
Oracle® Fusion Cloud EPM
REST API for Oracle Enterprise Performance
Management Cloud

E96323-82

Oracle Fusion Cloud EPM REST API for Oracle Enterprise Performance Management Cloud,

E96323-82

Copyright © 2017, 2024, Oracle and/or its affiliates.

Primary Author: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Documentation Accessibility

 Documentation Feedback

1 Creating and Running an EPM Center of Excellence

2 Implementation Best Practices for EPM Cloud REST APIs

3 About the REST APIs for EPM Cloud

About REST API for Oracle Enterprise Performance Management Cloud 3-1

EPM Cloud REST API Compatibility 3-2

About the Samples 3-14

Audience 3-14

Prerequisites 3-15

URL Structure 3-15

4 OAuth 2 and Basic Authentication for EPM Cloud REST APIs

Authentication with OAuth 2 - Only for OCI (Gen 2) Environments 4-1

Basic Authentication - for Classic and OCI (Gen 2) Environments 4-9

5 Sample Integration Scenarios

Scenario 1: Import Metadata into Applications 5-1

Scenario 2: Import Data, Run a Calculation Script, and Copy Data from a Block Storage
Database to an Aggregate Storage Database 5-2

Scenario 3: Export and Download Metadata and Data 5-3

Scenario 4: Remove Unnecessary Files from a Service Instance 5-4

Scenario 5: Archive Backups from the Service to Onpremise 5-4

Scenario 6: Refreshing the Application 5-5

iii

Scenario 7: Cloning an Instance 5-6

Scenario 8: Sample Starter Kit for Consultants - Business Intelligence Cloud Integration 5-6

Scenario 9: Using Groovy Business Rules to Call REST APIs from Oracle and Other
Companies 5-7

6 Quick Reference Table – REST API Resource View

7 REST Resources and Methods

Supported REST Methods 7-1

REST API Methods 7-2

Error Handling 7-2

Versioning 7-2

Current REST API Version 7-2

Status Codes 7-3

8 Planning REST APIs

URL Structure for Planning 8-1

Resources and Available Actions 8-2

Getting API Versions for Planning 8-2

Get REST API Versions for Planning 8-3

Get Information about a Specific REST API Version for Planning 8-4

Manage Jobs 8-6

Get Job Definitions 8-7

Execute a Job 8-10

Rules 8-12

Ruleset 8-13

Plan Type Map 8-19

Import Data 8-22

Export Data 8-25

Import Metadata 8-29

Export Metadata 8-31

Cube Refresh 8-32

Clear Cube 8-33

Administration Mode 8-36

Compact Cube 8-37

Restructure Cube 8-37

Merge Data Slices 8-38

Optimize Aggregation 8-39

Import Security 8-42

Export Security 8-45

iv

Export Audit 8-47

Export Job Console 8-50

Sort Members 8-57

Import Exchange Rates 8-59

Auto Predict 8-60

Import Cell-Level Security 8-62

Export Cell-Level Security 8-65

Import Valid Intersections 8-67

Export Valid Intersections 8-70

Execute a Report Bursting Definition 8-72

Export Library Documents 8-73

Execute Job Code Samples 8-76

Retrieve Job Status 8-78

Retrieve Job Status Details 8-80

Retrieve Child Job Status Details 8-82

Working with Members 8-85

Add Member 8-85

Get Member 8-87

Get Applications 8-88

Manage Planning Units 8-90

List All Planning Units 8-91

Get Planning Unit History and Annotations 8-94

Get a Planning Unit Owner Photo 8-97

Get Planning Unit Promotional Path 8-99

Get Available Planning Unit Actions 8-100

Get Filters with All Possible Values 8-102

Change Planning Unit Status 8-104

Get User Preferences 8-105

Working with Data Slices 8-107

Import Data Slices 8-107

Export Data Slices 8-110

Clear Data Slices 8-120

Getting and Setting Substitution Variables 8-123

Get All Substitution Variables Defined for the Application 8-124

Get a Substitution Variable Defined for the Application 8-125

Create or Update All Substitution Variables Defined for the Application 8-126

Get Substitution Variables Defined at the Plan Type Level 8-127

Get Derived Substitution Variables at the Plan Type Level 8-129

Get a Substitution Variable Defined at the Plan Type Level 8-130

Get a Derived Substitution Variable Defined at the Plan Type Level 8-131

Create and Update Substitution Variables at the Plan Type Level 8-133

Deleting Substitution Variables 8-134

v

Delete a Substitution Variable at the Plan Type Level 8-134

Delete a Substitution Variable for the Application 8-135

Delete Substitution Variables at the Plan Type Level 8-136

Delete Substitution Variables for the Application 8-138

Working with Connections 8-139

View a Connection 8-140

View All Connections 8-141

Update a Connection 8-144

9 Migration REST APIs

URL Structure for Migration 9-3

Migration Status Codes 9-3

Getting API Versions for Migration APIs 9-4

Get REST API Versions for Migration 9-4

Get Information About a Specific REST API Version for Migration 9-7

Import and Export Files 9-11

LCM Import (v1) 9-11

LCM Import (v2) 9-18

LCM Export (v1) 9-22

LCM Export (v2) 9-27

Upload and Download Files 9-31

Upload 9-31

Download 9-37

View and Delete Files 9-41

List Files (v11.1.2.3.600) 9-41

List Files (v2) 9-44

Delete Files (v11.1.2.3.600) 9-46

Delete Files (v2) 9-49

Delete Files (v3) 9-51

Manage Services 9-53

Get Information About All Services 9-54

Get Idle Session Timeout 9-57

Set Idle Session Timeout 9-58

Restart the Service Instance (v1) 9-60

Restart the Service Instance (v2) 9-63

Run Recreate on a Service (11.1.2.3.600) 9-77

Run Recreate on a Service (v2) 9-83

Manage Application Snapshots 9-99

Get Information About All Application Snapshots 9-100

Get Information About a Specific Application Snapshot 9-102

Upload Application Snapshot (v1) 9-106

vi

Upload Application Snapshot (v2) 9-109

Download Application Snapshot (v1) 9-114

Download Application Snapshot (v2) 9-124

Copy Application Snapshot (v1) 9-128

Copy Application Snapshot (v2) 9-133

Rename Application Snapshot (v1) 9-135

Rename Application Snapshot (v2) 9-137

Copy to and from the Object Store 9-139

Copy from Object Store (v1) 9-139

Copy from Object Store (v2) 9-142

Copy to Object Store (v1) 9-146

Copy to Object Store (v2) 9-150

Working with Essbase 9-154

Export Essbase Data (v2) 9-154

Essbase Block Analysis Report 9-157

Get Essbase Query Governor Execution Time 9-159

Set Essbase Query Governor Execution Time 9-160

Copy a File Between Instances (v1) 9-162

Copy a File Between Instances (v2) 9-164

Clone an Environment 9-166

Provide Feedback (v11.1.2.3.600) 9-172

Provide Feedback (v2) 9-175

Send Email (v1) 9-177

Send Email (v2) 9-179

Skip Updates (v1) 9-182

Skip Updates (v2) 9-184

List or Restore Backups - Only for OCI (Gen2) Environments 9-186

List Backups - Only for OCI (Gen 2) Environments 9-186

Restore Backup - Only for OCI (Gen 2) Environments 9-187

10

Security REST APIs

Get Restricted Data Access 10-1

Set Restricted Data Access 10-3

Get Virus Scan on File Upload 10-5

Set Virus Scan on File Upload 10-6

Manage Permission for Manual Access to Database (v1) 10-7

Manage Permission for Manual Access to Database (v2) 10-9

Set Encryption Key (v1) 10-11

Set Encryption Key (v2) 10-14

View or Update the IP Allowlist - Only for OCI (Gen 2) Environments 10-16

View the IP Allowlist - Only for OCI (Gen 2) Environments 10-17

vii

Update the IP Allowlist - Only for OCI (Gen 2) Environments 10-18

11

Viewing and Setting the Daily Maintenance Window Time

Get the Build Version and Daily Maintenance Time (v1) 11-1

Get the Build Version and Daily Maintenance Window Time (v2) 11-8

Setting the Daily Maintenance Time (v1) 11-10

Setting the Daily Maintenance Time (v2) 11-13

Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v1) 11-15

Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v2) 11-19

12

Managing Users

Add Users to an Identity Domain (v1) 12-2

Add Users to an Identity Domain (v2) 12-8

Remove Users from an Identity Domain (v1) 12-12

Remove Users from an Identity Domain (v2) 12-16

Assign Users to a Predefined Role or Application Role (v1) 12-19

Assign Users to a Predefined Role or Application Role (v2) 12-27

Remove Users' Role Assignment (v1) 12-33

Remove Users' Role Assignment (v2) 12-40

Add Users to a Group (v1) 12-46

Add Users to a Group (v2) 12-51

Remove Users from a Group (v1) 12-54

Remove Users from a Group (v2) 12-59

Update Users 12-62

Add a User to a Batch of Groups 12-66

Remove a User from a Batch of Groups 12-71

Add Groups (v1) 12-76

Add Groups (v2) 12-80

Remove Groups (v1) 12-83

Remove Groups (v2) 12-88

User Group Report (v1) 12-91

User Group Report (v2) 12-95

User Access Report (v1) 12-100

User Access Report (v2) 12-103

User Audit Report (v1) 12-105

User Audit Report (v2) 12-109

Role Assignment Report (v1) 12-111

Role Assignment Report for Users (v2) 12-115

Role Assignment Report for Groups (v2) 12-120

Get Available Roles 12-126

viii

Role Assignment Audit Report for OCI (Gen 2) Environments 12-128

Invalid Login Report for OCI (Gen 2) Environments 12-133

Group Assignment Audit Report 12-138

Adding Users to a Team for Account Reconciliation 12-142

Adding Users to a Team for Financial Consolidation and Close and Tax Reporting 12-144

Removing Users from a Team for Account Reconciliation 12-147

Removing Users from a Team for Financial Consolidation and Close and Tax Reporting 12-150

13

Usage Simulation REST APIs

Simulate Concurrent Usage 13-1

14

Reporting REST APIs

Generate Report for Account Reconciliation 14-1

Generate Report for Financial Consolidation and Close and Tax Reporting 14-5

Generate User Details Report for Account Reconciliation 14-9

Generate User Details Report for Financial Consolidation and Close and Tax Reporting 14-11

Retrieve Job Status for a Report 14-14

Execute Reports for Data Management 14-16

15

Data Integration REST APIs

URL Structure for Data Integration 15-1

Getting API Versions for Data Integration APIs 15-1

Get API Versions for Data Integration APIs 15-2

Get Information about a Specific API Version for Data Integration APIs 15-3

Lock and Unlock POV 15-4

Running Integrations 15-10

Running a Pipeline 15-22

Import Data Mapping 15-25

Export Data Mapping 15-27

Export Data Integration 15-29

Import Data Integration 15-31

Retrieve Job Status 15-33

16

Data Management REST APIs

URL Structure for Data Management 16-1

Getting API Versions for Data Management APIs 16-1

Get API Versions for Data Management APIs 16-2

Get Information about a Specific API Version for Data Management APIs 16-3

ix

Running Data Rules in Data Management 16-4

Running Batch Rules 16-7

Retrieve Job Status 16-9

17

Account Reconciliation APIs

URL Structure for Account Reconciliation 17-1

Getting API Versions for Account Reconciliation REST APIs 17-1

Get API Versions for Account Reconciliation REST APIs 17-2

Get Information about a Specific API Version for Account Reconciliation REST APIs 17-4

Execute a Job in Account Reconciliation 17-5

Retrieve Periods with a Specific Status 17-7

Change Period Status (Reconciliation Compliance) 17-9

Create Reconciliation (Reconciliation Compliance) 17-11

Import Pre-Mapped Balances (Reconciliation Compliance) 17-12

Import Pre-Mapped Transactions (Reconciliation Compliance) 17-14

Import Balances (Reconciliation Compliance) 17-16

Import Profiles (Reconciliation Compliance) 17-17

Import Rates (Reconciliation Compliance) 17-19

Import Pre-Mapped Transactions (Transaction Matching) 17-21

Import Attribute Values 17-22

Monitor Reconciliations (Reconciliation Compliance) 17-24

Import Reconciliation Attributes (Reconciliation Compliance) 17-26

Run Auto Match (Transaction Matching) 17-29

Purge Transactions (Transaction Matching) 17-31

Retrieve Job Status (Reconciliation Compliance) 17-34

Retrieve Job Status (Transaction Matching) 17-35

Export Application Properties 17-38

Import Application Properties 17-41

Export Background Image 17-42

Import Background Image 17-44

Export Logo Image 17-46

Import Logo Image 17-47

Working with Connections in Account Reconciliation 17-49

Create a Connection 17-49

View All Connections 17-51

Update a Connection 17-52

Delete a Connection 17-54

Set Application Access Level 17-55

Retrieve Application Access Level 17-56

View Reconciliation Comments 17-57

Archive Matched Transactions (Transaction Matching) 17-59

x

Purge Archived Transactions (Transaction Matching) 17-60

Unmatch Matched Transactions (Transaction Matching) 17-62

Update Unmatched Transactions (Transaction Matching) 17-64

18

Financial Consolidation and Close REST APIs

Getting API Versions for Financial Consolidation and Close APIs 18-1

Get Information about a Specific API Version for Financial Consolidation and Close APIs 18-1

Perform Journal Actions for Financial Consolidation and Close 18-2

Perform Journal Period Updates for Financial Consolidation and Close 18-4

Retrieve Journals for Financial Consolidation and Close 18-6

Retrieve Journal Details for Financial Consolidation and Close 18-9

Export Consolidation Journals 18-12

Import Consolidation Journals 18-14

Copy Data 18-16

Clear Data 18-18

Validate Metadata 18-20

Generate an Intercompany Matching Report 18-21

19

Task Manager REST APIs

Getting API Versions for Task Manager APIs 19-1

Deploy Task Manager Templates 19-1

Update Task Status for Event Monitoring 19-5

Working with Connections in Task Manager 19-8

Create a Connection 19-8

View All Connections 19-11

Update a Connection 19-13

Delete a Connection 19-16

20

Supplemental Data Manager REST APIs

Getting API Versions for Supplemental Data Manager APIs 20-1

Import Supplemental Collection Data for Financial Consolidation and Close 20-1

Deploy Form Templates 20-4

21

Enterprise Journal REST APIs

Getting API Versions for Enterprise Journal APIs 21-1

Monitor Enterprise Journals for Financial Consolidation and Close 21-1

Execute an Enterprise Journals Job 21-4

Retrieve Enterprise Journals for Financial Consolidation and Close 21-10

xi

Retrieve Enterprise Journal Content for Financial Consolidation and Close 21-12

Retrieve Enterprise Journal Content by Year and Period for Financial Consolidation and
Close 21-14

Update Enterprise Journal Posting Status for Financial Consolidation and Close 21-16

Update Validation Status of Enterprise Journals for Financial Consolidation and Close 21-19

22

Tax Reporting REST APIs

URL Structure for Tax Reporting 22-1

Getting API Versions for Tax Reporting APIs 22-1

Get Information about a Specific API Version for Tax Reporting 22-1

Copy Data 22-2

Clear Data 22-4

23

Enterprise Profitability and Cost Management REST APIs

URL Structure for Enterprise Profitability and Cost Management 23-1

Getting API Versions for Enterprise Profitability and Cost Management 23-2

Getting Information About a Specific REST API Version for Enterprise Profitability and Cost
Management 23-2

Calculate Model 23-3

Clear Data By Point of View 23-7

Copy Data by Point of View 23-10

Delete Point of View 23-13

Generate Model Documentation Report 23-16

Validate Model 23-18

24

Profitability and Cost Management REST APIs

URL Structure for Profitability and Cost Management 24-2

Get API Versions for Profitability and Cost Management REST APIs 24-2

Get Information about a Specific API Version for Profitability and Cost Management 24-5

Apply Data Grants 24-7

Copy ML POV Data 24-9

Create File-Based Application 24-13

Deploy ML Cube 24-16

Enable File-Based Application 24-19

Essbase Data Load for Profitability and Cost Management 24-22

Export Query Results 24-25

Export Template for Profitability and Cost Management 24-29

Generate Program Documentation Report 24-32

Generate Program Documentation Report - Run as a Job 24-35

Import Template for Profitability and Cost Management 24-39

xii

Merge Slices for Profitability and Cost Management 24-42

Optimize ASO Cube 24-43

Retrieve Task Status for Profitability and Cost Management 24-47

Run ML Calculations 24-48

Run ML Clear POV 24-52

Run ML Rule Balancing 24-56

Update Dimensions As a Job 24-60

25

Narrative Reporting REST APIs

26

Enterprise Data Management Cloud REST APIs

A Common Helper Functions for Java

B CSS Common Helper Functions for Java

C Common Helper Functions for cURL

D CSS Common Helper Functions for cURL

E CSS Common Helper Functions for Groovy

F REST API Examples with Postman

Example: Using REST APIs to Upload with Postman F-1

Example: Using REST APIs to Upload to an External Directory with Postman F-3

Example: Using REST APIs to Upload a Snapshot with Postman F-4

G Profitability and Cost Management Common Helper Functions

Profitability and Cost Management Common Helper Functions for Java G-1

Profitability and Cost Management Common Helper Functions for cURL G-11

Profitability and Cost Management Common Helper Functions for Groovy G-15

xiii

H Sample Starter Kit for Consultants - Integration with Business Intelligence
Cloud Service

Installing the Scripting Engine and Deploying Demo Scripts H-2

SQL Application Express REST API client H-2

Business Intelligence REST API Client H-5

Planning REST API Client H-6

Helper Functions H-8

Integration of Planning to Business Intelligence Cloud Service H-10

Groovy Sample – PBCSBICSIntegration.groovy H-10

Groovy Sample – PbcsRestClient.groovy H-13

Groovy Sample – PbcsRestClient.groovy H-23

Groovy Sample – BicsRestClient.groovy H-34

Groovy Sample – ApexRestClient.groovy H-46

Troubleshooting the Integration H-56

xiv

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Documentation Feedback

To provide feedback on this documentation, click the feedback button at the bottom of the page
in any Oracle Help Center topic. You can also send email to epmdoc_ww@oracle.com.

