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Abstract

Scarcity of labeled histopathology data limits the applicability of deep learning methods
to under-profiled cancer types and labels. Transfer learning allows researchers to over-
come the limitations of small datasets by pre-training machine learning models on larger
datasets similar to the small target dataset. However, similarity between datasets is often
determined heuristically. In this paper, we propose a principled notion of distance between
histopathology datasets based on a hierarchical generalization of optimal transport dis-
tances. Our method does not require any training, is agnostic to model type, and preserves
much of the hierarchical structure in histopathology datasets imposed by tiling. We apply
our method to H&E stained slides from The Cancer Genome Atlas from six different cancer
types. We show that our method outperforms a baseline distance in a cancer-type predic-
tion task. Our results also show that our optimal transport distance predicts difficulty of
transferability in a tumor vs. normal prediction setting.

Keywords: Histopathology, domain adaptation, transfer learning, optimal transport

1. Introduction

Histopathology images are routinely used in the diagnostic workup of many cancers. Beyond
the standard identification of tumor grade and subtype, histopathology images also contain
an abundance of visual information that may have predictive and prognostic value. Recent
advances in deep learning for histopathology are facilitating the extraction of this informa-
tion, enabling prediction of genetic alterations, treatment response and survival (Coudray
et al., 2018; Muhammad et al., 2021; Wulczyn et al., 2021; Echle et al., 2020).

Despite the promise of supervised deep learning, the large, labeled datasets required
to train complex networks on histopathology images are scarce, especially in less common
cancers and label types. To overcome data scarcity during model training, transfer learning
techniques can be utilized by pre-training models on a larger—ideally similar—dataset. The
model can then be fine-tuned on the small target dataset of interest. Until now, determining
which similar dataset to use for pre-training in histopathology has been driven by intuition
or trial and error (Srinidhi et al., 2021).
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(a) For a pair of slides, the OT distance
is calculated using the OT distance be-
tween all pairs of tiles.

(b) For a pair of datasets, the OT distance
is calculated using the OT distance be-
tween all pairs of slides

Figure 1: Schematic of how HHOT distances are calculated at the slide (a) and dataset (b)
level. Tiling of individual slides, done to overcome memory limits, introduces hierarchical
structure to the calculation of OT between different datasets.

In this paper, we introduce a principled approach to measuring similarities between
histopathology datasets. Specifically, we propose a novel distance between histopathology
datasets which we call Hierarchical Histopathology Optimal Transport (HHOT) based on
Optimal Transport (OT), a method to compare distributions. Our method uses OT to
compute the distance between individual slides and to compute the distances between entire
datasets (Figure 1). We show that HHOT is highly predictive of transfer learning accuracy
in a tumor vs. normal prediction setting, and that it is significantly faster than a naive
(non-hierarchical) Optimal Transport approach.

2. Background

Optimal Transport (OT) is a mathematical framework centered around the goal of compar-
ing probability distributions, with deep theory (Villani, 2003, 2008; Santambrogio, 2015)
and applications to various fields, ranging from economics (Galichon, 2016) to meteorology
(Cullen and Maroofi, 2003). Although it can be formulated in more general settings, in this
work we are interested in its discrete Euclidean formulation, which considers two finite col-
lections of points {x(i)}ni=1, {y(j)}mj=1, x

(i),y(j) ∈ Rd, represented as empirical distributions:
µ =

∑n
i=1 piδx(i) , ν =

∑m
j=1 qjδy(j) , where p and q are probability vectors (non-negative

and adding up to one).

