
PinText 2: Attentive Bag of Annotations Embedding
Jinfeng Zhuang

jzhuang@pinterest.com
Pinterest

Seattle, WA

Jennifer Zhao
jzhao@pinterest.com

Pinterest
San Francisco, CA

Anant Srinivas Subramanian
asubramanian@pinterest.com

Pinterest
San Francisco, CA

Yun Lin
ylin@pinterest.com

Pinterest
San Francisco, CA

Balaji Krishnapuram
bkrishnapuram@pinterest.com

Pinterest
San Francisco, CA

Roelof van Zwol
rvanzwol@pinterest.com

Pinterest
San Francisco, CA

ABSTRACT
Word embedding is a basic building block in text processing tasks
like classification, retrieval, and ranking. However, it is not a triv-
ial task to aggregate a collection of word embeddings to a single
vector representation. In particular, we have an annotation system
at Pinterest where a set of concrete annotation terms are used to
describe the content of a pin. Although we use a pre-trained PinText
model [40] to derive the annotation embeddings, using the average
of annotation embeddings as the pin’s embedding is not always
optimal for a particular application. This leads to a common choice
that practitioners often have to make: pre-train a unified word
embeddings and fine-tune it everywhere, or learn the embeddings
end-to-end together with the task-dependent machine learning
model parameters. In this paper, we focus on the best pin-level
embeddings given pins’ annotation set as the text input. We extend
PinText to the second version by the following improvements ap-
plicable to scenarios where bag of text snippets are input: 1) extend
the word embedding dictionary in the multitask learning setting to
include phrase-level embeddings using a data-driven approach to
identify the most important phrase dictionary; 2) propose a deep
neural networks model architecture with attention mechanisms to
best combine pin’s annotation embeddings; 3) conduct thorough
study on the performance gap between pre-trained and end-to-end
embeddings.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions;Multi-task learning.

KEYWORDS
Text Embedding, Multitask Learning, Attention Mechanism, Bag of
Words;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DLP-KDD 2020, August 24, 2020, San Diego, California, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Jinfeng Zhuang, Jennifer Zhao, Anant Srinivas Subramanian, Yun Lin, Balaji
Krishnapuram, and Roelof van Zwol. 2020. PinText 2: Attentive Bag of
Annotations Embedding. In Proceedings of DLP-KDD 2020. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
With more than 300 million people (pinner) come to Pinterest app
looking for inspirations every month, we are able to convert such
huge amount of users’ engagements into supervised information,
which leads to various stronger machine learning models that in
turn help improve pinners’ experience, than models learned in an
unsupervised way. In particular, embedding models which map a
concrete object to a real vector representation, including Graph-
SAGE embedding [12] on pins, Act-A-Like embedding [7] on users,
Universal Visual Embedding [39] on images, and PinText embed-
ding [40] on text snippets like search query or pin’s title, are super
useful due to the fact that they can be easily plugged into existing
models or systems taking real vectors as input. They also produce
off-the-shelf feature vectors for a cold start on a new application.
Those embedding solutions have been playing important roles in
the various machine learning-based backend retrieval and ranking
systems.

In this paper, we focus on improving text embedding models.
PinText [40] is a static pre-trained word-level embedding model at
Pinterest aiming to capture word semantics. It has exhibited better
performance in nearest neighbor retrieval than other open sourced
text embedding models like word2vec [21] or fastText [11]. This
makes it very useful for query expansion or embedding based pin
retrieval. We conclude that the gain is most probably from two
facts: 1) it is supervised training instead of unsupervised training
as in word2vec; 2) it uses Pinterest user engagement data from
multiple surfaces that fit the Pinterest application better. However,
despite the gains, this PinText V1 still has the common limitations
of pre-trained word embeddings algorithms. In particular, there are
two aspects we hope to study further:

• It is not trivial to construct object-level representation from
word-level embeddings. We use the average of word em-
beddings as default aggregation which is not necessarily
optimal;
• The word semantics may depend on its context, but pre-
trained word embeddings are static. They cannot change
with different context;

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DLP-KDD 2020, August 24, 2020, San Diego, California, USA Jinfeng Zhuang, Jennifer Zhao, Anant Srinivas Subramanian, Yun Lin, Balaji Krishnapuram, and Roelof van Zwol

(a) Pin Image (b) Predicted top annotation terms
derived from image and raw text

Annotation Terms Score

Balboa park san diego 0.97

San diego california 0.95

Balboa park 0.94

Beautiful places 0.90

Favourite places 0.90

Places to go 0.89

ferry building san francisco 0.89

Places to travel 0.89

Balboa 0.89

Great places 0.88

California dreaming 0.83

Figure 1: Example of pin’s annotation terms. The key observation: a stan-
dalone annotation system may contain many synonyms, e.g., "beautiful / fa-
vorite / travel / great" places, highlighted by blue rectangle. The one high-
lighted by a pink rectangle is a wrong annotation prediction. Using a simple
average of annotation terms will make the final pin level embedding biased
by the term "places".

The solutions of these two limitations depend on the specific
problems. For example, if the object is a sequence like a natural lan-
guage sentence, then probably word order is important. If the object
is a collection, the learned embedding should be independent of
the text orders inside the collection. As a visual discovery platform,
it is not uncommon that pins do not have direct text information
associated with it. We rely on an annotation system1 which predicts
a set of annotation terms describing the content of the pin. Figure 1
gives a real example from our annotation model predictions. The
annotation term dictionary is constructed in a data-driven approach
and each term usually contains less than 5 words. In order to derive
the pin level embedding, the unique "set of short phrases" charac-
teristic makes existing natural language process (NLP) models like
BERT [6] not necessarily optimal. Moreover, we hope to use the
learned embedding for retrieval purpose in search or related pin
surface on the fly. The heavy computation cost of BERT makes it
prohibitive to deploy in a production environment.

For retrieval purposes, BERT still has the advantage of capturing
semantics better while providing smooth control over the number of
candidate documents compared with traditional keyword matching
based information retrieval systems. However, it is not trivial to
adopt BERT based models directly for large-scale retrieval systems
as they are usually designed for NLP tasks that take sequential
input data. For example, the fact that annotations of a pin is a set
instead of a sequence implies there is no clear grammar dependency
between different annotations. Useful tricks like position encoding
will not apply here. Empirically, we also find that the representation
generated by BERT may not work well for direct cosine similarity.

