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Abstract

In this thesis we propose an alternative algorithm for the problem of domain adaptation in
regression. In the framework of (Mohri and Cortes, 2011), this problem is approached by
defining a discrepancy distance between source and target distributions and then casting its
minimization as a semidefinite programming problem. For this purpose, we adapt the primal-
dual algorithm proposed in (Arora et al. 2007) which is a particular instance of their general
Multiplicative Weights Algorithm (Arora et al. 2005).

After reviewing some results from semidefinite programming and learning theory, we show
how this algorithm can be tailored for the context of domain adaptaiton. We provide details of
an explicit implementation, including the Oracle, which handles dual feasibility. In addition,
by exploiting the structure of the matrices involved in the problem we propose an efficient
way to carry out the computations required for this algorithm, avoiding storing and operating
with full matrices. Finally, we compare the performance of our algorithm with the smooth
approximation method proposed by Cortes and Mohri, in both an artificial problem and a
real-life adaptation task from natural language processing.
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Chapter 1

Introduction

The typical setting of supervised machine learning consists of inferring rules from labeled
training data by means of a learning algorithm and then using these to perform a task on
new “unseen” data. The performance of the method obtained in this way is evaluated on
a separate set of labeled data, called the test data, by using the learned rules to predict its
labels and comparing these with the true values.

In the classical setting, it is assumed that the method will be used on data arising from the
same source as the training examples, so the training and testing data are always assumed to
be drawn from the same distribution. The early pioneering results on learning theory, such as
Vapnik and Chervonekis’s work [32] and the PAC (Probably Approximately Correct) learning
model by Valiant [29], are built upon this assumption.

However, it might be the case that the training examples are drawn from some source
domain that differs from the target domain. This domain adaptation scenario violates the
assumptions of the classical learning models, and thus theoretical estimates of generalization
error provided by these no longer hold. Consequently, the standard learning algorithms which
are based on this theory are deprived of their performance guarantees when confronted with
this scenario.

The framework of domain adaptation, as it turns out, occurs naturally in various applica-
tions, particularly in natural language processing, computer vision and speech recognition. In
these fields, the reason to train on instances stemming from a domain different from that of
interest is often related to availability and cost, such as scarcity of labeled data from the target
domain, but wide availability from another similar source domain. For example, one might
wish to use a language model on microblogging feeds, but due to abundance of labeled entries,
it might be more convenient to train it on journalistic texts, for which there are immense cor-
pora available with various linguistic annotations (such as the famous Penn Treebank Wall
Street Journal dataset1). Naturally, this is an adaptation task, since the language used in

1http://www.cis.upenn.edu/~treebank/
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these two types of writing is significantly discrepant, that is, they can be thought of as being
drawn from statistical language models with different underlying distributions.

The problem of adaptation started to draw attention among the Machine Learning commu-
nity in the early 1990’s, particularly in the context of the applications mentioned above (see
for example [9] or [13]). In this early stage, most authors presented techniques to deal with
domain adaptation that despite achieving varying degrees of success, were mostly context-
specific and lacked formal guarantees.

Theoretical analysis of this problem is much more recent, starting with work by Ben-
David et al.[4] for the context of classification, in which they provide VC-dimension-based
generalization bounds for this case, followed by work by Blitzer et al.[5] and Mansour et
al.[18]. In a subsequent paper by the latter [19], the authors introduce a novel distance
between distributions, the discrepancy distance, which they use to provide domain adaptation
generalization bounds for various loss functions. For the case of regression and the L2 loss,
they show that a discrepancy minimization problem can be cast as a semidefinite program.

Building upon the work by Mansour et al.[19] and equipped with the discrepancy distance,
Cortes and Mohri [7] revisit domain adaptation in the regression-L2 setting, providing point-
wise loss guarantees and an efficient algorithm for this context, based on Nesterov’s smooth
approximation techniques. Here we propose an alternative to this algorithm, by making
use of the Multiplicative Weights Algorithm [1], recently adapted by Arora and Kale [2] to
semidefinite programming problems.

In order to present a coherent articulation between domain adaptation, semidefinite pro-
gramming and the Multiplicative Weights algorithm, we provide a brief albeit comprehensive
review of the main concepts behind these, which occupies the first three chapters. Chapter
5 is devoted to showing how the multiplicative weights algorithm can be tailored to domain
adaptation, along with all the practical hindrances that this implies. At the end of that
chapter we present our algorithm, provide guarantees for it and compare it to the smooth
approximation method used by Cortes and Mohri. In Chapter 6 we present results for two
practical experiments: an artificial toy adaptation problem, and a real problem from natural
language processing, followed by a concluding section summarizing the main results of this
thesis.

The purpose of this work is twofold. It intends to provide the reader with a succinct,
consistent overview of three somewhat separated topics (domain adaptation, semidefinite
programming and the Multiplicative Weights algorithm) and then showing how these can be
brought together in an interesting manner over an elegant - yet artful - optimization problem.



Chapter 2

Domain Adaptation

In this section we formalize the learning scenario of Domain Adaptation, define the notion of
discrepancy distance between distributions and use it to derive the optimization problem that
sits at the core of this thesis. This problem will then motivate the content of the remaining
sections.

2.1 Background

As usual for regression, let us consider two measurable subsets of R, the input and output
spaces, which we will denote by X and Y, respectively. The former contains the explanatory
variables and the latter contains response variables, also referred to as labels. Thus, a labeled
example consists of a pair (x, y) ∈ (X × Y). In the standard supervised learning setting, the
elements in X are Y are assumed to be related by a target labeling function f : X → Y, and
the usual task consists of estimating this function.

For the domain adaptation framework we define domains by means of probability distri-
butions over X . So, let Q be the distribution for the source domain, and P the distribution
over X for the target domain. Naturally, the idea is to assume that P and Q are not equal in
general. Consequently, their corresponding labeling functions fP and fQ might differ.

In the problem of regression in domain adaptation the learner is given a labeled sample of
m points S =

{
(x1, y1), . . . , (xm, ym)

}
∈ (X×Y)m, where each xi is drawn i.i.d according to Q

and yi = fQ(xi). We will denote by Q̂ the empirical distribution corresponding to x1, . . . , xm.
On the other hand, he is also provided with a set T of unlabeled test points from the target
domain (that is, drawn according to P ), with a corresponding empirical distribution P̂ .

Intuitively, the task of the learner is infer a suitable labelling function which is similar to
fP . To set up this task more formally, let us consider a hypothesis set H = {h : X → Y} and

3



2.2. DISCREPANCY DISTANCE 4

a loss function L : Y ×Y → R+ that is symmetric and convex with respect to each argument.
L is frequently taken to be the squared loss (as usual in regression), but can be more general.
This leads to the following definition from statistical decision theory.

Definition 2.1.1. Suppose we have two functions f, g : X → Y, a loss function L : Y ×Y →
R+ and a distribution D over X . The expected loss of f and g with respect to L is given by

LD(f, g) = Ex∼D[L(f, g)]

In light of this, it is clear what the objective of the learner is. He must select a hypothesis
h ∈ H such that

LD(h, h′) = Ex∼D[L(h(x), h′(x)]

That is, the problem consists of minimizing the expected loss of choosing h′ to approximate
fP .

By this point we notice the inherent difficulty of this learning task. The learner has no
direct information about fP , but only about fQ, through the labeled examples in S. A naive
strategy would be to select a hypothesis h based solely based on information about fQ, and
hope that P and Q are sufficiently similar. This optimistic approach will not only be devoid of
theoretical learning guarantees, but will also most likely fail if the source and target domains
are even slightly different.

2.2 Discrepancy Distance

Based on the analysis above, it is clear that the crucial aspect behind domain adaptation is
to be able to quantify the disparity between the source and target distributions P and Q. For
this purpose, Mansour, Mohri and Rostamizadeh [19] introduce such a notion of similarity,
the discrepancy distance, which is tailored to adaptation problems and turns out to facilitate
several results on learning bounds. It is this very notion of similarity that will prove crucial
in the formulation of the optimization problem in Section 2.4.

Definition 2.2.1. Given a hypothesis set H and loss function L, the discrepancy distance
between two distributions P and Q over X is defined by

disc(P,Q) = max
h,h′∈H

|LP (h′, h)− LQ(h′, h)| (2.1)

This definition follows naturally from the way we have set up the learner’s task above, for
it measures the difference in expected losses incurred when choosing a fixed hypothesis h in
presence of a target labeling function fP , over both domains.

Other alternatives to this notion of dissimilarity have been proposed before (the l1-distance
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or the dA distance, for example), but the discrepancy distance1 is advantageous over those in
various ways. First, as pointed out by the authors, the discrepancy can be used to compare
distributions for general loss functions. In addition, it can be estimated from finite samples
when the set {|h′ − h| : h′, h ∈ H} has finite VC dimension, and it provides sharper learning
bounds that other distances.

Before presenting the first theoretical results concerning the discrepancy distance, we turn
our attention to a fundamental concept in learning theory, which will appear in many of
the bounds presented later in this section. The Rademacher Complexity is a measure of
complexity of a family of functions; it captures this richness by assessing the capacity of a
hypothesis set to fit random noise. The following two definitions are taken from [20].

Definition 2.2.2. Let G be a family of functions mapping from Z to [a, b] and S = (z1, . . . , zM )
a fixed sample of size m with elements in Z. Then, the Empirical Rademacher Complex-
ity of G with respect to the sample S is defined as

R̂S(G) = E
σ

[
sup
g∈G

1

m

m∑
i=1

σig(zi)

]

where σ = (σ1, . . . , σm)T , with σi’s independent uniform random variables taking values in
{−1,+1}.

Definition 2.2.3. Let D denote the distribution according to which samples are drawn. For
any integer m ≥ 1, the Rademacher Complexity of G is the expectation of the empirical
Rademacher complexity over all samples of size m drawn according to D:

R(G) = E
S∼Dm

[RS(G)]

The Rademacher complexity is a very useful tool when trying to find generalization bounds.
In such cases, one often tries to bound the generalization error (or risk) of choosing a hypoth-
esis h ∈ H, when trying to learn a concept c ∈ C. Definition 2.2.4 formalizes this idea.

Definition 2.2.4. Given a hypothesis h ∈ H, a target concept c ∈ C, and an underlying
distribution D, the generalization error of h is defined by

R(h) = Px∼D[h(x) 6= c(x)] = Ex∼D[1h(x) 6=c(x)]

Additionally, given a sample S = {x1, . . . , xm}, the empirical error is given by

R̂(h) =
1

m

m∑
i=1

1h(xi)6=c(xi)

In both cases, 1ω is the indicator function of the event ω.

1Note that despite its name, the discrepancy does not in general define a distance or metric in the math-
ematical way, for it is possible that disc(P,Q) = 0 for P 6= Q, making it a pseudometric instead. Partly
because of simplicity, and partly because this will not be the case for a large family of hypothesis sets, we shall
nevertheless refer to it as a distance.
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The following theorem provides a general bound for the expected risk R(h) over samples
of fixed size. It provides the structure that most data-dependent generalization bounds based
on the Rademacher complexity have: it bounds the risk by a term containing the empirical
risk, a term containing the empirical Rademacher complexity and a term that decays as the
square root of the sample size.

Theorem 2.2.5. Let H be a class of functions mapping Z = X × Y to [0, 1] and S =
{z1, . . . , zm} a finite sample drawn i.i.d according to a distribution Q. Then, for any δ > 0,
with probability at least 1− δ over samples S of size m, the following holds

R(h) ≤ R̂(h) + R̂(H) + 3

√
log 2

δ

2m
(2.2)

Proof. See [3] for a detailed proof of this theorem.

With the definitions given above, and the very general bound given by Theorem 2.2.5, we
are now ready to prove two fundamental results from [19] about the discrepancy distance.
These results, at a high level, show how this notion of distance between distributions does
indeed exhibit useful properties and offers solid guarantees, given in terms of Rademacher
complexities. This first of these is a natural result that we would expect of such a notion of
distance. It shows that as sample size increases, the discrepancy between a distribution and
its empirical counterpart decreases.

Theorem 2.2.6. Suppose that the loss function L is bounded by M > 0. Let Q be a dis-
tribution over X and Q̂ its empirical distribution for a sample S = (x1, . . . , xm). Then, for
any δ > 0, with probability at least 1− δ over samples S of size m drawn according to Q the
following bound holds

disc(Q, Q̂) ≤ R̂S(LH) + 3M

√
log 2

δ

2m
(2.3)

where LH is the class of functions LH = {x 7→ L(h′(x), h(x)) : h, h′ ∈ H}.

Proof. Let us first scale the loss L to [0, 1] to adapt it to Theorem 2.2.5. For this, we divide
by M , and define the new class LH/M , for which such theorem asserts that for any δ > 0,
with probability at least 1− δ, the following inequality holds for all h, h′ ∈ H:

LQ(h′, h)

M
≤
LQ̂(h′, h)

M
+ R̂(LH/M) + 3

√
log 2

δ

2m

But the empirical Rademacher complexity has the property that R̂(αH) = αR̂(H) for any
hypothesis set H and scalar α [3]. In view of this, the inequality above becomes

LQ(h′, h)

M
−
LQ̂(h′, h)

M
≤ 1

M
R̂(LH) + 3

√
log 2

δ

2m

which, multiplying by M both sides and noting that the left-hand side is lower-bounded by
disc(Q, Q̂), yields the desired result.
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As a direct consequence of this result we obtain the following corollary, which is nonetheless
much more revealing: it shows that for Lq regression loss functions the discrepancy distance
can be estimated from samples of finite size.

Corollary 2.2.7. With the same hypotheses as in Theorem 2.2.6, assume in addition that
Lq(h, h

′) = |h − h′|q and that P is another distribution over X with corresponding empirical
distribution P̂ for a sample T . Then, for any δ > 0

discLq(P,Q) ≤ discLq(P̂ , Q̂) + 4q
(
R̂S(H) + R̂T (H)

)
+ 3M

√ log 2
δ

2m
+

√
log 2

δ

2n


with probability at least 1− δ over samples S of size m drawn according to Q and samples T
of size n drawn according to P .

