Compacted binary trees and minimal automata admit stretched exponentials CanaDAM 2021 Online 05/2021

Michael Wallner joint work with Andrew Elvey Price and Wenjie Fang

<https://dmg.tuwien.ac.at/mwallner> Institute of Discrete Mathematics and Geometry, TU Wien, Austria (Austrian Science Fund (FWF): J 4162 and P 34142)

[Compacted binary trees admit a stretched exponential,](https://doi.org/10.1016/j.jcta.2020.105306) JCTA, Vol. 177(105306), Jan. 2021; [ArXiv:1908.11181](https://arxiv.org/abs/1908.11181) [Asymptotics of minimal deterministic finite automata](https://doi.org/10.4230/LIPIcs.AofA.2020.11) [recognizing a finite binary language,](https://doi.org/10.4230/LIPIcs.AofA.2020.11) LIPIcs, AofA 2020

I have an open PhD position to offer in my project "Stretched exponentials and beyond". Feel free to contact me if you are interested!

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

Example

Consider the labeled tree necessary to store the arithmetic expression

$$
(* (- (* x x) (* y y)) (+ (* x x) (* y y)))
$$

which represents $(x^2 - y^2)(x^2 + y^2)$.

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Compacted trees

- **E** Efficient algorithm to compute compacted tree: expected time $\mathcal{O}(n)$
- Analyzed by $[Flajolet, Sipala, Steyaert 1990]$: A tree of size *n* has a compacted form of expected size

$$
C\frac{n}{\sqrt{\log n}},
$$

where C is explicit related to the type of trees and the statistical model.

- **Applications:**
	- **XML-Compression** [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
	- Compilers [Aho, Sethi, Ullman 1986]
	- \blacksquare LISP [Goto 1974]
	- Data storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Reverse question

How many compacted trees of (compacted) size n exist?
[Compacted Binary Trees](#page-0-0) | [What is a compacted binary tree?](#page-1-0)

Compacted (unlabeled binary) trees

- Size: number of internal nodes
- c_n : number of compacted trees of size n

$$
(c_n)_{n\geq 0}=(1,1,3,15,111,1119,14487,\dots)
$$

Important: Subtrees are unique!

Simple bounds
\n
$$
n! \leq c_n \leq \frac{1}{n+1} {2n \choose n} n!
$$

[Compacted Binary Trees](#page-0-0) | [What is a compacted binary tree?](#page-1-0)

Compacted (unlabeled binary) trees

- Size: number of internal nodes
- c_n : number of compacted trees of size n

$$
(c_n)_{n\geq 0}=(1,1,3,15,111,1119,14487,\dots)
$$

Important: Subtrees are unique!

Simple bounds
\n
$$
n! \leq c_n \leq \frac{1}{n+1} {2n \choose n} n!
$$

Bounded right height (Previous work)

The right height of a binary tree is the maximal number of right children on any path from the root to a leaf (not going through pointers).

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number c_k , of compacted trees with right height at most k is for $n \to \infty$ asymptotically equivalent to

$$
c_{k,n} \sim \kappa_k n! \left(4 \cos \left(\frac{\pi}{k+3}\right)^2\right)^n n^{-\frac{k}{2}-\frac{1}{k+3} - \left(\frac{1}{4}-\frac{1}{k+3}\right) \cos \left(\frac{\pi}{k+3}\right)^{-2}},
$$

where $\kappa_k \in \mathbb{R} \setminus \{0\}$ is independent of *n*.

Main result compacted trees

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Elvey Price, Fang, W 2021]

The number of compacted binary trees satisfies for $n \to \infty$

$$
c_n = \Theta\left(n! 4^n e^{3a_1 n^{1/3}} n^{3/4}\right),
$$

with $a_1 \approx −2.338$: largest root of the Airy function Ai $(\mathsf{x}) \!=\! \frac{1}{\pi} \int\limits_0^\infty$ 0 $\cos\left(\frac{t^3}{3}+xt\right)dt$.

Main result compacted trees

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Elvey Price, Fang, W 2021]

The number of compacted binary trees satisfies for $n \to \infty$

$$
c_n = \Theta\left(n! 4^n e^{3a_1 n^{1/3}} n^{3/4}\right),
$$

with $a_1 \approx −2.338$: largest root of the Airy function Ai $(\mathsf{x}) \!=\! \frac{1}{\pi} \int\limits_0^\infty$ 0 $\cos\left(\frac{t^3}{3}+xt\right)dt$.

Conjecture

Experimentally we find

$$
c_n \sim \gamma_c n! 4^n e^{3a_1 n^{1/3}} n^{3/4},
$$

where

 $\gamma_c \approx 173.12670485$.

