i.e., any (i, j) message arrives intact at the AP with probability
qi or is corrupted / dropped / lost with probability 1 − qi.
Erasure channels are independent across users, channels, and
time, and are identically distributed across channels and time.

Channel collisions. The AP is subject to collisions in each
time slot on each channel, i.e., i) multiple packets arriving in
the same time slot on the same channel are all lost, but ii) all
packets that are the unique packet arriving on their channel in
a time slot are successfully received.

Contention. Each user i ∈ [N ] is assumed to have a infinite-
backlog of packets for transmission and random access chan-
nel contention. The decision to access the channel randomly
by a user is IID across time and decisions in a given time
slot are independent. The contention probability for user i is
defined as pi ∈ (0, 1) and p = (pi, i ∈ [N ]) is the contention
probability vector for N users. The contention probability is
a design parameter to be optimized in order to extremize the
throughput. As shown in §III-A, the parameter pi is wrapped
into design parameter xi.

III. THROUGHPUT AND THROUGHPUT BOUNDS

The throughput bounds below are from prior work [1], [2].

A. Single channel throughput

Let Nj ≡ (i1, . . . , inj ) ⊂ [N ] be the indices of the nj
users assigned to channel j ∈ [M ]. For user i ∈ Nj , the
probability of a message successfully arriving at the AP is
rij ≡ pijqij . The expected throughput of the AP on channel
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j is the probability of a single message arriving at the AP on
that channel in a given time slot, i.e.,

τ(rj) ≡
∑
i∈Nj

rij
∏

i′∈Nj\i

(1− ri′j) (1)

with rj ≡ (rij , i ∈ Nj) . The change of variables

xij ≡
rij

1− rij
, i ∈ Nj , (2)

describes the offered load xij from user i on channel j and
xj ≡ (xij , i ∈ Nj) is the collection of user loads on the
channel. The channel j expected throughput in terms of xj is

τ(xj) ≡
njµ(xj)

π(xj)
=
njµj
πj

(3)

where

µj = µj(xj) ≡
1

nj

∑
i∈Nj

xij , πj = π(xj) ≡
∏
i∈Nj

(1 + xij).

(4)
The quantities µj , πj are the average per-user (offered) load
and channel congestion on channel j, respectively. Further-
more, define the minimum x

¯ j
≡ mini xij and maximum

x̄j ≡ maxi xij individual user load on each channel j.

Proposition 1 ([1]). With the notation above, the single
channel throughput has lower and upper bounds

τ
¯

(nj , µj) ≤ τj(xj) ≤ τ̄(nj , µj , x¯ j
, x̄j), (5)

where,

τ
¯

(nj , µj) ≡ njµj
(1 + µj)nj

(6)

τ̄(nj , µj , x¯ j
, x̄j) =

njµj

(1 + x
¯ j

)
nj

x̄j−µj
x̄j−x¯ j + (1 + x̄j)

nj
µj−x¯ j
x̄j−x¯ j

Remark 1 (Bound interpretation). The lower bound asserts
throughput is minimized by load homogenization: given only
summary statistics (nj , µj) on the actual heterogeneous per-
user loads xj , the worst-case throughput is achieved by the
homogenized load in which each user has identical load
µj . Similarly, the upper bound asserts throughput is maxi-
mized by load extremization: given only summary statistics
(nj , µj , x¯ j

, x̄j) on the actual heterogeneous per-user loads
xj , the best-case throughput is achieved by setting all users
to have load either x

¯ j
or x̄j , with the number of each type

such that there are nj users with average per-user load µj .

B. Average multiple channel throughput

Recall the per-channel quantities from §III-A:
(nj , xj , µj , x¯ j

, x̄j). Collect them into lists, for j ∈ [M ]:

n ≡ (nj), x ≡ (xj), µ ≡ (µj), x¯
≡ (x

¯ j
), x̄ ≡ (x̄j). (7)

As channels are homogeneous and independent, it follows that
the expected throughput per channel of the AP is:

T (x) ≡ 1

M

∑
j∈[M ]

τ(xj). (8)

The following corollary is immediate.