Proof. First, we will prove that for an Lq loss, the following inequality holds

R̂(LH) ≤ 4qR̂(H) (2.4)

For this, we note that for such kind of loss function, the class LH is given by LH = {x 7→
|h′(x) − h(x)|q : h, h′ ∈ H}, and since the function f : x 7→ xq is q-Lipschitz for x in the
unit interval, we can use Talagrand’s contraction lemma to bound R̂(LH) by 2qR̂(H ′), with
H ′ = {x 7→ (h′(x)− h(x)) : h, h′ ∈ H}. Thus, we have

R̂(LH) ≤ 2qR̂(H ′) = 2Eσ

[
sup
h,h′

1

m

∣∣ m∑
i=1

σi(h(xi)− h′(x))
∣∣]

≤ 2Eσ

[
sup
h

1

m

∣∣ m∑
i=1

σi(h(xi)
∣∣]+ 2Eσ

[
sup
h′

1

m

∣∣ m∑
i=1

σi(h
′(xi)

∣∣] = 4R̂S(H)

which proves (2.4). Now, using the triangle inequality we obtain

discLq(P,Q) ≤ discLq(P, P̂ ) + discLq(P̂ , Q̂) + discLq(Q, Q̂)

and applying Theorem (2.2.6) on the first and third terms in the right-hand side

discLq(P,Q) ≤ discLq(P̂ , Q̂) +
(
R̂S(LH) + R̂T (LH)

)
+ 3M

√ log 4
δ

2m
+

√
log 4

δ

2n


≤ discLq(P̂ , Q̂) + 4q

(
R̂S(H) + R̂T (H)

)
+ 3M

√ log 4
δ

2m
+

√
log 4

δ

2n


where in the last step we used (2.4). This completes the proof.

The two results above are of utmost importance. Without a theoretical guarantee that
we can actually estimate the discrepancy distance between two distributions empirically, it
would be futile to adopt it, for this abstract metric is unknown to us in most applications,
and thus any results based on it would be uninformative.
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2.3 Generalization bounds

In this section we present generalization bounds that involve the discrepancy distance. These
type of bounds, crucial in machine learning theory, bound the error (or average loss) of a
fixed hypothesis independently of the sample used to obtain it, usually in terms of empirical
or computable quantities. Herein lies the importance of these results; they provide a priori
guarantees of success in learning tasks.

Let h∗Q and h∗P be the best in-class hypotheses for the source and target labeling functions,
that is, h∗Q = arg minh∈H LQ(h, fQ) and similarliy for fP . The following theorem bounds the
expected loss of any hypothesis in terms of these minimum losses and the discrepancy distance
between P and Q.

Theorem 2.3.1. Assume that the loss function L is symmetric and obeys the triangle in-
equality. Then, for any hypothesis h ∈ H, the following holds

L(h, fP ) ≤ LP (h∗P , fP ) + LQ(h, h∗Q) + disc(P,Q) + LP (h∗Q, h
∗
P )

Proof. For a fixed hypothesis h ∈ H, we have

LP (h, fP ) ≤ LP (h, h∗Q) + LP (h∗Q, h
∗
P ) + LP (h∗P , fP ) (triangle inequality)

=
(
LP (h, h∗Q)− LQ(h, h∗Q)

)
+ LQ(h, h∗Q) + LP (h∗Q, h

∗
P ) + LP (h∗P , fP )

≤ disc(P,Q) + LQ(h, h∗Q) + LP (h∗Q, h
∗
P ) + LP (h∗P , fP ) (by Definition 2.2.1)

Clearly, the result given by Theorem 2.3.1 is far more general than needed for our purpose,
but it is included here to show that this analysis can be carried out at a very high level. Now,
however, let us head towards the context of our interest: adaptation in a regularized regression
setting. For this, we will assume in the following that H is a subset of the reproducing
kernel Hilbert space (RKHS) associated to a symmetric positive definite kernel K, namely
H = {h ∈ H : ‖h‖K ≤ Λ}, were ‖ · ‖K is the norm induced by the inner product given by K,
and Λ ≥ 0. Suppose also that the Kernel is bounded: K(x, x) ≤ r2 for all x ∈ X .

There are various algorithms that deal with the problem of regression. A large class of
them, the so-called kernel-based regularization algorithms, seek to minimize the empirical error
of the hypothesis by introducing a magnitude-penalizing term. A typical objective function
for one of these methods has the form

F(Q̂,fQ)(h) = R̂(Q̂,fQ)(h) + λ‖h‖2K (2.5)

where λ > 0 is the regularization parameter and R̂(Q̂,fQ)(h) = 1
m

∑m
i=1 L(h(xi), fQ(xi)). Al-

gorithms as diverse as support vector machines, support vector regression and kernel ridge
regression (KRR) fall in this category.

Next, we define a very desirable property of loss functions, which is a weaker version of
multivariate Lipschitz continuity.
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Definition 2.3.2. The loss function L is µ-admissible for µ > 0 if it is convex with respect
to its first argument and for all x ∈ X and y, y′ ∈ Y it satisfies the following Lipschitz
conditions

|L(h′(x), y)− L(h(x), y)| ≤ µ|h′(x)− h(x)|

|L(h(x), y′)− L(h(x), y)| ≤ µ|y′ − y|

As mentioned before, the labeling functions fP and fQ may not coincide on supp(Q̂) or

supp(P̂ ). However, as pointed out in [8], they must not be too different in order for adaptation
to be possible, so we can safely assume that the quantity

ηH(fP , fQ) = inf
h∈H

{
max

x∈supp(P̂ )
|fP (x)− h(x)|+ max

x∈supp(P̂ )
|fP (x)− h(x)|

}
is small.

For this large family of kernel-based regularization algorithms, Cortes and Mohri [7] provide
the following guarantee.

Theorem 2.3.3. Let L be a µ-admissible loss. Suppose h′ is the hypothesis returned by
the kernel-based regularization algorithm (2.5) when minimizing F(P̂ , fP ) and h is the one
returned when minimizing F(Q̂,fQ). Then,

∣∣L(h′(x), y)− L(h(x), y)
∣∣ ≤ µr

√
disc(P̂ , Q̂) + µηH(fP , fQ)

λ
(2.6)

for all x ∈ X and all y ∈ Y.

Proof. (Given in Appendix A).

The bound (2.6) reveals the depedency of the generalization error on the discrepancy
distance. This is particularly true when ηh ≈ 0, in which case the bound is dominated by the
square root of disc(P̂ , Q̂). This is a first sign that suggests the discrepancy is the appropriate
measure of dissimilarity for this context.

Again, proceeding from general to particular, we will now consider the specific case of Ker-
nel Ridge Regression (KRR), which is an instance of the kernel-based regularization algorithm
family. This is the method we implement in later chapters, and thus it is of our interest to
obtain a guarantee tailored to it.

For this purpose, we will make use of another measure of the difference between the source
and target labeling functions, given by

δH(fP , fQ) = inf
h∈H

∥∥∥∥ E
x∼P̂

[∆(h, fP )(x)]− E
x∼Q̂

[∆(h, fQ)(x)]

∥∥∥∥
K

(2.7)
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where ∆(f, g) =
(
h(x)−f(x)

)
ΦK(x), with ΦK a feature vector associated with K. The reader

will readily note how this definition has the same flavor as the discrepancy distance defined
before, especially if fP = fQ. It is also easy to see that δH(fP , fQ) is a finer measure than the
function ηH(fP , fQ) defined before. This will allow for a tighter generalization bound.

As Cortes and Mohri note, the term δH(fP , fQ) vanishes in various scenarios. The simplest

of these cases is naturally when the source and target labelling functions coincide in supp(Q̂).
Although this might not be true in general, for adaptation to be possible it is again reasonable
to assume δH(fP , fQ) is small [19]. We are now ready to present the main learning guarantee
for KRR.

Theorem 2.3.4. Let L be the squared loss and assume that for all (x, y) ∈ X×Y, L(h(x), y) ≤
M and K(x, x) ≤ r2 for some M > 0 and r > 0. Let h′ be the hypothesis returned by KRR
when minimizing F (P̂ , fP ) and h the one returned when minimizing F (Q̂, fQ). Then, for all
x ∈ X and y ∈ Y,∣∣L(h′(x), y)− L(h(x), y)

∣∣ ≤ r
√
M

λ

(
δH(fP , fQ) +

√
δ2
H(fP , fQ) + 4λdisc(P̂ , Q̂)

)
(2.8)

Proof. (Given in Appendix A).

The bound (2.8) is again expected to be dominated by the discrepancy term. Furthermore,
as we mentioned before, in many scenarios the term δH(fP , fQ) completely vanishes, yielding
a much simpler bound

∣∣L(h′(x), y)− L(h(x), y)
∣∣ ≤ 2r

√
Mdisc(P̂ , Q̂)

λ
(2.9)

In either case, we see that the loss we incur in by minimizing the objective function over the
source instead of the target domain depends almost exclusively on the discrepancy between
these. This direct dependency of the bound on the discrepancy distance confirms that this is
the right measure of dissimilarity between source and target distributions.

Furthermore, the bounds (2.8) and (2.9) suggest a strategy to minimize the loss of selecting
a certain hypothesis h. If we were able to choose an empirical distribution Q̂∗ that minimizes
the discrepancy distance with respect to P̂ , and then use it for the regularization based
algorithm, we would obtain a better guarantee. Note, however, that the training sample is
given, and thus we do not have control over the support of Q̂. Thus, our search would be
restricted to distributions with a support included in that of Q̂. This leads to our main
optimization problem, the details of which will be presented in the next section.

2.4 Optimization Problem

To formalize the optimization problem to be solved, let X be a subset of RN , with N > 1. We
denote by SQ = supp(Q̂), and SP = supp(P̂ ), two sets with |SQ| = m ≤ m and |SP | = n ≤ n.
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Their unique elements are x1, . . .xm and xm+1, . . . ,xq respectively, with q = m + n.

As noticed in the previous section, the theoretical learning guarantees suggest a strategy
of selecting the distribution q∗ with support supp(Q) that minimizes disc(P̂ , Q̂). That is, if
Q denotes the set of distributions with support supp(Q̂), we are looking for

q∗ = arg min
q∈Q

discL(P̂ , q)

which, using the definition of discrepancy distance (2.2.1) and the squared loss, becomes

Q̂′ = arg min
Q̂′∈Q

max
h,h′∈H

|LP (h′, h)− LQ(h′, h)|

= arg min
Q̂′∈Q

max
h,h′∈H

∣∣∣EP̂ [(h′(x)− h(x))2]− EQ̂′ [(h
′(x)− h(x))2]

∣∣∣
Now, since in linear regression we seek an N -dimensional parameter vector, the hypothesis
space can be described as the set H = {x 7→ wTx : ‖w‖ ≤ 1}, so that the problem becomes

min
Q̂′∈Q

max
‖w‖≤1,‖w′‖≤1

∣∣∣EP̂ [((w′(x)−w(x))Tx)2]− EQ̂′ [((w
′(x)−w(x))Tx)2

]∣∣∣
= min

Q̂′∈Q
max

‖w‖≤1,‖w′‖≤1

∣∣∣∣∣∑
x∈S

(P̂ (x)− Q̂′(x))[(w′(x)−w(x))Tx]2

∣∣∣∣∣
= min

Q̂′∈Q
max
‖u‖≤2

∣∣∣∣∣∑
x∈S

(P̂ (x)− Q̂′(x))[uTx]2

∣∣∣∣∣
= min

Q̂′∈Q
max
‖u‖≤2

∣∣∣∣∣uT
(∑

x∈S
(P̂ (x)− Q̂′(x))xxT

)
u

∣∣∣∣∣ (2.10)

(2.11)

To simplify this, let us denote by zi the distribution weight at point xi, namely zi = q∗(xi).
Then, we define the matrix

M(z) = M0 −
m∑
i=1

ziMi (2.12)

where M0 =
∑q

j=m+1 P̂ (xj)xjx
T
j and Mi = xix

T
i with xi ∈ SQ for i = 1, . . . ,m. Using this

notation, (2.10) can be expressed as

min
‖z‖1=1
z≥0

max
‖u‖=1

|uTM(z)u| (2.13)

But since M(z) is symmetric, the term inside the absolute value is the Rayleigh quotient of
M(z), so the inner term corresponds to finding the largest absolute eigenvalue of M(z). And,
again, since M is symmetric, we have

|λmax(M(z))| =
√
λmax(M(z)2) =

√
λmax(M(z)TM(z)) = ‖M(z)‖2
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To simplify the notation even further, let us define the simplex ∆m = {z ∈ Rm : zi ≥
0,
∑m

i=1 zi = 1}. With this, we can finally formulate our problem in its definitive form. One
way to do this is to express (2.13) as a norm-minimization problem

min
z∈∆m

‖M(z)‖2 (2.14)

This a well known convex optimization problem, and it has been studied extensively (see
for example Overton [25]). It is often expressed in an equivalent form as a semidefinite
programming (SDP) problem:

max
z,s

s

s.t.

[
sI M(z)

M(z) sI

]
� 0

1T z = 1

z ≥ 0

(2.15)

where A � 0 means A is positive semidefinite and 1 denotes a vector of ones. In the next
chapter, we will justify why (2.14) and (2.15) are equivalent, in addition to presenting other
fundamental properties of SDP problems and the crucial relation between their primal and
dual formulations.

Before closing this chapter, we make a brief observation on the structure of the matrix
M(z) and the implications in dimensionality that this has. This will prove crucial in the way
the way the algorithm is designed in Chapter 5.

Note that the matrix M(z) can be written as a product of matrices as follows

M(z) = M0 −
m∑
i=1

ziMi =

q∑
i=m+1

P (xi)Mi −
m∑
i=1

ziMi = XDXT (2.16)

where X =
[
x1| . . . |xm|xm+1| . . . |xm+n

]
and D is a diagonal matrix with Dii = zi for i =

1, . . . ,m and Dii = P (xi) for i = m + 1, . . . ,m + n.

Let us now define the kernelized version of M(z) by

M′(z) = XTXD (2.17)

This name comes from the fact that frequently in regression the input space is a feature space
F defined implicitly by a kernel K(x,y). Here, the inputs are feature vectors Φ(x), where
Φ : X → F is a map such that K(x,y) = Φ(x)TΦ(y). In this case, the problem of domain
adaptation can be formulated analogously for the matrix of features Φ, instead of X. As a
result of this, in (2.17) in place of the Gram matrix XTX, we obtain ΦTΦ = K, the kernel
matrix.

As a consequence of their similar structure, the matrices M(z) and M′(z), share many
properties, which in many cases allows us to work interchangeably with one or the other. The
following lemma exhibits one such fundamental shared feature.
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Lemma 2.4.1. If v is an eigenvector with eigenvalue λ of XDXT , then Xv is an eigenvector
of XTXD with the same eigenvalue. Furthermore, XDXT and XXTD have the exact same
eigenvalues (up to multiplicity of λ = 0).

Proof. Let Λ(A) denote the set of eigenvalues of the matrix A. Suppose (XTXD)v = λv.
Then

(XDXT )(XDv) = XD(XTXDv) = XD(λv) = λ(XDv)

so DXv is eigenvector of XDXT with the same eigenvalue. This means that Λ(XTXD) ⊆
Λ(XDXT ). Now to prove the contention in the opposite direction, suppose λ is an eigenvalue
(with eigenvector v) of XDXT , then

(XTXD)XTv = XT (XDXTv) = λXTv

If XTv 6= 0, then λ must also be an eigenvalue of XTXD. If XTv = 0, then XDXTv = 0
too, so λ = 0. In any case, Λ(XDXT ) ⊆ Λ(XTXD). We conclude that XDXT and XTXD
have the same set of eigenvalues.