1https://medium.com/pinterest-engineering/understanding-pins-through-keyword-
extraction-40cf94214c18

In this paper, we propose an attention-based algorithm to com-
bine annotation level embeddings into pin level embedding, inspired
by the key ideas in embedding language model (ElMo) [24] and
hierarchical attention networks (HAN) [38]. Specifically, at the
lower layer, we employ bi-directional recurrent neural networks or
phrase-level PinText V1 to model the per annotation embedding.
At the higher layer, we use attention score weighted average of
annotation embeddings as the per pin embedding. We use related
pin engagement to construct the learning objective function: the
similarity between an engaged {subject pin, candidate pin} pair
should be greater than a random negative pair. As shown in fig-
ure 2, a candidate pin is positive if it shares the inherently same
concept as the subject pin to the user, i.e., Balboa park building.
Pinners’ operations on candidate pins are essentially voting for
such common concepts. Our motivation is that a good pin embed-
ding is supposed to capture these concepts. We derive pin level
embedding in a principled way by paying attention to annotations
when optimizing pin to pin relationship and make the embedding
depending on the context.

In addition to this related pin specific embeddings, we also im-
proved PinText V1 by usingmore training data and covering phrases
directly. As a result, we are able to evaluate them to answer two
interesting questions:
• Is attentive combination better than a simple average when
transferred in a different application?
• Is end-to-end embedding in a specific application better than
a pre-trained static embedding?

We present the algorithms in section 3, the implementations in
section 4, followed by experiments in section 5.

2 RELATEDWORK
We refer readers to the related work section in [40] because they
are still closely related to the solutions in this paper. In this section,
we focus on analyzing the natural language processing models
in recent years, which serves as the foundation of this paper and
explain briefly the design decision of PinText V2.

The neural language model by Bengio et al. [2] is a seminal work
about neural networks based NLP models, where each word can be
represented in a vector space and feed-forward layers can be put
on top for solving a particular NLP problem. After word2vec [21] is
proposed, word embedding gradually becomes more of a standalone
model rather than a module in a language model. Word2vec essen-
tially learns the embedding of a word by reconstructing the words
in an adjacent context window (either skip-gram or continuous
bag of words). It achieves great success because it captures word
co-occurrence information very well. Researchers have proposed a
variety of word embedding algorithms to improve it in one way or
another, including Glove [23], fastText [11], conceptNet [32], etc.
These algorithms are usually unsupervised. StarSpace [36] takes
a different approach to train embedding in a supervised way such
that positive or negative pairwise relationships can be encoded by a
simple similarity function in the embedded space. Because we have
a huge amount of pinner engagement as supervised information,
we train PinText V1 similarly in a multitask learning setting.

Pre-trained word embeddings are usually trained on a much
larger training set than the training set available in a particular

PinText 2: Attentive Bag of Annotations Embedding DLP-KDD 2020, August 24, 2020, San Diego, California, USA

application. It has the great advantages to transfer the knowledge
encoded in the embeddings for reduced fine-tuning time and rela-
tively good model performance. However, one drawback of these
pre-trained word embeddings is that they are static and cannot
change with context. For example, "banana" is a fruit, but when it
appears with "banana republic", it becomes part of a fashion brand.
Researchers proposed techniques to make each word embedding
depending on the sequence it appears, e.g., CoVe [19], ULMFiT [27],
ELMo [24], although these models are not designed for embedding
only. In particular, the Transformer [33] model using the multi-
head self-attention mechanism achieves very good performance
in sequence to sequence NLP tasks. Based on the encoder part in
the transformer architecture as the feature extractor, GPT [25, 26]
/ BERT [6] / MT-DNN [17] / XLNet [37] models pre-trained on
large-scale data refresh all the NLP benchmarks. We do not use
these models directly for two reasons: 1) our text input is short
concrete phrases instead of long sentences; 2) there is no sequential
information between phrases. Our text data is barely natural lan-
guage. Another blocker for using transformer-based models after
BERT in production is the heavy computation cost. It is probably
feasible to run BERT offline. However, it is totally prohibitive to
infer embedding online. There are some recent works focusing on
making BERT more lightweight [10, 14, 15, 28, 31]. We will not
elaborate on their details because we do not use Transformers.

However, the great success of the two-phase learning of these
modern NLP models is very inspirational. That is one of the design
motivations of PinText: we hope to train a text embedding model
encoding most of the supervised information, then fine-tune it on a
specific application. Therefore, transfer learning [18, 22] is a closely
related branch. One important factor that has not been widely
studied along embedding transfer is themaintenance cost [29] when
multiple embeddings either on the same type or different types of
entities are available. The critical point is whether the transferred
embeddings are in the same space as the original embedding, such
that entity similarities can be measured directly after the transfer.

To this end, we proposed to learn the attention scores [1] for
a weighted combination of a bag of terms without changing the
pre-trained term embeddings, inspired by the hierarchical attention
networks [38]. In contrast, we also propose to learn the embeddings
directly in a related pin classification task in the spirit of AutoML [8].
We examine their performance and cost in section 5.

3 ALGORITHMS
Inspired by the recent NLPmodels, in particular, ElMo [24], HAN [38],
and Transformer [33], we propose the supervised pin-level embed-
ding algorithms in this section. It is a simplified version of HAN
tailored for our problem.

