Young tableaux with periodic walls: counting with the density method

Cyril Banderier (CNRS/Univ. Paris Nord) Michael Wallner (TU Wien)

FPSAC 2021 January 18th, 2022

For details: see our [FPSAC article](https://lipn.univ-paris13.fr/~banderier/Papers/jenga2021.pdf)

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

Nice formulas for some specific tableaux of shape $n \times 2$:

• no walls:

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

Nice formulas for some specific tableaux of shape $n \times 2$:

• no walls: $\frac{1}{n+1} \binom{2n}{n}$

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere:

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: $(2n)!$

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- \bullet walls everywhere: $(2n)!$
- horizontal walls everywhere:

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: $(2n)!$
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- \bullet walls everywhere: $(2n)!$
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$
- \bullet horizontal walls everywhere in 2^{nd} col.:

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: $(2n)!$
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$
- horizontal walls everywhere in 2^{nd} col.: $\frac{(2n)!}{2^n n!} = (2n-1)!!$

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: $(2n)!$
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$
- horizontal walls everywhere in 2^{nd} col.: $\frac{(2n)!}{2^n n!} = (2n-1)!!$
- vertical walls everywhere:

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: $(2n)!$
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$
- horizontal walls everywhere in 2^{nd} col.: $\frac{(2n)!}{2^n n!} = (2n-1)!!$
- vertical walls everywhere: $\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: $(2n)!$
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$
- horizontal walls everywhere in 2^{nd} col.: $\frac{(2n)!}{2^n n!} = (2n-1)!!$
- vertical walls everywhere: $\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$
- all k vertical walls:

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: $(2n)!$
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$
- horizontal walls everywhere in 2^{nd} col.: $\frac{(2n)!}{2^n n!} = (2n-1)!!$
- vertical walls everywhere: $\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$
- all *k* vertical walls: $\frac{1}{n+1} {2n \choose n} {n+1 \choose k}$ (We give 2 proofs \bigcirc)

Bijections with paths and trees

Theorem

The number of $n \times 2$ Young tableaux $\mathcal Y$ with k vertical walls is equal to

$$
v_{n,k} = \frac{1}{n+1} \binom{2n}{n} \binom{n+1}{k}.
$$

Proof $#1$: Bicolored down-steps in Dyck bridges $+$ the Chung–Feller property

[Proof #2: Leaf-marked binary trees](#page-0-1)

Long walls with small holes: hook-length type formulas

Holes of size 1 on the border

Theorem [\[Gascom 2018\]](https://hal.archives-ouvertes.fr/hal-01795882/document)

The number of $n \times m$ Young tableaux of size mn with k walls from column 1 to $m-1$ at distance $0 < d_i := \sum_{j=1}^i \lambda_i < n, \ i = 1, \ldots, k$ with $h_i < h_{i+1}$ is equal to $(m-1)!$ $(mn + m - 1)_{m-1}$ $\sqrt{ }$ \mathcal{L} \prod^{k+1} $i=1$ m−2
TT $j=1$ $(\lambda_i + j)$ j \setminus ⁻¹ $\overline{1}$ \int_{0}^{k+1} $i=1$ \int md_i + m – 1 $\lambda_i,\ldots,\lambda_i$ $\bigg) \bigg)$ where the multinomial coefficients contain $m-1$ λ_i 's.

Drawback: efficient formula but too ad-hoc. What about more complicated holes?

Larger holes lead to unusual asymptotics

Theorem

The number f_n of such Young tableaux of size $n \times 3$ satisfies

$$
f_n = \Theta\left(n! 12^n e^{a_1(3n)^{1/3}} n^{-2/3}\right),
$$

where $a_1 \approx -2.338$ is the largest root of the Airy function of the first kind.

- \bullet Bijections to phylogenetic networks, special words with *n* distinct letters, and related to compacted trees (special DAGs) [Fuchs–Yu–Zhang 21]
- **•** General method to prove stretched exponentials in bivariate recurrences [Elvey Price–Fang–Wallner 21]. Here:

$$
y_{n,k} = y_{n,k-1} + (2n + k - 1)y_{n-1,k}
$$
 and $f_n = y_{n,n}$.

Generic approach:

The density method

- * far origins in poset theory (volume of polytopes, log-concavity) [Stanley 1981]
- enumeration of linear extensions is $#P$ -complete $D_{\text{per Frieze 1988, Brightwell Whkler 1991}}$
- avatars in number theory [Zagier, Beukers Kolk Calabi 1993, Elkies 2003]
- applied to square Young tableaux [Barishnikov 2001] and variants of alternating permutations [Baryshnikov Romik 2010, Stanley 2010]
- generalized to further posets & random generation [Banderier Marchal Wallner 2016-2021]

Uniform random generation and enumeration

This example is "without loss of generality" (i.e., our method works also for non-periodic shapes). \circledcirc

How to generate/enumerate such tableaux? Brute-force is hopeless! $Solution =$ use our density method!

