Neural Message Passing for Jet Physics
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Abstract

Supervised learning has incredible potential for particle physics, and one appli-
cation that has received a great deal of attention involves collimated sprays of
particles called jets. Recent progress for jet physics has leveraged machine learning
techniques based on computer vision and natural language processing. In this work,
we consider message passing on a graph where the nodes are the particles in a
jet. We design variants of a message-passing neural network (MPNN); (1) with a
learnable adjacency matrix, (2) with a learnable symmetric adjacency matrix, and
(3) with a set2set aggregated hidden state and MPNN with an identity adjacency
matrix. We compare these against the previously proposed recursive neural network
with a fixed tree structure and show that the MPNN with a learnable adjacency
matrix and two message-passing iterations outperforms all the others.

1 Introduction

Several physics goals for the Large Hadron Collider (LHC) are inextricably linked to the treatment of
collimated sprays of energetic hadrons referred to as ‘jets’. There are a number of tasks encountered
in jet physics including classification and regression associated to the progenitor particle(s) giving
rise to the jet. For instance, a jet may result from a quark, gluon, W-boson, top-quark, or Higgs
boson. Several Beyond the Standard Model (BSM) theories involve new particles and interactions
that predict specific jet signatures, but testing these theories is challenging because jets from more
mundane processes occur much more frequently. Often sensitivity to these BSM theories requires
classifiers with true positive rates of O(1) and false positive rates of O(1072). There has been
an enormous amount of effort from both the theoretical and experimental communities to develop
techniques for jet physics [[1].

Recent progress in applying machine learning techniques for jet physics has been built upon an
analogy between calorimeters and images [2H9]. These methods take a variable-length set of 4-
momenta and project them into a fixed grid of 17 — ¢ towers or ‘pixels’ to produce a ‘jet image’.

More recently, recursive neural networks have been applied to this classification problem based on
an analogy between QCD and natural languages [[10]. Much like a sentence is composed of words
following a syntactic structure organized as a parse tree, a jet is also composed of particles following
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a structure dictated by quantum chromodynamics (QCD) and organized via the clustering history of a
sequential recombination jet algorithm. This work showed that the projection of particles’ momenta
into images loses information, which impacts classification performance. The recursive networks
were able to avoid this pre-processing and provide superior performance.

In this work we represent the jet as a graph and consider Message Passing Neural Networks
(MPNN) [[L1]] on the same benchmark data and binary classification task from [[7[10].

1.1 Jets as a graph

In the graph picture, nodes of the graph correspond to the particles and the data on the nodes are the
features calculated from the 4-momenta of those particles: p, 1, 0, ¢, E, and pp. The graph picture is
natural in jet physics and was implicit in previous work with the recursive network operating over a
binary tree. The binary tree was created from a sequential recombination jet algorithm [12} [13]] that
recursively combines the pair ¢, j that minimize
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The df; provides a family of adjacency matrices motivated by physics considerations; however, we

will consider various approaches to adjacency matrix A;;, including directed graphs.

o : 2a0 2«
dij = min(py; » Dty )

(D

The authors of Ref. [[10] pointed out that it is compelling to think of generalizations of their technique
in which the optimization would include the binary tree used for the embedding as a learnable
component instead of considering it fixed a priori. An immediate challenge of this approach is that a
discontinuous change in the binary tree (e.g., from varying . or R) makes the loss non-differentiable.
However, the graph defined by df; evolves continuously with R and . The authors of Ref. [10]
pointed out that this makes graph-convolutional networks a natural approach [14419]. In future work
we plan to compare QCD-motivated adjacency matrix A;; based on df;; however, in this work we
attempt to learn the adjacency matrix directly.

2 Message Passing Neural Networks

This section describes a family of neural architectures defined over input sets exhibiting some
geometric structure. We consider a dataset {x., . }.<n consisting of observations x, = {x;}i<n.,
x; € RS, and labels Y. € Y. Each observation thus consists of a set measurements (that we assume
Euclidean for simplicity), possibly of varying size. We are interested in neural network models that
operate on such input sets, and with the ability to leverage the geometric structure determined by
the measurements. If the measurements x; are related with a known similarity structure K (z;, ),
the appropriate data structure to represent the input is a (input-varying) graph G, = (V,, E.), where
nodes are associated with measurements and weighted edges with their similarity.