Corollary 1 ([2]). With the notation above, the AP’s average
per-channel expected throughput has lower and upper bounds

T
¯

(n, µ) ≤ T (x) ≤ T̄ (n, µ, x
¯
, x̄). (9)

where

T
¯

(n, µ) ≡ 1

M

∑
j∈[M ]

τ
¯

(nj , µj)

T̄ (n, µ, x
¯
, x̄) ≡ 1

M

∑
j∈[M ]

τ̄(nj , µj , x¯ j
, x̄j). (10)

Observe, by construction, N =
∑
j∈[M ] nj for any channel

assignment N . Define the sum, minimum, and maximum
offered load (Σ(x), X

¯
(x), X̄(x)), where

Σ = Σ(x) ≡
∑
j∈[M ]

njµj =
∑
ij

xij

X
¯

= X
¯

(x) ≡ min
j∈[M ]

x
¯ j

= min
ij

xij

X̄ = X̄(x) ≡ max
j∈[M ]

x̄j = max
ij

xij (11)

System parameters (M,N,Σ, X
¯
, X̄) satisfy

1 ≤M < N, 0 ≤ X
¯
≤ Σ

N
≤ X̄. (12)

In words: i) Σ/N ∈ [X
¯
, X̄] ensures Σ is sufficient to serve

all N users a load of at least X
¯

but no more than X̄ , and ii)
M < N is because it is trivial to avoid channel contention
when N ≤M by assigning each user to its own channel.

C. Assignment and bound extremization

It is of interest to understand the impact of channel as-
signment on T (x) (8). As described, the AP has M channels
available to serve N users, where N > M and typically
N �M .

The N users have offered loads x = (xi, i ∈ [N ]), and
an assignment N = (Nj , j ∈ [M ]) partitions [N ] into M
disjoint subsets, resulting in per-channel offered loads xN =
(xNj , j ∈ [M ]), which in turn results in per-channel expected
throughputs (τ(xNj ), j ∈ [M ]) in (3) and a sum expected
throughput T (xN ) in (8). As the assignment N determines the
average per-channel expected throughput T (xN ), the channel
assignment problems are the combinatorial optimizations

Pmin : min
N

T (xN ) Pmax : max
N

T (xN ). (13)

The simple upper bound on the number of possible assign-
ments is NM , which is infeasibly large even for moderate
values of (M,N) in practical scenarios. Structural properties
of the expected sum throughput function T (·) that would
enable an efficient solution or approximation of problems
Pmin,Pmax may exist but are not evident to the authors.
Instead, the authors analyze the nonlinear optimization prob-
lems associated with the expected sum throughput bounds.
The system parameters (M,N,Σ, X

¯
, X̄), viewed as given
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exogenously, determine the set of feasible (n, µ) values, as
defined below.

Definition 1. Given system parameters (M,N,Σ, X
¯
, X̄)

obeying (12), the set A holds all feasible (n, µ) values:

A =

(n, µ) :
∑
j∈[M ]

nj = N,
∑
j∈[M ]

njµj = Σ, (14)

X
¯
≤ min
j∈[M ]

µj ≤ max
j∈[M ]

µj ≤ X̄, 1 ≤ min
j∈[M ]

nj

}
.

The requirement 1 ≤ minj∈[M ] nj ensures each channel is
utilized by at least one user. With the feasible set A defined,
it is natural to consider the extremization of the bounds on the
average per-channel expected throughput:

P
¯

: min
n,µ∈A

T
¯
(n, µ) P̄ : max

n,µ∈A
T̄ (n, µ). (15)

The four problems (P
¯
,Pmin,Pmax, P̄) have ordered values:

min
n,µ∈A

T
¯
(n, µ) ≤ min

N
T (xN ) ≤ max

N
T (xN ) ≤ max

n,µ∈A
T̄ (n, µ).

(16)
This paper offers partial analysis of the minimization of P

¯
un-

der different regimes of the exogenous parameters (N,M, X̄)
in the following sections.

IV. THROUGHPUT LOWER BOUND MINIMIZATION IN THE
MANY SMALL USERS REGIME

The many small users regime is defined as the limit as N ↑
∞ while holding (M,Σ) fixed. The term small is due to the
average load per user Σ/N vanishing to 0. This section is
organized as follows: a parameterized set of feasible points is
defined in §IV-A, the corresponding parameterized asymptotic
throughput is given in §IV-B, and a partial characterization of
the optimal point within the class is given in §IV-C.