3.1 Overall Model Design
At a high level, we learn the text embeddings from related pin pairs.
Please refer to figure 2 for the illustration. Each related pin pair
involves a subject pin and a candidate pin. Based on the backend
logging system, we are able to build a database of positive pairs
according to users’ engagement. Then we can sample a collection of
training data {𝑧𝑖 , 𝑧+𝑖 𝑗 , 𝑧

−
𝑖 𝑗𝑘
}, where 𝑗 is the index of positive candidate

pins and 𝑘 is the index of negative candidate pins for a particular

(a) Subject Pin (b) Candidate Pins

Figure 2: Illustration of related pins. When a pinner clicks a subject pin, a
set of ranked candidate pins is presented to the pinner with this "more like
this" surface. The highlighted pin by blue rectangle is a frequently engaged
candidate pin (save / repin / click etc). The highlighted pin by pink rectangle
is a pin fromSan Francisco instead of Balboa park. Thus these three pins form
a triplet to help the best annotation combination.

subject pin index 𝑖 . The learning goal is to make the similarity
between positive pairs bigger than negative pairs in the embedding
space. Specifically, we calculate the pin level embedding 𝑧𝑖 := 𝐻 (𝑃𝑖)
as an attention weighted sum of the annotation level embedding
𝐻 (𝐴).

In PinText V1, we use average of word embeddings as either
annotation or pin embeddings. In this paper, we hope to study if
1) learning annotation weight like attention score is better than
simple average, 2) learning end-to-end embedding is better than
pre-trained embeddings. We refer audience to [40] for better un-
derstanding the Pinterest surfaces.

3.2 Pin Level Encoder
Annotation Encoder. In a transfer learning setting, we simply employ
a pre-trained text embedding model to generate the annotation em-
bedding. Section 4.1 introduces such a strong baseline that can cover
annotation embeddings well. We focus on an end-to-end embed-
ding model in this section. Given an annotation 𝐴 = [𝑤1, ...,𝑤𝐾],
we use a bi-directional recurrent neural networks to encode an
annotation. Specifically, we use Gated Recurrent Units (GRU) [4]
instead of Long-Short Term Memory units (LSTM) [13] because we
found it’s simpler and sometimes results in better performance. For
each word, we model it with a forward GRU

−→
ℎ reading the words

from𝑤1 to𝑤𝐾 and a backward GRU
←−
ℎ reading from𝑤𝐾 to𝑤1:

DLP-KDD 2020, August 24, 2020, San Diego, California, USA Jinfeng Zhuang, Jennifer Zhao, Anant Srinivas Subramanian, Yun Lin, Balaji Krishnapuram, and Roelof van Zwol

L = max{0, m + S(Zi, Zijk) - S(Zi, Zij)}

Engaged
Related Pins

Click

Repin

Save

Other

Logging User

Engagement

Negative
Candidate Pins

zijk

Subject Pin
zi

Positive
Candidate Pin

zij

Sampling

(a)Triplets Ranking Loss Optimization (b) Pin Embedding

H(A1) H(A2) H(Ak)...

H(P)
Attention Score Weighted Sum

(c) Annotation Embedding

H(A)

End-to-end bi-RNN

W1 Wn

W1 Wn

...

...
Pre-trained
PinText V1

Pre-trained Embedding

Multi-head Attention

Figure 3: Overall design of end-to-end pin level text embedding. Figure a: we build related pin pair database from various user engagements. We sample training
data this way: for each subject pin 𝑧𝑖 and a positive (engaged) candidate pin 𝑧𝑖 𝑗 , we sample a collection of negative pins 𝑧𝑖 𝑗𝑘 . Figure b: pin level text embedding
𝐻 (𝑃) is the attention score weighted annotation embedding 𝐻 (𝐴) . Figure c: Annotation embedding 𝐻 (𝐴) is from PinText V1, or RNN learned end-to-end.

−−−−→
ℎ(𝑤𝑖) =

−−−→
𝐺𝑅𝑈 (𝑥𝑖), 𝑖 ∈ [1, 𝐾],

←−−−−
ℎ(𝑤𝑖) =

←−−−
𝐺𝑅𝑈 (𝑥𝑖), 𝑖 ∈ [1, 𝐾] .

(1)

Here 𝑥𝑖 is the 𝑑-dimensional embedding vector of word𝑤𝑖 , which
is going to be learned end-to-end with parameters at higher layers.
The annotation level embedding vector would be the concatenation
of the last word:

ℎ(𝐴) =
[−−−−−→
ℎ(𝑤𝐾),

←−−−−−
ℎ(𝑤𝐾)

]
. (2)

Pay attention to the fact that each annotation has three words
on average. This short-length input significantly limits the gain of
more complex models. We do care inference time complexity too.
That’s the major reason why we do not use Transformer / BERT [6]
and why we do not add attention at the word level as in HAN [38].

Annotation Attention. Given a pin 𝑃 = {𝐴1, ..., 𝐴𝑇 }, after we get
the vector representationℎ(𝐴) at the annotation level, we introduce
the attention mechanism to help identify the annotations that are
important for the overall meaning of the pin. For each annotation
𝐴𝑖 , we map its embedding to a key vector 𝑘𝑖 . Assuming there is a
global pin-level query vector 𝑞, we have the attention score 𝛼𝑖 and
attentive annotation aggregation ℎ(𝑃) defined as:

𝑘𝑖 = tanh
(
𝑊ℎ(𝐴𝑖) + 𝑏

)
, 𝑖 ∈ [1,𝑇],

𝛼𝑖 =
exp

(
𝑘⊤
𝑖
𝑞/
√
𝑑
)∑

𝑖 exp
(
𝑘⊤
𝑖
𝑞/
√
𝑑
) ,

ℎ(𝑃 ;𝑊,𝑏, 𝑞) =
∑
𝑖

𝛼𝑖ℎ(𝐴𝑖),

(3)

where 𝑑 is the dimensionality of embedding vectors. We can com-
pare the difference between this attentive aggregation and average
over word embeddings: 1) each annotation embedding ℎ(𝐴) is an
RNN respecting word order information instead of a simple lookup
in a pre-trained embedding table. This is particularly useful when
unseen annotation terms emerge because they cannot be covered
by the pre-trained phrase embeddings directly, and the averaging of
word embeddings would lose the word order information; 2) each

pin embedding ℎ(𝑃) is a weighted sum of annotation embeddings.
The weight is essentially the attention score that helps capture
which annotations are useful for the pin’s semantics. They are
supposed to show an advantage over the simple average.

