The reflection-absorption model for directed lattice paths

Cyril Banderier^a, Michael Wallner^b WIEN

^aLaboratoire d'Informatique de Paris Nord, UMR CNRS 7030, Université Paris Nord, France ^bE104 - Institute of Discrete Mathematics and Geometry, TU Wien

Lattice paths

- Step set: $S = \{(1, b_1), \dots, (1, b_m)\} \subset \mathbb{Z}^2$
- **n-step lattice path:** Sequence of vectors $(v_1, \ldots, v_n) \in S^n$

Probabilistic weights

Asymptotic number of excursions

Let e_n be number of excursions of length n. Then, the generating function of excursions is of the kind

$$E(z) := \sum_{n \ge 0} e_n z^n = \frac{1}{1 - z P_0(u_1(z))}$$

The asymptotic number of excursions is given by

 $e_n \sim \begin{cases} \gamma
ho_1^{-n} \left(1 + \mathcal{O} \left(rac{1}{n}
ight)
ight), \ rac{1}{\kappa \sqrt{\pi}} rac{
ho^{-n}}{n^{1/2}} \left(1 + \mathcal{O} \left(rac{1}{n}
ight)
ight), \end{cases}$ supercritical case: $\lambda > 1$, critical case: $\lambda = 1$, $\left(\frac{\kappa}{2\sqrt{\pi}(1-\rho P_0(\tau))^2}\frac{\rho^{-n}}{n^{3/2}}\left(1+\mathcal{O}\left(\frac{1}{n}\right)\right),\right.$ subcritical case: $\lambda < 1$.

The reflection-absorption model

- Lattice: \mathbb{Z}^2_+
- Altitude $k \neq 0$
- Weighted step set S• $P(u) = \sum_{i=-c}^{d} p_i u^i$
- Altitude k = 0
 - Weighted step set S_0
 - $P_0(u) = \sum_{i=0}^{d_0} p_{0,i} u^i$

Figure : Chosen steps depend on altitude

Reflection model: No loss of mass at 0: $P_0(1) = 1$ $P_0(1) < 1$ **Absorption model:** Loss of mass at 0:

Different constraints on the boundary

Characteristic polynomial:
$$P(u) = pu + qu^{-1}$$

Returns to zero

Definition

• An *arch* is an excursion of size > 0whose only contact with the x-axis is at its end point.

TECHNISCHE

UNIVERSITÄT

WIEN

- A return to zero is a vertex of a path of Figure : An excursion with 3 returns to altitude 0 whose abscissa is positive. zero
- **Corresponding generating function**

$$E(z, u) := \sum_{n,k\geq 0} e_{n,k} z^n u^k = \frac{1}{1 - uz P_0(u_1(z))}$$

Excursion of length n having k returns to zero

$$\mathbb{P}(X_n = k) := \mathbb{P}(\text{size} = n, \ \#\text{returns to zero} = k) = \frac{e_{n,k}}{e_n}$$

Limit law for returns to zero of excursions

1. In the supercritical case, i.e. $\lambda > 1$,

- **Reflection model**:
- Absorption model:
- $P_0(u) = u$ $P_0(u) = p_0 u$ with $p_0 < 1$

Dyck	bridges,	absolute value	excursions,	excursions,
path	uniform model	of bridges	reflection m.	absorption m.
	$\frac{1}{6}$	$rac{1}{1+ ho_0/ ho+q_0/q}$	$rac{p}{1+p}$	$\frac{p}{p+p_0}$
	$\frac{1}{6}$	$rac{p_0/p{+}q_0/q}{1{+}p_0/p{+}q_0/q}$	$rac{1}{1+ ho}$	$rac{ ho_0}{ ho+ ho_0}$
	$\frac{1}{6}$	0	0	0
	$\frac{1}{6}$	0	0	0
	$\frac{1}{6}$	0	0	0
	$\frac{1}{6}$	0	0	0

Relevant constants

Let
$$au$$
 be the structural constant given by $P'(au) = 0$, $au > 0$, and let

 $\frac{X_n - \mu n}{2}$ with

$$\mu = \gamma, \quad \sigma = \gamma^3 (\alpha_2 \rho_1^3 - 2) + \gamma^2 (\rho_1 + 2) - \gamma$$

converges in law to a Gaussian variable N(0, 1)

2. In the critical case, i.e. $\lambda = 1$, the normalized random variable $\frac{\kappa}{\sqrt{2n}}X_n$, converges in law to a **Rayleigh distribution** (density: $xe^{-x^2/2}$):

 $\lim_{n\to\infty} \mathbb{P}\left(\frac{\kappa}{\sqrt{2n}}X_n \leq x\right) = 1 - e^{-x^2/2}.$

3. In the subcritical case, i.e. $\lambda < 1$, the limit distribution of $X_n - 1$ is the **negative binomial distribution** NegBin $(2, 1 - \lambda)$:

 $\mathbb{P}(X_n-1=k)\sim (k+1)\lambda^k(1-\lambda)^2.$

Conclusions

 $\rho = 1/P(\tau)$ be the structural radius.

Let $u_1(z)$ be the unique solution of the kernel equation

1-zP(u)=0,with $\lim_{z\to 0} u_1(z) = 0$. Then, the equation $1 - zP_0(u_1(z)) = 0$ has at most one solution in $z \in (0, \rho]$, which we denote by ρ_1 .

Additionally, we define the constants

 $\alpha = \left(P_0(u_1(z)))' \right|_{z=\rho_1},$ $\gamma = \frac{1}{\alpha \rho_1^2 + 1},$ $\lambda = \frac{P_0(\tau)}{P(\tau)}.$

- Similar results hold for the asymptotics of bridges and meanders,
- Limit laws for other parameters like final altitude of meanders, or returns to zero of bridges exist,
- Extensions to more general lattice path models are possible.

References

Banderier, C.; Flajolet, P.: "Basic analytic combinatorics of directed lattice paths". Theoretical Computer Science, 281, p. 37-80, 2002.

Banderier, C.; Wallner, M.: "Some reflections on lattice paths". Proceedings of the 25th Int. Conf. on Prob., 2 Comb. and Asymptotic Methods for the Analysis of Algorithms (AofA'14), p. 25-36, 2014.

[3] Flajolet, P.; Sedgewick, R.: "Analytic Combinatorics". Cambridge University Press, 2009.