A. A class of feasible points parameterized by K

Fix system parameters (Σ,M,X
¯

), obeying (12). The fol-
lowing class of feasible points, puts the minimum number of
users (one) and the minimum per-user load (X

¯
) on K of the

M channels, and balances the remaining N − K users and
Σ−KX

¯
load across the remaining M −K channels.

Definition 2 (Quasi-uniform feasible points). For K ∈ [0 :
M − 1], the quasi-uniform allocation (nK , µK) is

(nKj , µ
K
j ) =

{
(1, X

¯
), j ∈ [K](

N−K
M−K ,

Σ−KX
¯N−K

)
, j ∈ [K + 1 : M ]

(17)

Such points are always feasible with respect to Def. 1:∑
j∈[M ]

nKj = K · 1 + (M −K) · N −K
M −K

= N (18)

∑
j∈[M ]

nKj µ
K
j = K1X

¯
+ (M −K)

N −K
M −K

Σ−KX
¯

N −K
= Σ

Remark 2. The focus on quasi-uniform points is motivated
in part by results in §V where, for M = 2 channels, the

throughput lower bound T
¯

is stationary for allocations that
are either load balanced (i.e., K = 0) or imbalanced (i.e.,
K = M − 1). Future work will seek to extremize T

¯
over a

broader class of points.

B. Throughput in the asymptotic many small users regime

Per (10) and Def. 2, T
¯

at (nK , µK), denoted T
¯
(K), is

T
¯
(K) ≡ T

¯
(nK , µK) =

1

M

 X
¯
K

1 +X
¯

+
Σ−X

¯
K(

1 + Σ−X
¯
K

N−K

) N−K
M−K

 .
(19)

Using limn↑∞(1 + 1/n)n = e yields the many small users
asymptotic average per-channel throughput, denoted T

¯
↑(K):

T
¯
↑(K) ≡ lim

N↑∞
T
¯
K =

1

M

[
KX

¯
1 +X

¯
+ (Σ−X

¯
K)e−

Σ−X
¯
K

M−K

]
=

M −K
M

[
X
¯

1 +X
¯

K

M −K
+

Σ−X
¯
K

M −K
e−

Σ−X
¯
K

M−K

]
(20)

Remark 3 (Feasibility and approximation accuracy). With
(M,Σ, X

¯
,K) fixed, it is evident that i) the quasi-uniform

allocations in Def. 2 are feasible for N ≤ Σ/X
¯

but infeasible
for N > Σ/X

¯
, as the per user load in channels K+1 through

M falls below the minimum of X
¯

, and ii) the accuracy of the
approximation T

¯
(K) ≈ T

¯
↑(K) is increasing in N .

The highest accuracy is at the largest feasible value of
N , i.e., N = Σ/X

¯
, where the accuracy of the throughput

approximation in channels K + 1 through M is tied to the
accuracy of the approximation (1+X

¯
)1/X

¯ ≈ e. The accuracy
of the latter is decreasing in X

¯
over (0, 1], from perfect

accuracy as X
¯
↓ 0 to a ratio of 2/e ≈ 0.73 at X

¯
= 1.

The lowest accuracy is at the smallest feasible value of N ,
i.e., N = M , where the accuracy of the throughput approxi-
mation in channels K + 1 through M is tied to the accuracy
of the approximation (1 + x)1/x ≈ e at x = x(K) = Σ−KX

¯M−K .
The accuracy of the latter is decreasing in x, and, as x(K)
is increasing in K, the accuracy is highest for K small.

In summary, the approximation accuracy is highest for N
large (i.e., near Σ/X

¯
) and improves when X

¯
is small, and

lowest for N small (i.e., near M ), but improves for K small.