At a high level, the goal of OT is to find an optimal correspondence between these
distributions, and in doing so, define a notion of similarity between them. Given a cost
function (often called the ground metric) between pairs of points c : Rd × Rd → R+, the
goal of OT is to find a correspondence between µ and ν with minimal cost. Formally, the
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Kantorovich formulation of discrete OT seeks a coupling matrix Γ ∈ Rn×m that solves:

OTc(µ, ν)
def.
= min

Γ∈Π(µ,ν)
⟨Γ,C⟩ =

∑
ij

ΓijCij , (1)

where Cij
def.
= c(x(i),y(j)). The constraint set Π(µ, ν) enforces Γ to be measure-preserving,

i.e., to have µ and ν as its marginals:

Π(µ, ν)
def.
= {Γ ∈ Rn×m

+ | Γ1 = p, Γ⊤1 = q}. (2)

It can be shown that for c(x,y) = ∥x − y∥p, OTc(µ, ν)
1/p is a proper distance metric be-

tween distributions (i.e., satisfies all metric axioms) (Peyré and Cuturi, 2019). As noted
above, the coupling matrix Γ can be interpreted as a soft matching or probabilistic corre-
spondence between the elements of µ and ν, in the sense that Γij is high if x(i),y(j) are
in ‘correspondence’, and low otherwise. In some cases (such as the common case n = m
and p,q uniform), the optimal coupling turns out to be sparse, in which case Γ defines a
deterministic one-to-one mapping between the x(i)’s and y(j)’s.

Problem (1) is a linear programming problem and thus solvable exactly in O(n3) time
(Peyré and Cuturi, 2019). This makes it impractical even for moderately sized collections
of points. However, seminal work by Cuturi (2013) showed that a regularized version of
this problem can be solved much more efficiently. The regularization consists of adding a
entropy term on the objective:

OTc,ε(µ, ν)
def.
= min

Γ∈Π(µ,ν)
⟨Γ,C⟩+ εH(Γ). (3)

This entropy-regularized OT problem can be solved very efficiently using the Sinkhorn-
Knopp algorithm (Cuturi, 2013). One downside of this regularization is that OTc,ε(µ, µ) ̸=
0, which in particular implies this quantity is no longer a valid distance. To alleviate this,
prior work (Genevay et al., 2018; Salimans et al., 2018) has considered a debiased version
this quantity, also known as the Sinkhorn divergence:

SDc,ε(µ, ν)
def.
= OTc,ε(µ, ν)− 1

2

(
OTc,ε(µ, µ) + OTc,ε(ν, ν)

)
(4)

In addition to satisfying SDc,ε(µ, ν) ≥ 0, with equality if and only if µ = ν, this divergence
comes with many other desirable theoretical properties: it is positive, convex, metrizes
weak converge in distribution (Feydy et al., 2019), and leads to faster statistical rates of
estimation of the exact OT problem (Chizat et al., 2020).

In Section 4.1, we will introduce our method using OTc,ε(µ, ν) for notational simplicity,
noting that it can naturally use SDc,ε(µ, ν) instead. In addition, we will drop c and ϵ from
the notation for OT when these are clear from the context.

3. Related work

Our HHOT method for histopathology builds on previous work in hierarchical OT for other
domains and previous work in non-hierarchical OT within histopathology. For example,
Yurochkin et al. (2019) have described a hierarchical OT method for measuring distances
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between documents, using words and topics as the hierarchical levels. In addition, specifi-
cally for histopathology images, non-hierarchical OT has been used to compare individual
cell morphology (Basu et al., 2014; Wang et al., 2011) and to quantify domain shift at the
tile level (Stacke et al., 2021). In addition, the relationship between OT-calculated dataset
distances and the difficulty of transferability has been previously described by (Alvarez-
Melis and Fusi, 2020; Gao and Chaudhari, 2021; Achille et al., 2021), although the notion
of distance they define is generic and thus does not leverage the hierarchical nature of
individual datasets.

4. Optimal transport between histopathology datasets

4.1. Hierarchical Histopathology Optimal Transport

We consider a pair of histopathology datasets, Da and Db, collected from different tissues,
centers, or populations. We seek a notion of distance that lets us assess their similarity.
Each dataset consists of slides s, which in turn are subdivided into tiles t. Let n and m
denote, respectively, the number of slides in each dataset. In addition, we denote by ni the
number of tiles in the i-th slide of the first dataset, and analogously for mj .