Note, however, that the matrix M′ is not symmetric. This might be inconvenient espe-
cially when dealing with eigendecompositions, since in that case eigenvectors corresponding
to different eigenvalues will not be in general orthogonal. Thus, it is useful to find another
matrix with the same dimensions (and eigenvalues) that is symmetric. For this, we notice
that XTX is clearly positive semidefinite, so that it has a (unique) square root. So, by a
similar argument as the one used in Lemma (2.4.1), we see that

M′
s(z) = (XTX)

1
2 D(XTX)

1
2 (2.18)

has the same eigenvalues as M(z) and M′(z). Again, this can be generalized for the kernel

framework by taking K
1
2 , instead of the square root of the Gram matrix (recall that the

Kernel must be PSD too).

The reader will note that, in general, the dimension of these new matrices M′(z) and M′
s(z)

is not the same as that of M(z). While the former have dimension (m + n) × (m + n), the
later has dimension N × N . This suggests a practical strategy for optimizing computations
involving these matrices: if the dimension of the input space N is smaller than the sum of the
dimensions of the source and target samples (m + n), it is convenient to work with M(z). In
the opposite case, one can work instead with the kernelized versions M′(z) or M′

s(z). Since
for the applications of our interest the dimension of the input space tends to be very large,
we will work from now on with the latter forms. Which of the kernelized forms we use will
depend on the specific properties needed in certain situations. We will explore this in further
detail in Chapter 5.
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Chapter 3

Semidefinite Programming

Having outlined the theoretical framework of domain adaptation, and having presented the
problem of interest as a Semidefinite Programming (SDP) problem (2.15), we now review the
main concepts underlying this area of Optimization. We present standard definitions and
notation, some basic properties of semidefinite matrices, along with the key aspects of SDPs
and their formulation.

3.1 Properties of Semidefinite Matrices

Let us restrict our attention for the moment to symmetric matrices. We will denote by Sn the
set of symmetric n×n matrices with real entries. Although we will deal with the real case for
simplicity, most of the results presented in this section are applicable to matrices with entries
in C too.

The same way in which the inner product between vectors is crucial for defining objective
functions in Linear Programming and various other branches of Optimization, a notion of
inner product between matrices is needed in the context of semidefinite programming.

Definition 3.1.1. Let A and B be n × m matrices. Their Frobenius inner product is
defined as

〈A,B〉F =

n∑
i=1

m∑
j=1

AijBij = Tr (ATB) = Tr (ABT )

and is frequently denoted by A •B.

It is easy to show that this is indeed an inner product, and that it arises from considering
the matrices A and B as vectors of length nm and using the standard Euclidean inner product
for them. The reader might also recognize in the formulation of (3.1.1) the Frobenius norm for

15
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matrices, namely, ‖A‖F =
√

Tr (ATA), which this inner product induces. Although other
definitions of inner products are possible for matrices, the one presented here is the most
widely used, and for that reason it is sometimes refered to - as we will do here - simply as the
inner product for matrices.

The second fundamental concept in semidefinite programming involving the properties of a
matrix is the notion of positive-definiteness, which naturally extends the concept of positivity
for scalar values.

Definition 3.1.2. A symmetric n × n matrix A is said to be positive-semidefinite if
xTAx ≥ 0 for every nonzero vector x, and such property is denoted by A � 0. If in addition,
xTAx = 0 only for x = 0, then A is said to be positive-definite, and we write A � 0.

The subset of Sn consisting of all positive-semidefinite (PSD) matrices is often denoted by
Sn+, and, although less frequently, the subset of positive-definite is denoted by Sn++. Note that

Sn+ = {X ∈ Sn : uTXu ≥ 0 ∀u ∈ Rn} = ∩
u∈Rn

{X ∈ Sn : X • uuT ≥ 0}

And thus, being an intersection of convex and closed sets (half-spaces), then Sn+ is also closed
and convex.

The definition above is extended to negative-definite and negative-semidefinite matrices by
reversing the inequalities, or by using the definition on −A. Furthermore, a partial ordering
can be defined on Sn by denoting A � B when A−B � 0.

A simple property linking Definitions 3.1.1 and 3.1.2 is the following.

Proposition 3.1.3. For any square matrix A and vector x, xTAx = A • (xxT ).

Proof. Suppose A has dimension n× n, and x has length n.

xTAx =

n∑
i,j

xiAijxj =

n∑
i,j

Aij(xxT )ij = Tr (AxxT ) = A • xxT

As a natural corollary of this, we note that A is positive-definite if and only if (xxT )•A > 0
for any nonzero vector x.

The following three simple results on positiveness of matrices will prove crucial later on in
the context of duality theory for semidefinite programming. They characterize PSD matrices
in terms of their interaction, through the inner product, with other matrices. The usefulness
of these properties will be revealed particularly through the last results of this section, namely
two theorems of the alternative, which build upon these lemmas.

Lemma 3.1.4. Let A be a symmetric n× n matrix. Then, A is positive-semidefinite if and
only if A •B ≥ 0 for every positive-semidefinite matrix B.
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Proof. For the “if” part, suppose A is not PSD. Then there exists a vector x such that
xTAx < 0. But then for B = xxT we have

A •B = A • (xxT ) = xTAx < 0

a contradiction.

For the “only if” part, let A and B be in Sn+. By the Spectral Theorem, B can be written
as B =

∑n
i=1 λiviv

T
i , where λi ≥ 0 for i = 1, . . . , n. Thus

A •B = Tr (AB) = Tr

(
A

n∑
i=1

λiviv
T
i

)
=

n∑
i=1

λiTr (Aviv
T
i ) =

n∑
i=1

λiv
T
i Avi ≥ 0

where we have used Proposition 3.1.3 for the last equality. This completes the proof.

Lemma 3.1.5. If A is positive-definite then A•B > 0 for every nonzero positive-semidefinite
matrix B.

Proof. Suppose A is positive-definite. Then, it must be orthogonally diagonalizable, that is,
it can be expressed as A = PΣPT , with P orthonormal and Σ diagonal. Let B be any PSD
matrix, and take B̂ = PTBP, so that B = PB̂PT . Note that B̂ is PSD, since

xT B̂x = (Px)TB(Px) ≥ 0

Therefore, all the diagonal entries in B̂ must be nonnegative, and not all can be zero since
B 6= 0. Finally

Tr (AB) = Tr ((PΣPT )(PB̂PT ))

= Tr (PΣB̂PT ) = Tr (ΣB̂PTP) = Tr (ΣB̂) =
∑

ΣiB̂ii

And this sum is strictly positive since the elements of Σ - the eigenvalues of A- are strictly
positive, and those of B̂ are nonnegative, with at least one of them being strictly positive.
Thus, A •B > 0.

Lemma 3.1.6. For A and B positive-semidefinite, A •B = 0 if and only if AB = 0.

Proof. One of the directions is trivial, since AB = 0 implies that A • B = Tr (ATB) =
Tr (AB) = 0. For the other direction, let us use the spectral decompositions A =

∑
i λiviv

T
i

and B =
∑

j µjuju
T
j , where λi, µi ≥ 0. With this, we have

A •B = Tr (
∑
i

λiviv
T
i ·
∑
j

µjuju
T
j )

=
∑
i

∑
j

λiµjTr (viv
T
i uju

T
j )

=
∑
i

∑
j

λiµjv
T
i ujTr (viu

T
j ) =

∑
i

∑
j

λiµj(v
T
i uj)

2
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Thus, if A • B = 0, then all the pairs λiµj(v
T
i uj) must be equal to zero, which considering

the product

AB =

∑
i

∑
j

λiµj(viv
T
i uju

T
j )


implies that AB = 0.

The following result is a semidefinite programming version of the famous Farkas’ lemma,
which is one of the most widely used theorems of the alternative frequently found in optimiza-
tion theory.

Theorem 3.1.7. Let A1, . . . ,Am be symmetric n×n matrices. Then the system
∑m

i yiAi � 0
has no solution in y if and only if there exists X ∈ Sn+, with X 6= 0, such that Ai •X = 0 for
all i = 1, . . . , n.

Proof. For the “if” direction, suppose there exists such X, and
∑

i yiAi � 0 is feasible, then
by Lemma 3.1.5 we have (∑

i

yiAi

)
•X > 0

which contradicts the hypothesis that Ai •X = 0 for all i.

For the other direction, we require some results about convex cones. Recall that Sn+ forms
a closed convex cone Kn in Sn. If the system

∑m
i yiAi � 0 has no solution, it means the

linear subspace Ln of matrices of the form
∑
yiAi does not intersect Kn. Therefore, this

linear space is contained in a hyperplane of the form {Y|X •Y = 0}, with X 6= 0.

Let us assume, without loss of generality, that Kn lies on the positive side of this plane,
that is, X •Y ≥ 0 for every Y ∈ Sn+. But then, by Lemma 3.1.4, X � 0. Also, X •Ai = 0 for
all i since Ai ∈ Ln. This completes the proof.

It is natural a question whether a similar result holds if the positivity condition is relaxed,
requiring only semidefintiveness. This is not the case, as one can see that Lemma 3.1.4, which
would be required in lieu of Lemma 3.1.5, does not provide a strict inequality, necessary to
yield a contradiction. However, there is another aspect in which Theorem 3.1.7 can indeed be
generalized: extending it to the non-homogeneous case.

Theorem 3.1.8. Let A1, . . . ,Am and C be symmetric matrices. Then
∑

i yiAi � C has no
solution if and only if there exists a matrix X � 0, with X 6= 0, such that Ai •X = 0 for all
i = {1, . . . ,m} and C •X ≥ 0.

Proof. The argument is analogous to the one used in Theorem 3.1.7.
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3.2 General Formulation of SDPs

Within the large field of convex optimization, arguably one of the best known classes of
problems are those belonging to the subfield of semidefinite programming (SDP). These kind
of problems frequently arise in many settings, such as in Mini-max games, eigenvalue opti-
mization and combinatorics. These problems are concerned with the optimization of linear
objective functions over the intersection of the cone of positive-semidefinite matrices and a
spectrahedron (the equivalent of a simplex in Rn×n).

A general SDP problem has the form

max
X

C •X

s.t. Ai •X = bi i = 1, . . . ,m,

X � 0

(3.1)

where � and • are as defined as in the previous section. Just as in linear programming,
several types of problems can be adapted to fit this general form, for example creating slack
variables or adding non-negativity conditions to transform equality constraints into inequality
constraints and vice versa. Another common feature of SDPs and other types of optimization
problems is that frequently the same problem has many equivalent formulations, and the type
used usually depends on the particular context.

One of the largest families of SDPs is that of eigenvalue optimization problems. The
canonical example of these is the maximum eigenvalue problem:

min
s

s

s.t. sI−A � 0
(3.2)

The reason for the name is the following. Note that the matrix sI−A has eigenvalues s−λi,
where λi are the eigenvalues of A. Thus, sI−A � 0 can only be true if s− λi ≥ 0, for all i,
or equivalently, s ≥ maxi λi. Thus, the solution to (3.2) is precisely the largest eigenvalue of
the matrix A.

If we now let A be an affine combination of matrices, namely A(x) = A0 +
∑
xiAi, then

the problem

min
s,x

s

s.t. sI−A(x) � 0
(3.3)

corresponds to finding the matrix A(x) with the smallest largest eigenvalue. This problem,
usually referred to as minimizing the maximal eigenvalue arises frequently in several applica-
tions, and has been studied extensively (see for example Overton [25], and Lewis and Overton
[15]). Note that (3.3) bares strong resemblance to the optimization problem for domain adap-
tation found in Section 2.4.
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Note that the matrix [
0 M(z)

M(z) 0

]
has eigenvalues ±λi, where λi are the eigenvalues of M(z). Thus, the problem

max
z,s

s

s.t.

[
sI M(z)

M(z) sI

]
� 0

1T z = 1

z ≥ 0

corresponds to minimizing the largest absolute eigenvalue of M(z). This is naturally equiva-
lent to minimizing the norm-2 of M(z), which we presented as the alternative formulation of
problem (2.15). Thus, the two versions of the optimization problem for domain adaptation
are indeed equivalent.

3.3 Duality Theory

Every SDP problem of the form (3.1) has a dual formulation of the following form

min
y∈Rn

bTy

s.t.
∑

yiAi � C
(3.4)

Although this form is relatively common, another standard form frequently used for the dual
is the following

min
y∈Rn

bTy

s.t.

m∑
i=1

yiAi − S = C

S � 0

(3.5)

Clearly, the problem (3.4) can be taken to the form (3.5) by setting S =
∑
yiAi−C and then

requiring that S � 0.

The relation between a primal problem and its dual is one of the main concepts behind the
theory of optimization. This relation can be made more explicit by making use of Lagrangian
functions, on which the notion of duality - formally referred to as Lagrangian duality [6] -
relies. These functions incorporate

The SDP version of the Lagrangian, often called the conic Lagrangian, is a function L :
Rn×n × Rn → R which incorporates both the objective function and the constraints of the
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problem (3.1), and is defined as follows

L(X,y) = C •X +

m∑
i=1

yi(bi −Ai •X) (3.6)

where yi are called the dual variables. The first observation we make is that

min
y
L(y,Z) =

{
C •X if Ai •X = bi, i = 1, 2, . . . , n

−∞ otherwise

The reason for this is that if Aj •X 6= bj for some j then L(X,y) can be made arbitrarily
large and negative by taking yj with the opposite sign as Aj •X and letting |yj | → ∞ while
keeping all other variables constant. Thus, the optimal value of the primal SDP problem (3.1)
can be equivalently expressed as

p∗ = max
X�0

min
y
L(X,y) (3.7)

On the other hand, the same Lagrangian function (3.6) can be used to define the Lagrangian
dual function (or just dual function for simplicity) as the maximum of L over the primal
variable X:

g(y) := max
X�0
L(X,y)

Note that from this definition it follows that

g(y) =

{
bTy if C −

∑
yiAi � 0

+∞ otherwise
(3.8)

since C −
∑
yiAi � 0 would imply, by Lemma 3.1.4, that (C −

∑
yiAi) •X � 0 and thus

L(X,y) could be made arbitrarily large.