Documentation Feedback

xvi

1
Creating and Running an EPM Center of
Excellence

A best practice for EPM is to create a CoE (Center of Excellence).

An EPM CoE is a unified effort to ensure adoption and best practices. It drives transformation
in business processes related to performance management and the use of technology-enabled
solutions.

Cloud adoption can empower your organization to improve business agility and promote
innovative solutions. An EPM CoE oversees your cloud initiative, and it can help protect and
maintain your investment and promote effective use.

The EPM CoE team:

• Ensures cloud adoption, helping your organization get the most out of your Cloud EPM
investment

• Serves as a steering committee for best practices

• Leads EPM-related change management initiatives and drives transformation

All customers can benefit from an EPM CoE, including customers who have already
implemented EPM.

How Do I Get Started?

Click to get best practices, guidance, and strategies for your own EPM CoE: Introduction to
EPM Center of Excellence.

Learn More

• Watch the Cloud Customer Connect webinar: Creating and Running a Center of
Excellence (CoE) for Cloud EPM

• Watch the videos: Overview: EPM Center of Excellence and Creating a Center of
Excellence.

• See the business benefits and value proposition of an EPM CoE in Creating and Running
an EPM Center of Excellence.

1-1

https://community.oracle.com/customerconnect/events/604185-epm-creating-and-running-a-center-of-excellence-coe-for-cloud-epm
https://community.oracle.com/customerconnect/events/604185-epm-creating-and-running-a-center-of-excellence-coe-for-cloud-epm
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0:::265:P265_CONTENT_ID:32425
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0:::265:P265_CONTENT_ID:32437
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0:::265:P265_CONTENT_ID:32437

Chapter 1

1-2

2
Implementation Best Practices for EPM Cloud
REST APIs

Use the implementation best practices listed in this topic when working with the EPM Cloud
REST APIs.

Best practices:

• Before using the REST APIs, complete the prerequisites.

• Use the correct authentication, as described in OAuth 2 and Basic Authentication for EPM
Cloud REST APIs.

• Understand the URL structure.

• Know how to get the current REST API version.

• Review the sample scenarios to get started quickly.

• Be aware of REST API compatibility.

• Use the Quick Reference to find all of the Oracle Enterprise Performance Management
Cloud REST APIs at a glance.

Troubleshooting

For help with troubleshooting REST API issues, see Diagnosing REST API Issues in Oracle
Enterprise Performance Management Cloud Operations Guide.

2-1

3
About the REST APIs for EPM Cloud

Review these topics to learn about the REST APIs for Oracle Enterprise Performance
Management Cloud and understand important prerequisites and authentication.

Overview of the REST APIs:

• About REST API for Oracle Enterprise Performance Management Cloud

• Implementation Best Practices for EPM Cloud REST APIs

• EPM Cloud REST API Compatibility

• About the Samples

• Audience

• Prerequisites

• OAuth 2 and Basic Authentication for EPM Cloud REST APIs

About REST API for Oracle Enterprise Performance
Management Cloud

This guide describes REST APIs for Oracle Enterprise Performance Management Cloud.

These REST APIs allow service administrators and infrastructure consultants to perform
administration tasks in EPM Cloud. This guide assumes that the audience has technical and
functional expertise in using and working with REST APIs. See Audience.

EPM Cloud includes these cloud services:

• Planning

• FreeForm

• Planning Modules

• Account Reconciliation

• Financial Consolidation and Close

• Enterprise Profitability and Cost Management

• Profitability and Cost Management

• Tax Reporting

• Narrative Reporting

• Oracle Enterprise Data Management Cloud

You can integrate EPM Cloud environments using:

• A set of REST APIs

• The EPM Automate Utility, a command line tool that is implemented on top of the REST
APIs

3-1

• Groovy business rules, as described in Oracle Enterprise Performance Management Cloud
Groovy Rules Java API Reference.

EPM Cloud REST API Compatibility
These tables summarize the compatibility for Oracle Enterprise Performance Management
Cloud REST APIs.

• EPM Platform

• Planning, FreeForm, Strategic Workforce Planning, and Sales Planning

• Migration

• Security

• Daily Maintenance Window Time

• Managing Users

• Usage Simulation

• Reporting

• Data Integration

• Data Management

• Account Reconciliation

• Financial Consolidation and Close

• Task Manager

• Supplemental Data Manager

• Enterprise Journals

• Tax Reporting

• Enterprise Profitability and Cost Management

• Profitability and Cost Management

NOTE: These abbreviations are used in the column headings: PLN (Planning), FF (FreeForm),
SWP (Strategic Workforce Planning), SP (Sales Planning), FCC (Financial Consolidation and
Close), AR (Account Reconciliation), EPCM (Enterprise Profitability and Cost Management),
PCM (Profitability and Cost Management), and TR (Tax Reporting)

For detailed information about REST APIs, see Quick Reference Table – REST API Resource
View.

EPM Platform

Table 3-1 EPM Platform

EPM Platform Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Execute a Report Bursting Definition

Update a Connection

View a Connection

View all Connections

Chapter 3
EPM Cloud REST API Compatibility

3-2

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/groov/index.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/groov/index.html

Planning, FreeForm, Strategic Workforce Planning, and Sales Planning

Table 3-2 Planning, FreeForm, Strategic Workforce Planning, and Sales Planning

Planning, FreeForm, Strategic
Workforce Planning, and Sales
Planning Tasks

PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Getting API Versions for Planning

Get Information about a Specific REST
API Version for Planning

Get Job Definitions

Execute a Job

Retrieve Job Status

Retrieve Job Status Details

Retrieve Child Job Status Details

Add Member

Get Member

Get Applications

List All Planning Units

Get Planning Unit History and
Annotations

Get a Planning Unit Owner Photo

Get Planning Unit Promotional Path

Get Available Planning Unit Actions

Get Filters with All Possible Values

Change Planning Unit Status

Get User Preferences

Import Data Slice

Export Data Slice

Clear Data Slice

Get All Substitution Variables Defined for
the Application

Get a Substitution Variable Defined for
the Application

Create or Update All Substitution
Variables Defined for the Application

Get Substitution Variables Defined at the
Plan Type Level

Get Derived Substitution Variables at the
Plan Type Level

Get a Derived Substitution Variable
Defined at the Plan Type Level

Delete a Substitution Variable at the
Plan Type Level

Delete a Substitution Variable for the
Application

Delete Substitution Variables at the Plan
Type Level

Chapter 3
EPM Cloud REST API Compatibility

3-3

Table 3-2 (Cont.) Planning, FreeForm, Strategic Workforce Planning, and Sales
Planning

Planning, FreeForm, Strategic
Workforce Planning, and Sales
Planning Tasks

PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Delete Substitution Variables for the
Application

Migration

Table 3-3 Migration

Migration Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Migration Status Codes

Get REST API Versions for Migration

Get Information about a Specific Version
of Migration Sample Code

Import and Export Files
LCM Import (v1)

LCM Import (v2)

LCM Export (v1)

LCM Export (v2)

Upload and Download Files
Upload

Download

View and Delete Files
List Files (v11.1.2.3.600)

List Files (v2)

Delete Files (v11.1.2.3.600)

Delete Files (v2)

Delete Files (v3)

Manage Services
Get Information About All Services

Get Idle Session Timeout

Set Idle Session Timeout

Restart the Service Instance (v1)

Restart the Service Instance (v2)

Run Recreate on a Service
(11.1.2.3.600)

Run Recreate on a Service (v2)

Manage Application Snapshots
Get Information About All Application
Snapshots

Get Information About a Specific
Application Snapshot

Chapter 3
EPM Cloud REST API Compatibility

3-4

Table 3-3 (Cont.) Migration

Migration Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Upload Application Snapshot (v1)

Upload Application Snapshot (v2)

Download Application Snapshot (v1)

Download Application Snapshot (v2)

Copy Application Snapshot (v1)

Copy Application Snapshot (v2)

Rename Application Snapshot (v1)

Rename Application Snapshot (v2)

Copy to and from the Object Store
Copy to Object Store (v1)

Copy to Object Store (v2)

Copy from Object Store (v1)

Copy from Object Store (v2)

Working with Oracle Essbase
Export Essbase Data (v2)

Essbase Block Analysis Report

Get Essbase Query Governor Execution
Time

Set Essbase Query Governor Execution
Time

Other
Copy a File Between Instances (v1)

Copy a File Between Instances (v2)

Clone an Environment

List Backups - Only for OCI (Gen 2)
Environments

Restore Backup - Only for OCI (Gen 2)
Environments

Provide Feedback (v11.1.2.3.600)

Provide Feedback (v2)

Send Email (v1)

Send Email (v2)

Skip Updates (v1)

Skip Updates (v2)

Chapter 3
EPM Cloud REST API Compatibility

3-5

Security

Table 3-4 Security

Security Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Get Restricted Data Access

Set Restricted Data Access

Get Virus Scan on File Upload

Set Virus Scan on File Upload

Manage Permission for Manual Access
to Database (v1)

Manage Permission for Manual Access
to Database (v2)

Set Encryption Key (v1)

Set Encryption Key (v2)

View the IP Allowlist - Only for OCI (Gen
2) Environments

Update the IP Allowlist - Only for OCI
(Gen 2) Environments

Daily Maintenance Window Time

Table 3-5 Daily Maintenance Window Time

Daily Maintenance Window Time
Tasks

PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Get the Build Version and Daily
Maintenance Time (v1)

Get the Build Version and Daily
Maintenance Window Time (v2)

Setting the Daily Maintenance Time (v1)

Setting the Daily Maintenance Time (v2)

Running Daily Maintenance While
Skipping the Scheduled Daily
Maintenance (v1)

Running Daily Maintenance While
Skipping the Scheduled Daily
Maintenance (v2)

Managing Users

Table 3-6 Managing Users

Managing Users Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Add Users to an Identity Domain (v1)

Chapter 3
EPM Cloud REST API Compatibility

3-6

Table 3-6 (Cont.) Managing Users

Managing Users Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Add Users to an Identity Domain (v2)

Remove Users from an Identity Domain
(v1)

Remove Users from an Identity Domain
(v2)

Assign Users to a Predefined Role or
Application Role (v1)

Assign Users to a Predefined Role or
Application Role (v2)

Remove Users' Role Assignment (v1)

Remove Users' Role Assignment (v2)

Add Users to a Group (v1)

Add Users to a Group (v2)

Remove Users from a Group (v1)

Remove Users from a Group (v2)

Update Users

Add a User to a Batch of Groups

Remove a User from a Batch of Groups

Add Groups (v1)

Add Groups (v2)

Remove Groups (v1)

Remove Groups (v2)

User Group Report (v1)

User Group Report (v2)

User Access Report (v1)

User Access Report (v2)

User Audit Report (v1)

User Audit Report (v2)

Group Assignment Audit Report

Role Assignment Report (v1)

Role Assignment Report for Users (v2)

Role Assignment Report for Groups (v2)

Get Available Roles

Role Assignment Audit Report for OCI
(Gen 2) Environments

Invalid Login Report for OCI (Gen 2)
Environments

Group Assignment Audit Report

Adding Users to a Team for Account
Reconciliation

Removing Users from a Team for
Account Reconciliation

Chapter 3
EPM Cloud REST API Compatibility

3-7

Table 3-6 (Cont.) Managing Users

Managing Users Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Adding Users to a Team for Financial
Consolidation and Close and Tax
Reporting

Removing Users from a Team for
Financial Consolidation and Close and
Tax Reporting

Usage Simulation

Table 3-7 Usage Simulation

Data Integration Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Simulate Concurrent Usage

Reporting

Table 3-8 Reporting

Data Integration Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Generate Report for Account
Reconciliation

Generate Report for Financial
Consolidation and Close and Tax
Reporting

Generate User Details Report for
Account Reconciliation

Generate User Details Report for
Financial Consolidation and Close and
Tax Reporting

Retrieve Job Status for a Report

Execute Reports for Data Management

Data Integration

Table 3-9 Data Integration

Data Integration Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Get API Versions for Data Integration
APIs

Chapter 3
EPM Cloud REST API Compatibility

3-8

Table 3-9 (Cont.) Data Integration

Data Integration Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Get Information about a Specific API
Version for Data Integration APIs

Running Integrations

Running a Pipeline

Import Data Mapping

Export Data Mapping

Export Data Integration

Import Data Integration

Lock and Unlock POV

Retrieve Job Status

Data Management

Table 3-10 Data Management

Data Management Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Get API Versions for Data
Management APIs

Get Information about a Specific API
Version for Data Management APIs

Running Data Rules in Data
Management

Running Batch Rules

Execute Reports for Data Management

Retrieve Job Status

Account Reconciliation

Table 3-11 Account Reconciliation

Account Reconciliation Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Get API Versions for Account
Reconciliation REST APIs

Get Information about a Specific API
Version for Account Reconciliation REST
APIs

Retrieve Job Status for a Report

Generate Report for Account
Reconciliation

Chapter 3
EPM Cloud REST API Compatibility

3-9

Table 3-11 (Cont.) Account Reconciliation

Account Reconciliation Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Generate User Details Report for
Account Reconciliation

Export Application Properties

Import Application Properties

Export Background Image

Import Background Image

Export Logo Image

Import Logo Image

Create a Connection

View All Connections

Update a Connection

Delete a Connection

Set Application Access Level

Retrieve Application Access Level

Execute a Job in Account Reconciliation

Retrieve Periods with a Specific Status

Create Reconciliation (Reconciliation
Compliance)

Change Period Status (Reconciliation
Compliance)

Import Pre-Mapped Balances
(Reconciliation Compliance)

Import Pre-Mapped Transactions
(Reconciliation Compliance)

Import Balances (Reconciliation
Compliance)

Import Profiles (Reconciliation
Compliance)

Import Rates (Reconciliation
Compliance)

Import Reconciliation Attributes
(Reconciliation Compliance)

Import Attribute Values

Monitor Reconciliations (Reconciliation
Compliance)

Retrieve Job Status (Reconciliation
Compliance)

View Reconciliation Comments

Import Pre-Mapped Transactions
(Transaction Matching)

Run Auto Match (Transaction Matching)

Purge Transactions (Transaction
Matching)

Chapter 3
EPM Cloud REST API Compatibility

3-10

Table 3-11 (Cont.) Account Reconciliation

Account Reconciliation Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Archive Matched Transactions
(Transaction Matching)

Purge Archived Transactions
(Transaction Matching)

Unmatch Matched Transactions
(Transaction Matching)

Retrieve Job Status (Transaction
Matching)

Update Unmatched Transactions
(Transaction Matching)

Financial Consolidation and Close

Table 3-12 Financial Consolidation and Close

Financial Consolidation and Close
Tasks

PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Getting API Versions for Financial
Consolidation and Close APIs

Get Information about a Specific API
Version for Financial Consolidation and
Close APIs

Export Consolidation Journals

Import Consolidation Journals

Perform Journal Actions for Financial
Consolidation and Close

Perform Journal Period Updates for
Financial Consolidation and Close

Retrieve Journals for Financial
Consolidation and Close

Retrieve Journal Details for Financial
Consolidation and Close

Copy Data

Clear Data

Validate Metadata

Generate an Intercompany Matching
Report

Generate Report for Financial
Consolidation and Close and Tax
Reporting

Generate User Details Report for
Financial Consolidation and Close and
Tax Reporting

Retrieve Job Status for a Report

Chapter 3
EPM Cloud REST API Compatibility

3-11

Task Manager

Table 3-13 Task Manager

Task Manager Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Update Task Status for Event Monitoring

Create a Connection

Delete a Connection

Update a Connection

View All Connections

Deploy Task Manager Templates

Supplemental Data Manager

Table 3-14 Supplemental Data Manager

Supplemental Data Manager Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Deploy Form Templates

Import Supplemental Collection Data for
Financial Consolidation and Close

Enterprise Journals

Table 3-15 Enterprise Journals

Enterprise Journals Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Execute an Enterprise Journals Job

Monitor Enterprise Journals for Financial
Consolidation and Close

Retrieve Enterprise Journals for
Financial Consolidation and Close

Retrieve Enterprise Journal Content for
Financial Consolidation and Close

Retrieve Enterprise Journal Content by
Year and Period for Financial
Consolidation and Close

Update Enterprise Journal Posting
Status for Financial Consolidation and
Close

Update Validation Status of Enterprise
Journals for Financial Consolidation and
Close

Chapter 3
EPM Cloud REST API Compatibility

3-12

Tax Reporting

Table 3-16 Tax Reporting

Tax Reporting Tasks PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Getting API Versions for Tax Reporting
APIs

Get Information about a Specific API
Version for Tax Reporting

Clear Data

Copy Data

Generate Report for Financial
Consolidation and Close and Tax
Reporting

Generate User Details Report for
Financial Consolidation and Close and
Tax Reporting

Retrieve Job Status for a Report

Enterprise Profitability and Cost Management

Table 3-17 Enterprise Profitability and Cost Management

Enterprise Profitability and Cost
Management Tasks

PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Calculate Model

Clear Data By Point of View

Copy Data by Point of View

Delete Point of View

Generate Model Documentation Report

Validate Model

Profitability and Cost Management

Table 3-18 Profitability and Cost Management

Profitability and Cost Management
Tasks

PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Apply Data Grants

Copy ML POV Data

Create File-Based Application

Deploy ML Cube

Enable File-Based Application

Essbase Data Load for Profitability and
Cost Management

Chapter 3
EPM Cloud REST API Compatibility

3-13

Table 3-18 (Cont.) Profitability and Cost Management

Profitability and Cost Management
Tasks

PLN, FF,
SWP,
SP

FCC AR EPCM PCM TR

Export Template for Profitability and Cost
Management

Generate Program Documentation
Report

Generate Program Documentation
Report - Run as a Job

Import Template for Profitability and Cost
Management

Merge Slices for Profitability and Cost
Management

Optimize ASO Cube

Retrieve Task Status for Profitability and
Cost Management

Run ML Calculations

Run ML Clear POV

Run ML Rule Balancing

Update Dimensions As a Job

About the Samples
Samples are described for selected integration scenarios and REST API reference sections. A
working knowledge of Java, cURL, and Groovy is required to understand these samples.