Other appearances of stretched exponentials

Known exactly:

Integer partitions:

$$
\sim (4\sqrt{3})^{-1}e^{\pi(2n/3)^{1/2}}n^{-1}
$$

- **Pushed Dyck paths [Beaton, McKay 2014], [Guttmann 2015]:** $\sim C_1 4^n e^{-3\left(\frac{\pi \log 2}{2}\right)^{2/3} n^{1/3}} n^{-5/6}$
- Gogrowth sequence of a lamplighter group variant of $\mathbb{Z}_2 \wr \mathbb{Z}$ [Revelle 2003]: $\sim C_2 \mu^n e^{-3(\pi \log(2)/2)^{2/3} n^{1/3}} n^{1/6}$
- **Phylogenetic tree-child networks Fuchs, Yu, Zhang 2020]:** $\Theta\left(n^{2n}(12e^{-2})^n e^{a_1(3n)^{1/3}}n^{-2/3}\right)$

Conjectured:

$$
\approx \mu \ \ e
$$

ing walks [Beaton, Guttmann, Jensen, l

$$
\approx \mu^n e^{-cn^{3/2}}
$$

Other appearances of stretched exponentials

Known exactly:

Integer partitions:

$$
\sim (4\sqrt{3})^{-1} e^{\pi (2n/3)^{1/2}} n^{-1}
$$

- Pushed Dyck paths [Beaton, McKay 2014], [Guttmann 2015]: $\sim C_1 4^n e^{-3\left(\frac{\pi \log 2}{2}\right)^{2/3} n^{1/3}} n^{-5/6}$
- Gogrowth sequence of a lamplighter group variant of $\mathbb{Z}_2 \wr \mathbb{Z}$ [Revelle 2003]: $\sim C_2 \mu^n e^{-3(\pi \log(2)/2)^{2/3} n^{1/3}} n^{1/6}$
- **Phylogenetic tree-child networks Fuchs, Yu, Zhang 2020]:**

$$
\Theta\Big(n^{2n}(12e^{-2})^n e^{a_1(3n)^{1/3}}n^{-2/3}\Big)
$$

Conjectured:

Permutations avoiding 1324 [Conway, Guttmann, Zinn-Justin 2018]:

$$
\approx \mu^n e^{-cn^{1/2}}
$$

- **Pushed self avoiding walks Beaton, Guttmann, Jensen, Lawler 2015**: $\approx \mu^n e^{-cn^{3/7}}$
- **and recently more and more appear in group theory, queuing theory, ...**

Deterministic finite automata (DFA)

DFA on alphabet $\{a, b\}$

Graph with

- **u** two outgoing edges from each node (state), labelled a and b
- An initial state q_0
- \blacksquare A set F of final states (coloured green).

Figure: DFA

Deterministic finite automata (DFA)

DFA on alphabet $\{a, b\}$

Graph with

- two outgoing edges from each node (state), labelled a and b
- An initial state q_0
- \blacksquare A set F of final states (coloured green).

Properties

- **Language:** the set of accepted words
- **Minimal:** no DFA with fewer states accepts the same language
- **Acyclic:** no cycles (except loops at unique sink)

Figure: DFA, which is the minimal DFA recognizing the language $\{a, aa, ba, aba\}$.

Counting minimal acyclic DFAs

- Studied by Domaratzki, Kisman, Shallit, and Liskovets 2002–2006
- Open problem: Asymptotics
- Best bounds were out by an exponential factor \blacksquare

Figure: DFA, which is the minimal DFA recognizing the language $\{a, aa, ba, aba\}$.

Main result minimal DFAs

A stretched exponential $\mu^{n^{\sigma}}$ appears again!

Theorem [Elvey Price, Fang, W 2020]

The number m_n of minimal DFAs with $n + 1$ states recognizing a finite binary language satisfies for $n \to \infty$

$$
m_n = \Theta\left(n! \, 8^n e^{3a_1 n^{1/3}} n^{7/8}\right),
$$

with $a_1 \approx −2.338$: largest root of the Airy function Ai $(\mathsf{x}) \!=\! \frac{1}{\pi} \int\limits_0^\infty$ 0 $\cos\left(\frac{t^3}{3}+xt\right)dt$.

Main result minimal DFAs

A stretched exponential $\mu^{n^{\sigma}}$ appears again!

Theorem [Elvey Price, Fang, W 2020]

The number m_n of minimal DFAs with $n+1$ states recognizing a finite binary language satisfies for $n \to \infty$

$$
m_n = \Theta\left(n! \, 8^n e^{3a_1 n^{1/3}} n^{7/8}\right),
$$

with $a_1 \approx −2.338$: largest root of the Airy function Ai $(\mathsf{x}) \!=\! \frac{1}{\pi} \int\limits_0^\infty$ 0 $\cos\left(\frac{t^3}{3}+xt\right)dt$.

Conjecture

Experimentally we find

$$
m_n \sim \gamma n! 8^n e^{3a_1 n^{1/3}} n^{7/8},
$$

where

 $\gamma \approx 76.438160702$.

What is the Airy function?