Remark 4 (Connection with classic slotted Aloha throughput
analysis). The value T

¯
↑(0) corresponds to load balancing

across all M channels; the resulting asymptotic average per-
channel throughput is the classic throughput of slotted Aloha

T
¯
↑(0) = Re−R, R ≡ Σ/M. (21)

Viewing the asymptotic throughput as a function of the sum
offered load per channel R ≡ Σ/M , an elementary analysis
yields the conclusion that the asymptotic average per-channel
throughput is initially increasing then subsequently decreasing
in R, reaching the maximum asymptotic throughput of 1/e at
R = 1, i.e., when the offered load per channel is unity.
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C. Partial characterization of extremal quasi-uniform points
Recall R ≡ Σ/M is the average per-channel load. Although

K ∈ [0 : M−1] is integer-valued, for purpose of optimization
it will be treated as real-valued over the interval [0,M − 1].
A change of variables from K to Y is introduced:

Y =
Σ−X

¯
K

M −K
, i.e., K =

MY − Σ

Y −X
¯
. (22)

Per Def. 2, Y (K) is the average per-channel load over the
M −K channels not assigned the minimum per-channel load
of X

¯
. Observe Y has range [R,Σ−X

¯
(M − 1)] and, as Σ >

MX
¯

(12), X
¯
< R is not in this range.

Substitution of the variable change from K to Y (22) into
T
¯
↑(K) (20) yields, with R ≡ Σ/M

T
¯
↑(Y ) =

R−X
¯

Y −X
¯

[(
X
¯

1 +X
¯

)(
Y −R
R−X

¯

)
+ Y e−Y

]
(23)

Note T
¯
↑(Y ) has a pole at Y = X

¯
but, per above, X

¯
is not in

the range of Y , so T
¯
↑(Y ) is finite-valued for all feasible Y .

The following result gives a partial characterization of the
value of K that extremizes T

¯
↑(K).

Proposition 2. The function T
¯
↑(Y ) over Y ∈ [R,Σ−X

¯
(M−

1)] may be either increasing in Y , decreasing in Y , or may
have one or more stationary points. These stationary points,
if any, are the set of intersections

gq(Y ;X
¯

) = ge(Y ;X
¯

) (24)

of the quadratic and exponential function

gq(Y ;X
¯

) ≡ Y (Y −X
¯

) +X
¯

ge(Y ;X
¯

) ≡ X
¯

X
¯

+ 1
eY . (25)

over Y ∈ [R,Σ−X
¯

(M − 1)].

Proof: The derivative of T
¯
↑(Y ) with respect to Y is

∂

∂Y
T
¯
↑(Y ) = h1(Y ;X

¯
)h2(Y ;X

¯
, R) (26)

where

h1(Y ;X
¯

) ≡ −(X
¯

+ 1)Y 2 +X
¯

(X
¯

+ 1)(Y − 1) +X
¯

eY

h2(Y ;X
¯
, R) ≡ e−Y (R−X

¯
)

(1 +X
¯

)(Y −X
¯

)2
. (27)

As Y ≥ R > X
¯

, it follows that h2(Y ;X
¯
, R) > 0, and as

such the roots of ∂
∂Y T¯

↑(Y ), if any, are the roots of h1(Y ;X
¯

).
Rearrangement of h1(Y ;X

¯
) = 0 yields (24).

The motivation behind the change in variable from K to Y
(22) is that the stationary points of T

¯
↑(Y ) depend solely on

the value of X
¯

, not on (Σ,M). This limited dependence is
not as apparent when working directly with T

¯
↑(K).

Returning to (24), observe both gq(Y ;X
¯

) and ge(Y ;X
¯

)
are convex increasing functions, as illustrated in Fig. 2. The
figure demonstrates that up to two intersections are possible for
X
¯
< 0.774 but no intersections are possible for X

¯
> 0.774.

Recall, the intersections of (gq, ge), if any, must lie within
the image of Y , i.e., [R,Σ − X

¯
(M − 1)]. Future work will

seek to characterize regimes of the parameters (Σ,M,X
¯

) that
hold common extremal values for quasi-uniform points K.

Fig. 2. Functions gq(Y ;X
¯

) and ge(Y ;X
¯

) from Prop. 2 for X
¯

equal to
1/2 (left), 0.774 (middle), and 7/8 (right). Their intersections over Y ∈
[R,Σ−M(X

¯
− 1)], if any, determine the stationary points Y which in turn

establish the optimal quasi-uniform feasible point, K. Up to two intersections
are possible for X

¯
< 0.774 but no intersections are possible for X

¯
> 0.774.