The Java samples in this guide are coded using pure Java instead of third-party libraries such
as Apache HTTP Client. The only JAR files you will need outside of JDK will be for JSON
parsing.

This document does not teach REST concepts. As a prerequisite, a prior knowledge of REST
programming is required to understand the examples, samples, scenarios, and reference
sections.

Audience
This guide is intended primarily as a tool for infrastructure consultants and administrators of
EPM Cloud.

Infrastructure consultants can use the documentation to build custom integration to provide
basic and innovative services on top of these cloud services, including Planning, Planning
Modules, Account Reconciliation, and Profitability and Cost Management.

Service administrators use this documentation to perform selected administrative tasks using
REST APIs and EPM Automate. Completing administrative tasks using EPM Automate and
REST APIs as an alternative to using the user interface requires considerable technical and
functional expertise. Only technically competent administrators should use this guide to
perform these administrative tasks.

Chapter 3
About the Samples

3-14

Prerequisites
Prerequisites to using the REST APIs and the EPM Automate Utility include the following:

• Access as a valid user to the cloud service with prerequisites set up for the service. See
Getting Started with Oracle Enterprise Performance Management as an Administrator and
Getting Started with Oracle Enterprise Performance Management as a User.

• Technical and functional knowledge to understand and execute the EPM Automate Utility
and REST APIs, and to administer the product.

• Knowledge of Java, cURL, Groovy, and REST programming.

• Jobs are required for many EPM Automate utility commands and REST APIs. Jobs are
actions, such as importing or exporting data that can be started immediately or scheduled
for a later time; for example, importing or exporting data. Be sure that you understand how
to use jobs as described in Managing Jobs.

• Data load rules define how Data Management loads data from a file. You must have
predefined data load rules to load data using REST APIs and EPM Automate Utility. You
can also load data using batches defined in Data Management. Using a batch, Service
Administrators can combine many load rules in a batch and execute them in serial or
parallel mode.

• Business rules are required for some jobs. For example for Planning, you use Calculation
Manager to create business rules, which are then deployed into a Planning application.
Learn about business rules in Designing with Calculation Manager for Oracle Enterprise
Performance Management Cloud

URL Structure
For the URL structure to use, see the topic for the REST API:

• Planning and Budgeting REST API URL

• Migration REST API URL

• Data Management REST API URL

• Account Reconciliation REST API URL

• Enterprise Profitability and Cost Management REST API URL

• Profitability and Cost Management REST API URL

In the description and examples of all REST APIs, this guide uses <BASE-URL>. The <BASE-
URL> is the first part of your service URL, before the context. For example, if your service URL
is https://epm-acme.epm.us-phoenix-1.ocs.oraclecloud.com/epmcloud, your <BASE-URL> is
https://epm-acme.epm.us-phoenix-1.ocs.oraclecloud.com. Similarly, if your service URL is
https://epm2-acme.epm.us6.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm2-
acme.epm.us6.oraclecloud.com.

Note:

Oracle does not authorize or support the use of REST APIs with the path token "/
internal/" in the URL.

Chapter 3
Prerequisites

3-15

https://docs.oracle.com/cloud/latest/epm-common/CGSAD/2_working_with_epm_clients_prereqs_clients.htm#CGSAD-GUID-F62F09FA-A755-4081-BF9F-E263699C1172
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsus/index.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

For details on the URL structure, see Differences Between Classic and OCI EPM Cloud
Environments. To learn about accessing Oracle Cloud and Oracle Enterprise Performance
Management Cloud, see Getting Started with Oracle Cloud and Getting Started with Oracle
Enterprise Management Cloud for Administrators.

Chapter 3
URL Structure

3-16

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsad/idcs_oci_classic_diffs.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsad/idcs_oci_classic_diffs.html
https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/welcome-oracle-cloud-new-cm.html
https://docs.oracle.com/cloud/latest/epm-common/CGSAD/1_epm_cloud_overview.htm#CGSAD-GUID-E93038E0-391D-4C18-9B0F-A124BF0B8A9E
https://docs.oracle.com/cloud/latest/epm-common/CGSAD/1_epm_cloud_overview.htm#CGSAD-GUID-E93038E0-391D-4C18-9B0F-A124BF0B8A9E

4
OAuth 2 and Basic Authentication for EPM
Cloud REST APIs

All HTTP requests to the REST APIs require authentication. Review these topics to understand
OAuth 2 and basic authentication for EPM Cloud REST APIs.

The REST APIs for EPM Cloud support authentication with OAuth 2 and basic authentication:

• Authentication with OAuth 2 - Only for OCI (Gen 2) Environments

• Basic Authentication - for Classic and OCI (Gen 2) Environments

EPM Cloud REST APIs can connect to Oracle Enterprise Performance Management Cloud
through API Gateways, such as Google APIGEE, IBM Data Power, and other reverse proxy
servers.

For this to work, configure the gateway or reverse proxy by setting the target as the URL of
your EPM Cloud environment without any context such as /epmcloud. Example: https://epm-
idDomain.epm.dataCenterRegion.oraclecloud.com. Then, use the reverse proxy URL instead
of the EPM Cloud URL in the REST API. For configuration information, see the documentation
of your gateway or proxy server.

While configuring the proxy settings, be sure to pass the response code from EPM Cloud to
EPM Cloud REST API without modifying it in any manner to allow REST API processing code
to correctly process response codes such as 200, 206, 400, 404, 500, 501, and so on. For
example, for IBM Datapower, set proxy HTTP Response to ON. Additionally, the API gateway
should allow HTTP methods (GET, POST, PUT, PATCH, and DELETE).

Note that REST APIs cannot be run by users who are set up for basic authentication with multi-
factor authentication (MFA).

Authentication with OAuth 2 - Only for OCI (Gen 2) Environments
In EPM Cloud environments on Oracle Cloud Infrastructure (OCI) / Gen 2 architecture, you can
use an OAuth 2 access token to issue REST APIs on EPM Cloud to satisfy the requirement of
avoiding the use of passwords in your environment.

Setting Up Authentication with OAuth 2

In order to access EPM Cloud REST APIs with OAuth 2, an EPM Cloud Service Administrator
has to request the Domain Administrator to set up an OAuth 2 client and provide the Identity
Domain Cloud Service (IDCS) URL and Client ID.

Overview of the steps:

• Step 1. Register an OAuth client. This is a one-time setup step that requires user
interaction with IDCS Administrator privileges.

• Step 2. Obtain and securely store the first refresh token. This step requires user
interaction. It is a one-time step for each user that needs to invoke REST APIs with OAuth
2.

4-1

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/authentication_overview.html

• Step 3. Obtain an access token from the refresh token. This step is easily automated.
Once automation has been implemented, it can run without user interaction.

The following sections provide detailed information about each step.

Step 1: Register an OAuth Client

Registering an OAuth client is a one-time process. The first step is to update the service
provider configuration to authorize requests from the REST client application. As a security
measure, any client application that accesses Oracle Cloud resources must be authorized to
do so. An IDCS Administrator enables this authorization by registering a client and providing
the appropriate registration information to the client's users.

A client application in IDCS is used to obtain an access token. A valid access token (also
called a Bearer token) is sufficient authorization to invoke a REST API.

Oracle Enterprise Performance Management Cloud uses a role-based access control
mechanism to permit only authorized users access to the service. For details, see About EPM
Cloud User and Role Management. This requires that any OAuth 2 access token used to
access EPM Cloud REST APIs contains a user context.

A grant type is a standard method to obtain an access token. There are a few different Grant
Types as listed here that could be used to obtain an access token. An access token obtained
by any of the supported grant types is acceptable as long as the access token is in the context
of the user that would be invoking the REST APIs.

In this document, we describe the use of the Device Code Grant Type. EPM Automate has
built-in support for the Device Code Grant type.

While the Device Code Grant Type would work in a majority of environments, it might not be
right for every implementation. Any of the Grant Types that allow creating an access token with
a user context would be suitable for EPM Cloud REST APIs. In addition to the Device Code
Grant Type, the following Grant Types support access tokens in the context of an end user:

• Authorization Code Grant Type

• Resource Owner Password Credentials Grant Type

• Assertion Grant Type when access token is in the context of the end user

• Implicit Grant Type

The next section highlights the steps to create a sample OAuth 2 client using the Device Code
Grant Type to request an access token. It also demonstrates how to use the access token to
invoke EPM Cloud's Get Daily Maintenance Window REST API.

Refer to the Oracle Identity Cloud Service documentation for more details on the Supported
Access Grant Types.

The Identity Cloud Service Administrator follows the steps in this topic to create a public client
using the Identity Cloud Service Administrator console. The IDCS Administrator then shares
the Identity Cloud Service tenant URLand client ID with the EPM Cloud Service Administrator.

If you have an Oracle Identity Cloud Services domain, log in to the Oracle IDCS Administrator
console to register an OAuth 2 Client as described in Detailed Information for Using IDCS
Administrator Console to Register an OAuth 2 Client.

If your domain is a domain under Oracle Identity and Access Management, follow the
instructions in Detailed Information for Using IAM Console to Register an OAuth 2 Client.

Chapter 4
Authentication with OAuth 2 - Only for OCI (Gen 2) Environments

4-2

https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/SupportedAccessGrantTypes.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/AuthCodeGT.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ROPCGT.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/AssertGT.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ImplicitGT.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/SupportedAccessGrantTypes.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/SupportedAccessGrantTypes.html

Detailed Information for Using IDCS Administrator Console to Register an OAuth 2
Client

1. From the Applications drawer, click Add at the top of the page.

2. In the Add Application dialog box, select Mobile Application.

3. In the App Details section, enter a name for the REST client.

4. Optional: Add other details.

5. Click Next.

6. In the Authorization section, under Allowed Grant Types, unselect the Implicit check
box and select the Refresh Token and Device Code check boxes.

7. Under the Token Issuance Policy section:

a. Under Grant the client access to Identity Cloud Service Admin APIs, click Add.

b. Select Identity Domain Administrator.

c. Click Add to close the pop-up.

8. Click Next and then Finish to complete creating this OAuth 2 client application.

9. Note the client ID value on the pop-up.

10. Click Activate to activate the client, and then click OK.

Detailed Information for Using IAM Console to Register an OAuth 2 Client

1. Log in to your account at https://cloud.oracle.com/

2. Click the hamburger menu on the top left and choose Identity and Security and then click
Domains on the dialog box.

3. From the Domains table, choose the appropriate domain (OracleIdentityCloudService by
default). This brings you to the Domain Overview page.

4. Note the Domain URL in the Domain Information section of the page. This is the tenant-
base-URL that will be required to request a token.

5. To create an OAuth 2 client, click Applications in the Identity Domain.

6. Click the Add application button,

7. Choose Mobile Application on the pop-up menu and then click the Launch Workflow
button.

8. Enter a name and a description to document the use of this OAuth 2 client.

9. Click the Next button on the bottom left.

10. On the Client configuration step, in the Authorization section, select Refresh token and
Device code and unselect Implicit.

11. In the Token Issuance policy section:

a. Enable Add app roles.

b. Click the Add roles button.

c. Choose Identity Domain Administrator on the slide-in dialog box.

d. Click the Add button to close the slide-in dialog box.

12. Click Finish to complete the configuration and Activate to activate the application.

13. Note the Client ID value in the General Information section of the OAuth Configuration.

Chapter 4
Authentication with OAuth 2 - Only for OCI (Gen 2) Environments

4-3

The IDCS Administrator provides the IDCS URL and client ID to the EPM Cloud Service
Administrator.

Step 2. Obtain and securely store the first refresh token

After the Domain Administrator has registered the REST client and provided the IDCS URL
and client ID, an EPM Cloud user executes the following steps to get a valid refresh token.

1. Issue the following unauthenticated request to the Identity Cloud Service URL:

curl --location --request POST 'https://tenant-base-url/oauth2/v1/device' \
--header 'Content-Type: application/x-www-form-urlencoded;charset=utf-8' \
--data-urlencode 'response_type=device_code' \
--data-urlencode 'scope=urn:opc:idm:__myscopes__ offline_access' \
--data-urlencode 'client_id=<CLIENT ID OF OAUTH2 APPLICATION>'

Here, the value of tenant-base-url is the IDCS URL provided by the Domain
Administrator or the Domain URL from the IAM console. It is of the form idcs-
<alphanumericvalue>.identity.oraclecloud.com. Similarly, the value for the CLIENT ID
OF THE OAUTH2 APPLICATION is also provided by the Domain Administrator or retrieved
from the Application's General Information section in IAM. It is an alphanumeric value.

A valid response contains a device code, user code, and verification URI:

{
 "expires_in": 300,
 "device_code": "4d03f7bc-f7a5-4795-819a-5748c4801d35",
 "user_code": "SDFGHJKL",
 "verification_uri": "https://tenant-base-url/ui/v1/device"
}

The user_code from the response is needed in the second step below, while device_code
from the response is needed in the third step below.

Note: Steps 2 and 3 are time-sensitive because the user code and device code expire 300
seconds (5 minutes) after creation. If the codes expire before these steps can be
completed, redo the first step of this section to issue an unauthenticated request to the
IDCS URL to receive a new pair of user and device codes.

2. Open the verification_uri in a supported web browser.

At this stage, it is important to know that if a user already has an active browser session,
the user will not be prompted for re-authentication. If the token is to be generated in
context of the currently signed-in user, then proceed with 2b. However, if the token is to be
generated in the context of a different user, please sign-out of the current session and
navigate to the verification_uri and continue with 2a.

a. When prompted for credentials, authenticate the user who will be invoking the REST
API. These credentials could be credentials for a SAML 2.0 compliant Identity Provider
or a native IDCS credential.

b. When prompted for a code in the browser session, enter the user_code from the
response payload.

c. When the Successful message is displayed, it is recommended to log out of the
browser session and close the browser window.

Chapter 4
Authentication with OAuth 2 - Only for OCI (Gen 2) Environments

4-4

3. Within 5 minutes of executing the first step of this section and after executing the second
step, issue the following request to the Identity Cloud Service URL:

curl --location --request POST 'https://tenant-base-url/oauth2/v1/token' \
--header 'Content-Type: application/x-www-form-urlencoded;charset=utf-8' \
--data-urlencode 'grant_type=urn:ietf:params:oauth:grant-type:device_code'
\
--data-urlencode 'device_code=<DEVICE CODE FROM THE PAYLOAD OF RESPONSE IN
FIRST STEP>' \
--data-urlencode 'client_id=<CLIENT ID OF THE OAUTH2 APPLICATION>'

Here the value of tenant-base-url is the IDCS URL provided by the Domain
Administrator, the device_code value is obtained from the response in Step 1, and
client_id is the same client_id used in the first step of this section.

The response contains the first refresh token:

{
 "access_token": "eyJ4NXQjUzI.........evRJChXTRfzn6WlCw",
 "token_type": "Bearer",
 "expires_in": 3600,
 "refresh_token": "AQIDBAWF1.....RVkxNCB7djF9NCA="
}

Secure and Protect the Tokens and Client ID

With OAuth 2, tokens are used instead of user credentials to access resources on EPM Cloud.
A refresh token and client ID are used to get a new access token and a new refresh token.
Thus, to ensure security of EPM Cloud, it is important to securely encrypt and store the
client_id and any tokens. The REST client must securely store the refresh token and
client_id.

For EPM Automate, use the encrypt command to create an epw file for OAuth 2.

Step 3: Obtain an Access Token from the Refresh Token

This step is required every time a new access token is required. The REST client uses the
latest refresh token and client id to get an access token. It uses the access token as
authorization to invoke REST APIs. It also ensures that the latest refresh token and client ID
are stored securely.

The REST client uses the Refresh Token Grant type to get a new access token and a new
refresh token. As mentioned above, this step can be automated. Once automated, it does not
require user interaction.

To obtain a valid access token with this Grant Type, the REST client issues the following
request to the IDCS URL:

curl --location --request POST 'https://tenant-base-url/oauth2/v1/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'grant_type=refresh_token' \
--data-urlencode 'client_id=<DECRYPTED CLIENT ID OF OAUTH2 APPLICATION FROM
SECURE STORE>' \
--data-urlencode 'refresh_token=<DECRYPTED REFRESH TOKEN FROM SECURE STORE>'

Chapter 4
Authentication with OAuth 2 - Only for OCI (Gen 2) Environments

4-5

Here, the value of tenant-base-url is the IDCS URL provided by the Domain Administrator,
and the refresh_token and client_id are obtained from the secure store where there were
previously stored.