Properties

- $Ai(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt$
- **Largest root a**₁ \approx -2.338
- lim_{x→∞} Ai(x) = 0

Also defined by $Ai''(x) = xAi(x)$

- [Banderier, Flajolet, Schaeffer, $\overline{}$ Soria 2001]: Random Maps
- **Flajolet, Louchard 2001** Brownian excursion area

How to prove this?

Theorem [Elvey Price, Fang, W 2020]

The number m_n of minimal DFAs with $n + 1$ states recognizing a finite binary language satisfies for $n \to \infty$

$$
m_n = \Theta\left(n! \, 8^n e^{3a_1 n^{1/3}} n^{7/8}\right),
$$

with $a_1 \approx −2.338$: largest root of the Airy function Ai $(\mathsf{x}) \!=\! \frac{1}{\pi} \int\limits_0^\infty$ 0 $\cos\left(\frac{t^3}{3}+xt\right)dt$.

- **1** Bijection to decorated Dyck paths
- Two-parameter recurrence relation for decorated Dyck paths
- Heuristic analysis of recurrence
- 4 Inductive proof of asymptotically tight bounds using heuristics

Highlight spanning tree given by depth first search (ignoring the sink) I.e., black path to each vertex is first in lexicographic order

-
-

- Highlight spanning tree given by depth first search (ignoring the sink)
- I.e., black path to each vertex is first in lexicographic order
- Colour other edges red П
-

- Highlight spanning tree given by depth first search (ignoring the sink)
- I.e., black path to each vertex is first in lexicographic order
- Colour other edges red
- Draw as a binary tree with a edges pointing left and b edges pointing right \blacksquare

Label nodes in post-order. By construction red edges point from a larger number to a smaller number

- Label nodes in post-order. By construction red edges point from a larger number to a smaller number
- $\blacksquare \rightarrow$ Label pointers

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
	- add horizontal step
	- **n** mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
	- add horizontal step
	- **n** mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
	- add horizontal step
	- **n** mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
	- add horizontal step
	- **n** mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
	- add horizontal step
	- **n** mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
	- add horizontal step
	- **n** mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
	- add horizontal step
	- **n** mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
	- add horizontal step
	- **n** mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
	- add horizontal step
	- **n** mark box corresponding to pointer label

- Path starts at $(-1,0)$ and ends at (n, n)
- Path stays below diagonal (after first step)
-
-

- Path starts at $(-1,0)$ and ends at (n, n)
- Path stays below diagonal (after first step)
- One box is marked below each horizontal step п
-

- Path starts at $(-1,0)$ and ends at (n, n)
- Path stays below diagonal (after first step)
- One box is marked below each horizontal step
- Each vertical step is colored white or green

By the bijection: The number of these paths is the number d_n of acyclic DFAs with $n + 1$ nodes.

Recurrence: Denote by $a_{n,m}$ the number of paths ending at (n, m) .

$$
a_{n,m} = 2a_{n,m-1} + (m+1)a_{n-1,m}, \qquad \text{for } n \ge m
$$

$$
a_{-1,0} = 1.
$$

By the bijection: $d_n = a_{n,n}$ is the number of acyclic DFAs with $n + 1$ nodes.

Recurrence: Denote by $a_{n,m}$ the number of paths ending at (n, m) .

$$
a_{n,m} = 2a_{n,m-1} + (m+1)a_{n-1,m}, \qquad \text{for } n \ge m
$$

$$
a_{-1,0} = 1.
$$

By the bijection: $d_n = a_{n,n}$ is the number of acyclic DFAs with $n+1$ nodes. What about minimality?

Recurrence for minimal DFAs

Recurrence: Denote by $b_{n,m}$ the number of paths ending at (n, m) .

$$
b_{n,m} = 2b_{n,m-1} + (m+1)b_{n-1,m} - mb_{n-2,m-1}, \qquad \text{for } n \geq m,
$$

$$
b_{-1,0} = 1.
$$

Now: $m_n = b_{n,n}$ is the number of minimal acyclic DFAs with $n + 1$ nodes.
Transforming the recurrence for minimal DFAs

Transforming the recurrence for minimal DFAs

Transforming the recurrence for minimal DFAs

Now: $m_n = n! 2^n e_{2n,0}$.

Figure: Plots of $e_{n,m}$ against $m + 1$. Left: $n = 100$, Right: $n = 1000$.

Guess:
$$
e_{n,m} \approx h(n)f\left(\frac{m+1}{g(n)}\right)
$$
. Moreover, we guess $g(n) = \sqrt[3]{n}$.

Figure: Plots of $e_{n,m}$ against $m + 1$. Left: $n = 100$, Right: $n = 1000$.

Let's zoom in to the left (small m) where interesting things are happening.

Guess:
$$
e_{n,m} \approx h(n)f\left(\frac{m+1}{g(n)}\right)
$$
. Moreover, we guess $g(n) = \sqrt[3]{n}$.

Figure: Plots of $e_{n,m}$ against $m + 1$. Left: $n = 100$, Right: $n = 1000$.