Multi-head Attention. Each pin is polymorphic in nature, which
means that the best representation may not be fixed in different
contexts. Therefore, we employ the multi-head attention method
as in the Transformer [33] model to learn multiple annotation
combinations. Given 𝐻 attention head, we have the concatenated
multiple subspace representation as

ℎ(𝑃) =
[∑
𝑖

𝛼𝑛𝑖 ℎ(𝐴𝑖)
]
,where 𝑛 ∈ {1, ..., 𝐻 }, (4)

where [] is the vector concatenation operation. From the optimiza-
tion perspective, multi-head attention mechanism uses more pa-
rameters to fit data than single-head attention, thus it has a chance
to produce better empirical results.

3.3 Related Pin Classification
With the pin level’s representation, we learn all the model parame-
ters in a related pin classification task. Here is the tradeoff between
classification precision and retrieval efficiency plays a critical role
in the learning paradigm design. On the precision side, we can put
multiple dense layers to squeeze out the best classification model
when large amounts of labeled training data is available. On the
retrieval efficiency side,in general, a retrieval system consists of
multiple layers of rankers. It is totally feasible to apply complex
models to the last re-ranking layers where the ranking candidate
set usually contains hundreds of pins. However, there are billions of
pins on the first layer to be retrieved and ranked. We must be able
to build index mapping query vectors to candidate pins because we
need to retrieve rank billions of pins in realtime.

Therefore, we simply use margin rank loss as in PinText V1 [40]
to encode classification model into embedding vector similarity. Let
𝑧𝑥 := ℎ(𝑃𝑥) denote the pin level vector, we have the retrieval based

PinText 2: Attentive Bag of Annotations Embedding DLP-KDD 2020, August 24, 2020, San Diego, California, USA

Table 1: Covered annotation terms by text embedding model across some top
languages.

EN FR DE ES PT JA

CptNet [32] 98.3% 99.08% 91.09% 95.07% 96.91% 84.03%
PinText 100.0% 100.0% 99.98% 100.0% 100.0% 100.0%

objective function as:

𝐽 = min
𝐿∑
𝑖=0

𝑀∑
𝑗=0

𝑁∑
𝑘=0

max
(
0, 𝜇 −

(
𝑆 (𝑧𝑖 , 𝑧+𝑖 𝑗) − 𝑆 (𝑧𝑖 , 𝑧

−
𝑖 𝑗𝑘
)
))
, (5)

Where we use cosine similarity as the similarity measure 𝑆 . For
each pin 𝑃𝑖 , we have up to 𝑀 positive related pins 𝑃+

𝑖 𝑗
. For each

positive related pin pair {𝑃𝑖 , 𝑃+𝑖 𝑗 }
𝑀
𝑗=1, we have 𝑁 randomly sampled

background pair {𝑃𝑖 , 𝑃−𝑖 𝑗𝑘 }
𝑁
𝑘=1. 𝜇 is the margin between positive

and negative pairs.

4 IMPLEMENTATIONS
We present some implementation details in this section. First we
describe some practical approaches that can improve PinText V1
significantly, then we describe how to handle large-scale embedding
training.

4.1 Improved Pre-trained Baseline
The supervised multitask word embedding PinText V1 is a pretty
strong baseline [40]. With the drawback of simple word embedding
may lose useful word order information, it also has the advan-
tage of ready-to-use for any cold start problem. This is essentially
knowledge transfer from billion-level user voting for the semantic
relationship between two entities. Therefore, we try to improve V1
as the baseline such that it still solves the problem if a downstream
user does not have the data or resource to train their application-
specific text embeddings.

As the major drawback of V1 is order-unawareness, we propose
two major improvements:
• enumerate the word n-grams of input text instead of using
word only;
• build a phrase dictionary by detecting valid n-grams in a
data-driven approach.

In a nutshell, we learn pre-trained embeddings of not only words
but also phrases at the training phase. We check all n-grams of input
text against a phrase dictionary and use their mean embeddings
as input text embedding at the inference phase. The learning and
inference tech stack is the same as PinText V1.

The core of this improvement is to build the covered phrase
embeddings and treat them as a single word. We respect the word
orders in this way because different word orders form different
phrases. We use a data-driven approach to identify phrases that
have the best semantic meaning and have the most business impact.
We end up with phrases in the following categories:

Search Queries. We rank search queries on Pinterest in the past
two years in the descending order of search frequency. Then we
merge the top query list to the phrase dictionary.

Ads Keywords. The advertisers on Pinterest platform are able
to upload the keywords of their ads for targeting purposes. Those

keywords are often of high quality. They also have a significant
impact on business goals.

Phrases in Pre-trained Embeddings. There are valid phrases in
some open-sourced text embedding models. In particular, we add
all the phrases in ConceptNet [32] to our dictionary.

Annotation Terms. We have an internal annotation system [34]
tagging the concepts in pins. They are also the text input of pins in
this paper. All canonical annotation terms would be valid phrases.
Note, this means all annotations are available in the learned embed-
ding dictionary. A simple lookup operation generates annotation
level embedding. That’s the major reason that we are confident the
improved PinText V1 is a strong baseline to beat given the near
100% coverage of Annotation terms.

The above sources lead to about 8.5 million phrases. We get 18.7
million phrases and words, which has about 9 million non-English
tokens (a token is a word or a phrase). It is very important to have
tokens of different languages embedding in the same space such that
we can handle all languages uniformly in downstream applications.
The PinText algorithm is language independent. If the pair has
both English and non-English tokens appear frequently enough,
the rank margin loss minimization will learn the cross-language
similarity automatically. This improved PinText baseline model is
good enough to replace other open-sourcedmodels. Table 1 presents
the annotation coverage of some top languages. Empirically, we
found that embeddings of Asian language words have worse than
expected multilingual performance. But the other major languages
are reasonably good. We have successfully deployed it into our ads
retrieval/ranking systems.

4.2 Single Instance Training
In a typical setting, the learned embedding dictionary contains
about 10+ million tokens and each token has a 64 dimensional
real vector. Note that there are only a few thousands of English
words used frequently. The coverage at this scale takes about 10
Gigabytes on disk. So such an embedding model can be fully hosted
in memory. Suppose there are 10+ million positive training pairs,
training can finish in hours with a modern workstation. In reality,
dev’s time is way more expensive than the machine’s time or the
machine’s hardware cost. We argue that single instance training
with all training data should handle most of the cases. It should be
the preferred way to a complex distributed setting.