Note: While the client_id and refresh_token are stored securely, it is important that both
refresh_token and client_id are decrypted to use in any request. All requests to Oracle IDCS
and EPM Cloud are securely transmitted using the https protocol.

Example response:

{
"access_token": "eyJj5M4QjUkI.........abSjZaa86PlseS4lrt7R2",
 "token_type": "Bearer",
 "expires_in": 3600,
 "refresh_token": "AAyyilYBAWD4....FVkxefd8kjoJr6HJPA="
}

The REST client saves the new refresh token for future use (see Secure and Protect the Token
and Client ID) and uses the access token as authorization while invoking the REST API (see
Use the Access Token).

Use the Access Token

In order to invoke an EPM Cloud REST API, the REST client must provide the access token
(obtained in the previous step) in the authorization header as follows:

Authorization: Bearer <access token>

For example, to get the Automated Maintenance Window start time, the client application
submits a GET request to this EPM Cloud endpoint /interop/rest/v1/services/
dailymaintenance using the access token in the authorization header.

curl --location --request GET 'https://epm-host/interop/rest/v1/services/
dailymaintenance' \
--header "Authorization: Bearer eyJ5M4QjUkI...abSjZaa86PlseS4lrt7R2"

Frequently Asked Questions

OAuth 2 was set up following the documentation before EPM Cloud Release 23.07. Is
that configuration still valid?

Yes, the existing configuration will continue to work with existing OAuth 2 support for REST
APIs and EPM Automate. However, it is highly recommended to use the updated procedure as
it provides greater clarity and might be required for future updates.

How do I change my existing configuration created before EPM Cloud Release 23.07 to
be consistent with the current procedure?

The following steps will bring your existing configuration in line with the documented
configuration:

1. For the Oracle Cloud Services, on the Configuration tab under Resources, unselect the Is
Refresh Token Allowed checkbox.

2. For the OAuth 2 client application, under Token Issuance Policy, remove the Resource or
Resources selected and add the Identity Administrator Role to the Client as described in
Step 7 for IDCS Administrator console or Step 11 for IAM console.

Chapter 4
Authentication with OAuth 2 - Only for OCI (Gen 2) Environments

4-6

3. Follow the steps described in Step 2. Obtain and securely store the first refresh token to
request a new refresh token using the scope urn:opc:idm:__myscopes__
offline_access. After getting the refresh token, save it securely.

For EPM Automate, create a new epw file using the updated instructions in EPM Automate
Commands, and then save the new refresh token and client id and use it to authorize
access.

Can the expiry time of a refresh token be modified?

The expiry time of the refresh token is configurable in Identity Cloud Service by the Domain
Administrator on a per EPM Cloud environment basis. The client requesting the refresh token
cannot modify the expiry time or duration. The client should request a new refresh token before
the old one expires, in order to not repeat the initial setup again. The default expiry period is
604800 seconds, which is 7 days.

What error is returned when the refresh token has expired?

Executing a refresh token grant flow with an expired refresh token results in a 400 Bad
Request response and the following payload:

{ "error": "invalid_grant",
 "error_description": "Token is expired for client : <CLIENT_ID>",
 "ecid": "UsbMB0KCV00000000"
}

What error is returned when the refresh token is invalid?

Executing a refresh token grant flow with an invalid refresh token results in a 400 Bad Request
response and the following payload:

{ "error": "invalid_grant",
 "error_description": "The given token in the request is invalid",
 "ecid": "UsbMB0KCV00000000"
}

What errors are returned for other issues?

A 400 Bad Request response with the following payloads are returned when there is an error:

Invalid request (for example, not all request parameters are supplied):

{
 "error": "invalid_request",
 "error_description": "The request contains invalid parameters or values"
}

Invalid grant (for example, using a token that has already been used) :

{
 "error": "invalid_grant",
 "error_description": "The token has already been consumed"
}

Chapter 4
Authentication with OAuth 2 - Only for OCI (Gen 2) Environments

4-7

Invalid scope (for example, providing invalid scope):

{
 "error": "invalid_scope",
 "error_description": "Invalid scope"
}

What error is returned when an invalid or expired access token is provided?

When an invalid or expired access token is provided in a request, the server responds with a
401 Unauthorized response with the following HTML in the payload:

<html>
<head><title>401 Authorization Required</title></head>
<body>
<center><h1>401 Authorization Required</h1></center>
<hr>
</body>
</html>

Can a token be requested with multiple scopes?

Multiple scopes across different resources (EPM Cloud environments) are not supported by
Identity Cloud Service. Each token request can support only one resource. Requests for
multiple scopes within the same resource are supported with space delimited scopes.
Requesting multiple scopes across different resources results in a 400 Bad Request response
with the following payload:

{
"error": "invalid_scope",
"error_description": "Invalid scope"
}

Can a valid token received for one EPM Cloud environment be used to access all EPM
Cloud environments in the same IDCS domain?

The EPM Cloud Service Administrator for an environment provisions each user with predefined
and application roles and specific access for that environment. The same user may be
provisioned with different privileges on different environments in the same IDCS domain. The
functionality that a user is able to perform on any EPM Cloud environment is dependent on the
roles and access the user has on that environment. Thus, a valid, unexpired bearer token
received for one EPM Cloud environment can be used across all EPM Cloud environments in
the same IDCS domain for authentication purposes. However, the authorization of what a
particular user can do on a particular EPM Cloud environment is dependent on the roles the
user has on that environment.

What information is logged in the access log with OAuth?

The access log shows the user name, just as it does with basic authorization. The client ID and
access token are not logged.

When using multiple scripts to run EPM REST APIs, the refresh token grant type seems
to fail randomly with a message that the token is already consumed. What is the
resolution?

Chapter 4
Authentication with OAuth 2 - Only for OCI (Gen 2) Environments

4-8

Each refresh token is a single use token. After first use, the same token cannot be reused.
Trying to use a particular token after it has already been used results in the message, The
token is already consumed.

The right way is to set up each script with its own refresh token. To do that, execute the
procedure to obtain and save the first refresh token once for each script requiring a refresh
token, and then set up each script to use its own refresh token. All scripts can still use the
same clientID.

Basic Authentication - for Classic and OCI (Gen 2) Environments
In EPM Cloud environments on Classic or OCI (Gen 2) architecture, the REST APIs support
basic authentication (name and password).

If your environment is on Classic Oracle Cloud Infrastructure, use a username in the format
identitydomain.username.

If your environment is on OCI (Gen 2) Oracle Cloud Infrastructure, you can use basic
authentication by supplying a username in the format of identitydomain.username or only
username (without identity domain).

HTTP requests to Oracle Enterprise Performance Management Cloud should supply HTTP
Basic Authentication credentials through the Authorization header.

Finding Your Identity Domain

If your environment is on Classic Oracle Cloud Infrastructure, ensure that you are correctly
specifying your identity domain when logging into an environment using REST APIs.

Use one of these methods to identify your identity domain:

• Look in the Activity Report for your environment. The name of the identity domain is
displayed at the top left corner of the Activity Report. See "About the Activity Report" in
Getting Started with EPM Cloud for Administrators.

• Derive the identity domain name from the URL that you use to access the environment.
For example, in this fictitious URL, https://epm-
exampleDomain.epm.dataCenter.oraclecloud.com/, the identity domain name is
exampleDomain.
The test and production environments of a subscription usually share the same identity
domain. For example, for test environments like as this fictitious URL, https://epm-test-
exampleDomain.epm.dataCenter.oraclecloud.com/, the identity domain can be derived
as the string enclosed between "test-" and the next ".", in this case, exampleDomain.

For production environments like this fictitious URL, https://epm-
exampleDomain.epm.dataCenter.oraclecloud.com/, the identity domain can be derived
as the string enclosed between the first "-" and next ".", in this case, exampleDomain.

Note: In this guide, URLs are shown in the following format: https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/

When using PowerShell to call EPMCloud REST API, ensure that the Authorization header is
always specified. For example:

$headers = @{
"Authorization" = "Basic " +
[System.Convert]::ToBase64String([System.Text.Encoding]::UTF8.GetBytes($userNa
me+":"+$userPassword))

Chapter 4
Basic Authentication - for Classic and OCI (Gen 2) Environments

4-9

}
Invoke-RestMethod -Method 'Get' -Uri $url -Headers $headers

Chapter 4
Basic Authentication - for Classic and OCI (Gen 2) Environments

4-10

5
Sample Integration Scenarios

This section provides selected sample scenarios for EPM Cloud REST APIs to help you get
started.

Related Topics

• Scenario 1: Import Metadata into Applications
This scenario shows how to use EPM Cloud REST APIs to import metadata into
applications.

• Scenario 2: Import Data, Run a Calculation Script, and Copy Data from a Block Storage
Database to an Aggregate Storage Database
This scenario shows how to use the EPM Cloud REST APIs to import data, run a
calculation script, and copy data from a block storage database to an aggregate storage
database.

• Scenario 3: Export and Download Metadata and Data
This scenario shows how to use the EPM Cloud REST APIs to export and download
metadata and data.

• Scenario 4: Remove Unnecessary Files from a Service Instance
This scenario shows how to use the EPM Cloud REST APIs to remove unnecessary files
from a service instance.

• Scenario 5: Archive Backups from the Service to Onpremise
This scenario shows how to use the EPM Cloud REST APIs to archive backups from the
service to onpremise.

• Scenario 6: Refreshing the Application
This scenario shows how to use the EPM Cloud REST APIs to refresh the application.

• Scenario 7: Cloning an Instance
This scenario shows how to use the EPM Cloud REST APIs to clone an instance.

• Scenario 8: Sample Starter Kit for Consultants - Business Intelligence Cloud Integration
This scenario provides a sample starter kit for consultants to integrate with Oracle
Business Intelligence Cloud.

• Scenario 9: Using Groovy Business Rules to Call REST APIs from Oracle and Other
Companies
The scenario shows how to use the Oracle Enterprise Performance Management Cloud
Groovy object model to call Oracle REST APIs and REST APIs developed by other
companies.

Scenario 1: Import Metadata into Applications
This scenario shows how to use EPM Cloud REST APIs to import metadata into applications.

Example 5-1 Java

public void integrationScenarioImportMetadataIntoApplication() throws
Exception {
 uploadFile("accounts.zip");
 executeJob("IMPORT_METADATA", "accountMetadata",

5-1

"{importZipFileName:accounts.zip}");
 executeJob("CUBE_REFRESH", null, null);
}

Common Functions: See Common Helper Functions for Java.

Dependent APIs: see Java Sample – UploadFile.java and Java Sample – ExecuteJob.java in
Upload and Download Files.

Example 5-2 cURL

funcIntegrationScenarioImportMetadataIntoApplication() {
 funcUploadFile "DemoApplication_HSS_Vision.zip"
 funcExecuteJob "IMPORT_METADATA" "accountMetadata"
"{importZipFileName=accounts.zip}"
 funcExecuteJob "CUBE_REFRESH" "cubeRefresh"
}

Example 5-3 Groovy

def integrationScenarioImportMetadataIntoApplication() {
 uploadFile("DemoApplication_HSS_Vision.zip")
 executeJob("IMPORT_METADATA", "accountMetadata",
"importZipFileName=accounts.zip");
 executeJob("CUBE_REFRESH", "cubeRefresh", null);
}

Common functions: See CSS Common Helper Functions for Groovy

Scenario 2: Import Data, Run a Calculation Script, and Copy
Data from a Block Storage Database to an Aggregate Storage
Database

This scenario shows how to use the EPM Cloud REST APIs to import data, run a calculation
script, and copy data from a block storage database to an aggregate storage database.

Example 5-4 Java

public void integrationScenarioImportDataRunCalcCopyToAso() throws Exception {
 uploadFile("data.csv");
 executeJob("IMPORT_DATA", "loadingq1data", "{importFileName:data.csv}");
 executeJob("CUBE_REFRESH", null, null);
 executeJob("PLAN_TYPE_MAP", "CampaignToReporting", "{clearData:false}");
}

Common Functions: See Common Helper Functions for Java.

Dependent APIs: see Java Sample – UploadFile.java and Java Sample – ExecuteJob.java in
Upload and Download Files.

Chapter 5
Scenario 2: Import Data, Run a Calculation Script, and Copy Data from a Block Storage Database to an Aggregate Storage Database

5-2

Example 5-5 cURL

funcIntegrationScenarioImportDataRunCalcCopyToAso() {
 funcUploadFile "data.csv"
 funcExecuteJob "IMPORT_DATA" "loadingq1data" "{importFileName=data.csv}"
 funcExecuteJob "CUBE_REFRESH","cubeRefresh"
 funcExecuteJob "PLAN_TYPE_MAP" "CampaignToReporting" "{clearData=false}"
}

Example 5-6 Groovy

def integrationScenarioImportDataRunCalcCopyToAso() {
 uploadFile("data.csv");
 executeJob("IMPORT_DATA", "loadingq1data", "importFileName=data.csv");
 executeJob("CUBE_REFRESH", "cubeRefresh", null);
 executeJob("PLAN_TYPE_MAP", "CampaignToReporting", "clearData=false");
}

Scenario 3: Export and Download Metadata and Data
This scenario shows how to use the EPM Cloud REST APIs to export and download metadata
and data.

Example 5-7 Java

public void integrationScenarioExportMetadataAndDataAndDownloadFiles() throws
Exception {
 executeJob("EXPORT_METADATA", "exportentitymetadata",
"{exportZipFileName:entitydata.zip}");
 executeJob("EXPORT_DATA", "Forecastdata",
"{exportFileName:forecastdata.zip}");
 listFiles();
 downloadFile("entitydata.zip");
 downloadFile("forecastdata.zip");
}

Common Functions: See Common Helper Functions for Java.

Dependent APIs: see Java Sample – DownloadFile.java and Java Sample – ExecuteJob.java
in Upload and Download Files.

Example 5-8 cURL

funcIntegrationScenarioExportMetadataAndDataAndDownloadFiles() {
 funcExecuteJob "EXPORT_METADATA" "exportentitymetadata"
"{exportZipFileName=entitydata.zip}"
 funcExecuteJob "EXPORT_DATA" "Forecastdata"
"{exportFileName=forecastdata.zip}"
 funcListFiles
 funcDownloadFile "entitydata.zip"
 funcDownloadFile "forecastdata.zip"
}

Chapter 5
Scenario 3: Export and Download Metadata and Data

5-3

Example 5-9 Groovy

def integrationScenarioExportMetadataAndDataAndDownloadFiles() {
 executeJob("EXPORT_METADATA", "exportentitymetadata",
"exportZipFileName=entitydata.zip");
 executeJob("EXPORT_DATA", "Forecastdata",
"exportFileName=forecastdata.zip");
 listFiles();
 downloadFile("entitydata.zip");
 downloadFile("forecastdata.zip");
}

Scenario 4: Remove Unnecessary Files from a Service Instance
This scenario shows how to use the EPM Cloud REST APIs to remove unnecessary files from
a service instance.

Example 5-10 Java

public void integrationScenarioRemoveUnnecessaryFiles() throws Exception {
 listFiles();
 deleteFile("entitymetadata.csv");
 deleteFile("forecastdata.csv");
}

Common Functions: See Common Helper Functions for Java.

Dependent APIs: See Java Sample — ListFiles.java and Java Sample — DeleteFile.java in
View and Delete Files.

Example 5-11 cURL

funcIntegrationScenarioRemoveUnnecessaryFiles() {
 funcListFiles
 funcDeleteFile "entitymetadata.csv"
 funcDeleteFile "forecastdata.csv"
}

Example 5-12 Groovy

def integrationScenarioRemoveUnnecessaryFiles() {
 listFiles();
 deleteFile("entitymetadata.csv");
 deleteFile("forecastdata.csv");
}

Scenario 5: Archive Backups from the Service to Onpremise
This scenario shows how to use the EPM Cloud REST APIs to archive backups from the
service to onpremise.

Chapter 5
Scenario 4: Remove Unnecessary Files from a Service Instance

5-4

Example 5-13 Java

public void integrationScenarioExportDataAndDownloadFiles() throws Exception {
 executeJob("EXPORT_DATA", "entitydata",
"{exportFileName:entitydata.zip}");
 executeJob("EXPORT_DATA", "forecastdata",
"{exportFileName:forecastdata.zip}");
 listFiles();
 downloadFile("entitydata.zip");
 downloadFile("forecastdata.zip");
}

Common Functions: See Common Helper Functions for Java.

Dependent APIs: See Java Sample — ExecuteJob.java and Java Sample —
DownloadFile.java in Upload and Download Files.

Example 5-14 cURL

funcIntegrationScenarioExportDataAndDownloadFiles() {
 funcExecuteJob "EXPORT_DATA" "entitydata"
"{exportFileName:entitydata.zip}"
 funcExecuteJob "EXPORT_DATA" "forecastdata"
"{exportFileName:forecastdata.zip}"
 funcListFiles
 funcDownloadFile "entitydata.zip"
 funcDownloadFile "forecastdata.zip"
}

Example 5-15 Groovy

def integrationScenarioExportDataAndDownloadFiles() {
 executeJob("EXPORT_DATA", "entitydata", "exportFileName:entitydata.zip");
 executeJob("EXPORT_DATA", "forecastdata",
"exportFileName:forecastdata.zip");
 listFiles();
 downloadFile("entitydata.zip");
 downloadFile("forecastdata.zip");
}

Scenario 6: Refreshing the Application
This scenario shows how to use the EPM Cloud REST APIs to refresh the application.

Example 5-16 Java

public void integrationScenarioRefreshTheApplication() throws Exception {
 uploadFile("accounts.zip");
 executeJob("IMPORT_METADATA", "accountMetadata",
"{importZipFileName:accounts.zip}");
 executeJob("CUBE_REFRESH", null, null);
}

Common Functions: See Common Helper Functions for Java.