V. THROUGHPUT LOWER BOUND MINIMIZATION WITH
M = 2 CHANNELS

Restriction to M = 2 channels is of interest because the
resulting low dimension of the feasible set A allows for
visualization and intuition that is more difficult for M > 2.
This section is organized as follows: §V-A specializes the
feasible set and objective to M = 2, §V-B introduces balanced
and imbalanced allocations, §V-C offers necessary conditions
for optimality, and §V-D gives two series approximations of
the balance to imbalance throughput difference.

A. Problem definition

Specializing the feasible set A in Def. 1 to M = 2 yields:

Definition 3. For M = 2 and X̄ = ∞ and given system
parameters (N,Σ, X

¯
) obeying (12), the feasible set A holds

all feasible (n, µ) values:

A = {((n1, n2), (µ1, µ2)) :

n1 + n2 = N

n1µ1 + n2µ2 = Σ

X
¯
≤ min(µ1, µ2)

1 ≤ min(n1, n2)}. (28)

Note that selection of (n1, µ1) determines (n2, µ2), i.e.,
there are two degrees of freedom, and as such the feasible
set is viewed on the (n1, µ1) plane.

Next, specializing the per-channel throughput lower bound,
T
¯
(n, µ) in (10) to M = 2 yields

T
¯
(n1, µ1) =

1

2

[
τ
¯
(n1, µ1) + τ

¯

(
N − n1,

Σ− n1µ1

N − n1

)]
,

(29)
where notation T

¯
(n1, µ1) replacing T

¯
(n, µ) reflects the fact

that, for M = 2, a point (n, µ) in A is determined by (n1, µ1).
The optimization problem P

¯
in (15) for M = 2 becomes

P
¯

: min
(n1,µ1)∈A

T
¯
(n1, µ1)

s.t. h1 : 1− n1 ≤ 0

h2 : n1 − (N − 1) ≤ 0

h3 : X
¯
− µ1 ≤ 0

h4 : n1(µ1 −X¯
)− (Σ−X

¯
N) ≤ 0 (30)

Constraints h1 and h2 capture min(n1, n2) ≥ 1, while con-
straints h3 and h4 capture min(µ1, µ2) ≥ X

¯
, where h4 may be
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rewritten as µ2 ≥ X¯
for µ2 = (Σ−n1µ1)/(N−n1). Observe

the feasible set defined by h1, . . . , h4 is not polyhedral, on
account of the dependence of h4 on the product n1µ1; in fact
the constraint may also be written as

µ1(n1) ≤ X
¯

+
Σ−X

¯
N

n1
. (31)

B. Balanced and imbalanced allocations

Channel allocations that load balanced and maximally im-
balanced, defined below, are of particular interest.

Definition 4 (Balanced and imbalanced allocations). The
(load) balanced allocation splits users and load equally across
the two channels:

(n1, n2) =

(
N

2
,
N

2

)
, (µ1, µ2) =

(
Σ

N
,

Σ

N

)
. (32)

The (maximally) imbalanced allocation puts one user and
minimum load on one channel, and the remaining users and
allocation on the other channel:

(n1, n2) = (1, N − 1), (µ1, µ2) =

(
X
¯
,

Σ−X
¯

N − 1

)
. (33)

The balanced and imbalanced allocations correspond to
K = 0 and K = M − 1, respectively, in Def. 2. There is no
loss in generality with the imbalanced allocation in placing
the single user on channel 1, due to the channel symmetry.

The balanced and imbalanced throughputs are

T
¯

(
N

2
,

Σ

N

)
=

Σ

2(1 + Σ
N )

N
2

(34)

T
¯
(1, X

¯
) =

1

2

[
X
¯

1 +X
¯

+
Σ−X

¯
(1 + Σ−X

¯N−1 )N−1

]
.