The dual problem is then defined as finding the dual variable y that minimizes g(y). By
using (3.8), this problem can be written explicitly as

min
y∈Rn

bTy

s.t.
∑

yiAi � C
(3.9)

which is precisely the standard from of the dual problem with which we opened this section.
From the argument above it follows that the optimal value of this dual is given by

d∗ = min
y
g(y) = min

y
max
X�0
L(X,y) (3.10)

Let us pause here to analyze our way of proceeding so far. Until now, we have done noth-
ing beyond defining another problem, the dual problem, which stems from the Lagrangian
function. Besides the fact that L certainly has information about both the primal and dual
embedded in it, and the conspicuous similarity between equations (3.7) and (3.10), it is not
entirely clear yet, however, how these problems are related.
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The rest of this section is devoted to answering this question. Particularly, we are interested
in the relation between the optimal solutions, p∗ and d∗, of the primal and dual problems. The
reader familiar with minimax problems, game theory and convex optimization, will recognize
this relation immediately. Indeed, the main result of this section - the strong duality theorem
- can be thought of as a direct consequence of the celebrated Minimax Theorem (through
Sion’s generalized version [27] of von Neumann’s original result). Here, however, we will use
Farkas’s Lemma (3.1.8) in a proof tailored for the semidefinite programming context.

As a warm-up for this result, we first present the weak duality property, which in spite of
its simplicity is a first important step towards understanding how the objective functions of
the primal and dual problems interact.

Proposition 3.3.1 (Weak Duality for SDP). If X is primal-feasible for (3.1) and (y,S) are
dual-feasible for (3.5) then C •X ≤ bTy.

Proof. The proof1 is trivial, for is (y,S) and X are feasible, then

C •X =
(∑

Aiyi − S
)
•X =

∑
yi(Ai •X)− (S •X) =

∑
yibi − (S •C)

But C and S are PSD, so Lemma (3.1.4) implies S •C ≥ 0. Thus, C •X ≤ bTy.

This duality result is said to be in a weak form since the relation between optimal values of
the primal and dual problems is given as an inequality. A strong result, that is, one ensuring
equality of these values, is not possible to give in general for SDPs. However, by adding
further assumptions, we can indeed guarantee it. This is the main result we are interested in.

Theorem 3.3.2 (Strong Duality for SDP). Assume both the primal and the dual of a semidef-
inite program have feasible solutions, and let p∗ and d∗ be, respectively, their optimal val-
ues. Then, p∗ ≤ d∗. Moreover, if the dual has a strictly feasible solution (i.e. one with∑

i yiAi � C) then:

(1) The primal optimum is attained.

(2) p∗ = d∗

Proof. (based on Lovasz’s notes [17]). By weak duality we have

p∗ = C •X∗ ≤ bTy∗ = d∗ (3.11)

Now, since d∗ is the optimal (i.e. minimal) solution of the dual, the system

bTy < d∗∑
i

yiAi � C

1More generally, this result is an intrinsic property of the interaction between the infimum and supremum,
which (for any function f(x, y), not necessarily convex) satisfy supy∈Y infx∈X f(x, y) ≤ infx∈X supy∈Y f(x, y).
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is not feasible. Thus, let us define

A′i =

(
−bi 0
0 Ai

)
, C′ =

(
−d∗ 0

0 C

)
Then, by the non-homogeneous SDP Farkas’ Lemma (3.1.8) applied to A′i and C′, there must
exist a nonzero PSD matrix X such that X′ • A′i = 0 and X′ • C′ ≥ 0. Let us label the
elements of this matrix as

X′ =

(
x0 xT

x X

)
Then

0 = X′ •A′i = Ai •X− bix0

so Ai • X = bix0 for all i. Similarly, C • X ≥ x0d
∗. But since both X and C are PSD,

Lemma (3.1.4) implies x0 ≥ 0. We claim that x0 6= 0. Otherwise, by the semidefiniteness
of X′, we would have x = 0, and since X′ 6= 0, that would mean X 6= 0. The existence of
such an X would in turn imply that the system

∑
i yiAi � C is not solvable (Lemma 3.1.8),

contradicting the hypothesis of the existence of a strictly feasible solution to the dual.

Thus, x0 6= 0. Then, by diving by x0 throughout we obtain a solution X̂ with objective
value C • X̂ ≥ d∗. By (3.11), this inequality must be an equality, and X̂ must be the optimal
(maximal) solution to the primal. Thus p∗ = d∗. This completes the proof.

This result, which is analogous to the corresponding duality theorem for Linear Program-
ming, gives us the final ingredient to ensure that the solutions to the primal and dual versions
of an SDPs are equivalent. According to the argument above, this can be enforced by re-
quiring strict positive-definiteness in the constraints of the dual problem, as opposed to the
general case (3.4) where the constraints were simply positive-semidefinite.

3.4 Solving Semidefinite Programs Numerically

Besides being a very vast subfield of optimization, semidefinite programming is also a very
important one, for many reasons. For example, SDPs arise in a wide variety of contexts and
applications, such as in operations research, control theory and combinatorics. Another reason
is that other convex optimization problems, for instance, linear programs or quadratically
constrained quadratic programs, can be cast as SDPs, and thus the latter offer a unified
study of the properties of all these [30].

In addition, the formulation of SDPs - as seen in the previous section- is simple and concise.
Their numerical solution, however, is a matter of more controversy. Depending on whom one
asks, SDPs can be solved very efficiently [30] or rather slowly [2]. The issue here is scalability.
In Machine Learning, where the dimension of the data is often very large, methods that work
well in low dimensions might not be a very good approach.
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Most current off-the-shelf algorithms for solving SDPs are based on primal-dual interior-
point methods, and run in polynomial time, albeit with large exponents. SeDuMi2, one of the
state-of-the-art generic SDP solvers, has a computational complexity of O(n2m2.5 +m3.5), in
a problem with n decision variables and m rows in the semidefinite constraint. This makes it
impractical for high dimensional problems.

In machine learning, however, scalability is prefered to accuracy when it comes to opti-
mization tasks. As [11] points out, it is often the case that the data used is assumed to be
noisy, and thus one can settle for an approximate solution. This is particularly true when the
solution of the optimization problem, an SDP for example, is only an intermediate tool and
not the end goal of the learning task [14]. This is the case for the problem (2.15) posed in
Section 2.4, where we seek to solve an SDP to obtain a re-weighting of the training points to
be used in a regression algorithm, and thus we are not interested in its accuracy per se.

On the other hand, SDPs often have special structure or sparsity, which can be exploited
to solve them much more efficiently. This suggests tailoring algorithms instead of using
generic solvers. Therefore, the approach to solving problem (2.15), as in other SDPs for
machine learning, is to combine the idea of approximate solutions with special features of the
constraints in order to design methods that are as efficient as possible.

2Self-Dual-Minimization toolbox, available for MATLAB. http://sedumi.ie.lehigh.edu/



Chapter 4

The Matrix Multiplicative Weights
Algorithm

In this chapter we study a generalization for matrices of the well-known weighted majority
algorithm [16]. This generalization has been independently discovered, in different versions, by
Tsuda, Rätsch and Warmuth [28] as the Matrix Exponentiated Gradient Updates method, and
later by Arora, Hazan and Kale [1] as the Matrix Multiplicative Weights (MMW) algorithm.
Since it adapts more easily to the context of our problem, we follow here the derivation
presented in the latter, and thus refer to the algorithm with that name.

In Section 4.1 we present the standard MMW algorithm, analyzing it from a game-theory
point of view. Then, in Section 4.2 we present Arora and Kale’s [2] adaptation of the algorithm
to the context of semidefinite programming, which is naturally relevant to our problem of
interest.

4.1 Motivation: learning with expert advice

We will motivate the Multiplicative Weights algorithm from a online-learning theory point of
view, which can also be understood from a game theory approach. The ideas presented here
generalize the notion of learning with expert advice used to motivate the more well-known
(and simpler) weighted majority algorithm.

Suppose that we are trying to predict an outcome from within a set of outcomes P with
the advice of n “experts”. A well known approach consists of deciding based on a weighted
majority vote, where the weights of the experts are to be modified to include the information
obtained in each round of the game. For this purpose, we assume the existence of a matrix
M for which the (i, j) entry is the penalty that the expert i pays when the observed outcome
is j ∈ P. For reasons that will be explained later, we will suppose that these penalties are in

25
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the interval [−`, ρ], where ` ≤ ρ. The number ρ is called the width of the problem.

Transforming this learning setting to a 2-player zero-sum game is easy. For this, we let
M be a payoff matrix, so that when player one plays the strategy i and the second player
plays the strategy j, the payoff to the latter is M(i, j). Then, if we denote by M(i, C) the
values of this payoff matrix by varying the columns, the strategy of the first player should
be to minimize Ei∈R[M(i, j)], while the second player would try to maximize Ej∈R[M(i, j)],
where R varies over the rows of the payoff matrix. To match the setting above, we would be
viewing this game from the perspective of the first player.

Back to the learning setting, however, the Multiplicative Weights Algorithm as proposed
by Arora et al. [1] proceeds as follows:

Multiplicative Weights Update Algorithm

Set initially wTi = 1 for all i. For rounds t = 1, 2, . . .

(1) Associate the distribution Dt = {pt1, . . . , ptn} on the experts, where pti =
wti/

∑
k w

t
k.

(2) Pick an expert according to Dt and use it to make a prediction.

(3) Observe the outcome j ∈ P and update the weights as follows

wt+1
i =

{
wti(1− ε)M(i,jt)/ρ if M(i, jt) ≥ 0

wti(1 + ε)−M(i,jt)/ρ if M(i, jt) < 0

A reasonable desire about a prediction algorithm is that it performs not much worse that
then best expert in hindsight. In fact, it is shown by the authors that for ε ≤ 1

2 the following
bound holds ∑

t

M(Dt, jt) ≤ ρ lnn

ε
+ (1 + ε)

∑
≥0

M(i, jt) + (1− ε)
∑
<0

M(i, jt) (4.1)

In a subsequent publication [2], Arora et al. provide a matrix version of this algorithm, of
which a particular version is used in the context of SDPs. This adaptation will be the main
focus of the following section. For the moment, let us generalize the 2-player game shown
above to its matrix form.

In this new setting, the first player chooses a unit vector v ∈ Rn−1 from a distribution D,
and the other player chooses a matrix M with 0 �M � I. The first player then has to “pay”
vTMv to the second. Again, we are interested in the expected loss of the first player, namely

E
D

[vTMv] = M · E
D

[vvT ] = M •P (4.2)

where P is a density matrix, that is, it is positive semidefinite and has unit trace. Note in
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the relation in (4.2) that the game can be equivalently cast in terms of P, since the vector v
appears only through this matrix.

To turn this game into its online version, we suppose that in each round we choose a density
matrix P and observe the event M(t). For a fixed vector v, the best possible outcome for the
first player is given by the vector that minimizes the total loss, given by

T∑
t=1

vTM(t)v = vT

(
T∑
t=1

M(t)

)
v = vTMv (4.3)

Naturally, this value is minimized with vn, the eigenvector corresponding to λn the smallest
eigenvalue of M, for which the loss is λnM. The algorithm we seek should not perform much
worse than this.

The Matrix Multiplicative Weights (MMW) algorithm is - as it name indicates - a gener-
alization of the algorithm shown above, which iteratively updates a weight matrix instead of
the vector w. The method proceeds in an analogous fashion, evidently taking into account
the fact that the observed event and density take now the form of matrices. The algorithm is
the following.

Matrix Multiplicative Weights Update Algorithm

Fix an ε < 1
2 and let ε′ = − ln(1− ε). For rounds t = 1, 2, . . .

(1) Compute W(t) = (1− ε)
∑
τ=1 M

(τ)
= exp

(
−ε′(

∑
τ=1 M(τ))

)
(2) Use the density matrix P(t) = W(t)

Tr (W(t))
and observe the event M(t).

As mentioned before, the algorithm should perform not much worse that the minimum
possible loss after T round. Indeed, in the last section of this chapter we prove a theorem
that provides such a guarantee in terms of the minimum loss.

4.2 Multiplicative Weights for Semidefinite Programming

In [2], the authors propose using the MMW algorithm to solve SDPs approximately. For this,
they devise a way to treat the constrains of an optimization problem as experts, and then
design a method which alternatively solves a feasibility problem in the dual, and updates the
primal variable with an exponentiated matrix update. The result is a Primal-Dual algorithm
template, which they then customize for several problems from combinatorial optimization to
obtain considerable improvements over previous methods.

For this purpose, let us consider, as done in [2], a general SDP with n2 variables and m
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constraints in the form
max
X

C •X

s.t. Ai •X ≤ bk i = 1, . . . ,m,

X � 0

(4.4)

To simplify the notation, we will assume that A1 = I and b1 = R. With this condition, a
bound on the trace of the feasible solutions is created, namely TrX ≤ R. In light to the SDP
theory presented in Chapter 3, the dual of this problem is

min
y

b · y

s.t.
m∑
j=1

Aiyj � C

y ≥ 0

(4.5)

To adapt the general MMW algorithm to this context, we first define the candidate solution
to be

X(t) = RP(t) (4.6)

Also, we now take the observed event to be

M(t) =
1

2ρ

(∑
Ajy

(t)
j −C + ρI

)
(4.7)

Leaving aside the meaning of the parameter ρ > 0 for a moment, we notice that using (4.7) as
our observation matrix in the MMW algorithm would imply updating the primal variable with
a term that depends on how feasible the dual problem is. The improvement that this update
allows us can be tracked by the use of an additional auxiliary routine, called the Oracle,
which tests the validity of the current solution X(t), by verifying the statement

∃ y ∈ Dα such that
∑

(Aj •X(t))yj − (C •X(t)) ≥ 0 (4.8)

where Dα = {y | y ≥ 0,bTy ≤ α} and α is the algorithm’s current guess for the optimum
value of the problem. The following lemma shows why this criterion is useful.

Lemma 4.2.1. Suppose the Oracle finds y satisfying (4.8), then X(t) is primal infeasible
or C •X(t) ≤ α. If, on the contrary, the Oracle fails, then some scalar multiple of X(t) is
a primal-feasible solution with objective value at least α.

Proof. Suppose, for the sake of contradiction, that the Oracle finds such a y but X(t) is
feasible with C •X(t) > α. Then

m∑
j=1

(Aj •X(t))yj − (C •X(t)) ≤
m∑
j=1

bjyj − (C •X(t)) (since X(t) is primal feasible)

≤ α− (C •X(t)) (since y ∈ Dα)

< α− α = 0 (since we suppose C •X(t) > α)
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But this contradicts (4.8). Thus, either X(t) is infeasible, or C •X(t) ≤ α.