Let's zoom in to the left (small m) where interesting things are happening.

Guess:
$$
e_{n,m} \approx h(n)f\left(\frac{m+1}{g(n)}\right)
$$
. Moreover, we guess $g(n) = \sqrt[3]{n}$.

Figure: Left: Plot of $e_{n,m}$ against $m+1$ for $n=2000$. Right: Limiting function $f(x)$.

Let's zoom in to the left (small m) where interesting things are happening. It seems to be converging to something...

Guess:
$$
e_{n,m} \approx h(n)f\left(\frac{m+1}{g(n)}\right)
$$
. Moreover, we guess $g(n) = \sqrt[3]{n}$.

Figure: Left: Plot of $e_{n,m}$ against $m+1$ for $n=2000$. Right: Limiting function $f(x)$.

Let's zoom in to the left (small m) where interesting things are happening. It seems to be converging to something...

Guess:
$$
e_{n,m} \approx h(n)f\left(\frac{m+1}{g(n)}\right)
$$
. Moreover, we guess $g(n) = \sqrt[3]{n}$.

Figure: Left: Plot of $e_{n,m}$ against $m+1$ for $n=2000$. Right: Limiting function $f(x)$.

Let's zoom in to the left (small m) where interesting things are happening. It seems to be converging to something...

Guess:
$$
e_{n,m} \approx h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right)
$$
. Moreover, we guess $g(n) = \sqrt[3]{n}$.

Answer 2 Ansatz (a):
$$
e_{n,m} \approx h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right)
$$
.

Recurrence
\n
$$
e_{n,m} = \left(1 - \frac{2(m+1)}{n+m}\right) e_{n-1,m-1} + e_{n-1,m+1} - \frac{n-m}{(n+m)(n+m-2)} e_{n-3,m-1}.
$$

Ansatz (a): en,^m ≈ h(n)f m + 1 √3 n .

Substitute into recurrence and set $m = \kappa \sqrt[3]{n} - 1$:

$$
s_n := \frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(\kappa) - 2\kappa f(\kappa)}{f(\kappa)} n^{-2/3} + O(n^{-1})
$$

Recurrence
\n
$$
e_{n,m} = \left(1 - \frac{2(m+1)}{n+m}\right) e_{n-1,m-1} + e_{n-1,m+1} - \frac{n-m}{(n+m)(n+m-2)} e_{n-3,m-1}.
$$

Answer 2 Answer 2 (a):
$$
e_{n,m} \approx h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right)
$$
.

Substitute into recurrence and set $m = \kappa \sqrt[3]{n} - 1$: $\overline{}$

$$
s_n := \frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(\kappa) - 2\kappa f(\kappa)}{f(\kappa)} n^{-2/3} + O(n^{-1})
$$

■ Ansatz (b):

$$
s_n = 2 + cn^{-2/3} + O(n^{-1})
$$
 \Rightarrow $h(n) \approx 2^n e^{\frac{3c}{2}n^{1/3}}$

Recurrence
\n
$$
e_{n,m} = \left(1 - \frac{2(m+1)}{n+m}\right) e_{n-1,m-1} + e_{n-1,m+1} - \frac{n-m}{(n+m)(n+m-2)} e_{n-3,m-1}.
$$
\nAnsatz (a): $e_{n,m} \approx h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right).$

\nSubstitute into recurrence and set $m = \kappa \sqrt[3]{n} - 1$:

\n
$$
e_{n,m} = \frac{h(n)}{n} \approx 2 + \frac{f''(\kappa) - 2\kappa f(\kappa)}{n} e_{n-2/3} + O(n^{-1})
$$

$$
s_n := \frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(\kappa) - 2\kappa f(\kappa)}{f(\kappa)} n^{-2/3} + O(n^{-1})
$$

■ Ansatz (b):

$$
s_n = 2 + cn^{-2/3} + O(n^{-1})
$$
 \Rightarrow $h(n) \approx 2^n e^{\frac{3c}{2}n^{1/3}}$

■ Solution

 $f''(\kappa) = (2\kappa + c)f(\kappa) \qquad \Rightarrow \qquad f(\kappa) = Ai(2^{-2/3}(2\kappa + c))$

Where c is constant and Ai is the Airy function.

Recurrence
\n
$$
e_{n,m} = \left(1 - \frac{2(m+1)}{n+m}\right) e_{n-1,m-1} + e_{n-1,m+1} - \frac{n-m}{(n+m)(n+m-2)} e_{n-3,m-1}.
$$

Ansatz (a): en,^m ≈ h(n)f m + 1 √3 n .

