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Young tableaux with local decreases
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We consider Young tableaux in which some pairs
of (horizontally or vertically) consecutive cells are
allowed to have decreasing labels. Places where a
decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall”.
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Nice formulas for some specific tableaux of shape n × 2:

• no walls:

1
n+1

(2n
n

)

• walls everywhere:

(2n)!

• horizontal walls everywhere:

(2n)!
2n

• horizontal walls everywhere in 2nd col.:

(2n)!
2nn! = (2n − 1)!!

• vertical walls everywhere:

(2n
n

)
= (2n)!

(n!)2

• all k vertical walls:

1
n+1

(2n
n

)(
n+1
k

)
(We give 2 proofs )
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Bijections with paths and trees

Theorem
The number of n × 2 Young tableaux Y with k vertical walls is equal to

vn,k =
1

n + 1

(
2n
n

)(
n + 1
k

)
.

Proof #1: Bicolored down-steps in Dyck bridges + the Chung–Feller property
14 13

10 12

9 11

8 7

4 6

3 5

2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Proof #2: Leaf-marked binary trees
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Swapping

Marking &
Sorting
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Left: internal
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DFS
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Long walls with small holes: hook-length type formulas

Holes of size 1 on the border

13 14 16 17 19 20 21 25 27

11 2 10 12 15 18 6 23 26

4 1 8 5 7 9 3 22 24

λ1 λ2 λ3 λ4

Theorem [Gascom 2018]
The number of n ×m Young tableaux of size mn with k walls from column 1 to
m − 1 at distance 0 < di :=

∑i
j=1 λi < n, i = 1, . . . , k with hi < hi+1 is equal to

(m − 1)!
(mn +m − 1)m−1

k+1∏
i=1

m−2∏
j=1

(
λi + j

j

)−1
(k+1∏

i=1

(
mdi +m − 1
λi , . . . , λi

))
,

where the multinomial coefficients contain m − 1 λi ’s.

Drawback: efficient formula but too ad-hoc. What about more complicated holes?
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Larger holes lead to unusual asymptotics

The “simplest case” of holes of size 2 on the border

6 10 14 15 17 18

3 5 9 12 13 16

2 1 7 4 11 8

2

1

3

BAADBACFCBEDECDFEF

Theorem
The number fn of such Young tableaux of size n × 3 satisfies

fn = Θ
(
n! 12nea1(3n)1/3

n−2/3
)
,

where a1 ≈ −2.338 is the largest root of the Airy function of the first kind.

Bijections to phylogenetic networks, special words with n distinct letters, and
related to compacted trees (special DAGs) [Fuchs–Yu–Zhang 21]
General method to prove stretched exponentials in bivariate recurrences
[Elvey Price–Fang–Wallner 21]. Here:

yn,k = yn,k−1 + (2n + k − 1)yn−1,k and fn = yn,n.
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Generic approach:

The density method

* far origins in poset theory (volume of polytopes, log-concavity) [Stanley 1981]

* enumeration of linear extensions is #P-complete [Dyer Frieze 1988, Brightwell Winkler 1991]

* avatars in number theory [Zagier, Beukers Kolk Calabi 1993, Elkies 2003]

* applied to square Young tableaux [Barishnikov 2001]

and variants of alternating permutations [Baryshnikov Romik 2010, Stanley 2010]

* generalized to further posets & random generation [Banderier Marchal Wallner 2016–2021]
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Uniform random generation and enumeration

6 15 16

1 13 14

8 10 18

3 9 12

4 7 17

2 5 11

This example is “without loss of generality”
(i.e., our method works also
for non-periodic shapes).

How to generate/enumerate such tableaux? Brute-force is hopeless!
Solution = use our density method!

The density method will give thousands of coefficients in a few seconds.
The number of tableaux of size 2n × 3 is fn = (6n + 1)!

∫ 1
0 pn(z)dz , with

pn+1(z) =

∫ z

0

1
24

(z−1)(x− z)(3x3 −7x2z− xz2 − z3 −2x2 +4xz+4z2)pn(x) dx .