Definition 5 (Imbalance to balance throughput difference).
The (imbalanced to balanced) throughput difference δib,
viewed as a function of X

¯
, is defined as

δib(X¯
) ≡ T

¯
(1, X

¯
)− T

¯

(
N

2
,

Σ

N

)
(35)

=
1

2

[
X
¯

1 +X
¯

+
Σ−X

¯
(1 + Σ−X

¯N−1 )N−1
− Σ

(1 + Σ
N )

N
2

]
Observe the equivalence:

δib(X¯
) ≤ 0 ⇔ T

¯
(1, X

¯
) ≤ T

¯

(
N

2
,

Σ

N

)
δib(X¯

) ≥ 0 ⇔ T
¯
(1, X

¯
) ≥ T

¯

(
N

2
,

Σ

N

)
(36)

C. Necessary conditions for optimality of balanced and im-
balanced allocations

Proposition 3. For M = 2 and X̄ = ∞ and given system
parameters (N,Σ, X

¯
) obeying (12):

• The balanced allocation in Def. 4 is a stationary point
of Problem P

¯
(30) if

Σ ≥ N
(

eW( 2
N ) − 1

)
, (37)

where W denotes the Lambert W function, satisfying
W (x)eW (x) = x.

• The imbalanced allocation in Def. 4 is a stationary point
of Problem P

¯
in the limit as X

¯
↓ 0.

The proof is in the Appendix.

Proposition 4. For M = 2 and X̄ = ∞ and given system
parameters (N,Σ) obeying (12), the imbalanced allocation
has smaller expected throughput than the balanced allocation
in the limit as X

¯
↓ 0.

Proof: The function f(n;x) ≡ (1 + x/n)n is increasing
in n. As such, from Def. 5,

2

Σ
lim
X
¯
→0

δib(X¯
) =

1

(1 + Σ
N−1 )N−1

− 1

(1 + Σ
N )

N
2

< 0. (38)

From (36), limX
¯
↓0 T¯

(1, X
¯

) ≤ T
¯
(N/2,Σ/N).

As X
¯
↓ 0, the imbalanced allocation becomes a single

channel (M = 1) system, and as such its lower throughput
relative to a balanced (M = 2) system in Prop. 4 reflects the
increased throughput achievable with an additional channel.

D. Series approximation of the balance to imbalance through-
put difference

Consider the (N,Σ) plane, and define the regions:

Ri(X¯
) ≡ {(N,Σ) : δib(X¯

) < 0}
Rb(X¯

) ≡ {(N,Σ) : δib(X¯
) > 0} (39)

where regions Ri(X¯
),Rb(X¯

) have boundary

∆ib(X¯
) ≡ {(N,Σ) : δib(X¯

) = 0}. (40)

As solution of δib(X¯
) = 0 is difficult, the first two Taylor

series approximations in X
¯

around X
¯

= X are employed:

δ̄ib(X¯
) = δib(X) + δ′ib(X)(X

¯
−X) +R1(X)

δ
¯ib

(X
¯

) = δib(X) + δ′ib(X)(X
¯
−X)

+
1

2
δ
′′

ib(X)(X
¯
−X)2 +R2(X) (41)

The first two derivatives of δ′ib (Def. 5) with respect to X
¯

are

δ′ib(X¯
) =

1

2

[
1

(1 +X
¯

)2
+

(N − 2)(Σ−X
¯

)− (N − 1)

(N − 1)(1 + Σ−X
¯N−1 )N

]
(42)

δ
′′

ib(X¯
) =

1

2

[
−2

(1 +X
¯

)3
+

(N − 2)(Σ−X
¯

)− 2(N − 1)

(N − 1 + Σ−X
¯

)(1 + Σ−X
¯N−1 )N

]
and the Lagrange error for the kth-order Taylor series approx-
imation is defined as

Rk(X) ≡
δ

(k+1)
ib (X)

(k + 1)!
(X

¯
−X)k+1. (43)

Proposition 5. The first (δ̄ib) and second (δ
¯ ib

) Taylor series
approximations (41) upper and lower bound the throughput
difference δib(X¯

) (Def. 5):

δ
¯ ib

(X
¯

)
(a)

≤ δib(X¯
)

(b)

≤ δ̄ib(X¯
), (44)
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Fig. 3. Two regions on the (N,Σ) plane: i) The system parameter require-
ment NX

¯
≤ Σ ≤ NX̄ (12) for (N,X

¯
, X̄) = (40, 0.3, 0.7) (blue); ii)

Region satisfying (37) in the necessary conditions from Prop. 3 for balanced
allocations to be stationary solutions of optimization problem P

¯
(30, gold).