Chapter 5
Scenario 6: Refreshing the Application

5-5

Dependent APIs: See Java Sample — ExecuteJob.java and Java Sample — UploadFile.java
in Upload and Download Files.

Example 5-17 cURL

funcIntegrationScenarioRefreshTheApplication() {
 funcUploadFile "accounts.zip"
 funcExecuteJob "IMPORT_METADATA" "accountMetadata"
"{importZipFileName:accounts.zip}"
 funcExecuteJob "CUBE_REFRESH" "cubeRefresh"
}

Example 5-18 Groovy

def integrationScenarioRefreshTheApplication() {
 uploadFile("accounts.zip");
 executeJob("IMPORT_METADATA", "accountMetadata",
"importZipFileName:accounts.zip");
 executeJob("CUBE_REFRESH", "cubeRefresh", null);
}

Scenario 7: Cloning an Instance
This scenario shows how to use the EPM Cloud REST APIs to clone an instance.

There are three ways to clone an environment. For this scenario, use one of the following
procedures:

• Use Clone Environment user interface

• Use EPM Automate

• Use a REST API

Scenario 8: Sample Starter Kit for Consultants - Business
Intelligence Cloud Integration

This scenario provides a sample starter kit for consultants to integrate with Oracle Business
Intelligence Cloud.

A sample starter kit can be used by infrastructure consultants to plan integration for Planning
with Business Intelligence Cloud.

Prerequisites

• You have accounts for Business Intelligence Cloud , Planning, and Oracle Application
Express.

• You have considerable technical and functional expertise with Business Intelligence Cloud,
Planning, Oracle Application Express, REST, Groovy, and scripting.

For detailed information, see Sample Starter Kit for Consultants - Integration with Business
Intelligence Cloud Service.

Chapter 5
Scenario 7: Cloning an Instance

5-6

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/epmss/migration_gen1_gen2_clone.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/sample_script_3.html

Scenario 9: Using Groovy Business Rules to Call REST APIs
from Oracle and Other Companies

The scenario shows how to use the Oracle Enterprise Performance Management Cloud
Groovy object model to call Oracle REST APIs and REST APIs developed by other
companies.

These tutorials show you how to call a Data Management REST API to execute a data load
rule and how to call the Google Places REST API from a Groovy script to add or update
employee address information in Planning.

To learn how to use Groovy business rules to call Oracle and external REST APIs:

• Calling a REST API from Oracle Using Groovy

• Calling a REST API from Other Companies Using Groovy

To get an introduction to Groovy business rules:

• Learning Groovy in Oracle EPM Cloud video

• Creating a Groovy Business Rule in Designing with Calculation Manager for Oracle
Enterprise Performance Management Cloud

• Introduction to Groovy Business Rules tutorial

• Additional Groovy Tutorials

• EPM Cloud Groovy Rules Java API Reference

Chapter 5
Scenario 9: Using Groovy Business Rules to Call REST APIs from Oracle and Other Companies

5-7

https://www.oracle.com/webfolder/technetwork/tutorials/obe/cloud/epm/Groovy/InternalRESTapi/index.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/cloud/epm/Groovy/InternalRESTapi/index.html
https://www.youtube.com/watch?v=uzmAMAzoxwo
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/ecalc/creating_a_groovy_rule.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/cloud/epm/Groovy/Introduction/index.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/tutorials.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/groov/index.html

6
Quick Reference Table – REST API Resource
View

The REST resources provide powerful APIs that you can use to manage Oracle Enterprise
Performance Management Cloud as an alternative to using the web-based user interface.

These tables summarize the REST resource paths.

• EPM Platform

• Planning, FreeForm, Strategic Workforce Planning, and Sales Planning

• Migration

• Security

• Daily Maintenance Window Time

• Managing Users

• Usage Simulation REST APIs

• Reporting REST APIs

• Data Integration REST APIs

• Data Management REST APIs

• Account Reconciliation

• Financial Consolidation and Close

• Task Manager

• Supplemental Data Manager

• Enterprise Journals

• Tax Reporting

• Enterprise Profitability and Cost Management

• Profitability and Cost Management

EPM Platform

Table 6-1 EPM Platform

Rest Resource Request More Information

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs

POST Execute a Report Bursting
Definition

/HyperionPlanning/rest/epm/{api_version}/
applications/{application}/connections/
{connectionRef}

GET Update a Connection

/HyperionPlanning/rest/epm/{api_version}/
applications/{application}/connections/
{connectionRef}

GET View a Connection

6-1

Table 6-1 (Cont.) EPM Platform

Rest Resource Request More Information

/HyperionPlanning/rest/epm/{api_version}/
applications/{application}/connections

GET View All Connections

Planning, FreeForm, Strategic Workforce Planning, and Sales Planning

Table 6-2 Planning, FreeForm, Strategic Workforce Planning, and Sales Planning

Rest Resource Request More Information

/HyperionPlanning/rest/ GET Getting API Versions for
Planning

/HyperionPlanning/rest/{api_version} GET Get Information about a
Specific REST API Version for
Planning

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobdefinitions

GET Get Job Definitions

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs

POST Execute a Job

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs/
{jobIdentifier}

GET Retrieve Job Status

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs/
{jobIdentifier}/details

GET Retrieve Job Status Details

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs/
{jobIdentifier}/childjobs/
{childJobIdentifier}/details

GET Retrieve Child Job Status
Details

/HyperionPlanning/rest/{api_version}/
applications/{application}/dimensions/
{dimname}/members

POST Add Member

/HyperionPlanning/rest/{api_version}/
applications/{application}/dimensions/
{dimname}/members/{member}

GET Get Member

/HyperionPlanning/rest/{api_version}/
applications

GET Get Applications

/HyperionPlanning/rest/{version}/
applications/{application}/planningunits?
q={"scenario":"scenarioName","version":"ver
sionName"}}&offset=10&limit=10

POST List All Planning Units

/HyperionPlanning/rest/{api_version}/
applications/{application}/planningunits?
q={"scenario":{"scenario"},"version":
{"version"}}&offset={offset}&limit={limit}

GET Get Planning Unit History and
Annotations

/HyperionPlanning/rest/{api_version}/
applications/{application}/users/{userId}/
photo

GET Get a Planning Unit Owner
Photo

Chapter 6

6-2

Table 6-2 (Cont.) Planning, FreeForm, Strategic Workforce Planning, and Sales
Planning

Rest Resource Request More Information

/HyperionPlanning/rest/{api_version}/
applications/{application}/planningunits/
{puIdentifier}/promotionpath

GET Get Planning Unit Promotional
Path

/HyperionPlanning/rest/{api_version}/
applications/{application}/
planningunits{puhIdentifier}/
availableactions

POST Get Available Planning Unit
Actions

/HyperionPlanning/rest/{api_version}/
applications/{application}/pufilters

GET Get Filters with All Possible
Values

/HyperionPlanning/rest/{api_version}/
applications/{application}/planningunits/
{puhIdentifier}/actions

POST Change Planning Unit Status

/HyperionPlanning/rest/{api_version}/
applications/{application}/userpreferences

GET Get User Preferences

/HyperionPlanning/rest/{api_version}/
applications/{application}/plantypes/
{plantype}/importdataslice

POST Import Data Slice

/HyperionPlanning/rest/{api_version}/
applications/{application}/plantypes/
{plantype}/exportdataslice

POST Export Data Slice

/HyperionPlanning/rest/{api_version}/
applications/{application}/plantypes/
{plantype}/cleardataslice

POST Clear Data Slice

/HyperionPlanning/rest/{api_version}/
applications/{application}/
substitutionvariables

GET Get All Substitution Variables
Defined for the Application

/HyperionPlanning/rest/{api_version}/
applications/{application}/
substitutionvariables/MyPeriod

GET Get a Substitution Variable
Defined for the Application

/HyperionPlanning/rest/{api_version}/
applications/{application}/
substitutionvariables

POST Create or Update All
Substitution Variables Defined
for the Application

/HyperionPlanning/rest/{api_version}/
applications/{application}/plantypes/
{plantype}/substitutionvariables

GET Get Substitution Variables
Defined at the Plan Type
Level

/HyperionPlanning/rest/{api_version}/
applications/{application}/plantypes/
{plantype}/substitutionvariables?
q={"derivedValues":true}

GET Get Derived Substitution
Variables at the Plan Type
Level

/HyperionPlanning/rest/{api_version}/
applications/{application}/plantypes/
{plantype}/substitutionvariables/CurrYear

GET Get a Substitution Variable
Defined at the Plan Type
Level

HyperionPlanning/rest/{api_version}/
applications/{application}/plantypes/
{plantype}/substitutionvariables/MyPeriod?
q={"derivedValues":true}

GET Get a Derived Substitution
Variable Defined at the Plan
Type Level

Chapter 6

6-3

Table 6-2 (Cont.) Planning, FreeForm, Strategic Workforce Planning, and Sales
Planning

Rest Resource Request More Information

/HyperionPlanning/rest/{api_version}/
applications/{application}/plantypes/
{plantype}/substitutionvariables

POST Create and Update
Substitution Variables at the
Plan Type Level

/HyperionPlanning/rest/{api_version}/
applications/{application}/plantypes/
{plantype}/substitutionvariables/subvarname

DELETE Delete a Substitution Variable
at the Plan Type Level

/HyperionPlanning/rest/{api_version}/
applications/{application}/
substitutionvariables/subvarname

DELETE Delete a Substitution Variable
for the Application

/HyperionPlanning/rest/{api_version}/
applications/{application}/plantypes/
{plantype}/substitutionvariables:delete

POST Delete Substitution Variables
at the Plan Type Level

/HyperionPlanning/rest/{api_version}/
applications/{application}/
substitutionvariables:delete

POST Delete Substitution Variables
for the Application

Migration

Table 6-3 Migration

Rest Resource Request More Information

Getting REST API Versions for Migration
/interop/rest/ GET Get REST API Versions for

Migration

/interop/rest/{api_version} GET Get Information about a
Specific Version of Migration
Sample Code

Import and Export Files
/interop/rest/{api_version}/
applicationsnapshots/
{applicationSnapshotName}/migration?
q={type:"import"}

POST LCM Import (v1)

/interop/rest/v2/snapshots/import POST LCM Import (v2)

/interop/rest/{api_version}/
applicationsnapshots/
{applicationSnapshotName}/
migrationq={type:"export"}

POST LCM Export (v1)

/interop/rest/v2/snapshots/export POST LCM Export (v2)

Upload and Download Files
/interop/rest/11.1.2.3.600/
applicationsnapshots/
{applicationSnapshotName}/contents

POST Upload

/interop/rest/{api_version}/
applicationsnapshots/
{applicationSnapshotName}/contents

GET Download

View and Delete Files

Chapter 6

6-4

Table 6-3 (Cont.) Migration

Rest Resource Request More Information

/interop/rest/{api_version}/
applicationsnapshots

GET List Files (v11.1.2.3.600)

/interop/rest/v2/files/list GET List Files (v2)

/interop/rest/{api_version}/
applicationsnapshots/
{applicationSnapshotName}

DELETE Delete Files (v11.1.2.3.600)

/interop/rest/v2/files/delete DELETE Delete Files (v2)

/interop/rest/v3/files/delete POST Delete Files (v3)

Manage Services
/interop/rest/{api_version}/services GET Get Information About All

Services

/interop/rest/{api_version}/config/
services/idlesessiontimeout

GET Get Idle Session Timeout

/interop/rest/{api_version}/config/
services/idlesessiontimeout

PUT Set Idle Session Timeout

/interop/rest/{api_version}/services/
{service_type}/resetservice

POST Restart the Service Instance
(v1)

/interop/rest/v2/config/services/reset POST Restart the Service Instance
(v2)

/interop/rest/{api_version}/services/
{servicename}/recreate

POST Run Recreate on a Service
(11.1.2.3.600)

/interop/rest/v2/config/services/recreate POST Run Recreate on a Service
(v2)

Manage Application Snapshots
/interop/rest/{api_version}/
applicationsnapshots

GET Get Information About All
Application Snapshots

/interop/rest/{api_version}/
applicationsnapshots/
{applicationSnapshotName}

GET Get Information About a
Specific Application Snapshot

/interop/rest/{api_version}/
applicationsnapshots/
{applicationSnapshotName}/contents?
q={"isLast":false,"isFirst":
true,"chunkSize":14,"fileSize":55445}

POST Upload Application Snapshot
(v1)

/interop/rest/v2/files/upload POST Upload Application Snapshot
(v2)

/interop/rest/{api_version}/
applicationsnapshots/
{applicationSnapshotName}/content

GET Download Application
Snapshot (v1)

/interop/rest/v2/files/download POST Download Application
Snapshot (v2)

/interop/rest/v1/services/{servicename}/
copysnapshot

POST Copy Application Snapshot
(v1)

/interop/rest/v2/snapshots/copyfrominstance POST Copy Application Snapshot
(v2)

/interop/rest/v1/renamesnapshot PUT Rename Application Snapshot
(v1)

Chapter 6

6-5

Table 6-3 (Cont.) Migration

Rest Resource Request More Information

/interop/rest/v2/snapshots/rename PUT Rename Application Snapshot
(v2)

Copy to and from the Object Store
/interop/rest/v1/services/copytoobjectstore POST Copy to Object Store (v1)

/interop/rest/v2/objectstorage/copyto POST Copy to Object Store (v2)

/interop/rest/v2/objectstorage/copyfrom POST Copy from Object Store (v2)

/interop/rest/v1/services/copyfile POST Copy a File Between
Instances (v1)

Working with Oracle Essbase
/interop/rest/v2/essbase/export POST Export Essbase Data (v2)

/interop/rest/diag/v1/services/
essbaseblockanalysisreport

POST Essbase Block Analysis
Report

/interop/rest/{api_version}/config/
services/essbaseqrygovexectime

GET Get Essbase Query Governor
Execution Time

/interop/rest/{api_version}/config/
services/essbaseqrygovexectime

PUT Set Essbase Query Governor
Execution Time

Other
/interop/rest/v1/services/copyfile POST Copy a File Between

Instances (v1)

/interop/rest/v2/files/copyfrominstance POST Copy a File Between
Instances (v2)

/interop/rest/v1/services/clone POST Clone an Environment

/interop/rest/v2/backups/list GET List Backups - Only for OCI
(Gen 2) Environments

/interop/rest/v2/backups/restore POST Restore Backup - Only for
OCI (Gen 2) Environments

/interop/rest/{api_version}/feedback POST Provide Feedback
(v11.1.2.3.600)

/interop/rest/v2/services/feedback POST Provide Feedback (v2)

/interop/rest/<api_version>/services/
sendmail

POST Send Email (v1)

/interop/rest/v2/mails/send POST Send Email (v2)

/interop/rest/v1/services/skipupdate POST Skip Updates (v1)

/interop/rest/v2/services/skipupdate POST Skip Updates (v2)

Security

Table 6-4 Security

Rest Resource Request More Information

/interop/rest/{api_version}/config/
services/restricteddataaccess

GET Get Restricted Data Access

/interop/rest/{api_version}/config/
services/restricteddataaccess

PUT Set Restricted Data Access

/interop/rest/{api_version}/config/
services/virusscanonfileupload

GET Get Virus Scan on File Upload

Chapter 6

6-6

Table 6-4 (Cont.) Security

Rest Resource Request More Information

/interop/rest/{api_version}/config/
services/virusscanonfileupload

PUT Set Virus Scan on File Upload

/interop/rest/{api_version}/services/
dataaccess?accessType={allow|
revoke}&disableEmergencyAccess={true|false}

PUT Manage Permission for
Manual Access to Database

(v1)

/interop/rest/v2/services/
setmanualdataaccess

PUT Manage Permission for
Manual Access to Database

(v2)

/interop/rest/{api_version}/services/
encryptionkey

PUT Set Encryption Key (v1)

/interop/rest/v2/services/setencryptionkey PUT Set Encryption Key (v2)

/interop/rest/epmociservice/v2/ipallowlist GET View the IP Allowlist - Only for
OCI (Gen 2) Environments

/interop/rest/epmociservice/v2/ipallowlist POST Update the IP Allowlist - Only
for OCI (Gen 2) Environments

Daily Maintenance Window Time

Table 6-5 Daily Maintenance Window Time

Rest Resource Request More Information

/interop/rest/{api_version}/services/
dailymaintenance

GET Get the Build Version and
Daily Maintenance Time (v1)

/interop/rest/v2/maintenance/
getdailymaintenancestarttime

GET Get the Build Version and
Daily Maintenance Window

Time (v2)

/interop/rest/{api_version}/services/
dailymaintenance?StartTime={N}

PUT Setting the Daily Maintenance
Time (v1)

/interop/rest/v2/maintenance/
setdailymaintenancestarttime

PUT Setting the Daily Maintenance
Time (v2)

/interop/rest/{api_version}/services/
maintenancewindow

POST Running Daily Maintenance
While Skipping the Scheduled

Daily Maintenance (v1)

/interop/rest/v2/maintenance/
rundailymaintenance

POST Running Daily Maintenance
While Skipping the Scheduled

Daily Maintenance (v2)

Managing Users

Table 6-6 Managing Users

Rest Resource Request More Information

/interop/rest/security/<api_version>/users POST Add Users to an Identity
Domain (v1)

/interop/rest/security/v2/users/add POST Add Users to an Identity
Domain (v2)

/interop/rest/security/<api_version>/users?
filename=<filename>

DELETE Remove Users from an
Identity Domain (v1)