Substitute into recurrence and set $m = \kappa \sqrt[3]{n} - 1$:

$$
s_n := \frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(\kappa) - 2\kappa f(\kappa)}{f(\kappa)} n^{-2/3} + O(n^{-1})
$$

■ Ansatz (b):

$$
s_n = 2 + cn^{-2/3} + O(n^{-1})
$$
 \Rightarrow $h(n) \approx 2^n e^{\frac{3c}{2}n^{1/3}}$

■ Solution

$$
f''(\kappa) = (2\kappa + c)f(\kappa) \qquad \Rightarrow \qquad f(\kappa) = Ai(2^{-2/3}(2\kappa + c))
$$

Where c is constant and Ai is the Airy function.

Boundary condition $e_{n,-1}=0$. Then $f(0)=0$ implies $c=2^{2/3}a_1$, where $a_1 \approx -2.338$ satisfies Ai $(a_1) = 0$.

Refined heuristic analysis

1 Ansatz of order 1:

$$
e_{n,m} \approx h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right),
$$

$$
s_n = 2 + cn^{-2/3} + O(n^{-1}).
$$

yields estimates $c=2^{2/3}a_1$ such that $h(n) \approx 2^n e^{3a_1(n/2)^{1/3}}$ and $f(\kappa) = Ai(2^{1/3}\kappa + a_1).$

² Ansatz of order 2:

$$
e_{n,m} \approx h(n) \left(f_0 \left(\frac{m+1}{\sqrt[3]{n}} \right) + n^{-1/3} f_1 \left(\frac{m+1}{\sqrt[3]{n}} \right) \right)
$$

$$
s_n = 2 + cn^{-2/3} + dn^{-1} + O(n^{-4/3}).
$$

 $h(n)\sim \mathit{const}\cdot 2^n e^{3a_1(n/2)^{1/3}}n$

Michael Wallner | TU Wien | 27.05.2021 19 / 20

Refined heuristic analysis

1 Ansatz of order 1:

$$
e_{n,m} \approx h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right),
$$

$$
s_n = 2 + cn^{-2/3} + O(n^{-1}).
$$

yields estimates $c=2^{2/3}a_1$ such that $h(n) \approx 2^n e^{3a_1(n/2)^{1/3}}$ and $f(\kappa) = Ai(2^{1/3}\kappa + a_1).$

2 Ansatz of order 2:

$$
e_{n,m} \approx h(n) \left(f_0 \left(\frac{m+1}{\sqrt[3]{n}} \right) + n^{-1/3} f_1 \left(\frac{m+1}{\sqrt[3]{n}} \right) \right),
$$

$$
s_n = 2 + cn^{-2/3} + dn^{-1} + O(n^{-4/3}).
$$

yields estimates $d = 29/12$ such that

 $h(n)\sim const\cdot 2^ne^{3a_1(n/2)^{1/3}}n$ and $f_0(\kappa) = Ai(2^{1/3}\kappa + a_1).$

Refined heuristic analysis

1 Ansatz of order 1:

$$
e_{n,m} \approx h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right),
$$

$$
s_n = 2 + cn^{-2/3} + O(n^{-1}).
$$

yields estimates $c=2^{2/3}a_1$ such that $h(n) \approx 2^n e^{3a_1(n/2)^{1/3}}$ and $f(\kappa) = Ai(2^{1/3}\kappa + a_1).$

2 Ansatz of order 2:

$$
e_{n,m} \approx h(n) \left(f_0 \left(\frac{m+1}{\sqrt[3]{n}} \right) + n^{-1/3} f_1 \left(\frac{m+1}{\sqrt[3]{n}} \right) \right),
$$

$$
s_n = 2 + cn^{-2/3} + dn^{-1} + O(n^{-4/3}).
$$

yields estimates $d = 29/12$ such that

$$
h(n) \sim \text{const} \cdot 2^n e^{3a_1(n/2)^{1/3}} n^{29/24}
$$
 and $f_0(\kappa) = Ai(2^{1/3}\kappa + a_1).$

.

This way we conjecture the asymptotic form for acyclic minimal DFAs:

$$
m_n = 2^n n! e_{2n,0} = \Theta\left(n! 8^n e^{3a_1 n^{1/3}} n^{7/8}\right)
$$

Michael Wallner | TU Wien | 27.05.2021 19 / 20

The end

Theorem

The number m_n of minimal DFAs recognizing a finite binary language and the number c_n (r_n) of compacted (relaxed) binary trees satisfy for $n \to \infty$

$$
m_n = \Theta\left(n! \, 8^n e^{3a_1 n^{1/3}} n^{7/8}\right),
$$

\n
$$
c_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right),
$$

\n
$$
r_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n\right),
$$

\nwith $a_1 \approx -2.338$: largest root of the Airy function $\text{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt.$

Many future research directions:

-
-
-
-

The end

Theorem

The number m_n of minimal DFAs recognizing a finite binary language and the number c_n (r_n) of compacted (relaxed) binary trees satisfy for $n \to \infty$

$$
m_n = \Theta\left(n! \, 8^n e^{3a_1 n^{1/3}} n^{7/8}\right),
$$

\n
$$
c_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right),
$$

\n
$$
r_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n\right),
$$

\nwith $a_1 \approx -2.338$: largest root of the Airy function $\text{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right) dt.$

Many future research directions:

- **Multiplicative constant? Does it exist?**
- Characterizing 2-parameter recurrences admitting stretched exponentials.
- Limit shapes: expected height? longest word? etc.
- Further applications to biology and queuing theory.