Now suppose the Oracle fails. Consider the following linear program with its dual:

max
y

m∑
j=1

(Aj •X(t))yj

s.t. bTy ≤ α
y ≥ 0

min
φ

αφ

s.t. bjφ ≥ (Aj •X(t))

φ ≥ 0

(4.9)

Since no y exists satisfying the condition of the Oracle, this means that for any y with
y ≥ 0 and bTy ≤ α, we have

∑m
j=1(Aj • X(t))yj − (C • X(t)) < 0. Thus, the optimal

value of the primal of (4.9) must be less than C • X(t). Since this optimum is finite, from
the theory of linear programming we know that the dual is feasible, and thus must have
the same optimum. In other words, αφ∗ ≤ C • X(t) for the optimal α∗. The condition
A1 • X(t) = Tr (X(t)) = b1 = R implies that φ∗ ≥ 1. So, if we define X∗ = 1

φ∗X
(t), then

Aj •X∗ = 1
φ∗ ≤ bj

φ
φ∗ ≤ bj and C •X∗ ≥ αφ∗

φ∗ = α. Therefore, X∗ is primal feasible (for the
SDP) and has objective value at least α.

Thus, if the Oracle succeeds, it means that the primal candidate X(t) is not yet optimal,
either because it is not feasible or because its objective value is below α, which -if our guess
is correct- is the optimal value of the dual. By weak duality, this last statement implies
that there might be another primal variable X̂(t) with a larger objective value, and thus the
algorithm continues. Furthermore, the vector y retrieved contains information as to how to
improve the candidate solution X(t). This is why y is used the construction of the update
(4.7). If the algorithm finishes after T rounds without the Oracle failing, it means the
guess for α was too high, so that it is reduced for the next round. On the contrary, if the
Oracle fails at any point, Lemma 4.2.1 asserts that there exists a primal feasible solution
with objective value at least α, so by weak duality, the optimal dual solution must be larger
than this. We must conclude then that the guess α was too low, so it is increased and the
algorithm restarts. The optimal solution is found in this way through binary search on α.

The key for the efficiency of this algorithm comes from the fact that the problem which the
Oracle solves has only two linear constrains and no PSD constraint. In other words, it finds
a solution y which is not required to be dual feasible. The LP problem that the Oracle has
to solve can often be fixed by a priori rules, which making its implementation very efficient.

Now, ρ in (4.7) is a parameter that depends on the particular structure of the Oracle
used. It is defined as the smallest value ρ such that for any X, the output y of the Oracle
satisfies ‖Ajyj−C‖ ≤ ρ. This value plays a critical role on the performance of the algorithm,
for it controls the rate at which progress can be made in each iteration. A large value of ρ
means that the algorithm can only make progress slowly, and thus most of the design of the
Oracle is aimed towards make this width parameter small.

Putting all the pieces together, we obtain the following algorithm.
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Algorithm 1 Primal-Dual Algorithm for SDP

Require: δ, α, ρ

Set X(1) = R
n I, ε = δα

2ρR , ε′ = ln(1− ε), T = 8ρ2R2 ln(n)
δ2

for t = 1, 2, . . . , T do
if ORACLE Fails then

Output X(t) and exit.
else

Get y(t) from Oracle.
end if
M(t) := (

∑
Ajy

(t)
j − C + ρI)/2ρ

W(t+1) := (1− ε)
∑
τ=1 M

(τ)
= exp

(
−ε′(

∑
τ=1 M(τ))

)
X(t+1) := RW(t+1)

TrW(t+1)

end for
return X

Note that the last two steps of Algorithm 1 are identical to those of the general MMW
algorithm presented in the previous section. What changes now is that instead of being an
observed event, the matrix M is obtained by means of the Oracle in each round. The choice
of parameters ε and T is made so as to take the exact number of steps required theoretically to
achieve a δ-accurate solution. This guarantee is shown in Theorem 4.3.2, in the next section.

The reader will have noticed by this point that Algorithm 1 is not specific at all in terms of
implementation details. In this sense, it can be more correctly described as a meta-algorithm,
which requires a fair amount of customization to be used on a particular SDP problem. It
is a general scheme with which this type of problems can be solved iteratively with matrix
exponential updates, although all the details of an eventual implementation must be derived
on a case-by-case basis. Chapter 5 is devoted to this derivation for our problem interest, the
SDP of discrepancy minimization.

It is important to mention that the intrinsic generality of Arora and Kale’s algorithm is
a double-edged sword. On the one hand, it provides an optimization method that can be
used for a very vast family of SDP problems, and it offers equally general guarantees in terms
of iterations. On the other hand, its efficiency, which depends heavily on the details of the
implementation and work-per-iteration, will vary greatly from case to case. This idea will be
revisited in Chapter 6, when we analyze the efficiency of our implementation of this algorithm
for domain adaptation, and in our concluding remarks.

4.3 Learning Guarantees

In this last section of this chapter, we prove learning guarantees for the algorithms presented
in the previous sections. The first result gives a bound for the expected loss

∑T
t=1 M(t) •P(t)

of the general MMW algorithm in terms of the minimum loss, which we have shown is given
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by the smallest eigenvalue of
∑T

t=1 M(t).

Theorem 4.3.1. Suppose P(1),P(2), . . .P(T ) are the density matrices generated by the Matrix
Multiplicative Weights algorithm. Then

T∑
t=1

M(t) •P(t) ≤ (1 + ε)λn

(
T∑
t=1

M(t)

)
+

log n

ε
(4.10)

Proof. The proof is done by focusing on the weight matrix W(t), and using its trace as a
potential function, a strategy common to many proofs of learning bounds.

First, by using the Golden-Thompson inequality for the trace of matrix exponentials
(namely, Tr (eA+B) ≤ Tr (eAeB)), we can bound Tr (W(t+1)) as follows:

Tr (W(t+1)) = Tr

(
exp

{
−ε′

t∑
τ=1

M(τ)

})

≤ Tr

(
exp

{
−ε′

t−1∑
τ=1

M(τ)

}
exp

{
−ε′M(t)

})
= W(t) • exp

{
−ε′M(t)

}
Now, using the fact that (1 − ε)A � (I − εA) for a matrix satisfying 0 � A � I, then the
second term can be bounded as

exp
{
−ε′M(t)

}
= exp

{
log(1− ε)M(t)

}
= (1− ε)M(t) � I − εM(t)

so that

Tr (W(t+1)) ≤W(t) • (I − εM(t)))

= Tr (W(t))− εW(t) •M(t))

= Tr (W(t))
[
1− ε( W(t)

Tr (W(t))
•M(t))

]
= Tr (W(t))

[
1− εP(t) •M(t)

]
≤ Tr (W(t)) · exp(−εM(t) •P(t))

where the last inequality is true since 1 − a ≤ e−a for a ≥ 1. Now, using induction and the
fact that Tr W(1) = Tr (I) = n, we get

Tr (W(T+1)) ≤ n exp(−ε
T∑
t=1

M(t) •P(t)) (4.11)

On the other hand, let us denote by λk(A) the eigenvalues of M, λn being the smallest of
them. Then

Tr (W(T+1)) = Tr (exp{−ε′
T∑
t=1

M(t)})

=
∑
k

λk(e
−ε′

∑
tM

(t)
) =

∑
k

e−ε
′λk(

∑
tM

(t)) ≥ e−ε′λn(
∑
tM

(t))
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If we combine the two expressions for Tr (W(T+1)) above, we obtain

e−ε
′λn(

∑
tM

(t)) ≤ n exp(−ε
T∑
t=1

M(t) •P(t))

which after some manipulation, becomes

T∑
t=1

M(t) •P(t) ≤ (1 + ε)λn

(
T∑
t=1

M(t)

)
+

log n

ε

This completes the proof.

Let us interpret the statement of Theorem 4.3.1 carefully. This result tells us that the
expected loss is upper-bounded by a multiple of the minimum loss and a term depending on
the number of experts n. For a fixed n, the only ingredient we can control is the discount rate
ε. Unfortunately, changes in this parameter have opposite effects on the terms making up the
bound (4.10): positive in the first one and negative in the second one.

This trade-off has a clear learning interpretation. For this, let us analyze, as done frequently
in the literature, the learning rate η, where e−η = ε. A large value of η (small ε) causes a
high learning rate, that is, weight is quickly removed from poor performing experts. This,
however, might cause probability to be concentrated on just a few select experts, neglecting
potential information by other not top-performing experts and thus results in a “reduced”
expert number. Naturally, this negative effect is more dramatic when there are few experts,
making lnn/ε more sensitive on ε.

As a direct corollary of Theorem 4.3.1, we can obtain a bound on the number of iterations
required by the MMW for Semidefinite Programming to achieve a δ-accurate solution for the
guessed optimal value α.

Theorem 4.3.2. In the Primal-Dual SDP Algorithm 1, assume that the Oracle never fails

for T = 8ρ2R2 ln(n)
δ2α2 iterations. Let ȳ = δα

R e1 + 1
T

∑T
t=1 y(t). Then ȳ is a feasible dual solution

with the objective value at most (1 + δ)α.

Proof. In the context of Theorem (4.3.1), let us take M(t) = (
∑

Ajy
(t)
j − C + ρI)/2ρ and

X(t) = RP(t). Then

M(t) •P(t) =
1

2ρ
(
∑

Ajy
(t)
j −C + ρI) • 1

R
X(t) ≥ ρ

2ρR
I •X(t) ≥ 1

2

where the last inequality is true because the Oracle finds a y(t) such that 1
2ρ(
∑

Ajy
(t)
j −
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C) •X(t) ≥ 0. Using this in the bound (4.10) of Theorem 4.3.1 we get

1

2
≤ (1 + ε)λn

(
T∑
t=1

M(t)

)
+

lnn

ε

= (1 + ε)λn

 T∑
t=1

1

2ρ
(

m∑
j=1

Ajy
(t)
j −C + ρI)

+
lnn

ε

= (1 + ε)

(
T

2ρ

)λn
 1

T

T∑
t=1

m∑
j=1

Ajy
(t)
j −C

+ ρ

+
lnn

ε

Multiplying both sides by 2ρ
T (1+ε) and reordering we obtain

ρ

T (1 + ε)
− 2ρ lnn

Tε(1 + ε)
− ρ ≤ λn

 1

T

T∑
t=1

m∑
j=1

Ajy
(t)
j −C


By substituting the values ε = δα

2ρR and T = 8ρ2R2 lnn
δ2α2 , and after some simplification, this

becomes

−δα
R
≤ λn

 1

T

T∑
t=1

m∑
j=1

Ajy
(t)
j −C

 (4.12)

Using ȳ = δα
R e1 + 1

T

∑T
t=1 y

(t), and recalling that Ai = I, we see that

m∑
j=1

Aj ȳj −C = A1

(
δα

R

)
+

m∑
j=1

1

T

T∑
t=1

Aiy
(t)
j −C =

δα

R
I +

 1

T

T∑
t=1

m∑
j=1

Aiy
(t)
j −C


And by (4.12), we must have that the smallest eigenvalue of this matrix is positive. In other
words, 0 �

∑m
j=1 Aj ȳj − C, which implies ȳ is a dual feasible solution. In addition, since

b1 = R and y(t) ∈ Dα for all t = 1, . . . , T , then

bty = b1

(
δα

R

)
+ bT

(
1

T

T∑
t=1

y(t)

)
= δα+

1

T

T∑
t=1

bTy(t)

≤ δα+
1

T

T∑
t=1

α = (1 + δ)α

This completes the proof.

Notice the dependency of the bound of Theorem 4.3.2 on 1
δ2

. This squared accuracy
term, which is irremediably embedded in the algorithm, can prove to be too slow for many
applications. We thus see that in order to make the MMW algorithm for SDPs competitive
with other methods, the computational cost per iteration has to be decreased to the minimum
possible. We will discuss this issue further in the next Chapter.
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Chapter 5

Matrix Multiplicative Weights for
Domain Adaptation

In this, the main chapter of the thesis, we introduce a modified version of the MMW algorithm
for the specific context of domain adaptation. Combining ideas from the three previous
chapters, we show how Arora and Kale’s primal dual meta-algorithm (Algorithm 1 from the
previous chapter) can be tailored to this context.

We include an introductory section with some properties of matrix exponentials that will be
necessary in the derivation of the algorithm. We then proceed with a step-by-step derivation
of the algorithm, exploiting the structure of the problem to whenever possible to improve
efficiency. We conclude the chapter with a theoretical comparison of our algorithm with the
smooth approximation method used by Cortes and Mohri [7].

5.1 Some properties of matrix exponentials

Despite intuitively challenging at first, the notion of matrix exponentials is a natural general-
ization of the usual scalar-valued exponential function. Since sums, scalar multiplication and
powers of square matrices are properly defined, we have all the elements required to use the
power-series characterization of the exponential, but this time for matrix arguments. This
leads to the following definition.

Definition 5.1.1. Let A be an n× n real or complex matrix. The power series

eA = I + A +
1

2
A2 +

1

3!
A3 + · · · =

∞∑
k=1

1

k!
Ak

is called the matrix exponential of A.

35
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A natural question upon analyzing Definition 5.1.1 is whether this power-series converges
in general. The answer is affirmative and easy to prove by making use of the Frobenius norm.
For any squared matrix, if we let ak = 1

k!(A
k)ij we have

∞∑
k=0

ak =

∞∑
k=0

1

k!
(Ak)ij ≤

∞∑
k=0

1

k!
‖Ak‖F ≤

∞∑
k=0

1

k!
‖A‖kF = e‖A‖F

so each entry of the matrix power-series converges. Thus, the matrix exponential is well-
defined.

This notion of matrix exponentials lets us generalize other real valued functions into their
matrix equivalents. These functions, although used less frequently than the normal exponen-
tial, are nonetheless equally useful and will arise naturally in our adaptation of the MMW
algorithm in Section 5.2.

Definition 5.1.2. Let A be a real or complex n× n matrix. We define

sinh(A) = A +
1

3!
A3 +

1

5!
A5 + · · · =

∞∑
k=0

1

(2k + 1)!
A2k+1

cosh(A) = I +
1

2!
A2 +

1

4!
A4 + · · · =

∞∑
k=0

1

(2k)!
A2k

Note that such hyperbolic trigonometric functions are, again, defined analogously to their
real-valued counterparts. Indeed, any function defined by a power series can be generalized to
a matrix-function equivalent, paying the necessary attention to convergence conditions. From
the Definitions 5.1.1 and 5.1.2, the reader will notice that the identities

sinh(A) =
1

2
(eA − e−A), cosh(A) =

1

2
(eA + e−A) (5.1)

are also true for matrices, and thus can be equivalently used to define cosh(A) and sinh(A).

The reader might wonder if such a notion of hyperbolic functions of matrices is necessary
beyond theoretical curiosity. As it turns out, some common classes of matrices require these
functions to express their exponentials. For example,

exp

[
0 A
A 0

]
=

[
I 0
0 I

]
+

[
0 A
A 0

]
+

1

2!

[
0 A2

A2 0

]
+

1

3!