We can view Da and Db as point clouds or, more formally, empirical distributions as
described in section 2. From this viewpoint, we can think of these datasets as samples of slide
images sampled from two different underlying distributions. Unless additional information is
provided, we can simply take the weights associated to each slide (p and q) to be uniform,
as is typically done in practical application of OT to point clouds or images (Peyré and
Cuturi, 2019). After defining a suitable notion of distance between pairs of slides, one could
in principle use problem (3) (or its debiased counterpart, eq. (4)) to obtain a notion of
similarity between Da and Db. However, this naive approach would require loading entire
slides into memory, which is computationally infeasible—precisely the reason why these
images are tiled in the first place.

Our proposed solution to this computational hurdle is to interpret the slides themselves
as collections (formally, distributions) of tiles, and use OT once more, now to define a notion
of distance between these. To this end, we first define the cost between individual tiles as
the distance between them. Although we could in principle use the Euclidean distance
between their raw pixel representations, a more meaningful comparison can be obtained by
first embedding these images in some lower dimensional space (e.g., using a neural network
pre-trained on a large image dataset), and then computing a distance between them. Hence,
we define c(tu, tv) = ∥ϕ(tu)− ϕ(tv)∥2, where ϕ is a pre-trained encoder.

We collect all such pairwise costs in a matrix Ctile of size ni ×mj , and solve the corre-
sponding OT problem:

OTϕ,ε(si, sj) = min
Γ∈Π(pi,qj)

⟨Γtile,C
ij
tile⟩+ εH(Γ). (5)

As in section 2, we can also define a debiased version of this slide-to-slide distance:

SDϕ,ε(si, sj) = OTϕ,ε(si, sj)− 1
2

(
OTϕ,ε(si, si) + OTϕ,ε(sj , sj)

)
(6)

Compared to other possible ways to compare slides using their tiles (like using a mean or
centroid tile), this OT-based approach is appealing because (i) it does not lose information
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(a) Source tile visualizing
cartilage within a
LUAD slide.

(b) Target slide of LUAD.
The orange highlighted
region is cartilaginous.

(c) Heatmap of coupling
between the source tile
and target slide. High
coupling is observed
in the cartilaginous re-
gion.

Figure 2: Representative example of a source tile tightly coupling to target tiles of the
same tissue type, suggesting that HHOT between tiles implicitly incorporates biological
information.

by aggregating the tiles, and (ii) it recovers some of the global structure that it lost by tiling,
i.e., the relation between the tiles in the context of the slide. Specifically, in operationalizing
similarity through matching, problem (5) seeks to find corresponding tiles across slides, and
does it coherently as a result of the marginal constraint (e.g., a single tile cannot be matched
to all tiles in the other slide).

Once we have computed (5) for every pair of slides (si, sj) from the two datasets, we
collect them in a matrix Cslide with entries [Cslide]ij = OTε(si, sj). With this, finally we
have a ground cost between slides, which we can use to compute the sought-after distance
between datasets using OT once more:

OTε(Da,Db) = min
Γ∈Π(p,q)

⟨Γ,Cslide⟩+ εH(Γ), (7)

and its debiased counterpart:

SDϕ,ε(Da,Db) = OTϕ,ε(Da,Db)− 1
2

(
OTϕ,ε(Da,Db) + OTϕ,ε(Da,Db)

)
. (8)

4.2. Computational Implementation

We use the python optimal transport (POT) (Flamary et al., 2021) and geomloss (Feydy
et al., 2019) libraries to solve the individual OT problems (5) and (7). Using the vanilla
Sinkhorn algorithm, solving the first of these to δ1-accuracy has O(nimj/δ1) computational
complexity (Altschuler et al., 2017), and analogously O(nm/δ2) for the latter. Taking
δ1 = δ2, the total complexity scales as O((nm+

∑
ij nimj)/δ). Figure 5(c) shows empirical

runtimes for our method. Our implementation of HHOT can be found here: https://

github.com/ayeaton/HHOT

5. Methodology and Results

We used whole slide images retrieved from the TCGA (https://portal.gdc.cancer.gov/) for
six common cancer types, including both primary tumor samples and matched normal
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(a) Centroid UMAP.