Graph neural networks (GNN), introduced in [20} 21] and further simplified in [16, 22} 23], based
on local operators of a graph G = (V, E) offer a powerful balance between expressivity and sample
complexity; see [24] for a recent survey on models and applications of deep learning on graphs. In
its simplest incarnation, given an input signal x € RY < on the vertices of a weighted graph G, we
consider a family A of graph-intrinsic linear operators that act locally on this signal. The simplest
example is to consider A = {1, A}, where A is the graph adjacency matrix. A GNN layer receives

as input a signal h(*) € RV >4t and produces h(*+1) ¢ RV *di+1 a5
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where 9((;) € Réxdet1 are trainable parameters, d; is the number of feature maps at layer ¢, and p(-)

is a point-wise non-linearity. One can easily verify that (GNN NODEUPDATE] defines a model that
is permutation-equivariant and that effectively shares the parameters across all the node locations,
yielding gains in sample complexity similar to convolutional neural networks in computer vision.

Authors have explored several modeling variants from this basic formulation, by replacing the point-
wise nonlinearity with gating operations [16}22], or by generalizing the generator family to Laplacian
polynomials [251 19} [14], or including powers of A to encode multiple-hop neighborhoods of each



node [26]. Cascaded operations in the form (GNN NODEUPDATE]) are able to approximate a wide
range of graph inference tasks. Inspired by message-passing algorithms, [27529] generalized GNNs

to also learn edge features AEtJ) from the current node hidden representation, leading to the so-called
Message Passing Neural Network (MPNN) model. Adjacency learning is particularly important
in applications where the input set is believed to have some geometric structure, but the metric is
not known a priori. In the case of jet physics, the d7; provide a well-motivated family of adjacency
matrices, but in what follows we explore learning the adjacency directly. In particular, we consider
the family of adjacency matrices given by

AEtJ) = softmaxyoyp(h\”, hgt)) , (ADJACENCYMATRIX)

where ¢ is a symmetric function parametrized with, e.g., a neural network, and the softmax over
rows turns the kernel into a transition matrix. In this work, we choose for simplicity ¢(h,h') =
v (h+h')+b.

In our experiments, we call this model MPNN-directed. We also experiment with undirected
graph models by symmetrizing A via the transformation S(A) = 2(A + A"), and use the identity
matrix A = 1 as a baseline. The resulting update rules for node features is obtained from (GNN]

INODEUPDATE) by using the edge feature kernel A(*) and modifying the node-wise nonlinearity with
a more powerful gated recurrent unit (GRU, [30]):

m!t) = tanh ZAEtJ)hY) , (MESSAGE)
J
R — GRU(A, [m", 2)) , (MPNN VERTEXUPDATE)

where [, *] denotes concatenation of vectors. In this model, the hidden dimension d; is kept constant
across timesteps at 40. We also considered a set variant in which the current mean hidden state
across all nodes A is passed as additional input to the GRU. These updates induce an order-invariance
amongst the hidden states, as in the set2set model [31]]. Finally, the collection of hidden states
is collapsed to a single hidden state representing the whole graph, using another neural network
(READOUT). A simple particular case of MPNN considered in [27] (RelNet) consists in only one
message passing iteration that aggregates the adjacency kernel to directly predict the output label:

p@Ix)="fo | > Aij]| - (RELNET)
g

In general graphs, the network depth is chosen to be of the order of the graph diameter, so that all
nodes obtain information from the entire graph. In our context, however, since the graph is densely
connected, the depth is interpreted simply as giving the model more expressive power. The resulting
model is summarized in Algorithm[I] Note that each iteration of neural message passing has its own
parametrized functions ADJACENCYMATRIX, MESSAGE and VERTEXUPDATE.

Algorithm 1 Message passing neural network

Require: N x S array of jet constituents x
> N is the number of particles, S is their data dimension
h < tanh(W.x + b,) > Embed the jets
fort=1,...,Tdo > Message passing
A <+ ADJACENCYMATRIX;(h)
m < MESSAGE(A, h)
h < VERTEXUPDATE;(h, m, x)
end for
return READOUT(h)

3 Results

We consider the same benchmark data and binary classification problem as in Ref. [[10]. The first
class, which we denote QCD jets’, arises from a known mixture of quarks and gluons. The second



Table 1: Summary of classification performance for several approaches.