[
A3 0
0 A3

]
+ · · ·

=

[ ∑∞
k=0

1
(2k)!A

2k
∑∞

k=0
1

(2k+1)!A
2k+1∑∞

k=0
1

(2k+1)!A
2k+1

∑∞
k=0

1
(2k)!A

2k

]

=

[
cosh(A) sinh(A)
sinh(A) cosh(A)

]
(5.2)

In the next section, we will encounter precisely this type of matrices.
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The following two lemmas provide a quick way to evaluate the trace of matrix exponentials
and hyperbolic functions if the eigenvalues of the matrix A are known. This is a trivial
consequence of a more general fact that we demonstrate in the proof: the eigenvalues of eA

are the exponentials of those of A.

Lemma 5.1.3. Suppose A is a diagonalizable n×n matrix with eigenvalues λi, i ∈ {1, . . . , n}.
Then Tr (eA) =

∑n
i=1 e

λi.

Proof. Let A = VΛV−1 be the eigendecomposition of A. Then, Ak = VΛkV−1 for every k,
so that

eA =
∞∑
k=1

1

k!
Ak = V

( ∞∑
k=1

1

k!
Λk

)
V = Vdiag

( ∞∑
k=1

1

k!
λki

)
V−1 = Vdiag(eλi)V−1

where diag(ai) denotes a diagonal matrix composed of the elements ai. This implies that eλi ,
i ∈ {1, . . . , n}, are the eigenvalues of eA (with the same eigenvector as A), and since the trace
is equal to the sum of the eigenvalues, this yields Tr eA =

∑n
i=1 e

λi .

Lemma 5.1.4. In the same setting as Lemma 5.1.3, it is also true that Tr (cosh(A)) =∑n
i cosh(λi) and Tr (sinh(A)) =

∑n
i sinh(λi).

Proof. The result readily follows from using the definition of the hyperbolic functions in
conjunction with Lemma 5.1.3. For the first of these identities, for example, we would proceed
as follows

Tr cosh(A) =
1

2
Tr (eA + e−A) =

1

2

(
n∑
i=1

eλi +

n∑
i=1

e−λi

)
=

n∑
i

1

2
(eλi + e−λi) =

n∑
i

cosh(λi)

The proof for sinh(A) is analogous.

We these lemmas at hand, we are now ready to handle the matrix exponential updates
that lie in the core of the MMW algorithm.

5.2 Tailoring MMW for Adaptation

In Chapter 4, we presented a primal-dual algorithm for SDPs based on the MMW Algorithm.
We showed how this meta-algorithm requires a great level of customization before being used
for a particular problem. In this section, we propose such an implementation to solve the
discrepancy minimization problem of domain adaptation (2.15).

The first step towards tailoring Algorithm 1 for the case of domain adaptation is to re-
formulate our original problem and cast it in the form of the generic SDP to which Arora’s
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method applies. For this, we remind the reader of the original form of the problem, as obtained
in Section 2.4:

min
z,s

s

s.t.

[
sI M(z)

M(z) sI

]
� 0

1T z = 1

z ≥ 0

where the matrix M(z) is given by the affine combination M(z) = M0 −
∑m

i=1 ziMi. Note
that the positive-semidefiniteness constraint can be reexpressed as[

tI M(z)
M(z) tI

]
= s

[
I

I

]
+

[
M0 −

∑m
i=1 ziMi

M0 −
∑m

i=1 ziMi

]
� 0

where we use, for ease of notation, blank sections in the matrices to denote blocks composed
only of zeros. This is equivalent to

s

[
I

I

]
+

m∑
i=1

zi

[
−Mi

−Mi

]
�
[

−M0

−M0

]
so if we set

C =

[
−M0

−M0

]
, A0 = I2m×2m, z0 = s, Ai =

[
−Mi

−Mi

]
, i ∈ {1, . . . ,m}

and use the vector b = (1, 0, . . . , 0)T for the objective function, then the problem can be
finally restated as

min
z

b · z

s.t.

m∑
j=1

Aizj � C

z ≥ 0

(5.3)

which is precisely in the form of the general dual SDP (5.3) analyzed in Section 4.2. Note
that we have conveniently defined A0 and b0 in such a way that the solution of the primal
must satisfy Tr X = A0 •X ≤ b0 = 1, so in this case the parameter bounding the trace of the
primal variable is simply R = 1.

In Algorithm 1, it was necessary to compute in each iteration the exponential of a sum of
matrices1 of the form

E(t) =
1

2ρ

( m∑
j=1

Ajz
(t)
j −C + ρI

)
which, in this case, becomes

E(t) =
1

2ρ

(
s

[
I

I

]
+

m∑
i=1

zi

[
−Mi

−Mi

]
+

[
M0

M0

])
=

1

2ρ

[
(s+ ρ)I M(z(t))

M(z(t)) (s+ ρ)I

]
1Although both in [2] and in Chapter 4 these matrices are denoted by M(t), we use here E(t) to avoid

conflicting notation with the matrices M(z) of the adaptation problem.
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so that
t∑

τ=1

E(τ) =
1

2ρ

[
t(s+ ρ)I

∑t
τ=1 M(z(τ))∑t

τ=1 M(z(τ)) t(s+ ρ)I

]
We will abuse the notation by denoting, from here onward, Mτ := M(z(τ)) for simplicity.
From the equation above it follows that the exponential matrix weight updates are given in
this case by

W(t+1) = exp

{
−ε′
( t∑
τ=1

E(τ)

)}

= exp

{
−ε′t
2ρ

(s+ ρ)

[
I

I

]
+
−ε′

2ρ

[ ∑t
τ=1 Mτ∑t

τ=1 Mτ

]}
= exp

{
−ε′t
2ρ

(s+ ρ)

[
I

I

]}
· exp

{
−ε′

2ρ

[ ∑t
τ=1 Mτ∑t

τ=1 Mτ

]}
= e

−ε′t
2ρ

(s+ρ) · exp

[
−ε′
2ρ

∑t
τ=1 Mτ

−ε′
2ρ

∑t
τ=1 Mτ

]
(since eαI = eαI)

= e
−ε′t
2ρ

(s+ρ) ·

[
cosh

(−ε′
2ρ

∑t
τ=1 Mτ

)
sinh

(−ε′
2ρ

∑t
τ=1 Mτ

)
sinh

(−ε′
2ρ

∑t
τ=1 Mτ

)
cosh

(−ε′
2ρ

∑t
τ=1 Mτ

)] (by (5.2))

= e
−ε′t
2ρ

(s+ρ) ·
[
cosh(M1:t) sinh(M1:t)
sinh(M1:t) cosh(M1:t)

]
with M1:t = −ε′

2ρ

∑t
τ=1 Mτ . Note that we have used the fact that scalar multiples of the

identity commute with any matrix, so their exponentials satisfy the additivity property.

Thus, the primal variable maintained by the MMW algorithm is updated in each iteration
with the rule

X(t+1) =
RW(t+1)

Tr (W(t+1))
=

1

2Tr cosh
(
M1:t

) [cosh(M1:t) sinh(M1:t)
sinh(M1:t) cosh(M1:t)

]
(5.4)

5.3 The ORACLE

Based on the Oracle of the original MMW algorithm, our own Oracle will have to search
for a dual variable z satisfying

m∑
j=1

(Aj •X(t))zj − (C •X(t)) ≥ 0 (5.5)

Note that we can fold the additional constraint
∑m

i=1 zi = 1 into the polytope Dα where these
dual solutions are seeked. Thus, we have

Dα =

{
z : z ≥ 0,

m∑
i=1

zi = 1, z0 ≤ α

}
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For the inequality (5.5), we need to compute products of the form Ai • X(t) for each i ∈
{0, . . . ,m}. Using the form of the matrices Ai and X(t) in this case, we see that

Ai •X(t) =
1

2Tr cosh
(
M1:t

) [ −Mi

−Mi

]
•
[
cosh(M1:t) sinh(M1:t)
sinh(M1:t) cosh(M1:t)

]
=

−1

2Tr cosh
(
M1:t

)Tr

[
Mi sinh(M1:t) Mi cosh(M1:t)
Mi cosh(M1:t) Mi sinh(M1:t)

]
=
−2 Tr

(
xix

T
i sinh(M1:t)

)
2Tr cosh

(
M1:t

)
= − xTi sinh(M1:t)xi

Tr cosh
(
M1:t

) (5.6)

On the other hand

A0 •X(t) =
1

2Tr cosh
(
M1:t

) [I
I

]
•
[
cosh(M1:t) sinh(M1:t)
sinh(M1:t) cosh(M1:t)

]
= 1 (5.7)

and

C •X(t) =
1

2Tr cosh
(
M1:t

) [ −M0

−M0

]
•
[
cosh(M1:t) sinh(M1:t)
sinh(M1:t) cosh(M1:t)

]
= −

Tr
(
M0 sinh(M1:t)

)
Tr cosh

(
M1:t

) (5.8)

Using (5.6), (5.7) and (5.8), the objective of the Oracle becomes

s+
Tr M0 sinh(M1:t)

Tr cosh
(
M1:t

) − m∑
i=1

zix
T
i

(
sinh(M1:t)

Tr cosh
(
M1:t

))xi ≥ 0 (5.9)

Let

η0 =
Tr M0 sinh(M1:t)

Tr cosh
(
M1:t

) , ηi = xTi

(
sinh(M1:t)

Tr cosh
(
M1:t

))xi

Then, the Oracle finally reduces to finding z such that

z0 −
m∑
i=1

ziηi ≥ −η0

m∑
i=1

zi = 1, z0 ≤ α, z ≥ 0 (5.10)

Here, we make some important observations. First, note that in every iteration all the in-
formation the Oracle requires is α and the m + 1 scalars ηi. These have all the relevant
information of the current primal candidate solution condensed in them. Secondly, note that
(5.3) is a simple linear programming problem. Intuitively, it can be solved easily by taking
z0 = α and then zj = 1 corresponding to the ηj with the smallest value. If the inequality is
not true in this case, then the no other choice of z will satisfy the problem, so the Oracle
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should return a failure status. The downside of this approach is that the width of the Oracle
will not be under control, which would reflect in a slow progress of the algorithm. Thus, we
need a smarter approach.

Recall that he width of the Oracle, as presented in Chapter 4, is the smallest value for
which every solution returned by this method satisfies ‖

∑
ziAi − C‖ ≤ ρ. In this case, we

have

ρ =

∥∥∥∥∥∥
m∑
j=0

Ajz
(t)
j −C

∥∥∥∥∥∥ = maxλi

([
sI M(z)

M(z) sI

])
≤ s+ max |λi(M(z))|
≤ α+ max |λi(M(z))| (since s = z0 is chosen s.t. z0 ≤ α)

Therefore, ρ can be minimized by concentrating all the weight in the xi for which max |λi(M0−
Ai)| is smallest. These values can be computed a priori, sorted and fed to the Oracle, so
that it proceeds from the top of the list down trying to satisfy the main inequality of (5.3) by
assigning all the weight to the corresponding element of z. In practice, the Oracle is rarely
observed to require moving past the first few elements of this list. The parameter ρ can then
be set safely as α plus one of the first elements in this list. Altough and attempt could also
be made to minimize α in the expression above whenever possible, there is little use to this,
for there is no obvious way to bound its value without obstructing the task of the Oracle
in terms of gathering information about the feasibility of the primal solution.

The intuition behind the way our Oracle works is clear. In every iteration, it tries to
update the candidate matrix by giving more weight to those elements xi that, while preserving
positive-semidefiniteness, individually minimize the norm of the objective matrix M(z). It
does so in a seemingly näıve way: simply alloting all the weight to the best possible candidate
in this sense. This strategy, however, accounts for an extremely efficient Oracle that no
longer has to solve a LP problem, which might otherwise be expensive computationally.

5.4 Computing Matrix Exponentials

The vanilla-MMW update method has one major disadvantage: it requires the computation
of a matrix exponential in each iteration. Matrix exponentiation, besides suffering from
accuracy issues, has a computational cost of O(n3) for general square matrices. There are
various methods to compute these exponentials, some of which make use of particular matrix
structure (see the classic survey by Moler [21] and the revisited Twenty-Five Year anniversary
version [22]). In practice, they are all dubious, to use Moler’s terminology, in the sense that
none are completely satisfactory in terms of efficiency or stability.

In the original Primal-Dual MMW algorithm [2], the authors opt for computing the matrix
exponential only approximately, and thus recur to Johnson-Lindenstrauss dimensionality re-
duction. They compute ε-accurate projections of the columns of the Cholesky decomposition
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of X(t) into a O( logn
δ2

)-dimensional space, given by eMu, where u are random vectors in the
reduced dimension space. For our problem, however, more efficient ways of approaching this
problem are possible, mainly by exploiting the very particular structure of the matrices M(z)
and our Oracle.

First of all, the reader will note that in Algorithm 1 the matrix X(t), which is a trace-
normalized version of W(t) = exp(−ε′(

∑t
τ=1 E(t))), is only really required by the Oracle

to solve its feasibility problem. And we saw in Section 5.3 that the latter makes use of this
exponential matrix through scalar values ηi, all defined in terms of hyperbolic functions of the
matrices − ε′

2ρ

∑t
τ=1 M(z(τ)). We propose two different alternatives for exploiting this fact:

the first one obtains these scalar values in terms of the eigenvalues and eigenvectors of M1:t,
and the second one computes them by an efficient implementation of matrix powering. Both
of these avoid storing complete matrices and, whenever possible, reduce computations to inner
vector products and -to a lesser extent- matrix-vector products.

5.4.1 Through Eigenvalue Decomposition

To analyze the first of these alternatives, suppose we had an eigendecomposition of M(1:τ) =

− ε′

2ρ

∑t
τ=1 Mτ of the form

M1:t = VΛVT

where Λ = diag(λi) contains the eigenvalues of M1:t, and V has vi the eigenvectors as its
columns. Note that at most rank(X) ≤ min{m + n, N} of the λi are nonzero. Using this
decomposition, we now revisit each of the terms in the Oracle (5.9) individually. First,
using Lemma 5.1.4 we note that

Tr cosh
(
M1:t

)
=

N∑
i=1

cosh(λi)

Next, we look at the products xTi sinh(M1:t)xi. These are given by

xTi sinh(M1:t)xi = xTi Vdiag(sinh(λi))V
Txi =

N∑
j=1

sinh(λj)([V
Txi]j)

2

The third term of interest can be computed either by avoiding the construction of the matrix
M0 altogether by using

Tr M0 sinh(M1:t) = Tr

( q∑
i=m+1

P (xi)xix
T
i

)
sinh(M1:t)

=

q∑
i=m+1

P (xi)x
T
i sinh(M1:t)xi =

q∑
i=m+1

N∑
j=1

P (xi) sinh(λj)([V
Txi]j)

2
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when n < N , or, in the opposite case, by using

TrM0 sinh(M1:t) = TrM0V sinh(Λ)VT = TrM0

( N∑
j=1

sinh(λj)vjv
T
j

)
=

N∑
j=1

sinh(λj)v
T
i M0vi

which avoids the computational dependency on the dimension n by explicitly building the
matrix M0. Using these properties, we can re-express the terms η required by the Oracle
as follows:

η0 =

q∑
i=m+1

N∑
j=1

P (xi) sinh(λj)([V
Txi]j)

2

N∑
i=1

cosh(λi)

, ηi =

N∑
j=1

sinh(λj)([V
Txi]j)

2

N∑
i=1

cosh(λi)

(5.11)

Since these is the only form moment in which we reuquire the exponentiated matrices, if we
have access to the eigendecomposition of the matrices M1:t, then there is no need to actually
exponentiate, multiply nor store any matrix apart form V. It is important to mention that the
terms ηi should always be computed directly as a quotient, for computing denominators and
numerators separately and then dividing them will often cause rounding errors if floating-point
arithmetic.