Fig. 4. Top: Two regions on the (N,Σ) plane: i) The system parameter
requirement NX

¯
≤ Σ ≤ NX̄ (12) for (N,X

¯
, X̄) = (40, 0.3, 0.7)

(blue); ii) the region satisfying the condition Σ ≥ 3N/(N − 2) required
for the ordering of the two series approximations (Prop. 5, gold). Bottom:
Three regions on the (N,Σ) plane: i) The system parameter requirement
NX

¯
≤ Σ ≤ NX̄ (12) for (N,X

¯
, X̄) = (40, 0.3, 0.7) (red);ii) the regions

where balanced (Rb(X
¯

), light green) and imbalanced (Ri(X¯
), dark green)

allocations have smaller throughput (39). The four blue points are the four
(N,Σ) pairs used in Fig. 5 and 6. Also shown are the linear and quadratic
lower and upper bounds on the boundary ∆ib(X

¯
) (40) from Prop. 5 (with

the series taken around the point X = 1/10)

where (a) holds provided X ≤ X
¯

and (b) holds provided X ≤
X
¯

and Σ ≥ 3N/(N − 2). Under these conditions, solutions
of the corresponding linear and quadratic equations

δ
¯ ib

(X
¯

) = 0, δ̄ib(X¯
) = 0 (45)

yields lower and upper bounds on the boundary ∆ib(X¯
) (40),

defined by the nonlinear equation δib(X¯
) = 0.

The proof is in the Appendix.

Fig. 5. Imbalance to balance throughput difference function δib(X
¯

) (Def. 5)
vs. X

¯
and its linear (δ

¯ib
) and quadratic (δ̄ib) bounds from Prop. 5 for (N,Σ)

pairs highlighted in blue in Fig. 4: (10, 5) for left and (30, 12) for right.

Fig. 6. Contour plots of T
¯
(n1, µ1) (29) on the (n1, µ1) plane for the four

(N,Σ) pairs highlighted in blue in Fig. 4: (10, 5) (top left), (17, 7) (top
right), (30, 12) (bottom left), and (37, 20) (bottom right). The imbalanced
allocation (1, X

¯
) achieves minimum throughput for the top figures, while

the balanced allocation (N/2,Σ/N) achieves minimum throughput for the
bottom figures (red points).

VI. NUMERICAL RESULTS

Numerical results are shown in Figures 3 through 6. All
plots in this section are for the M = 2 analysis in §V.
Although the analysis in the preceding sections assumed
X̄ = ∞, in this section a value of X̄ = 0.7 is used. Other
default values include X

¯
= 0.3 and N = 40.

Fig. 3 shows the region under which the balanced allocation
is a stationary solution of optimization problem P

¯
(30, gold)

as discussed in Prop. 3 while the blue region shows the set of
feasible parameters NX

¯
≤ Σ ≤ NX̄ (12).

Fig. 4 top shows the set of feasible parameters NX
¯
≤

Σ ≤ NX̄ in blue along with the region satisfying the
condition Σ ≥ 3N

N−2 for δib(X¯
) to be bounded by it linear

and quadratic approximations as discussed in Prop. 5 in gold.
The bottom plot shows the boundary ∆ib(X¯

) (40), shown as
the blue curve, that delineates the regions Ri(X¯

) and Rb(X¯
)

(39) in which the imbalanced and balanced throughputs have
lower throughput, respectively. For any (N,Σ) pair in the
region Ri(X¯

), the imbalanced allocation is the global extrema
while and any (N,Σ) pair in Rb(X¯

) signifies that balanced
allocation is the global extrema. It also shows i) the four
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(N,Σ) pairs used in Fig. 5 and 6 and ii) the linear (upper)
and quadratic (lower) bounds on the boundary ∆ib(X¯

) (40)
from Prop. 5. The four (N,Σ) pairs are chosen such that 2 of
them lie in Ri(X¯

) and other two in Rb(X¯
) in order to show

the existence of 2 distinct global extremas.
Fig. 5 shows the imbalance to balance throughput difference

function δib(X¯
) (Def. 5) vs. X

¯
and its linear (δ

¯ib
) and

quadratic (δ̄ib) bounds from Prop. 5: the absence of a root
in the top figure means δib(X¯

) < 0 for all feasible X
¯

, while
a root near X

¯
= 0.08 is evident in the bottom figure.