When the number of training pairs goes up to billion+ level,
it is not good to load them in one pass and let training go. Any
interruptionswould lead to either a corruptedmodel or an orphaned
model having nowhere to continue. We find a practical way to
handle billion+ level training: we first shuffle the training data and
split it into 100 partitions of about the same size. Then we train
the embedding sequentially. The trick is to use the output of the
last partition as the warm start of the current partition. For the
first partition, we need to collect all the tokens covered in training
data and initialize their embeddings by random vectors. One can
prove that the model in this way has the same quality as the model
using the full training data in one run. For each positive pair, we
sample the negative pins randomly within a batch of training pairs.
This batch size is much smaller than the partition size (in the 10+
million scales). Therefore, gradient updates are the same because

DLP-KDD 2020, August 24, 2020, San Diego, California, USA Jinfeng Zhuang, Jennifer Zhao, Anant Srinivas Subramanian, Yun Lin, Balaji Krishnapuram, and Roelof van Zwol

the current batch for deriving gradients is essentially the same. It
also provides the opportunity to evaluate model quality per batch,
which is important for controlling model quality and stopping
criterion.

4.3 Asynchronous Distributed Training
Another choice is to train the embedding in a distributed manner.
Usually we categorize distributed training into data parallelism and
model parallelism. In the former case, each training worker holds
the whole model and uses a portion of training data to calculate
gradients. In the latter case, the model is so huge that it cannot be
handled by a single worker. One has to employ multiple nodes to
hold the whole model architecture. As we mentioned in section 4.1,
we have a model containing the embedding vectors of less than 20M
tokens, which can be held in memory by a modern server. However,
the number of training instances is easily above billions, or the
physical size on disk easily goes up to a few terabytes. Therefore,
data parallelism can be very helpful if there is a dedicated cluster
available. We employ Kubeflow 2 as the framework for distributed
training, where a parameter server (PS) holds the whole model and
a couple of workers communicating with PS to exchange gradients.
It is essentially an asynchronous stochastic gradient descent (SGD)
algorithm [5]. There are many more recent works that make dis-
tributed SGD better (e.g., [20, 35]). But we argue that distribution
itself is the most significant factor in this PinText context, instead of
details on gradient calculation or communication, given our model
is relatively simple.

5 APPLICATIONS AND EXPERIMENTS
We report some empirical results and discoveries in this section.

5.1 Experiments Setup
Aligning to section 3, we use cosine similarity to rank candidate
pins w.r.t. a subject pin in the related pin ranking task. The solutions
we have evaluated include:

(i) Raw Text: rank based on traditional text-matching based
retrieval. We use the number of matched annotation terms
as the ranking score;

(ii) Concept Net: among the open-sourced word embeddings,
we found Concept Net usually has the best performance for
our text similarity scenario [32];

(iii) PinText V1: the average of annotation term embeddings.
When annotation does not appear in the embedding dic-
tionary, use the average of word embedding as annotation
embedding;

(iv) PinText V2 Transfer: fix the annotation embedding to be
the results of improved V1 in section 4.1, but learn the multi-
head attentions for a better pin-level annotation combina-
tion;

(v) PinText V2 End2End: we learn both the annotation embed-
ding and the pin-level combination in an end-to-end manner.

We evaluate three different types of candidate pins:
• Organic Pins: The most general cases where candidate pin
could be any pin on the platform;

2https://www.kubeflow.org/

(a) Organic Pin (b) Product Pin (c) Promoted Pin

Shop Now

Figure 4: Examples of three different types of candidate pins. They have
very different metadata and serving traffic, and different business impacts,
although all three pins are about shoes.

Table 2: Three related pin dataset size in experiments labeled by vendors.

Dataset #Pairs #TotalUniquePin #AvgCandidatePin

Organic 22,396 24,519 9.95
Product 7,157 3,045 8.79

Promoted 21,244 3,392 14.75

Figure 5: Annotation score distribution. X-Axis: normalized score 𝑠 by
int(𝑠/max(𝑠)∗100) per pin. Y-Axis: log-scale normalized score frequency in 1K
randomly sampled pins. Figure a: annotation prediction score from a GBDT
model. Figure b: learned attention score.

• Product Pins: The candidate pin is about a product provided
by partners that is likely to be purchased offline;
• Promoted Pins: The candidate pin is essentially an ads
generated by advertisers.

For a given subject pin, we rank its collection of candidate pins
and evaluate the average precision@K. Those three types of pins
have very different metadata. For example, a promoted pin (a.k.a.
ads) usually have a clear text description to attract pinners click on
it. But general organic pins do not necessarily have text descrip-
tions. Product pins and promoted pins also have different triggering
mechanisms to be distributed from organic pins. Therefore, it is
better to evaluate different types of pins to eliminate algorithm bias
as much as possible. Table 2 presents the labeled dataset size of
three types of pins.

We employ vendors to label the relevance degree for each related
pin pair. We always have an odd number of labels and use majority
voting to decide whether it is positive or negative. We use the idea
of active learning [30] to sample the candidate pins, because we
hope to avoid too easy cases where embedding algorithm itself
may not even be needed. Given a related pin ranking model and
the final utility boosting logics in our system, we select candidates

PinText 2: Attentive Bag of Annotations Embedding DLP-KDD 2020, August 24, 2020, San Diego, California, USA

Table 3: P@K for organic pin ranking based on embedding similarity.

Model K=1 K=2 K=3 K=4 K=5

Raw Text 48.99% 45.93% 44.63% 43.07% 41.13%
Concept Net 50.63% 48.44% 46.06% 44.01% 41.48%
PinText V1 51.83% 48.86% 46.31% 44.45% 42.08%

V2 Transfer 78.52% 70.93% 65.02% 58.98% 53.29%
V2 End2End 51.65% 48.22% 45.61% 43.35% 41.56%

Table 4: P@K for product pin ranking based on embedding similarity.