(b) OT UMAP. (c) KNN performance. (d) HHOT distance retains visual di-
versity within cancer datasets.

Figure 3: HHOT enables better clustering of slide images by cancer type, as compared
to the centroid tile distance method. HHOT also reflects the diversity of images within
a single cancer type. This suggests that HHOT distances better preserve morphological
information.

samples. Specifically we focused on Stomach Adenocarcinoma (STAD), Bladder Urothe-
lial Carcinoma (BLCA), Lung Adenocarcinoma (LUAD), Lung Squamous-cell Carcinoma
(LUSC), Colon Adenocarcinoma (COAD), and Pancreatic Adenocarcinoma (PAAD). Slide
images were tiled into 512x512 pixel non-overlapping images at 20x magnification, and tiles
with more than 50 percent background were discarded as described in (Coudray et al., 2018;
Noorbakhsh et al., 2020). We extracted a median of 474 tiles for BLCA, 777 for COAD, 445
for LUAD, 448 for LUSC, 278 for PAAD and 622 for STAD. We then used Inception-V3
pre-trained on ImageNet to compress 512x512 pixel images to 2048 length vectors. For
comparison of collections of tiles, we set the regularization parameter ε to 0.25.

We calculated OT between slides, and found that tiles with the highest coupling were
those that were visually similar. As an example, we show the OT coupling matrix between
tiles from two representative slides in Figure 2. We chose an example tile from the source
slide which displays cartilage tissue. We then show the coupling of this source tile to all
tiles in the target slide. We visualize the strength of coupling in Figure 2(c); the highest
coupling to the cartilage source tile is tightly localized and corresponds to a cartilaginous
region in the target. These results demonstrate that an OT solution implicitly incorporates
biological structure.

In slide-to-slide comparisons, HHOT preserves more relevant histomorphological infor-
mation than other methods, such as using a mean or centroid tile. We demonstrate this
with a task for clustering the slides by cancer type. We created a matrix Cslide with entries
[Cslide]ij = OTε(si, sj) as described above including all pairs of slides. For reference, we also
calculated a distance matrix between slides using the centroid tile of a slide as described in

6



Hierarchical Optimal Transport for Comparing Histopathology Datasets

Howard et al. (2021). We visualized the relationship between slides using UMAP for both
OT and centroid-tile distance (Figure 3(a), Figure 3(b)). Visually, we observe that HHOT
distance enables better clustering of the slide images by cancer type. Quantitatively, using
K-nearest neighbors over K ranging from two to eight, we performed a cancer-type classi-
fication task with our two distance matrices as input. We show that OT retains similarity
within cancer-types and dissimilarity across cancer-types as expected, and does so better
than the centroid-tile distance baseline. Figure 3(d) shows representative examples of how
HHOT distances reflect the diversity of images with a single cancer type. HHOT tightly
groups PAAD slides, and these slide images are visually very similar. In contrast, HHOT
shows more variability in the LUSC slides, and these images are more variable.

We observed that target datasets that are similar to the source dataset based on HHOT
distance are more improved by pre-training, i.e. a negative correlation between HHOT
distance and transferability. In this paper, we focus on a tumor vs. normal task. For our
pre-training tasks, we standardized the total dataset size to 209 slides, and used a cross
validation scheme to create four datasets per cancer type with 169 slides for training and 40
for validation. For our fine-tuning task, we standardized the dataset to 65 slides, and used
a cross validation scheme to create four datasets per cancer type with 25 slides for training
and 40 for validation. We conducted our task over all the pre-training datasets and all the
fine-tuning datasets for 16 experiments per cancer type comparison. For each dataset pair,
we pre-trained a single-layer perceptron to predict tumor or normal status, using feature
vectors ϕ(t) and a learning rate of 1e-2. We then fine-tuned this pre-trained model for each
of the other cancer types, using only 25 target slides and a learning rate of 1e-10.