Unfortunately, obtaining eigendecompositions is in general a computationally expensive
procedure. However, a crucial observation is pertinent at this point. In each iteration, the
matrices M(z(t)) = XD(t)XT change only in the top m elements of the diagonal matrix D(t).
Naturally, so do the matrices

M1:t =
−ε′

2ρ

t∑
τ=1

Mτ =
−ε′

2ρ
X
( t∑
τ=1

D(τ)
)
XT

This causes the eigenvalues and eigenvectors of these to vary only very slightly in each itera-
tion, so eigenvalue methods that depend on the proximity of the starting vector, such as the
Power Method or the Inverse Iteration, can have rapid convergence.

Furthermore, recall from the last part of Chapter 2 that we exposed the possibility of
working with the original matrices of the adaptation problem M(z), or equivalently, with
their kernelized version M′(z) = (XTX)1/2D(XTX)1/2. We showed in Lemma 2.4.1 that
their set of eigenvalues is the same, and that the eigenvectors of either can easily be obtained
from the other’s. Thus, assuming that the dimension of the input space N is larger than the
sum of source and target sample sizes m + n, it will be computationally easier to compute
the eigendecomposition of the latter type of matrices. For our experiments, we updated the
eigendecomposition at every step using the the Inverse Iteration method on the kernelized
version, which empirically showed convergence after very few iterations.
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5.4.2 Through efficient matrix powering

The second alternative for computing the required matrix exponentials relies on exploit-
ing the structure of the matrix M(z). Recall that M(z) = M0 −

∑m
i=1 ziMi, and M0 =∑q

j=m+1 P̂ (xj)xjx
T
j , with q = m + n. Thus

M1:t =
−ε′

2ρ

t∑
τ=1

Mτ =
−ε′

2ρ
X
( t∑
τ=1

D(τ)
)
XT = XD̂XT

where D̂i = −ε′
2ρ

∑t
τ=1 z

(τ)
i for i ∈ {1, . . . ,m} and D̂i = −ε′

2ρ tP (xi) for i ∈ {m + 1, . . . ,m + n}.
Hence M1:t can be expressed in a similar fashion to M(z) as follows

M1:t = M0
1:t −

m∑
i=1

ẑ
(t)
i xix

T
i

with M0
1:t =

∑q
j=m+1

−ε′
2ρ tP (xi)xix

T
i and ẑ

(t)
i = −ε′

2ρ

∑t
τ=1 z

(τ)
i . For this reason, we carry

out the following analysis for the more general matrix M(z), bearing in mind that the same
procedure can be used on the matrix of interest M1:t.

To compute the products of the form xT sinh(M(z))x we need xiM
kxi for i = 1, . . . ,m,

and k = 1, . . . ,K, where K can be fixed to a relatively small integer and thus compute the
exponentials approximately. Note that Tr cosh(M(z)) can also be obtained in this way, by
computing

∑N
i=1 ei cosh(M(z))ei, for ei the elements of the standard basis. The method for

obtaining products of this form proceeds as follows.

Efficient Matrix Powering

Initially, build the matrix M0 and set u
(0)
j = xj .

For rounds k = 1, 2, 3, . . . ,K :

(1) Compute M0u
(k−1)
j for j = 1, . . . ,m.

(2) Compute xTl u
(k−1)
j for j, l ∈ {1, . . . ,m}.

(3) Update, for j = 1, . . . ,m:

u
(k)
j = M0u

(k−1)
j +

m∑
j=1

zl
(
xTl u

(k−1)
j

)
xl (5.12)

(4) Return xTj u
(K)
j , for j = 1, . . . ,m.
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The reason for the update (5.12) is clear, since

M(z)kxj = M(z)
[
M(z)k−1xj

]
=

(
M0 +

m∑
l=1

zlMl

)
M(z)k−1xj = M0(M(z)k−1xj) +

m∑
l=1

zlxl(x
T
l M(z)k−1xj)

and the algorithm is made so that u
(k)
j = M(z)kxj .

Let us analyze the computational complexity of the this scheme. Building the matrix
M0 requires n outer products, each of which requires N2 products, to the work for this
initialization is O(nN2). In the iterative part of the algorithm, the first element computed,
M0u

k−1
j , requires O(N2) work. Then, m inner products with O(N) each are computed, and

during the update rule, for each of theN entries of the vector, m multiplications and m−1 sums
are required, adding up to O(Nm). Therefore, the total work per round is O(mN2 + Nm2).
So, to obtain xTi Mkxi for all i = 1, . . . ,m and all powers k = 1, . . . ,K, we need work
O(KmN2 +Km2N +N2n) where the third term corresponds to the pre-computation.

If, on the contrary, n << N , it will be computationally more efficient not to build the
matrix M0, and to compute the products M0u as sums of the form

∑
xTi uxi. This would

instead yield a total work of O(KmnN +Km2N).

5.5 The Algorithm

After having developed and customized over the previous sections every component necessary
for an implementation of Algorithm 1, we finally put all the pieces together and present the
Matrix Multiplicative Weights method for Domain Adaptation (MMW-DA).

Our algorithm proceeds, as explained for Algorithm 1, with a binary search on the optimal
value α of the dual SDP problem, which is in fact the original version of the discrepancy
minimization problem given in Chapter 2. It requires three secondary routines: the Oracle,
EigenUpdate and getEta. The first of these was explained in detail in Section 5.3, the
second updates the eigendecomposition of the matrix M1:t, and the last obtains the scalars
ηi required for the Oracle. The particular implementation of each of these functions can
be chosen with relative freedom, and these different choices would naturally impact running
times and efficiency in different ways. It is important, however, to stress the fact there is
room for improvements on our algorithm by designing faster versions of these sub-routines.

In our implementation, the function EigenUpdate uses inverse iteration to update the
eigenvalues and eigenvectors V and Λ, and the function getEta simply computes the elements
of η as in (5.11). The input L is a list with the indices of the maximal eigenvalues of M(ej)
sorted in increasing order, as described in Section 5.3.

The pseudo-code for the our MMW-DA algorithm is the following.
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Algorithm 2 MMW-DA

Require: δ > 0, tol, L, ρ.
Initialize:
α = ‖M(z0)‖
αL ← 0
αR ← α.
(V0,Λ0) = eig(M(z))
while αR − αL > tol do

Set ε← δα
2ρ

Set ε′ ← − ln(1− ε)
∀i ηi ← 0.

Set T = 8ρ
2 ln(n)
δ2α2

for t = 1, . . . , T do
Run Oracle(η,L, α)
if Oracle failed then

αL ← α
α← 1

2(αL + αR)
Break

else
z(t) ←Oracle(η,L, α)
(V(t),Λ(t))←EigenUpdate(V(t−1),Λ(t−1))
η ← getEta(V(t),Λ(t),X)
z∗ ← δαe1 + 1

t

∑t
τ=0 z(τ)

αR ← α.
α← 1

2(αR + αL)
end if

end for
end while
return z∗
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The Oracle is implemented as follows.

Algorithm 3 Oracle for MMW-DA

Require: η, L, α.
z0 ← α, zj ← 0 ∀j = 1, . . .m
j ← 1.
while z0 − ηL(j) < −η0 and j < m do

j ← j + 1.
end while
if z0 − ηL(j) < −η0 then return Fail.
else

zL(j) ← 1
return z

end if

5.6 Comparison to Previous Results

The MMW-DA Algorithm presented in the previous section has the following running time:

Theorem 5.6.1. Algorithm 2 finds a δ-approximate solution of the problem (2.15) in time
O( 1

δ2
N 3 logN ), where N = min{m + n, N}.

Proof. By Theorem 4.3.2, for each guess of optimal α, a total of T = 8ρ2R2 log(n)
δ2α2 iterations

are needed to achieve a δ-approximate solution. In this case, R = 1 and ρ ≤ 2α, so each inner
run requires T = 32 log(N)

δ2
iterations.

The cost of each of these iterations is dominated by the computation of the vector η,
defined in terms of matrix hyperbolic functions (or exponentials). With the efficient matrix
powering scheme of Section 5.4.2, all the required values can be approximately obtained in
O((m + n)N2 + (m2 + n2)N), or in O((m + n)3) if working with the kernelized version.

If instead we use the eigenvalue approach of Section 5.4.1, each iteration is dominated by
an eigendecomposition, which, without further exploiting the structure of the matrices, has a
computational cost of O(min{m + n, N}3), since the number of nonzero eigenvalues of M(z)
can be at most the rank of X. Since we have a relatively accurate starting eigenvector basis
and set of eigenvalues, the constant hidden in this bound (the number of steps required by
the eigenvalue algorithm) should be small.

Therefore, the overall complexity of the algorithm is O(N
3 log(N)
δ2

) for the standard version

and O( (m+n)3 log(m+n)
δ2

) for the kernelized version. Since we know a priori the order betweem
m + n or N , we naturally choose the corresponding version of the problem corresponding to
the smallest of these.
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In comparison, the original algorithm by Cortes and Mohri [8] obtains an ε-accurate so-
lution in at most 4

√
(1 + ε)r log r/ε iterations each of which has a computational cost of

O
(
(log p)(m + n)3

)
, where p is the maximum power used in the smooth approximation of

the objective function and r = maxz rank(M(z)). In order to yield the desired number of

iterations, the value p must be at least (1+ε) log r
ε .

Since our algorithm would also benefit is an analogous manner from r < (m + n) in the
way they do, let us suppose for simplicity that r ≈ m+n = N , which is a -not unlikely- worst
case scenario. In that case, their cost per iteration has cost O

(
N 3 log(1

ε logN )
)
, so both ours

and their algorithm have cost per iteration of Õ(N 3), but the hidden polylogarithmic factor
in theirs is smaller than ours whenever ε > N e−N , which will almost surely be true except
for unrealistic problems.

With respect to number of iterations, the term logN in our algorithm cannot be reduced
even if r < N . Thus, our algorithm requires more iterations if ε < 8 logN√

r log r
. As an example

scenario, if the dimension of the training sample is N = 105 and r = 8 × 104, the desired
accuracy should be no smaller than 0.035 for our algorithm to require less iterations. We will
extended this comparison, now from an empirical point of view, in the next Chapter.



Chapter 6

Experiments

In this chapter we report some empirical results obtained with the Matrix Multiplicative
Weights algorithm for Domain Adaptation (MMW-DA) presented in the previous chapter.
Since our objective was to have a fair comparison with the method used in [7], we also pro-
grammed all our routines in R, and in addition used their code for the Smooth Approximation
algorithm (denoted SA-DA henceforth).

We show two sets of experiments, each in its own section below. The first set makes use
of an artificially generated data set meant to mimick the hypothesis which make adaptation
possible, as seen in the previous chapters. The second set corresponds to a real-life domain
adaptation task from natural language processing. In both of these experiments we follow the
methodology of Cortes and Mohri [7].

6.1 Artificial Data

For our first set of experiments, which is meant to test the efficiency and speed of our algorithm
compared to SA-DA, we define a target domain by means of a single gaussian distribution
with width σ = 1 and a mean vector generated randomly and uniformly on [−1, 1]N . For the
source domain, the distribution is comprised of a mixture of N gaussians, each generated as
before, plus a 20% mass from the target gaussian. This last ingredient is meant to ensure a
certain similarity between source and target domain, a condition which is naturally necessary
for adaptation to be possible.

The labeling function is taken to be the same for source and target domain, and its simply
given by fP (x) =

∑N
i=1 |xi|. We fixed the dimension of the input space in N = 200 and varied

the dimension of the source and target sampeles, m and n respectively, in order to test the
scalability of the algorithm. We took in every trial m < n < N , which is a scenario commonly
encountered in adaptation problems.
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Figure 6.1: Average running time (± one standard deviation) over 20 realizations of the minimization
algorithms for several sample sizes, for our algorithm (red/round points) and the smooth approximation
algorithm (blue/squared points).

For this experiment, we used the same configuration of SA-DA that the authors use, and
we took the number of iterations in their algorithm to be fixed at T = 10, which they claim
empirically guarantess convergence. For our algorithm, we used an adaptive approximation
error δ, which decreases in each succesive run until in reaches a minimum value of δ = 0.1.
The tolerance of the interval width for the binary search was set to this same value.

Figure 6.1 shows average running times with standard deviations over 30 realizations of
three experiments: with sample sizes m + n taking values 50, 100, 200 and 400 respectively.
From this graph it is clear that even though for smaller problems the performance is similar,
our algorithm scale worse than SA-DA. Running time for sample sizes beyond m + n = 500
become prohibitely long for our method. The main reason for this was that for this type
of experiment the optimal value for large sample sizes tended to be small compared to the

parameter ρ. Since the number of iterations our algorithm requires depends on the ratio ρ2

α2 ,
this caused excessively long runs. Note, however, in Figure 6.2, that our algorithm almost
always finds a solution with a lower objective value than SA-DA. This could be explained
by the way each algorithm handles approximation to the optimal value. This suggests that
our algorithm’s speed could be taken closer to that of SA-DA by allowing for less accurate
solutions. However, the simultaneous changes imposed by the binary search on α and δ do
not provide an obvious way to fine-tune this accuracy.

In the same setting as before, but this time fixing the source sample sizes in m = 100 and
letting the unlabeled sample size n vary, we now run the full adaptation experiment by using
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Figure 6.2: Optimal value of the problem (norm of the matirx M(z)) obtained for a fixed sample size
with m = 50, n = 150. The different lines corresponds to the value for the matrices built with the
weight vector z obtained from: naive uniform distribution (red/straight), our method (green, dotted)
and the smooth approximation algorithm (blue/dashed).

weighted Kernel Ridge Regression (wKRR) to predict the labels of a test set drawn from the
target distribution. We used σ = N and a ridge parameter λ = 0.02, chosen to provide the
best performance when training on the target domain. This learning algorithm incorporates
the weight vector obtained from the discrepancy minimization problem by modifiying the loss
of each trianing point according to these weights. The results are shown in Figure 6.3. There,
we plot the root mean squared error (RMSE) as a function of the unlabeled sample size n.