Model K=1 K=2 K=3 K=4 K=5

Raw Text 67.90% 66.91% 65.43% 61.60% 58.76%
Concept Net 68.88% 67.28% 64.77% 62.46% 60.00%
PinText V1 71.36% 68.52% 66.50% 63.40% 60.40%

V2 Transfer 74.07% 70.49% 68.64% 65.74% 62.91%
V2 End2End 74.07% 69.87% 66.83% 63.46% 60.99%

Table 5: P@K for promoted pin ranking based on embedding similarity.

Model K=1 K=2 K=3 K=4 K=5

Raw Text 53.15% 50.27% 47.34% 44.91% 42.72%
Concept Net 52.74% 51.37% 48.85% 46.29% 43.84%
PinText V1 53.98% 52.40% 50.14% 47.28% 44.81%

V2 Transfer 56.60% 53.43% 51.05% 48.04% 45.71%
V2 End2End 55.91% 52.74% 50.27% 47.42% 44.97%

with model predicted scores below than a threshold and its final
ranked position bigger than a threshold. The relevance of those
lower ranking pins is essentially harder to be defined.

The hyperparameters we used in these experiments: embedding
dimension 𝑑 = 64, attention head number 𝐻 = 4, max sampled
positive candidate number𝑀 = 10, max sampled negative candidate
number 𝑁 = 50, the rank loss margin 𝜇 = 0.5, starting learning rate
is 0.01. We use Adam optimizer and Tensorflow implementation.

5.2 Attention is Better than Simple Average
The top-k ranking precision is presented in table 3, 4, and 5. First
of all, there is a clear trend across all types of pins about the perfor-
mance of the evaluated methods: (iv) > (iii) > (ii) > (i). We draw the
following conclusions about this performance order:

The attentive bag-of-annotation combination is better than sim-
ple average of word embeddings. It shows 3+% to 10+% P@1 gains.
This verifies our design motivation exactly. It is not uncommon
that a higher level entity is composed of a collection of lower level
entities. In this particular case, the higher-level entity is a pin and
the lower level entity is an annotation term. As shown in figure 1,
the annotation have two limitations: a single annotation can have
multiple synonyms that may dominate the pins text information;
some annotation is simply not related to the pin’s content. Learning
the attention scores as weights gives the chance to decide the cor-
rectness or relevance of the annotation terms. As a result, it always
produces better precision than non-attention solutions.

One straightforward way to combine annotation embeddings
is to use the annotation prediction score as weights. However, as
shown in the example in figure 1, all the annotation scores have a
similar distribution. It cannot really distinguish the truth concept

Figure 6: Training data comparison between V1 and V2. For V1, we use large
volume of training data from all the surfaces we can collect, which covers
all the free text. For V2, we focus on the related pin classification / ranking
application, which covers top annotation terms.

Balboa park from general vague concept Beautiful places. In order
to get deeper insights, we plotted the relative prediction score
histogram in figure 5 (a). One can see that the frequency of 𝑠 > 80
takes a big portion. The overall distribution is flat.

Figure 5 (b) plots the relative attention score distribution on the
same data setup. It has a clear big gap between the largest score and
the second-largest score, which probably means that it captures
the most important concept of the pin. It also has a high frequency
for the 0 score, which probably means it can single out irrelevant
information. Together with the multi-head mechanism, it provides
a principled way of combining entities in a bag-of-entity context.

In-house multi-task supervised embedding is better than open
source embeddings for internal applications. This has been pre-
viously proved in the former version [40] in a text classification
setting. We hope to highlight some basics of the PinText advantages:
1) it is supervised; 2) it uses large-scale multiple surfaces’ data; 3) it
is multilingual in nature. On the promoted pin dataset, it has only
+1.2% gain compared to ConceptNet. Note the fact that we only used
English annotation terms in these experiments because our focus is
to evaluate attention mechanism and end-to-end embedding. The
gain of PinText would be bigger on international text due to its
significantly better coverage. The other factor to consider is that we
purposely sacrifice some embedding model performance by using
a smaller dimension 64, compared to 300 in Concept Net. We found
64 is the minimum number we can take empirically. Reducing it
further to 32 dimensions would hurt performance significantly.

Embedding based ranking is better than simple raw text match
based ranking. The best embedding based method boosts P@1 by
49% � 78%, 68% � 74%, and 53% � 57%, respectively. This is not
surprising because embedding based ranking provides a smooth
comparison between text semantics. It leads to the opportunity to
match pins when there are no exact text match between them.

5.3 End2End is Not Better than Pre-trained
The second important dimension we measure is that if end-to-end
embedding is better than pre-trained embedding. It has tied P@1
74% on the product pin dataset, slightly worse 56.6% � 55.9% on the
promoted pin dataset, and much worse 78% � 51% on the organic
dataset.

DLP-KDD 2020, August 24, 2020, San Diego, California, USA Jinfeng Zhuang, Jennifer Zhao, Anant Srinivas Subramanian, Yun Lin, Balaji Krishnapuram, and Roelof van Zwol

Before we draw conclusions, we need to carefully study the
training setup of Pre-trained and End2end embedding. The truth
is that we can never have fair comparison between them on the
same training data. Or put the other way: the gain from pre-trained
embedding transfer is because that it has the opportunity to use
huge volume of possible data, while End2end learning has to be
within the scope of the problem it tries to solve. If we restrict
pre-trained embedding to the same training data, then probably
end2end learning will win, on the condition that 1) the training
dataset size is big enough to derive a good model; 2) the training
data have identical or very similarity distribution as the inference
stage.

In an academic setup, we leave out a portion of the training data
to tune hyperparameters (or use cross-validation) and another por-
tion of the data for evaluation purposes. In industry, the evaluation
is usually an online service that takes multiple features as inputs.
Depending on the input data for the embedding, it may have a dis-
tribution that is totally different from the offline collected training
data. This is a true dilemma:

It requires a multiple million numbers of training instances,
considering the fact that we need to learn the embedding vectors
together with the layers in the deep neural network model. Suppose
there are 20,000 popular words, then the number of embedding pa-
rameters goes up to 20𝐾 ∗ 64𝐷 > 1𝑀 . We simply cannot afford
the labeling cost of multiple million levels of data. Instead, we try
to "mock" the relevance between related pins by pinners’ engage-
ments. This is a good way to unlock the training data size. However,
when we evaluate the model, we care about its performance on
the challenging cases, which are labeled by human beings. That is
exactly the training/evaluation discrepancy checks in.