Network Iterations ROC AUC R._50%
RecNN-£; (without gating) [[10]] 1 0.9185 + 0.0006 68.3 £ 1.8
RecNN-£; (with gating) [[1O] 1 0.9195 + 0.0009 74.3+2.4
RecNN-desc-pr (without gating) [[10] 1 0.9189 + 0.0009 704 £ 3.6
RecNN-desc-pr (with gating) [10] 1 0.9212 + 0.0005 83.3 +3.1
RelNet 1 0.9161 £0.0029 67.69 + 6.80
MPNN (directed) 1 0.9196 £ 0.0015  89.35 + 3.54
MPNN (directed) 2 0.9223 +£0.0008 98.26 + 4.28
MPNN (directed) 3 0.9188 £0.0031  85.93 + 8.50
MPNN (undirected) 1 0.9193 £0.0015 86.41 + 3.80
MPNN (undirected) 2 0.8949 + 0.1004 97.27 £+ 5.02
MPNN (undirected) 3 0.9185 £+ 0.0036  84.53 + 8.64
MPNN (set, directed) 1 0.9189 + 0.0017  88.23 +4.53
MPNN (set, directed) 2 0.9191 £0.0046 87.46 + 14.14
MPNN (set, directed) 3 0.9176 £ 0.0049 88.33 +£9.84
MPNN (set, undirected) 1 0.9196 + 0.0014  85.65 + 4.48
MPNN (set, undirected) 2 0.9220 £ 0.0007 94.70 £ 2.95
MPNN (set, undirected) 3 0.9158 £ 0.0054 75.94 + 12.54
MPNN (id) 1 0.9169 £ 0.0013  74.75 + 2.65
MPNN (id) 2 0.9162 £+ 0.0020  74.41 + 3.50
MPNN (id) 3 0.9158 £ 0.0029  74.51 +5.20

class, which we denote W jets’, arises from W bosons decaying into two quarks leading a single
“fat jet” with characteristic substructure. Specifically, we use particle-level input used in Ref. [10] and
compare with the results using the best performing RNN based on a simple descending p ordering
and the binary tree defiend by the %, jet algorithm (o« = 1). We use background rejection (i.e., 1/FPR)
at 50% signal efficiency, which we denote R._5(, for early stopping. For each model architecture
considered, we train models with different initialization and follow the same prescription as Ref. [10]
to provide a robust estimate of the mean and standard deviation by excluding outliers. We note the
standard error on the mean is roughly five times smaller than the standard deviation.

Table [T compares the results of various approaches using the same test data as Ref. [10]. The MPNN
with a learned adjacency matrix and two iterations of message passing achieves the best performance
in terms of both ROC AUC and R._sy9. The directed graph slightly outperforms the undirected
graph, though not significantly. The learned adjacency matrix outperforms the identity, confirming
the fact that pairwise particle interactions need to be taken into account. Our experiments indicate that
adding message passing iterations does not monotonically increase the performance. We attribute this
fact to the learning instability, evidenced by the increased variance, caused by the increased number
of parameters, suggesting that better regularization techniques may be necessary in the future to
stabilize learning and further improve the performance. We also notice that the set variants generally
underperform. Although more in-depth analysis is necessary to make any firm conclusion, currently
the aggregated hidden state seems to act more as noise than useful signal in the MPNN iteration.

4 Conclusions

With these initial results we conclude that the MPNNs are a powerful model for jet physics. Similar
to recursive neural networks, they can operate on a variable number of particles and do not require
any discretization into a fixed-length input or image-like pre-processing. In addition, the graph repre-
sentation allows for information between all particles to be exchanged, where such communication is
restricted to a tree structure in the recursive approach. We have observed that the model configuration
influences the final result, thus care must be taken when designing the MPNN.



Our results motivate future work with a QCD-motivated adjacency matrix A;; based on df;. Similarly,
the graph picture enables a comparison of traditional jet clustering algorithms based on dj; to data-
driven clustering and community detection presented in [26]. Furthermore, the MPNN must be
extended with a multi-scale coarsening scheme in order to avoid the expensive quadratic complexity
of the presented fully-connected, single-scale version, in order to process a larger-scale input.
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