NEURAL INFORMATION PROCESSING SYSTEMS

Outline

- Goal: solve optimization problems over distributions
- Approach: follow gradient flow (GF) of optim. objective
- JKO: minimizing movement scheme, discretizes flow
- Brenier Theorem allows to write JKO as an optimization on the space of convex functions
- Our method (JKO-ICNN) implements JKO using Input Convex Neural Networks (ICNN)

Background: Gradient Flows

- GF: steepest descent curve x(t) of functional $F: \mathcal{X} \to \mathbb{R}$
- In Euclidean space \mathcal{X} :

$$\begin{aligned} \kappa'(t) &= -\nabla F(x(t)) \\ \partial_t \rho_t &= \nabla \cdot \left(\rho_t \nabla \frac{\delta F(\rho)}{\delta \rho} \right) \end{aligned}$$

•	In	Probability	space	$\mathscr{P}(\mathscr{X})$:
---	----	-------------	-------	------------------------------

Class	PDE $\partial_t \rho =$
Heat Equation	$\Delta \rho$
Advection	$\nabla \cdot (\rho \nabla V)$
Fokker-Planck	$\Delta \rho + \nabla \cdot (\rho \nabla V)$
Porous Media	$\Delta(\rho^m) + \nabla \cdot (\rho \nabla V)$
Adv.+Diff.+Inter	$x.\nabla\cdot\left[\rho(\nabla f'(\rho)+\nabla V+(\nabla W)*\rho)\right]$

Flow Functional $F(\rho) =$ $\int \rho(x) \log \rho(x) dx$ $V(x) d\rho(x)$ $\int \rho(x) \log \rho(x) dx + \int V(x) d\rho(x)$ $\frac{1}{m-1}\int \rho(x)^m \,\mathrm{d}x + \int V(x) \,\mathrm{d}\rho(x)$ $\int V(x) d\rho(x) + \int f(\rho(x)) dx$ $+\frac{1}{2} \int \int W(x-x') d\rho(x) d\rho(x')$

Equivalences between PDEs and Functional Gradient Flows

Background: JKO Scheme

• A time discretization of gradient flows in prob. space: $\rho_{t+1}^{\tau} \in \arg\min_{\rho \in \mathbb{W}_{2}(\mathcal{X})} F(\rho) + \frac{1}{2\tau} W_{2}^{2}(\rho, \rho_{t}^{\tau}), \quad \tau > 0 \longrightarrow (\text{step size})$ → Wasserstein distance

• Jordan-Kinderlehrer-Otto (1998)

• Implementation requires tractable modeling of measures

- We focus on 3 functional families:

From Measures to Convex Functions

- $W_2^2(\alpha, (\nabla u)_{\sharp}\alpha) =$
- Therefore, JKO scheme can be written as:

min $F((\nabla u)_{\sharp}\rho_t^{\tau}) + \frac{1}{2}$ $u \in CVX(\mathcal{X})$

From Convex Functions to ICNN • Parametrize CVX via input-convex neural nets (Amos et al. '17)

- Problem becomes: $F((\nabla_x)$ mın $u_{\theta} \in \mathsf{ICNN}(\mathcal{X})$
- Simple form for poter $\mathcal{V}\left((\nabla_{x}u_{\theta})_{\sharp}\rho_{t}^{\tau}\right) = \mathbb{E}_{x \sim \rho_{t}^{\tau}}$ $\mathcal{W}\left((\nabla_{x}u_{\theta})_{\sharp}\rho_{t}^{\tau}\right) = \frac{1}{2}\mathbb{E}_{x,\sharp}$
- Surrogate objectives for certain internal energies

Setting

• We consider problems of the form $\min F(\rho)$ $\rho \in \mathscr{P}(\mathscr{X})$ $\mathscr{V}(\rho) = \left[V(x)d\rho \text{ (potential)}, \mathscr{W}(\rho) = \frac{1}{2} \right] W(x - x')d\rho \otimes \rho$ (interaction), $\mathscr{F}(\rho) = \int f(\rho(x)) dx$ (internal energy) • For these functionals, GF converges to unique minimizer

• Algorithm gist: use JKO iteratively to minimize F

• Under some assumptions, Brenier theorem yields:

$$= \int_{\mathcal{X}} \|\nabla u(x) - x\|_2^2 d\alpha, \quad u \in \text{CVX}(\mathcal{X})$$

$$\frac{1}{2\tau} \int_{\mathcal{X}} \|\nabla u(x) - x\|_2^2 d\rho_t^{\tau}$$

• Measures implicitly defined via: $\rho_{t+1}^{\tau} = (\nabla u_{t+1}^{\tau})_{\#}(\rho_{t}^{\tau})$

$$u_{\theta}(x))_{\sharp}\rho_{t}^{\tau} + \frac{1}{2\tau} \int_{\mathcal{X}} \|\nabla_{x}u_{\theta}(x) - x\|_{2}^{2} d\rho_{t}^{\tau}$$

Initial/interaction functionals:

$$V(\nabla_{x}u_{\theta}(x))$$

$$V(\nabla_{x}u_{\theta}(x) - \nabla_{x}u_{\theta}(y))$$
approximate
with finite
samples
for certain internal energies

$$\min_{\boldsymbol{\in}\mathscr{P}(\mathscr{X})} F(\rho) := \lambda_1 \mathbb{E}_{\rho} V(\boldsymbol{x}) + \lambda_2 \mathbf{D}(\rho, \rho_0)$$

λ_2	LR	Validity	Uniqueness	QED Median	Final SD			
$ ho_0 m N/A$	N/A	$ 100.000 \pm 0.000$	99.980 ± 0.045	0.630 ± 0.001	N/A			
$JKO-1e^4$	$\frac{ICNN}{1e^{-4}}$	93.940 ± 0.336	100.000 ± 0.000	0.750 ± 0.001	0.620 ± 0.010			
Basel	Baseline - SGD							
0	$5e^{-1}$	43.440 ± 1.092	100.000 ± 0.000	0.772 ± 0.004	9792.93 ± 76.913			
1	$5e^{-1}$	49.440 ± 1.128	100.000 ± 0.000	0.768 ± 0.006	8881.38 ± 69.736			
$1e^3$	$5e^{-1}$	87.240 ± 0.777	100.000 ± 0.000	0.767 ± 0.002	2515.08 ± 49.870			
Basel	Baseline - ADAM							
0	$1e^{-1}$	92.080 ± 0.973	100.000 ± 0.000	0.793 ± 0.005	18.261 ± 0.134			
0	$1e^{-2}$	93.900 ± 0.781	99.979 ± 0.048	0.758 ± 0.006	1.650 ± 0.006			
1	$1e^{-1}$	91.200 ± 0.539	99.978 ± 0.049	0.792 ± 0.005	17.170 ± 0.097			
$1e^3$	$1e^{-1}$	99.980 ± 0.045	99.980 ± 0.045	0.630 ± 0.001	0.077 ± 0.003			
$1e^4$	$1e^{-1}$	99.900 ± 0.122	99.980 ± 0.045	0.630 ± 0.001	0.240 ± 0.019			