Figure 6 compares the training data of PinText V1 and V2. As
stated in [40], we use all available engagements from all three sur-
faces including homefeed, search, and related pin to train V1. Even
after reasonably strict filtering, we end up with multiple billion
levels of training instances. We have to stay with the particular
related pin ranking problem in V2 end2end training. As a result, it
only takes less than < 5% of training dataset size. It also covers only
< 20% of V1 English words because it only cares about canonical an-
notation tokens. We conclude that the performance gap of end2end
and pre-trained embeddings are from training data difference and
the discrepancy between training data and evaluation data. We also
must stress that there is no golden rule about which one is the best
strategy. It is totally dependent on the problems and the resources
to build the model.

5.4 Some Applications
Given the techniques we presented so far, we are able to derive the
pin level embedding from the text snippets it has. We have deployed
PinText to several important productions. We would like to select a
few here in the hope of inspiring other practitioners and researchers.
One direct impact is text classification tasks. We have many text
classification problems at Pinterest, for example, Query2Interest
and Pin2Interest [16], which maps an input text snippet to a node
in an interest taxonomy [9]. We use FastText a lot as a pure text
classifier [3] which learns word embeddings internally. But there
are also many cases where we have other crafted non-text features,

where embeddings can be plugged in as inputs. We are able to make
those scenarios better by the V2 techniques here.

A second important application is pin level ranking. The V2 ap-
proach provides a principled way to generate pin-level embedding
given text as inputs. By building indexes for pins, we are able to
retrieve the embedding vector in real-time, and use it as input layer
of deep neural network-based ranking models. Due to the limited
space and the fact that they are not replicable to non-Pinterest engi-
neers, we omit the online A / B experiments in this paper. It shows
that such text-based pin embedding provides extremely useful com-
plementary results in additional to other types of embeddings, like
visual embedding [39] or GraphSAGE embedding [12].

The V2 transfer setting brings an important feature: the atten-
tion score function is nonlinear, but the combination of annotation
embeddings is indeed linear. This means the pin embedding lives
in the same space as the text embedding model. It avoids embed-
ding projection or other complex techniques to make pin to text
comparison possible.

6 CONCLUSIONS
In this paper, we improved PinText V1 by making it include phrases
in a pure data-driven approach. Then we proposed PinText V2 that
can combine lower entity level embeddings to a single higher-level
entity embedding based on attention mechanism. We studied a very
interesting and important question about if end2end embedding
with limited data can beat pre-trained embedding with a huge
volume of training data.

The answer is clear in a related pin ranking problem: in-house
text embedding is better than open sourced embedding due to the
fact that the former fits our data better; embedding based rank-
ing is better than plain text-matching based ranking due to the
fact that the former provides smooth and semantic level similarity
calculation; pre-trained embedding can be better than end-2-end
embedding when the latter has limited training data and when there
is concept drift between evaluation and training data. We have to
mention that the conclusions above are context-dependent. It is pos-
sible to have end2end embedding better, with application-specific
data sampling and model architecture design. Our motivation here
is to bring up a general embedding learning strategy.

In future, we plan to work in the following space: first, when
there are multiple embeddings available in the system, how to
make them work together to squeeze out the best performance.
One pain point is that different embeddings are not comparable
directly. There is no easy way to project them into the same space
without losing quality. Second, technical debt checks in whenwe try
to upgrade embedding versions that are widely used in production.
Making sure of auto-regular updates is an essential requirement to
keep downstream models up-to-date. Third, avoid end2end embed-
ding learning for a particular application as much as possible, to
reduce tech debt and transfer existing knowledge.

ACKNOWLEDGMENTS
We thank ads quality team, visual computation team, and cloud
management platform team at Pinterest for the fruitful collabora-
tion and discussion. We thank Chen Chen for the help of collecting
related pin data.

PinText 2: Attentive Bag of Annotations Embedding DLP-KDD 2020, August 24, 2020, San Diego, California, USA

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003.
A Neural Probabilistic Language Model. J. Mach. Learn. Res. 3 (March 2003),
1137–1155.

[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching Word Vectors with Subword Information. TACL 5 (2017), 135–146.

[4] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL. 1724–1734.

[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,
Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang,
and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In Advances
in Neural Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States. 1232–1240.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805

[7] Stephanie deWet and Jiafan Ou. 2019. Finding Users Who Act Alike: Transfer
Learning for Expanding Advertiser Audiences. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
2019, Anchorage, AK, USA, August 4-8, 2019. 2251–2259. https://doi.org/10.1145/
3292500.3330714

[8] Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl,
and Joaquin Vanschoren. 2019. An Open Source AutoML Benchmark. CoRR
abs/1907.00909 (2019). arXiv:1907.00909

[9] Rafael S. Gonçalves, Matthew Horridge, Rui Li, Yu Liu, Mark A. Musen, Csongor I.
Nyulas, Evelyn Obamos, Dhananjay Shrouty, and David Temple. 2019. Use
of OWL and Semantic Web Technologies at Pinterest. In The Semantic Web -
ISWC 2019 - 18th International Semantic Web Conference, Auckland, New Zealand,
October 26-30, 2019, Proceedings, Part II. 418–435. https://doi.org/10.1007/978-3-
030-30796-7_26

[10] Mitchell A Gordon, Kevin Duh, and Nicholas Andrews. 2020. Compressing
{BERT}: Studying the Effects of Weight Pruning on Transfer Learning. https:
//openreview.net/forum?id=SJlPOCEKvH

[11] Edouard Grave, Tomas Mikolov, Armand Joulin, and Piotr Bojanowski. 2017. Bag
of Tricks for Efficient Text Classification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics, EACL 2017,
Valencia, Spain, April 3-7, 2017, Volume 2: Short Papers. 427–431.