Open PhD position in my project "Stretched exponentials and beyond"!

Backup

- only possible if the new node is a cherry.
-
-

- only possible if the new node is a cherry.
- If cherry is labeled m, then $m 1$ choices (of pointer labels and state color) must be avoided.
-

- only possible if the new node is a cherry.
- If cherry is labeled m, then $m 1$ choices (of pointer labels and state color) must be avoided.
-

- only possible if the new node is a cherry.
- If cherry is labeled m, then $m 1$ choices (of pointer labels and state color) must be avoided.
-

- only possible if the new node is a cherry.
- If cherry is labeled m, then $m 1$ choices (of pointer labels and state color) must be avoided.
- **Cherry corresponds to** $\rightarrow \rightarrow \uparrow$ in path.

Side note: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2^{-h}

Number of paths $\approx 4^n e^{-c_1 n^{1-2\alpha}}$, Weight $= 2^{-n^{\alpha}} = e^{-\log(2)n^{\alpha}}$ Maximum occurs when $\alpha = 1/3$ and is equal to 4ⁿe^{-cn^{1/3}.} Our case: weights decrease similarly with height so we expect similar behavior

Side note: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2^{-h}

Consider paths with max height $h = n^{\alpha}$ (for $0 < \alpha \leq 1/2$):

Number of paths $\approx 4^n e^{-c_1 n^{1-2\alpha}}$, Weight $= 2^{-n^{\alpha}} = e^{-\log(2)n^{\alpha}}$. Maximum occurs when $\alpha = 1/3$ and is equal to 4 $^ne^{-cn^{1/3}}$ Our case: weights decrease similarly with height so we expect similar behavior

Side note: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2^{-h}

Consider paths with max height $h = n^{\alpha}$ (for $0 < \alpha \leq 1/2$):

Number of paths $\approx 4^n e^{-c_1 n^{1-2\alpha}}$, Weight $= 2^{-n^{\alpha}} = e^{-\log(2)n^{\alpha}}$. Weighted number of paths is $\approx 4^n e^{-c_1 n^{1-2\alpha}-\log(2) n^{\alpha}}$. Maximum occurs when $\alpha=1/3$ and is equal to 4 $^ne^{-cn^{1/3}}$. Our case: weights decrease similarly with height so we expect similar behavior

Side note: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2^{-h}

Consider paths with max height $h = n^{\alpha}$ (for $0 < \alpha \leq 1/2$):

Number of paths $\approx 4^n e^{-c_1 n^{1-2\alpha}}$, Weight $= 2^{-n^{\alpha}} = e^{-\log(2)n^{\alpha}}$. Weighted number of paths is $\approx 4^n e^{-c_1 n^{1-2\alpha}-\log(2) n^{\alpha}}$. Maximum occurs when $\alpha=1/3$ and is equal to 4 $^ne^{-cn^{1/3}}$. Our case: weights decrease similarly with height so we expect similar behavior

Proof method

Recall:

$$
e_{n,m}=\left(1-\frac{2(m+1)}{n+m}\right)e_{n-1,m-1}+e_{n-1,m+1}-\frac{n-m}{(n+m)(n+m-2)}e_{n-3,m-1}
$$

Number of minimal acyclic DFAs is $m_n = 2^n n! e_{2n,0}$.

Method:

Find sequences $X_{n,m}$ and $Y_{n,m}$ with the same asymptotic form, such that

$$
X_{n,m}\leq e_{n,m}\leq Y_{n,m},
$$

for all m and all n large enough.

Proof method

Recall:

$$
e_{n,m} = \left(1 - \frac{2(m+1)}{n+m}\right)e_{n-1,m-1} + e_{n-1,m+1} - \frac{n-m}{(n+m)(n+m-2)}e_{n-3,m-1}
$$

Number of minimal acyclic DFAs is $m_n = 2^n n! e_{2n,0}$.

Method:

Find sequences $X_{n,m}$ and $Y_{n,m}$ with the same asymptotic form, such that

$$
X_{n,m}\leq e_{n,m}\leq Y_{n,m},
$$

for all m and all n large enough.

How to find them?

- **1** Use heuristics
- 2 Fiddle until $X_{n,m}$ and $Y_{n,m}$ satisfy the recurrence of $e_{n,m}$ with the equalities replaced by inequalities:

$$
\hspace{.1cm} = \hspace{.1cm} \longrightarrow \hspace{.1cm} \leq \hspace{.1cm} \text{and} \hspace{.1cm} \geq \hspace{.1cm}
$$

3 Prove $X_{n,m} \le e_{n,m} \le Y_{n,m}$ by induction.

Proof method

Recall:

$$
e_{n,m} = \left(1 - \frac{2(m+1)}{n+m}\right)e_{n-1,m-1} + e_{n-1,m+1} - \frac{n-m}{(n+m)(n+m-2)}e_{n-3,m-1}
$$

Number of minimal acyclic DFAs is $m_n = 2^n n! e_{2n,0}$.