This graph shows how the reweighted solution significantly outperforms the baseline solu-
tion that does not use discrepancy minimization. The results are as expected: as the size of
the unlabeled sample increases, the better knowledge we acquire of the target dsitribution P ,
and thus the better we are able to ponder the training data to include this information in the
regression. This naturally yields improved predicting performance.

6.2 Adaptation in Sentiment Analysis

For the second experiment, we now turn to a problem with real-life data where domain
adaptation is likely to be needed. Again, to achieve comparable results, we used the same
data as [7], which has in fact been used in various publications concerning domain adaptation.

The data consists of product reviews, grouped by category, with a text entry and a rating
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Figure 6.3: Result of KRR after using our algorithm for re-weighting the training set. The plot shows
root mean squared error (RMSE) as a function of the unlabeled sample size from the target domain.
The top line shows the baseline results of this learning task when no re-weighting is used, and the
bottom line shows the RMSE from training directly on labeled dated from the target domain.

label ranging from 1 to 5. The processed data set includes a vector of unigrams, bigrams
and trigrams for each review, along with its corresponding tag. Since the performance of
discrepancy minimization used here has already been proven to be effective in [7], our objec-
tive was mainly to compare efficiency between our algorithm and the one based on smooth
approximation. Thus, we only use one pair of tasks as source and target domains, and focus
on experimenting with different sample sizes for this combination. From the four domains
(books, dvd, electronics and kitchen), we chose books as the source and kitchen as the
target domain, since Cortes and Mohri report good results for this combination.

Most of the setting-up of the experiment we replicate from that same paper, although for
efficiency reasons, we used as feature vectors only the counts of the top 3,000 unigrams and
bigrams, which we normalized per feature, across both tasks, to yield mean zero and variance
one. Also, analaogously as we proceeded in the previous experiment, we try to enforce the
hyopthesis of relative similarity between domains by defining the source empirical distribution
from a mixture of 500 labeled points from books and 200 from kithcen. Thus, throughout
our experiments, the labeled training set size is fixed at m = 700. Additionally, we simulate
continuous-valued labels by fitting the discrete rating values by using kernel regression, with
width σ = N . This fitted values are used in the algorithm as the labels.

We ran 20 trails for each configuration of the experiment, varying the unlabeled sample size
n between 300 and 800. Beyond n = 1000, our algorithm became prohibitely slow or caused
crashes. It did manage to solve, however, problems of size larger than those for which the
state-of-the-art general SDP solver SeDuMi failed, as reported in [7]. The results are shown in
Figure 6.4, where average values of the root mean squared error (plus-minus standard error)
are shown for our algorithm and for SA-DA.
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Figure 6.4: Performance improvement on the RMSE for the sentiment analysis adaptation tasks.
The plot shows RMSE as a function of the unlabeled sample size used in the discrepancy minimization
problem. The continuous line corresponds to our method, while the dotted line corresponds to SA-DA.
The horizontal dashed line shows the error obtained when training directly on the target domain.

Our results, although on a different scale probably due to a different type of normalization,
show a very similar behavior to what was obtained in [7]. Again, the adaptation task was
carried out successfully, and the larger the unlabeled set from the target domain that was
used, the better accuracy obtained with the weighted KRR.

Although similar in performance, our algorithm again showed considerably slower running
times throughout the realizations of this experiment. As in the previous experiment, SA-
DA outperforms our algorithm in this sense, and this difference becomes more significant as
sample size increases.

Again, we ran into a similar obstacle as with the first experiment. Even though our algo-
rithm consistently found feasible solutions for the SDP problem (2.15) with a lower optimal
value than SA-DA, this price is payed for with a slower running time. For a problem where
the discrepancy minimization is only an intermediate step - such as this one - a less accurate
but faster solver might be desirable, an idea portrayed by the fact that the accuracy of the op-
timization task which used the optimal solution found by our algorithm differed only slightly
from that found by SA-DA, and was only better for small sample sizes. Unfortunately, the
current form of our algorithm does not allow for an easy manipulation of the accuracy-speed
trade-off.

The results from this experiment and the one from the previous section show that our
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algorithm does provide a useful solution to the discrepancy minimization problem of domain
adaptation, although it does so in less-than-desirable running times. However, these results,
and their comparison to those delivered by the smooth approximation algorithm of Cortes
and Mohri, also suggest that our method would greatly benefit from a tolerance for less ac-
curate solutions. In addition, heuristics such as forcing sparsification of vectors and matrices
used in the computation, as done in SA-DA [7], could also improve the efficiency of our algo-
rithm. These are currently directions of our research and we expect to modify our algorithm
accordingly in future work.



Chapter 7

Conclusions

In this thesis we explored the use of the Matrix Multiplicative Weights algorithm in the context
of domain adaptation. After providing a brief review of the key features of this problem,
in addition to the fundamental ideas behind semidefinite programming and the family of
iterative weight-update learning algorithms, we showed how these three topics become strongly
interlaced through a discrepancy minimization problem.

Based on a template of a primal-dual algorithm for solving semidefinite programs, we
showed how to tailor the Matrix Multiplicative Weights algorithm for this optimization prob-
lem, which arises when trying to minimize the dissimilarity between the distributions of source
and target domains. We provided an explicit and efficient way to implement each of its com-
ponents, including an effortless Oracle.

Even though our implementation tried to exploit the structure of the matrices involved
in adaptation as much as possible, the empirical results show that there is still large room
for improvements. Minor heurisitic modifications to the algorithm could be added in order
to perform a smarter binary search, to force sparsification in intermediate computations and
to solve other computations only approximately. An improvement on the Oracle to allow
for information and computations to be recovered even in case of failure is also a promising
direction.

Despite all these potential improvements, the results obtained in this work suggest that
MMW is not the best approach for domain adaptation. Even though it is a conceptually
interesting algorithm and provides state-of-the-art complexities for many combinatorial opti-
mization problems, its use for more general SDPs, such as that of discrepancy minimization,
does not deliver equally admirable results. The main reason for this can be traced to the 1

ε2

factor that appears in the bound for the iterations, which is intrinsic to most online weight-
updating methods that generalize the weighted majority algorithm. This squared dependecy
on the accuracy makes the MMW approach handicapped a priori when compared to the
Smooth Approximation method proposed in [7].
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Nonetheless, it must be noted that other algorithms, such as that of Cortes and Mohri,
could benefit from many of the techniques derived here which exploit the structure of the
matrices of the problem to provide more efficient computations. These modifications could
be added to such algorithms to improve their computational cost per iteration and deliver
even better results. Another candidate for such kind of enhancements would be a projected-
subgradient method, which could be made very efficient in terms of work-per-iteration. An
interesting direction for future work would be to compare these three optimized methods
vis-à-vis in terms of efficiency and accuracy.

In summary, this thesis provides a stepping-stone towards researching other possible ef-
ficient approaches to the discrepancy minimization problem. It also provides a brief intro-
duction to the theoretical concepts required to comprehend the wide range of subtleties that
hide behind that seemingly innocent optimization problem. Last but not least, it will have
hopefully brought the reader to share the author’s fascination by how different branches of
mathematics and computer science interweave in such an alluring pattern around this one
problem.



Appendix A

Proofs of Generalization Bounds

The two following proofs are adapted from [8]. In that article, it is proven, using the gener-
alized Bregman divergence, that

2λ‖h′ − h‖2K ≤
(
LP̂ (h, fP )− LQ̂(h, fQ)

)
−
(
LP̂ (h′, fP )− LQ̂(h′, fQ)

)
(A.1)

we will use this bound for the following two proofs.

Proof of Theorem 2.3.3. Let h0 be an arbitrary element of H. The right-hand side of (A.1)
can be decomposed as follows

2λ‖h′ − h‖2K ≤
(
LP̂ (h, fP )− LP̂ (h, h0)

)
−
(
LP̂ (h′, h0)− LP̂ (h′, h0)

)
+
(
LP̂ (h, h0)− LQ̂(h, h0)

)
−
(
LP̂ (h′, h0)− LQ̂(h′, h0)

)
+
(
LQ̂(h, h0)− LQ̂(h, fQ)

)
−
(
LQ̂(h′, h0)− LQ̂(h′, fQ)

)
(A.2)

Using the µ-admissibility of the loss and the triangle inequality we obtain(
LP̂ (h, fP )− LP̂ (h, h0)

)
−
(
LP̂ (h′, fP )− LP̂ (h′, h0)

)
≤ 2µEx∼P̂

[
|fP (x)− h0(x)|

](
LQ̂(h, fQ)− LQ̂(h, h0)

)
−
(
LQ̂(h′, fQ)− LQ̂(h′, h0)

)
≤ 2µEx∼Q̂

[
|fQ(x)− h0(x)|

]
Since h0 is in H, the other terms can be bounded in terms of the discrepancy:(

LP̂ (h, h0)− LQ̂(h, h0)
)
−
(
LP̂ (h′, h0)− LQ̂(h′, h0)

)
≤ 2disc(P̂ , Q̂)

Thus,

2λ‖h′ − h‖2K ≤ 2
(
disc(P̂ , Q̂) + µEx∼P̂ [|fP (x)− h0(x)|] + µEx∼Q̂[|fQ(x)− h0(x)|]

)
Since the inequality holds for all h0, we can write

λ‖h′ − h‖2K ≤ disc(P̂ , Q̂)

+ µ min
h0∈H

{
max

x∈supp(P̂ )
Ex∼P̂ [|fP (x)− h0(x)|] + max

x∈supp(Q̂)
Ex∼Q̂[|fQ(x)− h0(x)|]

}
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Therefore
2λ‖h′ − h‖2K ≤ 2disc(P̂ , Q̂) + 2µηH(fP , fQ) (A.3)

By the reproducing property of the space, we have that for any x ∈ X , (h′ − h)(x) = 〈h′ −
h,K(x, ·)〉, thus, for any x ∈ X and y ∈ Y,∣∣L(h′(x), y)− L(h(x), y)| ≤ µ|h′(x)− h(x)|

≤ µr‖h′ − h‖K

≤ µr

√
disc(P̂ , Q̂) + 2µηH(fP , fQ)

λ
(by using (A.3))

which is precisely what we wanted to prove.

Proof of Theorem 2.3.4. For any arbitrary h0 ∈ H, we decompose as in the previous, the
right-hand side of (A.1) as:

2λ‖h′ − h‖2K ≤
(
LP̂ (h, fP )− LP̂ (h, h0)

)
−
(
LP̂ (h′, h0)− LP̂ (h′, h0)

)
+
(
LP̂ (h, h0)− LQ̂(h, h0)

)
−
(
LP̂ (h′, h0)− LQ̂(h′, h0)

)
+
(
LQ̂(h, h0)− LQ̂(h, fQ)

)
−
(
LQ̂(h′, h0)− LQ̂(h′, fQ)

)
(A.4)

Using the definition of the squared loss and the triangle inequality we obtain

LP̂ (h, fP )− LP̂ (h, h0) = Ex∼P̂
[
(h0(x)− fP (x))(2h(x)− fP (x)− h0(x))

]
LP̂ (h′, fP )− LP̂ (h′, h0) = Ex∼P̂

[
(h0(x)− fP (x))(2h′(x)− fP (x)− h0(x))

]
Note that hidden in the right hand side of each of these inequalities is a term µ = 1, from the
µ−admissibility of the squared loss. Taking the difference of these two equalities yields(
LP̂ (h, fP )− LP̂ (h, h0)

)
−
(
LP̂ (h′, fP )− LP̂ (h′, h0)

)
= 2 Ex∼P̂

[
(h0(x)− fP (x))(h(x)− h′(x))

]
(A.5)

Analogously, for Q̂, we obtain(
LQ̂(h, h0)− LQ̂(h, fQ)

)
−
(
LQ̂(h′, h0)− LQ̂(h′, fQ)

)
= −2 Ex∼Q̂

[
(h0(x)− fQ(x))(h(x)− h′(x))

]
(A.6)

Now, h0 is in H, so by the definition of the discrepancy, we have(
LP̂ (h, h0)− LQ̂(h, h0)

)
−
(
LP̂ (h′, h0)− LQ̂(h′, h0)

)
≤ 2disc(P̂ , Q̂) (A.7)

Thus, replacing (A.5), (A.6) and (A.7) in (A.4), we have that 2λ‖h′−h‖2K ≤ 2disc(P̂ , Q̂)+2∆,
where

∆ = Ex∼P̂
[
(h0(x)− fP (x))(h(x)− h′(x))

]
− Ex∼Q̂

[
(h0(x)− fQ(x))(h(x)− h′(x))

]
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By the reproducing property of the space, the identity h(x) − h′(x) = 〈< h − h′,K(x, ·)〉K
holds for any x ∈ X . In view of that, ∆ can be expressed and bounded as follows:

∆ =
〈
h− h′, Ex∼P̂ [(h0(x)− fP (x))K(x, ·)]− Ex∼Q̂[(h0(x)− fQ(x))K(x, ·)]

〉
≤ ‖h− h′‖K

∥∥∥∥Ex∼P̂ [(h0(x)− fP (x))K(x, ·)]− Ex∼Q̂[(h0(x)− fQ(x))K(x, ·)]
∥∥∥∥
K

Since this inequality holds for all h0 ∈ H, we can write ∆ ≤ ‖h− h′‖KδH(fP , fQ). Thus,

2λ‖h′ − h‖2K ≤ 2disc(P̂ , Q̂) + 2‖h− h′‖KδH(fP , fQ)

Regrouping and solving this second-order inequality for ‖h′ − h‖K yields

‖h− h′‖K ≤
1

2λ

(
δH(fP , fQ) +

√
δH(fP , fQ)2 + 4λdisc(P̂ , Q̂)

)
(A.8)

For any (x, y) ∈ X ×Y, using the definition of the squared loss and the reproducing property,
we can write

|L(h′(x), y)− L(h(x), y)| = |h′(x)− y)2 − (h(x)− y)2|
= |(h′(x)− h(x))(h′(x)− y + h(x)− y)|

≤ 2
√
M |h′(x)− h(x)|

= 2
√
M |〈h′ − h,K(x·)〉| ≤ 2

√
Mr‖h′ − h‖K

So finally, bounding ‖h′ − h‖ in the inequality above with (A.8), we obtain the conclusion of
the theorem:∣∣L(h′(x), y)− L(h(x), y)

∣∣ ≤ r
√
M

λ

(
δH(fP , fQ) +

√
δ2
H(fP , fQ) + 4λdisc(P̂ , Q̂)

)
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