[12] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9
December 2017, Long Beach, CA, USA. 1024–1034.

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[14] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang
Wang, and Qun Liu. 2019. TinyBERT: Distilling BERT for Natural Language
Understanding. arXiv:cs.CL/1909.10351

[15] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT for Self-supervised Learn-
ing of Language Representations. CoRR abs/1909.11942 (2019). arXiv:1909.11942

[16] Eileen Li. 2019. Understanding Pins through keyword extraction.
https://medium.com/pinterest-engineering/pin2interest-a-scalable-system-
for-content-classification-41a586675ee7.

[17] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-Task
Deep Neural Networks for Natural Language Understanding. In Proceedings of
the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers. 4487–4496.

[18] Jie Lu, Vahid Behbood, Peng Hao, Hua Zuo, Shan Xue, and Guangquan Zhang.
2015. Transfer learning using computational intelligence: A survey. Knowl.-Based
Syst. 80 (2015), 14–23. https://doi.org/10.1016/j.knosys.2015.01.010

[19] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017.
Learned in Translation: Contextualized Word Vectors. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, 4-9 December 2017, Long Beach, CA, USA. 6294–6305.

[20] Qi Meng, Wei Chen, Jingcheng Yu, Taifeng Wang, Zhiming Ma, and Tie-Yan Liu.
2016. Asynchronous Accelerated Stochastic Gradient Descent. In Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI
2016, New York, NY, USA, 9-15 July 2016. 1853–1859.

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
arXiv:1301.3781 http://arxiv.org/abs/1301.3781

[22] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE
Trans. Knowl. Data Eng. 22, 10 (2010), 1345–1359.

[23] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar. 1532–1543.

[24] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long
Papers). 2227–2237.

[25] Alec Radford and Ilya Sutskever. 2018. Improving Language Understanding by
Generative Pre-Training. In arxiv.

[26] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2018. Language Models are Unsupervised Multitask Learners. (2018).

[27] Sebastian Ruder and Jeremy Howard. 2018. Universal Language Model Fine-
tuning for Text Classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers. 328–339.

[28] Victor Sanh, Lysandre Debut, and Thomas Wolf. 2019. Smaller, faster, cheaper,
lighter: Introducing DistilBERT, a distilled version of BERT. https://medium.com/
huggingface/distilbert-8cf3380435b5.

[29] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan Den-
nison. 2015. Hidden Technical Debt in Machine Learning Systems. In Advances
in Neural Information Processing Systems 28: Annual Conference on Neural Infor-
mation Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada.
2503–2511.

[30] Burr Settles. 2012. Active Learning. Morgan & Claypool Publishers. https:
//doi.org/10.2200/S00429ED1V01Y201207AIM018

[31] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami,
Michael W. Mahoney, and Kurt Keutzer. 2019. Q-BERT: Hessian Based Ultra Low
Precision Quantization of BERT. arXiv:cs.CL/1909.05840

[32] Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. ConceptNet 5.5: An Open
Multilingual Graph of General Knowledge. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA. 4444–4451.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA. 6000–6010.

[34] Heath Vinicombe. 2019. Understanding Pins through keyword extrac-
tion. https://medium.com/pinterest-engineering/understanding-pins-through-
keyword-extraction-40cf94214c18.

[35] Wei Wen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen, and Hai
Li. 2017. TernGrad: Ternary Gradients to Reduce Communication in Distributed
Deep Learning. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA. 1509–1519.

[36] Ledell Yu Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and
Jason Weston. 2018. StarSpace: Embed All The Things!. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018. 5569–5577.

[37] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdi-
nov, and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for
Language Understanding. CoRR abs/1906.08237 (2019).

[38] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, and
Eduard H. Hovy. 2016. Hierarchical Attention Networks for Document Classifi-
cation. In NAACL HLT 2016, The 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
San Diego California, USA, June 12-17, 2016. 1480–1489.

[39] Andrew Zhai, Hao-Yu Wu, Eric Tzeng, Dong Huk Park, and Charles Rosenberg.
2019. Learning a Unified Embedding for Visual Search at Pinterest. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. 2412–2420. https:
//doi.org/10.1145/3292500.3330739

[40] Jinfeng Zhuang and Yu Liu. 2019. PinText: A Multitask Text Embedding System
in Pinterest. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8,
2019. 2653–2661. https://doi.org/10.1145/3292500.3330671

http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3292500.3330714
https://doi.org/10.1145/3292500.3330714
http://arxiv.org/abs/1907.00909
https://doi.org/10.1007/978-3-030-30796-7_26
https://doi.org/10.1007/978-3-030-30796-7_26
https://openreview.net/forum?id=SJlPOCEKvH
https://openreview.net/forum?id=SJlPOCEKvH
http://arxiv.org/abs/cs.CL/1909.10351
http://arxiv.org/abs/1909.11942
https://medium.com/pinterest-engineering/pin2interest-a-scalable-system-for-content-classification-41a586675ee7
https://medium.com/pinterest-engineering/pin2interest-a-scalable-system-for-content-classification-41a586675ee7
https://doi.org/10.1016/j.knosys.2015.01.010
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://medium.com/huggingface/distilbert-8cf3380435b5
https://medium.com/huggingface/distilbert-8cf3380435b5
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
http://arxiv.org/abs/cs.CL/1909.05840
https://medium.com/pinterest-engineering/understanding-pins-through-keyword-extraction-40cf94214c18
https://medium.com/pinterest-engineering/understanding-pins-through-keyword-extraction-40cf94214c18
https://doi.org/10.1145/3292500.3330739
https://doi.org/10.1145/3292500.3330739
https://doi.org/10.1145/3292500.3330671

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithms
	3.1 Overall Model Design
	3.2 Pin Level Encoder
	3.3 Related Pin Classification

	4 Implementations
	4.1 Improved Pre-trained Baseline
	4.2 Single Instance Training
	4.3 Asynchronous Distributed Training

	5 Applications and Experiments
	5.1 Experiments Setup
	5.2 Attention is Better than Simple Average
	5.3 End2End is Not Better than Pre-trained
	5.4 Some Applications

	6 Conclusions
	Acknowledgments
	References