The density method will give thousands of coefficients in a few seconds. The number of tableaux of size $2n \times 3$ is $f_n = (6n + 1)! \int_0^1 p_n(z) dz$, with

$$
p_{n+1}(z)=\int_0^z \frac{1}{24}(z-1)(x-z)(3x^3-7x^2z-xz^2-z^3-2x^2+4xz+4z^2)p_n(x) dx.
$$

 ${f_n}_{n>0}$ ={1, 12, 8550, 39235950, 629738299350, 26095645151941500, 2323497950101372223250, 392833430654718548673344250, 115375222087417545717234273063750, 55038140590519890608190921051205837500, . . . }.

From (periodic) tableaux to tuples of reals and polytopes

.74 .96 .97 .25 .94 .95 .85 .91 .99 .42 .90 .93 .54 .82 .98 .35 .57 .92 .06

- The density method generates real numbers with the same relative order
- All possible values = a polytope $P_n \subseteq [0,1]^{6n+1}$
- "Building blocks" of 7 cells for this periodic tableau

Uniformity via the "right" choice of densities

$$
p_{n+1}(z) = \int_{0 < x < z} \int_{x < y < z} \int_{0 < r < y} \int_{r < s < z} \int_{z < w < 1} \int_{y < v < w} p_n(v) dv dw ds dr dy dx
$$

$$
d(\mathbf{x}) = \frac{p_n(x_n)}{\int_0^1 p_n(t) dt} \prod_{k=0}^{n-1} \frac{p_k(x_k) 1_{\text{block}_k}}{p_{k+1}(x_{k+1})} = \frac{p_0(x_0) 1 p_n}{\int_0^1 p_n(t) dt} = \frac{1 p_n}{\int_0^1 p_n(t) dt} = \frac{1 p_n}{\text{vol}(P_n)}
$$

Prob($\mathbf{x} \in P_n$) = vol(P_n) = f_n/(6n + 1)!

Jenga tableaux and the density method

 $Jenga! =$ Construct! in Swahili.

Given a shape $(\ell_i, r_i)_{i \in \mathbb{N}}$, what is the number f_n of tableaux with n lines?

heorem

$$
f_n = \Big(\sum_{i=1}^n (\ell_i + r_i + 1) \Big)! \int_0^1 p_n(x) dx
$$

\n
$$
p_n(z) = \frac{z^{\ell_n} (1 - z)^{r_n}}{\ell_n! r_n!} \int_0^z p_{n-1}(x) dx \qquad \text{with} \qquad p_1(z) = \frac{z^{\ell_1} (1 - z)^{r_1}}{\ell_1! r_1!}.
$$

\nProof: $p_n(z) = \int \cdots \int \int \cdots \int \rho_{n-1}(x) dx du_1 \dots du_\ell dv_r \dots dv_1$

z<v1<1 v_{r−1}<vr<1 0<u ℓ <z 0<u1<u2 0<×<z

A classification of 2×2 periodic shapes

A periodic shape is the concatenation of *n* copies of a building block B of \leq cells: $\mathcal{Y}=\mathcal{B}^n$.

A tableau Y with periodic walls is a periodic shape filled with all integers from $\{1, \ldots, |\mathcal{B}|n\}$ respecting the induced order constraints.

$$
\mathcal{B} = \frac{3 \quad 10}{1} \quad \mathcal{B}^4 = \frac{3 \quad 10}{1} \quad \frac{5}{2} \quad \frac{6}{4} \quad \frac{12}{7} \quad \frac{16}{8} \quad \frac{13}{9} \quad \frac{14}{11} \quad \frac{15}{15}
$$

There are a priori $2^6 = 64$ shapes, but some are in bijection (e.g., turn by 180 degrees and reverse labels). It turns out that it leads to 32 different sequences.

We now characterize all 2×2 shapes according to the nature of the counting sequence/generating function, which is either

- **·** "simple" hypergeometric
- hypergeometric,
- algebraic,
- D-algebraic and beyond.

Hypergeometric cases

$=$ cases with uniquely determined minimum or maximum

Proofs:

- • Models [H](#page-0-2)[1](#page-22-0)–H[5](#page-22-1): variants of Jenga tableaux with $r_i = 0$ for all i
- Models [H](#page-0-2)[6](#page-22-2)–H[7](#page-22-3): recursively decompose with respect to the location of the unique minimum or maximum.

D-algebraic cases?