{fn}n≥0={1, 12, 8550, 39235950, 629738299350, 26095645151941500, 2323497950101372223250,

392833430654718548673344250, 115375222087417545717234273063750,

55038140590519890608190921051205837500, . . . }.
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From (periodic) tableaux to tuples of reals and polytopes

6 15 16

1 13 14

8 10 18

3 9 12

4 7 17

2 5 11

7 16 17

2 14 15

9 11 19

4 10 13

5 8 18

3 6 12

1

.74 .96 .97

.25 .94 .95

.85 .91 .99

.42 .90 .93

.54 .82 .98

.35 .57 .92

.06

S Z W

R Y V

X

S < Z < W

< < <

R < Y < V

<

X

The density method generates real numbers with the same relative order
All possible values = a polytope Pn ⊆ [0, 1]6n+1

“Building blocks” of 7 cells for this periodic tableau

Uniformity via the “right” choice of densities

pn+1(z) =

∫
0<x<z

∫
x<y<z

∫
0<r<y

∫
r<s<z

∫
z<w<1

∫
y<v<w

pn(v) dv dw ds dr dy dx

d(x) =
pn(xn)∫ 1

0 pn(t)dt

n−1∏
k=0

pk(xk)1blockk

pk+1(xk+1)
=

p0(x0)1Pn∫ 1
0 pn(t) dt

=
1Pn∫ 1

0 pn(t) dt
=

1Pn

vol(Pn)

Prob(x ∈ Pn) = vol(Pn) = fn/(6n + 1)!
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Jenga tableaux and the density method

Jenga! = Construct! in Swahili.

16 17 19 21

1 5 15 20 22

11 14

10 18

8

3 6 7 9 13

2 4 12

`1 r1

`7 r7

U1 · · · U` Z V1 · · · Vr

X` r

Given a shape (ℓi , ri )i∈N, what is the number fn of tableaux with n lines?

Theorem

fn =
( n∑

i=1

(ℓi + ri + 1)
)
!

∫ 1

0
pn(x) dx

pn(z) =
zℓn(1 − z)rn

ℓn! rn!

∫ z

0
pn−1(x) dx with p1(z) =

zℓ1(1 − z)r1

ℓ1! r1!
.

Proof: pn(z)=
∫

z<v1<1
· · ·

∫
vr−1<vr<1

∫
0<uℓ<z

· · ·
∫

0<u1<u2

∫
0<x<z

pn−1(x) dx du1 . . . duℓ dvr . . . dv1
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A classification of 2 × 2 periodic shapes

A periodic shape is the concatenation of n copies of a building block B of <cells:
Y = Bn.

A tableau Y with periodic walls is a periodic shape filled with all integers from
{1, . . . , |B|n} respecting the induced order constraints.

B =
3 10 5 6 12 16 13 14

1 2 4 7 8 9 11 15
B4 =

There are a priori 26 = 64 shapes, but some are in bijection (e.g., turn by 180
degrees and reverse labels). It turns out that it leads to 32 different sequences.

We now characterize all 2 × 2 shapes according to the nature of the counting
sequence/generating function, which is either

“simple” hypergeometric
hypergeometric,
algebraic,
D-algebraic and beyond.
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Hypergeometric cases

= cases with uniquely determined minimum or maximum
Class Shape Sequence OEIS

H1 ,
n∏

i=1

(4i − 1)(4i − 3) A101485

H2 ,
n∏

i=1

(2i − 1)(4i − 1) A159605

H3 , 2n+1n!
n∏

i=1

(4i − 3) 2n+1·A084943

H4 ,
(

4n
n

) n∏
i=1

(3i − 1)
(4n
n

)
·A008544

H5 ,
(

4n
n

) n∏
i=1

(3i − 2)
(4n
n

)
·A007559

H6 , 2nn!
n∏

i=1

(4i − 3) n! ·A084948

H7 ,
n∏

i=1

(2i − 1)(4i − 1) A159605

Proofs:
Models H1–H5: variants of Jenga tableaux with ri = 0 for all i
Models H6–H7: recursively decompose with respect to the location of the
unique minimum or maximum.
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D-algebraic cases?