Fig. 6 shows four contour plots of T
¯
(n1, µ1) on the (n1, µ1)

plane, for the four (N,Σ) points shown in Fig. 4. The top
(bottom) two plots show the imbalanced (balanced) allocation
minimizes throughput over the feasible set, respectively.

VII. CONCLUSION

The performance of multi-channel random access systems
serving heterogeneous users depends upon the user to channel
assignment, but the corresponding combinatorial optimization
problems (13) are difficult to solve. This motivates the in-
troduction of nonlinear optimization problems that provide
lower and upper bounds (15). Focusing on the lower bound, P

¯
,

this paper analyzed the problem in two regimes: i) the many
small users regime (N ↑ ∞) in §IV, and ii) the two channel
(M = 2) case in §V. The focus is on throughput comparison
among quasi-uniform allocations (Def. 2) or between balanced
and imbalanced allocations (Def. 4), where the results are in
terms of solutions of nonlinear equations (Prop. 2) or Taylor
series approximations of nonlinear equations (Prop. 5).

Ongoing and future work will continue to investigate the
optimization problems P

¯
, P̄ (15), with the focus on character-

izing the optimal allocations (n, µ) as a function of the system
parameters (M,N,Σ, X

¯
, X̄).
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APPENDIX

Only proof sketches are included due to space constraints.

A. Proof of Prop. 3

Proof: The Lagrangian for (30) is used to establish KKT
conditions, i.e., primal and dual feasibility and complementary
slackness. For the balanced point (n1, µ1) = (N/2,Σ/N), the
KKT conditions require ∂

∂n1
T
¯
(n1, µ1) ≤ 0. An analysis of

this inequality, omitted here, yields the condition (37). For the
imbalanced point (n1, µ1) = (1, X

¯
), taking the limit X

¯
↓ 0

yields KKT conditions that analysis, omitted here, shows wil
always hold, ensuring this point is asymptotically stationary.

B. Proof of Prop. 5

Proof: Properties of the balance to imbalance throughput
difference function δib(X¯

) (Def. 5) include the following
inequalities on the first two derivatives (42):
• δib(X¯

) is increasing in X
¯

, i.e., δ′ib(X¯
) > 0, over X

¯
∈

(0, Σ
N ).

• δib(X¯
) is concave in X

¯
, i.e., δ

′′

ib(X¯
) ≤ 0, over X

¯
∈

(0, Σ
N ) for any N ≥ 3.

The proof of these two properties is omitted here, due to space
limitations. Using the Lagrange error Rk(X) (43), the two
approximations (41) are shown to obey the ordering asserted
in Prop. 5 as follows. First, the functions (δib, δ̄ib, R1) are
related as

δib(X¯
) = δ̄ib(X¯

) +R1(X) (46)

where

R1(X) =
δ
′′

ib(X)

2
(X

¯
−X)2. (47)

As δ′ib(X¯
) > 0 and δ

′′

ib(X¯
) ≤ 0, it follows that δib(X¯

) ≤
δ̄ib(X¯

). Second, the functions (δib, δ¯ib
, R2) are related as

δib(X¯
) = δ

¯ib
(X

¯
) +R2(X) (48)

where

R2(X) =
δ

(3)
ib (X)

3!
(X

¯
−X)3 (49)

requires the third derivative δ(3)
ib (X):

δ
(3)
ib (X) =

6

(1 +X)4
+

N((N − 2)(Σ−X)− 3(N − 1))

((Σ−X) + (N − 1))2(1 + Σ−X
N−1 )N

(50)
Analysis, omitted here, shows R2(X) ≥ 0 for X < Σ

N and
Σ ≥ 3N/(N − 2). It follows that δib(X¯

) ≥ δ
¯ib

(X
¯

).
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