Chapter 6

6-7

Table 6-6 (Cont.) Managing Users

Rest Resource Request More Information

/interop/rest/security/v2/users/remove POST Remove Users from an
Identity Domain (v2)

/interop/rest/security/<api_version>/users PUT Assign Users to a Predefined
Role or Application Role (v1)

/interop/rest/security/v2/role/assign/user PUT Assign Users to a Predefined
Role or Application Role (v2)

/interop/rest/security/<api_version>/users PUT Remove Users' Role
Assignment (v1)

/interop/rest/security/v2/role/unassign/
user

PUT Remove Users' Role
Assignment (v2)

/interop/rest/security/<api_version>/groups PUT Add Users to a Group (v1)

/interop/rest/security/v2/groups/
adduserstogroup

PUT Add Users to a Group (v2)

/interop/rest/security/<api_version>/groups PUT Remove Users from a Group
(v1)

/interop/rest/security/v2/groups/
removeusersfromgroup

PUT Remove Users from a Group
(v2)

/interop/rest/security/<api_verion>/users PUT Update Users

/interop/rest/security/<api_version>/groups PUT Add a User to a Batch of
Groups

/interop/rest/security/<api_version>/groups PUT Remove a User from a Batch
of Groups

/interop/rest/security/<api_version>/groups POST Add Groups (v1)

/interop/rest/security/v2/groups/add POST Add Groups (v2)

/interop/rest/security/<api_version>/groups DELETE Remove Groups (v1)

/interop/rest/security/v2/groups/remove POST Remove Groups (v2)

/interop/rest/security/<api_version>/
usergroupreport

POST User Group Report (v1)

/interop/rest/security/v2/report/
usergroupreport

GET User Group Report (v2)

/interop/rest/{api_version}/reports?
q={type:provisionreport,fileName:provreport
.csv,format:simplified,usertype,serviceuser
s}

POST User Access Report (v1)

/interop/rest/v2/reports/useraccess POST User Access Report (v2)

/interop/rest/{api_version}/reports?
q={type:userauditreport,fileName:useraudit
report.csv,since:2017-12-10,until:2018-06-1
0}

POST User Audit Report (v1)

/interop/rest/v2/reports/useraudit POST User Audit Report (v2)

/interop/restp{api_version}/reports/
groupaudit

POST Group Assignment Audit
Report

/interop/rest/security/{api_version}/
roleassignmentreport

POST Role Assignment Report (v1)

/interop/rest/security/v2/report/
roleassignmentreport/user?
userlogin=<userlogin>&rolename=<rolename>

GET Role Assignment Report for
Users (v2)

Chapter 6

6-8

Table 6-6 (Cont.) Managing Users

Rest Resource Request More Information

/interop/rest/security/v2/report/
roleassignmentreport/group?
groupname=<groupname>&rolename=<rolename>

GET Role Assignment Report for
Groups (v2)

/interop/rest/security/v2/role/
getavailableroles

GET Get Available Roles

/interop/rest/security/{api_version}/
roleassignmentauditreport/

POST Role Assignment Audit Report
for OCI (Gen 2) Environments

/interop/rest/security/{api_version}/
invalidloginreport/

POST Invalid Login Report for OCI
(Gen 2) Environments

/interop/rest/{api_version}/reports/
groupaudit

POST Group Assignment Audit
Report

/armARCS/rest/{version}/jobs POST Adding Users to a Team for
Account Reconciliation

/HyperionPlanning/rest/{api_version}/
applications/{application}/fcmjobs

POST Adding Users to a Team for
Financial Consolidation and
Close and Tax Reporting

/armARCS/rest/{version}/jobs POST Removing Users from a Team
for Account Reconciliation

/HyperionPlanning/rest/{api_version}/
applications/{application}/fcmjobs

POST Removing Users from a Team
for Financial Consolidation
and Close and Tax Reporting

Usage Simulation

Table 6-7 Usage Simulation

Rest Resource Request More Information

/interop/rest/v1/concurrentusage/run POST Simulate Concurrent Usage

Reporting

Table 6-8 Reporting

Rest Resource Request More Information

/arm/rest/fcmapi/{api_version}/report POST Generate Report for Account
Reconciliation

/HyperionPlanning/rest/fcmapi/
{api_version}/report

POST Generate Report for Financial
Consolidation and Close and
Tax Reporting

/arm/rest/fcmapi/{api_version}/rc/export/
users

POST Generate User Details Report
for Account Reconciliation

/HyperionPlanning/rest/fcmapi/
{api_version}/fcm/export/users

POST Generate User Details Report
for Financial Consolidation
and Close and Tax Reporting

/arm/rest/fcmapi/{api_version}/job/
{module}/{jobIdentifier}

GET Retrieve Job Status for a
Report

/aif/rest/{api_version}/jobs POST Execute Reports for Data
Management

Chapter 6

6-9

Data Management/Data Integration

Table 6-9 Data Management

Rest Resource Request More Information

/aif/rest/ GET Get API Versions for Data
Management APIs

/aif/rest/{api_version} GET Get Information about a
Specific API Version for Data
Management APIs

/aif/rest/{api_version} GET Retrieve Job Status (Data
Management), Retrieve Job
Status (Data Integration)

/aif/rest/V1/snapshots POST Import Data Integration

/aif/rest/V1/snapshots POST Export Data Integration

/aif/rest/{api_version}/jobs POST Running Data Rules in Data
Management

/aif/rest/{api_version}/jobs POST Running Integrations

/aif/rest/{api_version}/jobs POST Running a Pipeline

/aif/rest/{api_version}/jobs POST Running Batch Rules

/aif/rest/{api_version}/jobs POST Import Data Mapping

/aif/rest/{api_version}/jobs POST Export Data Mapping

/aif/rest/V1/POV POST Lock and Unlock POV

/aif/rest/{api_version}/jobs POST Execute Reports for Data
Management

Account Reconciliation

Table 6-10 Account Reconciliation

Rest Resource Request More Information

/armARCS/rest/ GET Get API Versions for Account
Reconciliation REST APIs

/armARCS/rest/<api_version> GET Get Information about a
Specific API Version for
Account Reconciliation REST
APIs

GET /arm/rest/fcmapi/{api_version}/job/
{module}/{jobIdentifier}

GET Retrieve Job Status for a
Report

/arm/rest/fcmapi/{api_version}/report POST Generate Report for Account
Reconciliation

/arm/rest/fcmapi/{api_version}/rc/export/
users

POST Generate User Details Report
for Account Reconciliation

/armARCS/rest/{version}/jobs POST Adding Users to a Team for
Account Reconciliation

/armARCS/rest/{version}/jobs POST Removing Users from a Team
for Account Reconciliation

/arm/rest/fcmapi/{api_version}/rc/export/
applicationproperties

POST Export Application Properties

/arm/rest/fcmapi/{api_version}/rc/import/
applicationproperties

POST Import Application Properties

Chapter 6

6-10

Table 6-10 (Cont.) Account Reconciliation

Rest Resource Request More Information

/arm/rest/fcmapi/{api_version}/rc/export/
backgroundImage

POST Export Background Image

/arm/rest/fcmapi/{api_version}/rc/import/
backgroundImage

POST Import Background Image

/arm/rest/fcmapi/{api_version}/rc/export/
logo

POST Export Logo Image

/arm/rest/fcmapi/{api_version}/rc/import/
logo

POST Import Logo Image

/arm/rest/fcmapi/{api_version}/{module}/
connections

POST Create a Connection

/arm/rest/fcmapi/{api_version}/{module}/
connections

GET View All Connections

/arm/rest/fcmapi/{api_version}/{module}/
connections/{id}

PUT Update a Connection

/arm/rest/fcmapi/{api_version}/{module}/
connections/{id}

DELETE Delete a Connection

/armARCS/rest/{api_version}/appaccess POST Set Application Access Level

/armARCS/rest/{api_version}/appaccess GET Retrieve Application Access
Level

/armARCS/rest/{api_version}/jobs POST Execute a Job in Account
Reconciliation

/armARCS/rest/periods?status={status} GET Retrieve Periods with a
Specific Status

/armARCS/rest/{api_version}/jobs POST Create Reconciliation
(Reconciliation Compliance)

/armARCS/rest/{api_version}/jobs POST Change Period Status
(Reconciliation Compliance)

/armARCS/rest/{api_version}/jobs POST Import Pre-Mapped
Transactions (Reconciliation
Compliance)

/armARCS/rest/{api_version}/jobs POST Import Profiles (Reconciliation
Compliance)

/armARCS/rest/{api_version}/jobs POST Import Rates (Reconciliation
Compliance)

/armARCS/rest/{api_version}/jobs POST Import Balances
(Reconciliation Compliance)

/armARCS/rest/{api_version}/jobs POST Import Pre-Mapped Balances
(Reconciliation Compliance)

/armARCS/rest/{api_version}/jobs POST Import Reconciliation
Attributes (Reconciliation
Compliance)

/armARCS/rest/{api_version}/jobs POST Import Attribute Values

/armARCS/rest/{api_version}/jobs/{job_id} GET Retrieve Job Status
(Reconciliation Compliance)

/armARCS/rest/{api_version}/period/
{period}/reconciliation/{accountId}/
comments

GET View Reconciliation
Comments

/armARCS/rest/{api_version}/jobs POST Monitor Reconciliations
(Reconciliation Compliance)

Chapter 6

6-11

Table 6-10 (Cont.) Account Reconciliation

Rest Resource Request More Information

/armARCS/rest/{api_version}/jobs POST Import Pre-Mapped
Transactions (Transaction
Matching)

/armARCS/rest/{api_version}/jobs POST Run Auto Match (Transaction
Matching)

/arm/rest/{api_version}/jobs POST Purge Transactions
(Transaction Matching)

/arm/rest/{api_version}/jobs/{job_id} GET Retrieve Job Status
(Transaction Matching)

/arm/rest/{api_version}/jobs POST Archive Matched Transactions
(Transaction Matching)

/arm/rest/{api_version}/jobs POST Purge Archived Transactions
(Transaction Matching)

/arm/rest/{api_version}/jobs POST Unmatch Matched
Transactions (Transaction
Matching)

/arm/rest/{api_version}/dataSources/
{dataSource}/transactions/{transaction}

POST Update Unmatched
Transactions (Transaction
Matching)

Financial Consolidation and Close

Table 6-11 Financial Consolidation and Close

Rest Resource Request More Information

/HyperionPlanning/rest/ GET Getting API Versions for
Financial Consolidation and
Close APIs

/fccs/rest/{api_version} GET Get Information about a
Specific API Version for
Financial Consolidation and
Close APIs

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs

POST Export Consolidation Journals

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs

POST Import Consolidation Journals

/HyperionPlanning/rest/{api_version}/
applications/{application}/journals/
{journal}/actions

POST Perform Journal Actions for
Financial Consolidation and
Close

/HyperionPlanning/rest/{api_version}/
applications/{application}/journalPeriods/
{period}/actions

POST Perform Journal Period
Updates for Financial
Consolidation and Close

/HyperionPlanning/rest/{api_version}/
applications/{application}/journals?
q={"scenario","year","period","status"}&off
set=0&limit=5

GET Retrieve Journals for
Financial Consolidation and
Close

Chapter 6

6-12

Table 6-11 (Cont.) Financial Consolidation and Close

Rest Resource Request More Information

/HyperionPlanning/rest/{api_version}/
applications/{application}/journals/
{journal label}?
q={"scenario","year","period"}&lineItems=tr
ue

GET Retrieve Journal Details for
Financial Consolidation and
Close

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs

POST Copy Data

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs

POST Clear Data

/HyperionPlanning/rest/{api_version}/
applications/{application}/
validatemetadata?logFileName=<filename of
exported results

POST Validate Metadata

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs

POST Generate an Intercompany
Matching Report

/interop/rest/{api_version}/services/
dataaccess?accessType={allow|
revoke}&disableEmergencyAccess={true|false}

PUT Manage Permission for
Manual Access to Database
(v1)

/interop/rest/v2/services/
setmanualdataaccess

PUT Manage Permission for
Manual Access to Database
(v2)

/HyperionPlanning/rest/{api_version}/
applications/{application}/fcmjobs

POST Adding Users to a Team for
Financial Consolidation and
Close and Tax Reporting

/HyperionPlanning/rest/{api_version}/
applications/{application}/fcmjobs

POST Removing Users from a Team
for Financial Consolidation
and Close and Tax Reporting

/HyperionPlanning/rest/fcmapi/
{api_version}/report

POST Generate Report for Financial
Consolidation and Close and
Tax Reporting

/HyperionPlanning/rest/fcmapi/
{api_version}/fcm/export/users

POST Generate User Details Report
for Financial Consolidation
and Close and Tax Reporting

Task Manager

Table 6-12 Task Manager

Rest Resource Request More Information

/HyperionPlanning/rest/cmapi/{api_version}/
updateTasksForEventMonitoring

POST Update Task Status for Event
Monitoring

/HyperionPlanning/rest/fcmapi/
{api_version}/{module}/connections

POST Create a Connection

/HyperionPlanning/rest/fcmapi/
{api_version}/{module}/connections/{id}

DELETE Delete a Connection

/HyperionPlanning/rest/fcmapi/
{api_version}/{module}/connections/{id}

PUT Update a Connection

/HyperionPlanning/rest/fcmapi/
{api_version}/{module}/connections

GET View All Connections

Chapter 6

6-13

Table 6-12 (Cont.) Task Manager

Rest Resource Request More Information

/HyperionPlanning/rest/cmapi/{api_version}/
jobs

POST Deploy Task Manager
Templates

Supplemental Data Manager

Table 6-13 Supplemental Data Manager

Rest Resource Request More Information

/HyperionPlanning/rest/{api_version}/
applications/{application}/fcmjobs

POST Deploy Form Templates

/HyperionPlanning/rest/{api_version}/
applications/{application}/fcmjobs

POST Import Supplemental
Collection Data for Financial
Consolidation and Close

Enterprise Journals

Table 6-14 Enterprise Journals

Rest Resource Request More Information

/HyperionPlanning/rest/ej/{api_version}/
jobs

POST Execute an Enterprise
Journals Job

/HyperionPlanning/rest/ej/{api_version}/
jobs

POST Monitor Enterprise Journals
for Financial Consolidation
and Close

/HyperionPlanning/rest/ej/v1/ejjournals GET Retrieve Enterprise Journals
for Financial Consolidation
and Close

/HyperionPlanning/rest/ej/v1/ejjournals/
{instanceId}

GET Retrieve Enterprise Journal
Content for Financial
Consolidation and Close

/HyperionPlanning/rest/ej/v1/
ejjournalcontent?q={"year","period"}

GET Retrieve Enterprise Journal
Content by Year and Period
for Financial Consolidation
and Close

/HyperionPlanning/rest/ej/v1/ejjournals/
{instanceId}/poststatus

POST Update Enterprise Journal
Posting Status for Financial
Consolidation and Close

/HyperionPlanning/rest/ej/{api_version}/
ejjournals/{identifier}/validationstatus

POST Update Validation Status of
Enterprise Journals for
Financial Consolidation and
Close

Tax Reporting

Table 6-15 Tax Reporting

Rest Resource Request More Information

/HyperionPlanning/rest/ GET Getting API Versions for Tax
Reporting APIs

Chapter 6

6-14

Table 6-15 (Cont.) Tax Reporting

Rest Resource Request More Information

/HyperionPlanning/rest/{api_version} GET Get Information about a
Specific API Version for Tax
Reporting

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs

POST Copy Data

/HyperionPlanning/rest/{api_version}/
applications/{application}/jobs

POST Clear Data

Enterprise Profitability and Cost Management

Table 6-16 Enterprise Profitability and Cost Management

Rest Resource Request More Information

/epm/rest GET Get API Versions for
Profitability and Cost
Management REST APIs

/HyperionPlanning/rest/v3/applications/
{AppName}/jobs/

POST Calculate Model

/HyperionPlanning/rest/v3/applications/
{AppName}/jobs/

POST Clear Data By Point of View

/HyperionPlanning/rest/v3/applications/
{AppName}/jobs/

POST Copy Data by Point of View

/HyperionPlanning/rest/v3/applications/
{AppName}/jobs/

POST Delete Point of View

/HyperionPlanning/rest/v3/applications/
{AppName}/jobs/

POST Generate Model
Documentation Report

/HyperionPlanning/rest/v3/applications/
{AppName}/jobs/

POST Validate Model

Profitability and Cost Management

Table 6-17 Profitability and Cost Management

Rest Resource Request More Information

/epm/rest/{api_version}/applications/
{application}/jobs/applyDataGrants

POST Apply Data Grants

/epm/rest/{api_version}/applications/
{application}/povs/{srcPOVMemberGroup}/
jobs/copyPOVJob/{destPOVMemberGroup}

POST Copy ML POV Data

/epm/rest/{api_version}/fileApplications/
{application}

POST Create File-Based Application

/epm/rest/{api_version}/applications/
{application}/jobs/ledgerDeployCubeJob

POST Deploy ML Cube

/epm/rest/{api_version}/fileApplications/
{application}/enableApplication

POST Enable File-Based Application

Chapter 6

6-15

Table 6-17 (Cont.) Profitability and Cost Management

Rest Resource Request More Information

/epm/rest/{api_version}/applications/
{application}/jobs/essbaseDataLoadJob

POST Essbase Data Load for
Profitability and Cost
Management

/epm/rest/{api_version}/applications/
{application}/jobs/exportQueryResultsJob

POST Export Query Results

/epm/rest/{api_version}/applications/
{application}/jobs/templateExportJob?
fileName={fileName}

POST Export Template for
Profitability and Cost
Management

epm/rest/{api_version}/applications/
{application}/povs/{POV}/
programDocumentationReport?
queryParameter={"fileType":"PDF","useAlias"
:"true"}

GET Generate Program
Documentation Report

/epm/rest/{api_version}/applications/
<applicationName>/povs/<povName>/jobs/
programDocReportJob

POST Generate Program
Documentation Report - Run
as a Job

/epm/rest/{api_version}/applications/
{application}/templateImportJob

POST Import Template for
Profitability and Cost
Management

/epm/rest/{api_version}/applications/
{application}/jobs/mergeSlices

POST Merge Slices for Profitability
and Cost Management

/epm/rest/v1/applications/{AppName}/jobs/
optimizeASOCube

POST Optimize ASO Cube

/epm/rest/{api_version}/applications/jobs/
ChecktaskStatusJob/{processName}

GET Retrieve Task Status for
Profitability and Cost
Management

/epm/rest/{api_version}/applications/
{application}/povs/{povGroupMember}/jobs/
runLedgerCalculationJob

POST Run ML Calculations

/epm/rest/{api_version}/applications/
{application}/povs/{povGroupMember}/jobs/
clearPOVJob

POST Run ML Clear POV

/epm/rest/{api_version}/applications/
{application}/povs/{povGroupMember}/
ruleBalance?
queryParameter={"modelViewName":"modelViewN
ame"

POST Run ML Rule Balancing

/epm/rest/{api_version}/fileApplications/
{application}/jobs/updateDimension

POST Update Dimensions As a Job

Chapter 6

6-16

7
REST Resources and Methods

This section describes the REST APIs for Oracle Enterprise Performance Management Cloud.