≈ cases with a zig-zag-like pattern
Class Shape GF OEIS Example

Z1 ,
D-algebraic, and not D-finite:

cos(t/
√

2)2 + cosh(t/
√

2)2

2 cos(t/
√

2) cosh(t/
√

2)

related to A211212
12 16 6 15 13 14 7 10

8 3 5 9 11 2 4 1

Z2 , open problem! —
3 5 8 9 11 13 14 15

2 10 4 7 1 16 6 12

Z3 , open problem! —
2 4 5 8 11 12 14 15

13 3 16 7 9 6 10 1

Proof for Z1: A permutation (a1, . . . , an) is an
alternating permutation of type (k1, . . . , km) if
a1 < · · · < ak1 > ak1+1 < · · · < ak1+k2 > ak1+k2+1 < · · · < an.
Then, ki = 1 gives classical alternating permutations;
while k1 = 3, k2 = · · · = kn = 4, and kn+1 = 1 gives Z1.
A generalization of [Carlitz 73] then leads to

Leonard Carlitz
(1907-1999)
771 articles!

F (t) =
E4,3(t)E4,1(t)

E4,0(t)
+ E4,0(t) where Ek,r (t) =

∑
n≥0

(−1)n
tnk+r

(nk + r)!
.
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https://oeis.org/search?q=8%2C416%2C56136%2C14433600%2C6042488040%2C3743684613216%2C3219214017819240%2C3668912290108229760%2C5352687624294728270280%2C9729190960995966590426400%2C21557816749990824984425855880%2C57201801255727138416863255878080&sort=&language=english&go=Search


Conclusion

3 ways to enumerate and generate Young tableaux with walls:
hook-length type formulas, bijections, density method.
Approach different from [Greene Nijenhuis Wilf 84].
They used the existence of a simple product formula (hook-length formula).
Brute-force generation or P-partition formulas → exponential cost.
Generation via our density method → O(n2) cost.
A field to explore: examine more families of posets (e.g., permutations, Young
tableaux, increasing trees, urn models in [Banderier Marchal Wallner 20]).
Asymptotics? D-finite? D-algebraic? Links with other objects?

3 5 8 9 11 13 14 15

2 10 4 7 1 16 6 12
Θ
(
n!C nea1n

σ

nα
)

?
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Bonus Slides
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Values of the zeta function (after Zagier, Calabi, Elkies)

ζ(s) =
∑
k≥1

1
ks

→ ζ(s)(1 − 1
2s

) =
∑
k≥0

1
(2k + 1)s

S(2) =
∑
k≥0

1
(2k + 1)2

=
∑
k≥0

∫ 1

0

∫ 1

0
(xy)2k =

∫ 1

0

∫ 1

0

dxdy

1 − (xy)2

Change of variable x = sin u
cos v and y = sin v

cos u .
The integration domain becomes the triangle T = {u > 0, v > 0, u + v < π/2}.

S(2) =
∫
T

dudv =
π2

8

Calabi and Elkies generalisation:
n even: S(n) = vol(polytope of dimension n) =

(π
2

)n A(n)

n!
A(n) = # alternating permutations of length n.
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Values of the zeta function (after Zagier, Calabi, Elkies)

ζ(s) =
∑
k≥1

1
ks

→ ζ(s)(1 − 1
2s
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∑
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Exponential cost formulas via P-partitions

E.g. for the zigzag shape Z3, Christian Krattenthaler obtained via Stanley’s
P-partition theory a nice formula (but with exponential cost):

Z3(n) =
(4n)!
2n

∑
ϵ∈{0,1}n−1

(−1)|ϵ|
(

1
f1(ϵ)

− 1
f2(ϵ)

)
where |ϵ|:= ϵ1 + · · ·+ ϵn−1 and

f1(ϵ) :=
n−1∏
i=1

(2i + 1 + 2(ϵ1 + · · ·+ ϵi ))(2i + 2 + 2(ϵ1 + · · ·+ ϵi )),

f2(ϵ) := 3
n−1∏
i=1

(2i + 2 + 2(ϵ1 + · · ·+ ϵi ))(2i + 3 + 2(ϵ1 + · · ·+ ϵi )).

Open problem: to infer from it asymptotics, (non?) D-finiteness, etc.

Advantage of our density method: polynomial cost via the integrals of densities.
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