We quantify transferability across tasks using the relative improvement in AUC obtained
by transfer learning: Transferability(DT , DS) = (AUC(DS → DT ) − AUC(DT ))/AUC(DT ).
We observed a negative correlation between the HHOT distance and transferability most
strongly for PAAD, LUAD, LUSC, and STAD (Figure 5(a)). Consistently, visually similar
datasets, such as the two lung cancer datasets, show the smallest HHOT distance and the
highest transferability (green and purple squares and plus in Figure 5(a)). For BLCA and
COAD, we observe that the AUC of a model without pre-training is already very high
(Figure 5(b)); thus, pre-training on other datasets cannot improve on this already high
AUC. This is explicitly quantified for these two cancers by the nearly zero slope of the best
fit line (Figure 5(b), boxplot of no-pretaining AUCs aggregating four datasets of 25 target
slides).

Finally, we show that not only does HHOT preserve the hierarchical structure of the
data and correlate with difficulty of transfer learning, it is also much faster than a flat (non-
hierarchical) OT approach. We compare the time it took to compute OT distance between
four to eighteen slides, with 100 tiles each and observed that the time it took to calculate
OT distance between slides increased in a polynomial order in the flat case (Figure 5(c)).

6. Discussion

In this paper we introduced a principled approach to compare histopathology datasets
called HHOT. Our work adds to the OT and histopathology literature by proposing a
method to compare datasets while also preserving the structure lost by standard tiling
approaches. Specifically, we propose to solve first an inner tile-to-tile OT problem for all
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Figure 4: HHOT is predictive of model transferability across cancer types. Datasets with
large HHOT distances, representing more visually different data, have worse transferability.
The regression coefficients are [β, β0] [0.0024, −5.47× 10−5] (COAD), [0.0016, −6× 10−5]
(BLCA), [0.022, −6.8 × 10−4] (PAAD), [0.042, −1.7 × 10−3] (LUAD), [0.043, −2 × 10−3]
(LUSC), [0.049, −2.7× 10−3] (STAD). For COAD and BLCA, the baseline AUC is already
quite high (b), so transfer learning with other cancer types results in little improvement.
HHOT is faster than non-hierarchical OT between slides (c).

COAD BCLA PAAD

STADLUSCLUAD

source

STAD
LUSC
LUAD
PAAD
BLCA
COAD

(a) HHOT vs. transferability.

(b) No-transfer AUC.

(c) HHOT reduces runtime.

pairs of slides, and then solve the outer slide-to-slide OT problem between datasets. We
first show that correspondences in the OT coupling matrix Γtile map the same type of
tissue across slides. We then show that OT distance performs better than a naive, centroid-
tile distance based method in a cancer-type prediction task. We also show that HHOT
distance between histopathology datasets correlates with transferability. Furthermore, we
find that the degree of correlation between HHOT distance and transferability is associated
with baseline AUC. Simply, if the task is already close to optimal, it is difficult to improve
using pre-training. Finally, we show that HHOT distance is much faster than a naive, flat
approach to comparing histopathology datasets. In addition to applications presented in
this paper, promising applications of HHOT include outlier detection, clustering analysis,
dataset visualization, and facilitating multi-modal integration of whole slide images and
molecular data.

In conclusion, we have demonstrated that HHOT has many benefits for researchers work-
ing with tiled histopathology data. Future work may focus on using OT to direct dataset
creation to optimize transferability, tune tile size and normalization hyper-parameters, and
compare feature vectors learned from different models.
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