Completing administrative tasks using REST APIs as an alternative to using the user interface
requires considerable technical and functional expertise. Only technically competent EPM
Cloud Administrators should use this guide to perform EPM Cloud Administrator administrative
tasks. For prerequisites to using these REST APIs, see Prerequisites.

The predefined and application roles assigned to the user of the REST API determine which
APIs can be executed.

Supported REST Methods
You can use the Oracle Enterprise Performance Management Cloud REST APIs to create and
manage resources for selected functionality. These APIs provide an alternative to using the
selected components in the web-based user interface.

You can use one of a variety of methods to access the REST APIs. For example, you can
access the REST API through client applications such as:

• Web browsers

• cURL

You can also use the REST APIs in REST client applications that are developed in languages
such as:

• JavaScript

• Ruby

• Perl

• Java

• Groovy

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

REST describes any simple interface that transmits data over a standardized interface (such
as HTTP) without an additional messaging layer, such as SOAP. REST provides a set of
design rules for creating stateless services that are viewed as resources, or sources of specific
information, and can be identified by their unique URIs. RESTful web services are services that
are built according to REST principles and, as such, are designed to work well on the web.
Typically, RESTful web services are built on the HTTP protocol and implement operations that
map to the common HTTP methods, such as GET, POST, PUT, and DELETE to retrieve,
create, update, and delete resources, respectively.

7-1

REST API Methods
You can create, view, update, or delete Oracle Enterprise Performance Management Cloud
resources using standard HTTP method requests, as summarized in the following table.

Table 7-1 REST API Methods

Method Description

GET Retrieve information about the REST API resource

POST Create a REST API resource

PUT Update a REST API resource

DELETE Delete a REST API resource or related component

Error Handling
All REST APIs return JSON output appropriate for the API invoked. HTTP Status codes other
than 200 are used as appropriate to indicate various failures, along with JSON for detailed
error messages.

Versioning
The Oracle Enterprise Performance Management Cloud REST API web services are versioned
at the API level and expect the version to be included in the URL as shown here. An error will
occur if the API version is missing or the provided version is not supported by the API.

For each service's API, you can get version and details for a specific REST API version. For
details, see the service's API topics or Current REST API Version.

Important: The version number is case-sensitive. For example, if the version number is listed
as v1 with a lowercase v, you cannot enter the version number with a capital V as in this
incorrect example, V1, which would result in an error. Instead, you must enter the version
number with a lowercase v as in this correct example: v1.

Examples:

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/{api_version}/applications/{applicationName}/jobs

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
interop/rest/{api_version}/applicationsnapshots

where {api_version} is the current REST API version for the product, for example, v3 for
Planning.

Current REST API Version
Use the Getting API Versions topic for the Oracle Enterprise Performance Management Cloud
business process to get the API version number and details for a specific REST API.

• Planning: See Getting API Versions for Planning

Chapter 7
REST API Methods

7-2

• Migration: See Getting API Versions for Migration APIs

• Data Management: See Getting API Versions for Data Integration APIs

• Account Reconciliation: See Getting API Versions for Account Reconciliation REST APIs

• Financial Consolidation and Close: See Getting API Versions for Financial Consolidation
and Close APIs

• Profitability and Cost Management: See Get API Versions for Profitability and Cost
Management REST APIs

• Profitability and Cost Management: See Getting API Versions for Enterprise Profitability
and Cost Management

Status Codes
When you call any of the Oracle Enterprise Performance Management Cloud REST APIs, one
of the following standard HTTP status codes is returned in the response header.

Table 7-2 Status Codes

HTTP Status Codes Description

200 OK The request was successfully completed. A 200 status is returned for a
successful GET or POST method.

201 Created The request has been fulfilled and resulted in a new resource being created.
The response includes a Location header containing the canonical URI for the
newly created resource.

A 201 status is returned from a synchronous resource creation or an
asynchronous resource creation that completed before the response was
returned.

202 Accepted The request has been accepted for processing, but the processing has not
been completed. The request may or may not eventually be acted upon, as it
may be disallowed at the time processing actually takes place.

When specifying an asynchronous (_detached=true_resource creation, for
example, when deploying an application, or update, for example, when
redeploying an application, a 202 is returned if the underlying operation does
not complete in a reasonable amount of time.

The response contains a Location header of a job resource that the client
should poll to determine when the job has finished. It also returns an entity that
contains the current state of the job.

400 Bad Request The request could not be processed because it contains missing or invalid
information, such as a validation error on an input field, a missing required
value, and so on.

401 Unauthorized The request is not authorized. The authentication credentials included with this
request are missing or invalid.

403 Forbidden The user cannot be authenticated. The user does not have authorization to
perform this request.

404 Not Found The request includes a resource URI that does not exist

405 Method Not
Allowed

The HTTP verb specified in the request (DELETE, GET, POST, PUT) is not
supported for this request URI.

406 Not Acceptable The resource identified by this request is not capable of generating a
representation corresponding to one of the media types in the Accept header of
the request.

415 Not Acceptable The client’s ContentType header is not correct.

Chapter 7
Status Codes

7-3

Table 7-2 (Cont.) Status Codes

HTTP Status Codes Description

500 Internal Server
Error

The server encountered an unexpected condition that prevented it from fulfilling
the request.

503 Service
Unavailable

The server is unable to handle the request due to temporary overloading or
maintenance of the server.

Chapter 7
Status Codes

7-4

8
Planning REST APIs

Use the Planning REST APIs to get the REST API version, manage and execute jobs, and
work with members, applications, planning units, user preferences, data slices, and
substitution variables.

These REST APIs are available for Planning.

• URL Structure for Planning

• Resources and Available Actions

• Getting API Versions for Planning

• Manage Jobs

• Working with Members

• Get Applications

• Manage Planning Units

• Get User Preferences

• Working with Data Slices

• Getting and Setting Substitution Variables

• Deleting Substitution Variables

• Working with Connections

Before you work with the REST APIs, be sure you are familiar with the Implementation Best
Practices for EPM Cloud REST APIs.

Note: We have removed the following fields from the exception response in REST APIs for
Planning and Planning Modules:

• message

• localizedMessage

URL Structure for Planning
This topic shows the general URL structure for Planning REST APIs.

Use the following URL structure to access the Planning REST resources:

https://<BASE-URL>/HyperionPlanning/rest/{api_version}/{path}

Where:

• <BASE-URL>: The first part of your service URL, before the context.

For example, if your service URL is https://epm-acme.epm.us-
phoenix-1.ocs.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm-
acme.epm.us-phoenix-1.ocs.oraclecloud.com. Similarly, if your service URL is https://

8-1

epm2-acme.epm.us6.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm2-
acme.epm.us6.oraclecloud.com.

• api_version: API version you are developing with. The current REST API version for
Planning is v3.

• path: Identifies the resource.

Note:

Oracle does not authorize or support the use of REST APIs with the path token "/
internal/" in the URL.

Resources and Available Actions
In the response, the Links section of the response parameters lists links to other resources and
available actions for the current resource.

Table 8-1 Resources and Available Actions

Name Description

links Describes links to other resources and actions applicable on the
current resource

rel Relationship type; the relationship between the current state and the
state to which the client will transition

href The target resource's URI. If the value of rel is "self", this URI is how
the resource is accessed currently

action The HTTP method. For POST, data indicates the parameters and
values with which it was invoked

Getting API Versions for Planning
You can get information on REST API versions using a set of REST resources, as summarized
here.

Important: The version number is case-sensitive. For example, if the version number is listed
as v3 with a lowercase v, you cannot enter the version number with a capital V as in this
incorrect example, V3, which would result in an error. Instead, you must enter the version
number with a lowercase v as in this correct example: v3.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

Table 8-2 Getting REST API Versions

Task Requ
est

REST Resource

Get REST API Versions for Planning GET /HyperionPlanning/rest/
Get Information about a Specific REST API
Version for Planning

GET /HyperionPlanning/rest/{api_version}

Chapter 8
Resources and Available Actions

8-2

Get REST API Versions for Planning
You can use REST APIs to get information about which versions are available and supported.
Multiple versions might be supported simultaneously.

Note:

An API version is always supported even when deprecated.

Required Roles

Service Administrator, Power User, User, Viewer

REST Resource

GET /HyperionPlanning/rest/

Request

Supported Media Types: application/json

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 8-3 Parameters

Name Description

items Version of the API you are developing with

version The version, such as v3

lifecycle Possible values: active, deprecated

isLatest Whether this resource is the latest, true or false

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "items": [{
 "version": "v1",
 "lifecycle": "deprecated",
 "isLatest": false,
 "links": [{
 "rel": "canonical",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v1"
 }, {
 "rel": "successor-version",

Chapter 8
Getting API Versions for Planning

8-3

 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v2"
 }]
 }, {
 "version": "v2",
 "lifecycle": "deprecated",
 "isLatest": false,
 "links": [{
 "rel": "canonical",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v2"
 }, {
 "rel": "predecessor-version",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v1"
 }, {
 "rel": "successor-version",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3"
 }]
 }, {
 "version": "v3",
 "lifecycle": "active",
 "isLatest": true,
 "links": [{
 "rel": "canonical",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3"
 }, {
 "rel": "predecessor-version",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v2"
 }]
 }],
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/"
 }, {
 "rel": "canonical",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/"
 }, {
 "rel": "current",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3"
 }]
}

Get Information about a Specific REST API Version for Planning
You can use REST APIs to get information about a specific REST API version for Planning.

Required Roles

Service Administrator, Power User, User, Viewer

Chapter 8
Getting API Versions for Planning

8-4

REST Resource

GET /HyperionPlanning/rest/{api_version}

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-4 Parameters

Name Description Type Required Default

api_version Version of the API you
are working with, such
as V3

Path Yes None

Response Body

Supported Media Types: application/json
Parameters

The following table summarizes the response parameters.

Table 8-5 Parameters

Attribute Description

version The version, such as v3

lifecycle Lifecycle of the resource, active or deprecated

isLatest Whether this resource is the latest, true or false

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "version": "v3",
 "lifecycle": "active",
 "isLatest": true,
 "links": [{
 "rel": "canonical",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3"
 }, {
 "rel": "predecessor-version",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v2"
 }]
}

Chapter 8
Getting API Versions for Planning

8-5

Manage Jobs
You can manage jobs using a set of REST resources, as summarized here.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.
For additional details, see Job Types.

Jobs:

• Get Job Definitions

• Execute a Job

• Retrieve Job Status

• Retrieve Job Status Details

• Rules

• Ruleset

• Plan Type Map

• Import Data

• Export Data

• Export Metadata

• Import Metadata

• Cube Refresh

• Clear Cube

• Administration Mode

• Compact Cube

• Restructure Cube

• Merge Data Slices

• Optimize Aggregation

• Import Security

• Export Security

• Export Audit

• Export Job Console

• Sort Members

• Import Exchange Rates

• Auto Predict

• Import Cell-Level Security

• Export Cell-Level Security

• Import Valid Intersections

• Export Valid Intersections

Chapter 8
Manage Jobs

8-6

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html

• Execute a Report Bursting Definition

• Export Library Documents

Get Job Definitions
Use this resource to get job definitions for the types of jobs that can be scheduled to run.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.
For additional details, see Job Types.

Required Roles

Service Administrator

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/
jobdefinitions

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-6 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

jobIdentifier The ID of the job, such as 224 Path Yes None

q Query string Query No None

Chapter 8
Manage Jobs

8-7

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html

Table 8-6 (Cont.) Parameters

Name Description Type Required Default

jobType Optionally, retrieve job definitions for a particular job
type, such as RULES.
These jobs are supported:

• Rules
• Ruleset
• Plan Type Map
• Import Data
• Export Data
• Export Metadata
• Import Metadata
• Cube Refresh
• Clear Cube
• Administration Mode
• Compact Cube
• Restructure Cube
• Merge Data Slices
• Optimize Aggregation
• Import Security
• Export Security
• Export Audit
• Export Job Console
• Sort Members
• Import Exchange Rates
• Auto Predict
• Import Cell-Level Security
• Export Cell-Level Security
• Import Valid Intersections
• Export Valid Intersections
• Execute a Report Bursting Definition
• Export Library Documents

Example URLs

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobdefinitions
Specifying an optional jobType, RULES:

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobdefinitions?
q={"jobType":"RULES"}

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Chapter 8
Manage Jobs

8-8

Table 8-7 Parameters

Name Description

items Collection of job definitions

jobType Job type, such as RULESET.
These jobs are supported:

• Rules
• Ruleset
• Plan Type Map
• Import Data
• Export Data
• Export Metadata
• Import Metadata
• Cube Refresh
• Clear Cube
• Administration Mode
• Compact Cube
• Restructure Cube
• Merge Data Slices
• Optimize Aggregation
• Import Security
• Export Security
• Export Audit
• Export Job Console
• Sort Members
• Import Exchange Rates
• Auto Predict
• Import Cell-Level Security
• Export Cell-Level Security
• Import Valid Intersections
• Export Valid Intersections
• Execute a Report Bursting Definition
• Export Library Documents

jobName The exact name of the job, such as Financial Statements -
Forecast.

type Application type

Example of Response Body

The following shows an example of the response body specifying jobType with a value of
RULESET.

{
 "items": [{
 "jobType": "RULESET",
 "jobName": "Financial Statements - Forecast",
 "links": null
 }, {
 "jobType": "RULESET",
 "jobName": "Financial Statements - Plan",
 "links": null
 }, {
 "jobType": "RULESET",

Chapter 8
Manage Jobs

8-9

 "jobName": "Revenue Forecast",
 "links": null
 }, {
 "jobType": "RULESET",
 "jobName": "Revenue Plan",
 "links": null
 }, {
 "jobType": "RULESET",
 "jobName": "RS 60 RTP vars test2",
 "links": null
 }],
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/vision/jobdefinitions?q=%7BjobType:RULESET%7D",
 "action": "GET"
 }],
}

Execute a Job
Use this resource to execute several jobs simultaneously by providing the job name and type.
The job is expected to be defined in Planning with all the required parameters saved with the
job definition. For some job types, the parameters can be either provided or overwritten at
runtime.

This topic describes general information for executing a job. Details for each job type are
described in separate topics for individual jobs.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.
For additional details, see Job Types.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/jobs

Request

Supported Media Types: application/json
Parameters

This table summarizes the request parameters that are generic to all jobs. The following tables
describe parameters specific to individual jobs.

Note that all parameter names and values are case sensitive.

Table 8-8 Parameters

Name Description Type Required Default

api_version Version of the API you
are developing with

Path Yes None

Chapter 8
Manage Jobs

8-10

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html

Table 8-8 (Cont.) Parameters

Name Description Type Required Default

application Name of the application
for which the job will be
executed

Path Yes None

Example URL and Payload

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobs
{"jobType":"jobType","jobName":"jobName","parameters":
{"parameter1":"value","parameter2":"value2"}}

Response

Supported Media Types: application/json
Parameters

This table summarizes the response parameters that are generic to all jobs. The following
topics describe parameters specific to individual jobs:

• Rules

• Ruleset

• Plan Type Map

• Import Data

• Export Data

• Export Metadata

• Import Metadata

• Cube Refresh

• Clear Cube

• Administration Mode

• Compact Cube

• Restructure Cube

• Merge Data Slices

• Optimize Aggregation

• Import Security

• Export Security

• Export Audit

• Export Job Console

• Sort Members

• Import Exchange Rates

• Auto Predict

• Import Cell-Level Security

Chapter 8
Manage Jobs

8-11

• Export Cell-Level Security

• Import Valid Intersections

• Export Valid Intersections

• Execute a Report Bursting Definition

• Export Library Documents

Table 8-9 Parameters

Name Description

status Status of the job: -1 = in progress; 0 = success; 1 =
error; 2 = cancel pending; 3 = cancelled; 4 = invalid
parameter; Integer.MAX_VALUE = unknown

details Details about the job status, such as "Metadata
import was successful" for metadata import

jobID The ID of the job, such as 145

jobName The name of the job, such as Refresh Database.

descriptiveStatus The status of the job, such as Completed or Error

Rules
Use this REST API to launch a business rule.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator, Power User (if Rule Launch access is granted)

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
jobs

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For
parameters that are common to all jobs, see Execute a Job.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Table 8-10 Rules

Name Description Required Default

jobType Rules or RULES (both parameters are
supported)

Yes None

Chapter 8
Manage Jobs

8-12

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-10 (Cont.) Rules

Name Description Required Default

jobName The name of a business rule exactly
as it is defined in the Planning
application.