Method:

Find sequences $X_{n,m}$ and $Y_{n,m}$ with the same asymptotic form, such that

$$
X_{n,m}\leq e_{n,m}\leq Y_{n,m},
$$

for all m and all n large enough.

How to find them?

- **1** Use heuristics
- 2 Fiddle until $X_{n,m}$ and $Y_{n,m}$ satisfy the recurrence of $e_{n,m}$ with the equalities replaced by inequalities:

$$
\hspace{.1cm} = \hspace{.1cm} \longrightarrow \hspace{.1cm} \leq \hspace{.1cm} \text{and} \hspace{.1cm} \geq \hspace{.1cm}
$$

3 Prove $X_{n,m} \le e_{n,m} \le Y_{n,m}$ by induction.

Unfortunately very technical (and not suited for the end of a talk ;))

Technicalities for compacted trees and minimal DFAs

Lots of technicalities:

- Before induction, we have to remove the negative term from the recurrence, but we have to do so precisely for asymptotics to stay the same.
- We only prove bounds for small m; we prove that large m terms don't matter
- The lower bound is negative for very large m , so we have to be careful with induction
- \blacksquare We only prove the bounds for sufficiently large n, but this only makes a difference to the constant term. Proof involves colorful Newton polygons:

Relaxed problem (relaxed compacted trees)

Recurrence for relaxed compacted trees

$$
d_{n,m}=\frac{n-m+2}{n+m}d_{n-1,m-1}+d_{n-1,m+1}.
$$

Lemma (lower bound)

For all $n, m \geq 0$ let $\tilde{X}_{n,m} := \left(1 - \frac{2m^2}{3n}\right)$ $\frac{2m^2}{3n} + \frac{m}{2n}$

$$
a_{m} := \left(1 - \frac{2m^{2}}{3n} + \frac{m}{2n}\right) \text{Ai}\left(a_{1} + \frac{2^{1/3}(m+1)}{n^{1/3}}\right)
$$

$$
\tilde{s}_{n} := 2 + \frac{2^{2/3}a_{1}}{n^{2/3}} + \frac{8}{3n} - \frac{1}{n^{7/6}}.
$$

and

Then, for any $\varepsilon > 0$, there exists an \tilde{n}_0 such that

$$
\tilde{X}_{n,m}\tilde{s}_n\leq \frac{n-m+2}{n+m}\tilde{X}_{n-1,m-1}+\tilde{X}_{n-1,m+1},
$$

for all $n \geq \tilde{n}_0$ and for all $0 \leq m < n^{1-\varepsilon}$.

Lower bound – Expansion

1 Transform to $P_{n,m} \geq 0$ for $P_{n,m} := -\tilde{X}_{n,m}\tilde{s}_n + \frac{n-m+2}{n+m}$ $\frac{n+n+2}{n+m}\tilde{X}_{n-1,m-1}+\tilde{X}_{n-1,m+1}.$ where $(\sigma_i, \tau_j \in \mathbb{R})$ $\tilde{s}_n := \sigma_0 + \frac{\sigma_1}{2l}$ $\frac{\sigma_1}{n^{1/3}} + \frac{\sigma_2}{n^{2/3}}$ $\frac{\sigma_2}{n^{2/3}} + \frac{\sigma_3}{n}$ $\frac{\sigma_3}{n} + \frac{\sigma_4}{n^{7/2}}$ $\frac{1}{n^{7/6}}$, $\tilde{\mathsf{X}}_{n,m} := \bigg(1 + \frac{\tau_2 m^2 + \tau_1 m}{n}$ $\bigg(a_1 + \frac{2^{1/3}(m+1)}{2^{1/3}} \bigg)$ $n^{1/3}$ $\big).$

$$
\alpha = a_1 + \frac{2^{1/3}m}{n^{1/3}},
$$

$$
P_{n,m}=p_{n,m}\text{Ai}(\alpha)+p'_{n,m}\text{Ai}'(\alpha),
$$

Lower bound – Expansion

1 Transform to $P_{n,m} \geq 0$ for $P_{n,m} := -\tilde{X}_{n,m}\tilde{s}_n + \frac{n-m+2}{n+m}$ $\frac{n+n+2}{n+m}\tilde{X}_{n-1,m-1}+\tilde{X}_{n-1,m+1}.$ where $(\sigma_i, \tau_j \in \mathbb{R})$ $\tilde{s}_n := \sigma_0 + \frac{\sigma_1}{2l}$ $\frac{\sigma_1}{n^{1/3}} + \frac{\sigma_2}{n^{2/3}}$ $\frac{\sigma_2}{n^{2/3}} + \frac{\sigma_3}{n}$ $\frac{\sigma_3}{n} + \frac{\sigma_4}{n^{7/2}}$ $\frac{1}{n^{7/6}}$, $\tilde{\mathsf{X}}_{n,m} := \bigg(1 + \frac{\tau_2 m^2 + \tau_1 m}{n}$ $\bigg(a_1 + \frac{2^{1/3}(m+1)}{2^{1/3}} \bigg)$ $n^{1/3}$ $\big).$