\approx cases with a zig-zag-like pattern

Proof for [Z](#page-0-2)[1](#page-23-0): A permutation (a_1, \ldots, a_n) is an alternating permutation of type (k_1, \ldots, k_m) if $a_1 < \cdots < a_{k_1} > a_{k_1+1} < \cdots < a_{k_1+k_2} > a_{k_1+k_2+1} < \cdots < a_n$. Then, $k_i = 1$ gives classical alternating permutations; while $k_1 = 3$ $k_1 = 3$ $k_1 = 3$, $k_2 = \cdots = k_n = 4$, and $k_{n+1} = 1$ gives [Z](#page-0-2)1. A generalization of [Carlitz 73] then leads to

Leonard Carlitz (1907-1999) 771 articles!

$$
F(t) = \frac{E_{4,3}(t)E_{4,1}(t)}{E_{4,0}(t)} + E_{4,0}(t) \quad \text{ where } \quad E_{k,r}(t) = \sum_{n\geq 0} (-1)^n \frac{t^{nk+r}}{(nk+r)!}.\quad \Box
$$

Conclusion

- 3 ways to enumerate and generate Young tableaux with walls: hook-length type formulas, bijections, density method.
- Approach different from [\[Greene Nijenhuis Wilf 84\]](https://doi.org/10.1016/0097-3165(84)90065-7). They used the existence of a simple product formula (hook-length formula).
- Brute-force generation or P-partition formulas \rightarrow exponential cost. Generation via our density method $\rightarrow O(n^2)$ cost.
- A field to explore: examine more families of posets (e.g., permutations, Young tableaux, increasing trees, urn models in [Banderier Marchal Wallner 20]).
- Asymptotics? D-finite? D-algebraic? Links with other objects?

$$
\Theta\left(n! C^n e^{a_1 n^{\sigma}} n^{\alpha}\right)?
$$

Bonus Slides

Values of the zeta function (after Zagier, Calabi, Elkies)

$$
\zeta(s) = \sum_{k \geq 0} \frac{1}{(2k+1)^2} = \sum_{k \geq 0} \int_0^1 \int_0^1 (xy)^{2k} = \int_0^1 \int_0^1 \frac{dx dy}{1 - (xy)^2}
$$

$$
\zeta(2) = \sum_{k \geq 0} \frac{1}{(2k+1)^2} = \sum_{k \geq 0} \int_0^1 \int_0^1 (xy)^{2k} = \int_0^1 \int_0^1 \frac{dx dy}{1 - (xy)^2}
$$

Change of variable $x = \frac{\sin u}{\cos v}$ and $y = \frac{\sin v}{\cos u}$. The integration domain becomes the triangle $T = \{u > 0, v > 0, u + v < \pi/2\}$.

$$
S(2)=\int_T du dv=\frac{\pi^2}{8}
$$

Values of the zeta function (after Zagier, Calabi, Elkies)

$$
\zeta(s) = \sum_{k \geq 1} \frac{1}{k^s} \rightarrow \zeta(s) (1 - \frac{1}{2^s}) = \sum_{k \geq 0} \frac{1}{(2k+1)^s}
$$

$$
\zeta(2) = \sum_{k \geq 0} \frac{1}{(2k+1)^2} = \sum_{k \geq 0} \int_0^1 \int_0^1 (xy)^{2k} = \int_0^1 \int_0^1 \frac{dx dy}{1 - (xy)^2}
$$

Change of variable $x = \frac{\sin u}{\cos v}$ and $y = \frac{\sin v}{\cos u}$. The integration domain becomes the triangle $T = \{u > 0, v > 0, u + v < \pi/2\}$.

$$
S(2)=\int_T du dv=\frac{\pi^2}{8}
$$

Calabi and Elkies generalisation:

n even:
$$
S(n) = \text{vol(polytope of dimension } n) = \left(\frac{\pi}{2}\right)^n \frac{A(n)}{n!}
$$

 $A(n) = \text{\# alternating permutations of length } n.$

Exponential cost formulas via P-partitions

E.g. for the zigzag shape Z3, Christian Krattenthaler obtained via Stanley's P-partition theory a nice formula (but with exponential cost):

$$
Z3(n) = \frac{(4n)!}{2^n} \sum_{\epsilon \in \{0,1\}^{n-1}} (-1)^{|\epsilon|} \left(\frac{1}{f_1(\epsilon)} - \frac{1}{f_2(\epsilon)} \right)
$$

where $|\epsilon|:= \epsilon_1 + \cdots + \epsilon_{n-1}$ and

$$
f_1(\epsilon):=\prod_{i=1}^{n-1}(2i+1+2(\epsilon_1+\cdots+\epsilon_i))(2i+2+2(\epsilon_1+\cdots+\epsilon_i)),
$$

$$
f_2(\epsilon) := 3 \prod_{i=1}^{n-1} (2i + 2 + 2(\epsilon_1 + \cdots + \epsilon_i))(2i + 3 + 2(\epsilon_1 + \cdots + \epsilon_i)).
$$

Open problem: to infer from it asymptotics, (non?) D-finiteness, etc.

Advantage of our density method: polynomial cost via the integrals of densities.