2 Expand $Ai(z)$ in a neighborhood of

$$
\alpha = a_1 + \frac{2^{1/3}m}{n^{1/3}},
$$

using $Ai''(z) = zAi(z)$. Then

$$
P_{n,m}=p_{n,m}\text{Ai}(\alpha)+p'_{n,m}\text{Ai}'(\alpha),
$$

where $\rho_{n,m}$ and $\rho'_{n,m}$ are power series in $n^{-1/6}$ whose coefficients are polynomials in m.
[Compacted Binary Trees](#page-0-0) | [Backup](#page-91-0)

Lower bound – Polygon

We get

[Compacted Binary Trees](#page-0-0) | [Backup](#page-91-0)

Lower bound – Case analysis

 $\overline{\mathbf{3}}$ Treat $\bm{\mathit{p}}_{n,m}$ and $\bm{\mathit{p}}'_{n,m}$ separately and prove that all dominating terms (corners of convex hull) are positive.

non-zero coefficients

Main idea
\nSuppose
$$
(X_{n,m})_{n\geq m\geq 0}
$$
 and $(s_n)_{n\geq 1}$ satisfy
\n
$$
X_{n,m} s_n \leq \frac{n-m+2}{n+m} X_{n-1,m-1} + X_{n-1,m+1},
$$
\nfor all sufficiently large *n* and all integers $m \in [0, n]$. (1)

Define $(h_n)_{n>0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that $X_{n,m}h_n \leq b_0d_{n,m}$

Main idea Suppose $(X_{n,m})_{n\geq m\geq 0}$ and $(s_n)_{n\geq 1}$ satisfy $X_{n,m} s_n \leq \frac{n-m+2}{n+m}$ $\frac{m+1}{n+m}X_{n-1,m-1}+X_{n-1,m+1},\qquad \qquad (1)$ for all sufficiently large *n* and all integers $m \in [0, n]$.

Define $(h_n)_{n>0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that

$$
X_{n,m}h_n\leq b_0d_{n,m}
$$

$$
X_{n,m}h_n \overset{(1)}{\leq} \frac{n-m+2}{n+m} X_{n-1,m-1}h_{n-1} + X_{n-1,m+1}h_{n-1}
$$
\n
$$
\overset{\text{(Induction)}}{\leq} \frac{n-m+2}{n+m} b_0 d_{n-1,m-1} + b_0 d_{n-1,m+1}
$$
\n
$$
\underset{m=-m}{\text{Rec. } d_{n,m}} b_0 d_{n,m}.
$$

Main idea Suppose $(X_{n,m})_{n\geq m\geq 0}$ and $(s_n)_{n\geq 1}$ satisfy $X_{n,m} s_n \leq \frac{n-m+2}{n+m}$ $\frac{m+1}{n+m}X_{n-1,m-1}+X_{n-1,m+1},\qquad \qquad (1)$ for all sufficiently large *n* and all integers $m \in [0, n]$.

Define $(h_n)_{n>0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that

 $X_{n,m}h_n \leq b_0d_{n,m}$

$$
X_{n,m}h_n \leq \frac{n-m+2}{n+m} X_{n-1,m-1}h_{n-1} + X_{n-1,m+1}h_{n-1}
$$

\n
$$
\leq \frac{(Induction)}{n+m} h_0 d_{n-1,m-1} + b_0 d_{n-1,m+1}
$$

\n
$$
\underset{m=0, m \text{ and } b_0 d_{n,m}}{max} b_0 d_{n,m}.
$$

Main idea Suppose $(X_{n,m})_{n\geq m\geq 0}$ and $(s_n)_{n\geq 1}$ satisfy $X_{n,m} s_n \leq \frac{n-m+2}{n+m}$ $\frac{m+1}{n+m}X_{n-1,m-1}+X_{n-1,m+1},\qquad \qquad (1)$ for all sufficiently large *n* and all integers $m \in [0, n]$.

Define $(h_n)_{n>0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that

$$
X_{n,m}h_n\leq b_0d_{n,m}
$$

$$
X_{n,m}h_n \leq \frac{n-m+2}{n+m} X_{n-1,m-1}h_{n-1} + X_{n-1,m+1}h_{n-1}
$$

\n
$$
\leq \frac{(Induction)}{n+m} b_0 d_{n-1,m-1} + b_0 d_{n-1,m+1}
$$

\n
$$
\text{Rec. } d_{n,m}
$$

\n
$$
= b_0 d_{n,m}.
$$