Example: RollupUSSales

Yes None

parameters Optionally you can specify the runtime
prompts and their values required to
execute the business rule.

Note: The rule is executed against the
plan type to which it was deployed.

The value must use JSON syntax.

No, unless default values
for the run time prompts
are not provided in
Calculation Manager.

Default values for the
runtime prompts as
provided in Calculation
Manager will be used.

Example URL and Payload

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobs

{
 "jobType":"Rules",
 "jobName":"Operating Expense Adj Plan",
 "parameters":
 {
 "MyScenario1":"Current",
 "MyVersion1":"BU Version_1",
 "ToEntity":"CA",
 "Rule_Level_Var":"AZ",
 "planType":"Plan1"
 }
}

Ruleset
Launches a business ruleset.

Supports rulesets with no runtime prompts or runtime prompts with default values. You can add
parameters to rulesets for greater flexibility. Use the sample rulesets and POST requests below
to help you quickly understand different scenarios when running this job. For details about
rulesets, see Designing Business Rulesets.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.
For information about creating rulesets, see Designing with Calculation Manager for Oracle
Enterprise Performance Management Cloud.

Required Roles

Service Administrator, Power User (if Rule Launch access is granted)

Request

Supported Media Types: application/json
Parameters

Chapter 8
Manage Jobs

8-13

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/ecalc/designing_business_rule_sets.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-11 Ruleset

Name Description Require
d

Default

jobType Ruleset or RULESET (both parameters
are supported).

Yes None

jobName The name of a business ruleset
exactly as is defined in the Planning
application.

Example: RollupUSSales

Yes None

parameters No Default values for the
runtime prompts as provided
in Calculation Manager will
be used.

Example URL and Payload

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobs

{
 "jobType":"Ruleset",
 "jobName":"Calculate Plan Operating Expenses"
}

Example Ruleset Scenarios and POST Requests

These examples based on the Vision application illustrate how to run rulesets with parameters.
For each example, review the sample ruleset in Calculation Manager to understand the sample
POST request.

Example 1: Ruleset "Revenue Plan" when variables are merged and not hidden

In Revenue Plan, by default the variables are merged and hidden. When variables are hidden,
the default values defined in Calculation Manager will be used when executing the ruleset and
any values provided in the payload will be ignored.

Sample Ruleset in Calculation Manager

Chapter 8
Manage Jobs

8-14

Sample POST request

{
 "jobType":"Ruleset",
 "jobName":"Revenue Plan",
 "parameters":
 {
 "Version":"Worst Case",
 "Department":"No Entity"
 }
}

Example 2: Ruleset "Revenue Plan" when variables are not merged and not hidden

Sample Ruleset in Calculation Manager

Sample POST request

{
 "jobType":"Ruleset",
 "jobName":"Revenue Plan",
 "parameters":

Chapter 8
Manage Jobs

8-15

 {
 "Copy Channel.Department":"No Entity",
 "Copy Channel.Version":"Worst Case",

 "Revenue Plan.Department":"New Entity",
 "Revenue Plan.Version":"Best Case"
 }
}

Example 3: Ruleset "Calculate Plan Operating Expenses" with nested ruleset ("Revenue
Plan") and variables are merged and not hidden

Sample Ruleset in Calculation Manager

Sample POST request

{
 "jobType":"Ruleset",
 "jobName":"Calulate Plan Operating Expenses",
 "parameters":
 {
 "Department":"Unspecified Entity",
 "Version":"Most Likely"
 }
}

Example 4: Ruleset "Calculate Plan Operating Expenses" with a nested ruleset ("Revenue
Plan") and variables that are not merged and not hidden

Sample Ruleset in Calculation Manager

Chapter 8
Manage Jobs

8-16

Sample POST request

In this example, the same rule, Copy Channel, appears twice – once under Calculate Plan
Operating Expenses, and once under Revenue Plan. This demonstrates how to provide the
variables with their fully qualified paths.

{
 "jobType":"Ruleset",
 "jobName":"Calculate Plan Operating Expenses",
 "parameters":
 {
 "Operating Expenses Plan.Version":"Most Likely",
 "Operating Expense Adj Plan.Version":"What If",

 "Copy Channel.Department":"Unspecified Entity",
 "Copy Channel.Version":"Working",

 "Revenue Plan.Copy Channel.Department":"New Entity",
 "Revenue Plan.Copy Channel.Version":"Best Case",

 "Revenue Plan.Revenue Plan.Department":"No Entity",
 "Revenue Plan.Revenue Plan.Version":"Worst Case"
 }
}

Optionally, you can provide the sequence indexes in the paths, as shown below.

{
 "jobType":"Ruleset",

Chapter 8
Manage Jobs

8-17

 "jobName":"Calculate Plan Operating Expenses",
 "parameters":
 {
 "(1)Operating Expenses Plan.Version": "Most Likely",
 "(2)Operating Expense Adj Plan.Version": "What If",

 "(3)Copy Channel.Department": "Unspecified Entity",
 "(3)Copy Channel.Version": "Working",

 "(4.1)Revenue Plan.Copy Channel.Department": "New Entity",
 "(4.1)Revenue Plan.Copy Channel.Version": "Best Case",

 "(4.2)Revenue Plan.Revenue Plan.Department": "No Entity",
 "(4.2)Revenue Plan.Revenue Plan.Version": "Worst Case"
 }
}

Example 5: Ruleset "Revenue Plan" with variables that are merged and not hidden

This example shows two Revenue Plan rules within a ruleset. This demonstrates how to
differentiate the variables when there are multiple variables with the same paths within the
same parent in the ruleset.

Sample Ruleset in Calculation Manager

Sample POST request

{
 "jobType":"Ruleset",
 "jobName":"Revenue Plan",
 "parameters":
 {
 "Version":"Worst Case",
 "Department":"New Entity"
 }
}

Example 6: Ruleset "Revenue Plan" with variables that are not merged and not hidden

Chapter 8
Manage Jobs

8-18

This example shows two Revenue Plan rules within a ruleset. This demonstrates how to
differentiate the variables when there are multiple variables with the same paths within the
same parent in the ruleset.

Sample Ruleset in Calculation Manager

Sample POST request

{
 "jobType":"Ruleset",
 "jobName":"Revenue Plan",
 "parameters":
 {
 "(1)Copy Channel.Department":"No Entity",
 "(1)Copy Channel.Version":"Worst Case",

 "(2)Revenue Plan.Department":"New Entity",
 "(2)Revenue Plan.Version":"Best Case",

 "(3)Revenue Plan.Version":"What If",
 "(3)Revenue Plan.Department":"Unspecified Entity"
 }
}

Plan Type Map
Copies data from a block storage cube to an aggregate storage cube or from one to another
based on the settings specified in a job of type plan type map.

For details about data maps, see Defining Data Maps in Administering Data Integration for
Oracle Enterprise Performance Management Cloud.

This API is not supported for Financial Consolidation and Close or Tax Reporting.

Chapter 8
Manage Jobs

8-19

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-12 Plan Type Map

Name Description Requir
ed

Default

jobType Plan Type Map or PLAN_TYPE_MAP (both parameters are
supported)

Yes None

jobName The name of a job of type plan type map that is already
defined in the application.

Example: CampaignToReporting

Yes None

parameters Optionally, you can specify these parameters:

• clearData - Whether the data in the target database
should be moved before copying data (defult: true).
The value must use JSON syntax. Example:
{clearData:false}

• overrideMembersMap - A map containing the
dimension name as the key and a member selection
string as a value. Members specified in the map will
replace the members in the data map definition during
execution.

• overrideExclusionMembersMap - A map containing
the dimension name as the key and a member
selection string as a value. Members specified in the
map will be excluded from the member selection in the
data map definition during execution.
Any members from the evaluated exclusion selection
not present in the evaluated member selection from
the data map definition will be ignored.

Notes:
• The override parameters execute this data map using

the specified override members map, clearing data in
the target region beforehand if requested. The data
map push will error out when the override members
map contains members from unmapped dimensions
of the target location.

• The member selection string is a comma-separated
string consisting of member names, functions or
expressions.

No None

Example URL and Payload

Chapter 8
Manage Jobs

8-20

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobs

{
 "jobType": "PLAN_TYPE_MAP",
 "jobName": "MapReporting",
 "parameters": {
 "cubeLinkName": "name",
 "clearData": true
 }
}

Examples of overriding selections of the data map:

{
 "jobType": "PLAN_TYPE_MAP",
 "jobName": " MapReporting",
 "parameters": {
 "cubeLinkName": "MapChannels",
 "clearData": true,
 "overrideMembersMap": {
 "Period": "ILvl0Descendants(Q1)"
 },
 "overrideExclusionMembersMap": {
 "Period": "Jan"
 }
 }
}

 "overrideMembersMap": {
 "Period": "ILvl0Descendants(Q1)"
 }

 "overrideMembersMap": {
 "Period": "ILvl0Descendants(Q1)",
 "Account": "Sales"
 }

Examples of excluding members:

"overrideExclusionMembersMap": {
 "Period": "Jan"
 }

 "overrideExclusionMembersMap": {
 "Period": "Jan, Feb, &CurrMonth, ILvl0Descendants(Q1), YearTotal, Red"
 }

Chapter 8
Manage Jobs

8-21

Import Data
Use this REST API to import data from a file in the repository into the application using the
import data settings specified in a job of type Import Data.

You can override some of the parameters of the job definition while executing this job from a
REST API.

You can also import data using the parameter values provided, without an explicit predefined
Import Data job definition.

For Planning, Financial Consolidation and Close, and Tax Reporting, you can review the
rejected data records that have errors. To do this, specify an error file that captures the data
records that are not imported for each dimension. If an errop file is specified, the ZIP file is
stored in the Outbox where you can download the file using Inbox/Outbox Explorer or tools like
EPM Automate or REST APIs, for example, with the Download API.

Required Roles

Service Administrator

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-13 Import Data

Name Description Required Default

jobType Import Data or IMPORT_DATA (both parameters are
supported)

Yes None

jobName Name of this job.

Example: dailydataload

No Import Data

importFileName You can specify the name of the ZIP, CSV or TXT
(Oracle Essbase format data file) file from which data
is to be imported.

If the parameter passed to import data is in Essbase
format, the ZIP file must contain an Essbase format
TXT file.

For other import jobs, the ZIP file may contain one or
more CSV files that identify the import sequence in the
file names; for example data1-3.csv, data2-3.csv,
and data3-3.csv.

The value must use JSON syntax.

Yes None

sourceType Paramter to specify the source of data.

Allowed value is Planning or Essbase.

Yes None

Chapter 8
Manage Jobs

8-22

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-13 (Cont.) Import Data

Name Description Required Default

delimiter Parameter to specify a delimiter.
Allowed value is comma or tab.

This is only applicable when the source type is
Planning.

No comma

dateFormat Parameter to specify the data format.

Allowed value is one of the following: MM-DD-YYYY,
DD-MM-YYYY, or YYYY-MM-DD.

No MM-DD-YYYY

includeMetaData Parameter to specify to include metadata from the data
file.

Allowed value is true or false.

This is only applicable when the source type is
Planning.

No false

cube Parameter to specify the cube name.

This is only applicable (and becomes mandatory)
when the source type is Essbase.

Yes None

errorFile Paramter to specify the errorFile to store the
rejected records (maximum 1,000).

The error file is zipped with the name of this
parameter. The ZIP file is stored in the Outbox. You
can download it with the Download API. This API
overrides any existing error file with the same name.

Example: ImportDataErrorFile.zip

No No error files are created

stopOnError Parameter to stop the import process if an
intermediate error is encountered during the import, for
example, if data load finds an unknown member or
invalid data value. This setting can only be used when
sourceType is Essbase.

When using this option, if you specified an error file,
you can then review the rejected data record that has
the error. The record is included in a ZIP file that is
stored in the outbox where you can download it for
review, for example, with the Download API.

Allowed value is true or false.

No true

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payloads

Example 1: Executes the import data job ImportJob and overrides the importFileName
parameter.

{"jobType":"IMPORT_DATA","jobName":"ImportJob",
"parameters":{
 "importFileName":"myImportfile123.zip"
 }
}

Chapter 8
Manage Jobs

8-23

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/download.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/download.html

Example 2: Executes the import data job ImportJob and overrides the delimiter, dateFormat,
and includeMetaData parameters.

{"jobType":"IMPORT_DATA","jobName":"ImportJob",
"parameters":{
 "delimiter":"comma",
 "dateFormat":"MM-DD-YYYY",
 "includeMetaData":"false"
 }
}

Example 3: Executes the import data job ImportJob defined with sourceType as Essbase and
overrides the sourceType and cube parameters.

{"jobType":"IMPORT_DATA","jobName":"ImportJob",
"parameters":{
 "sourceType":"Essbase",
 "cube":"Plan1"
 }
}

Example 4: Executes the ImportData job ImportDataJob and overrides the errorFile
parameter with a value ImportDataErrorFile.zip. If error records are found during the Import
Data operation, a ZIP file called ImportDataErrorFile.zip is created in the Planning repository.
The generated error file can be downloaded from the Outbox from the job status page or using
the Download REST API or EPM Automate downloadfile command.

{"jobType": "IMPORT_DATA",
 "jobName": "ImportDataJob",
 "parameters": {
 "errorFile":"ImportDataErrorFile.zip"
 }
}

Example 5: Executes the ImportData job ImportDataJob_Sample defined with sourceType as
Essbase, and overrides the stopOnError parameter with the value as true. The data load will
stop loading in case of an intermediate error.

{
 "jobType": "IMPORT_DATA",
 "jobName": "ImportDataJob_Sample",
 "parameters": {
 "importFileName":"importDataFile_Essabse.txt",
 "cube":"Plan1",
 "stopOnError":"true"
 }
}

Example 6: Executes the import data job with all the mandatory parameters.

{
 "jobType": "IMPORT_DATA",
 "parameters":{

Chapter 8
Manage Jobs

8-24

 "sourceType": "Planning",
 "importFileName": "myImportfile123.zip",
 "delimiter": "comma"
 }
}

Example 7: Executes the import data job with all the mandatory parameters. The sourceType
parameter is specified as Essbase, and cube provides the cube name. Default values are
assumed for other non-mandatory parameters.

{
 "jobType": "Import Data",
 "parameters":{
 "sourceType": "Essbase",
 "cube": "Plan1",
 "importFileName": "EssbasePlan1_data.zip"
 }
}

Export Data
Use this REST API to export application data into a file using the export data settings, including
file name, specified in a job of type export data. The file containing the exported data is stored
in the repository.

You can override some of the parameters of the job definition while executing this job with a
REST API.

You can also export application data into a file using the parameter values provided, without an
explicit predefined Export Data job definition.

Exporting data supports substitution variables. You can use substitution variables while
providing the rowMembers, columnMembers, and povMembers definitions. See Exporting Data and
Creating and Assigning Values to Substitution Variables in Administering Planning.

Required Roles

Service Administrator

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-14 Export Data

Name Description Required Default

jobType Export Data or EXPORT_DATA (both parameters are
supported)

Yes None

Chapter 8
Manage Jobs

8-25

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-14 (Cont.) Export Data

Name Description Required Default

jobName The name of this job.

Example: dailydataexport
No Export Data

exportFileName The file name for the exported data. Data is exported
as a ZIP file only. The exported file is stored in the
Planning repository.

The value must use JSON syntax.

No The file name for the
exported data will be the
same as jobName.

delimiter Parameter to specify a delimiter.

Allowed value is comma or tab.

No comma

exportSmartListAs Parameter to specify how Smart Lists are exported.

Allowed value is label or name.

No label, which signifies that
Smart View labels will be
exported.

includeDynamicMemb
ers

Parameter to include or exclude dynamic members.

Allowed value is true or false.

No true, which signifies that
dynamic members will be
exported.

cube Parameter to specify the cube from which to export
data.

Yes None

rowMembers Parameter to specify the row members.
Example: "Name,Price,Discount %"

Yes None

columnMembers Parameter to specify the column members.
Example: "Name,Price,Discount %"

Yes None

povMembers Parameter to specify the POV members.
Example: "Name,Price,Discount %"

Yes None

exportDataDecim
alScale

Parameter to specify the number of decimal positions
(0-16) that will be returned when exporting data from
Essbase. If the default None is selected, the data that
is returned will not be formatted and will return as
Essbase returns it. Selecting a numeric value will
result in the exported data displaying that number of
digits to the right of the decimal point, wherever
applicable. For example, specifying 3 in the Decimals
field will result in the exported data being formatted to
display three digits to the right of the decimal point.
Selecting 0 formats the data to display a whole
number.
Example: A value 27.07000001 can be formatted and
written as 27.07 in the export data file if the value for
this parameter is set to 2.

No None

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payloads

Example 1: Executes the export data job ExportJobDaily and overrides the exportFileName
parameter.

{"jobType":"EXPORT_DATA","jobName":"ExportJobDaily",
 "parameters":{
 "exportFileName":"myExportfile.zip"
 }
}

Chapter 8
Manage Jobs

8-26

Example 2: Executes the export data job ExportJobDaily and overrides the delimiter,
exportSmartListAs, and includeDynamicMembers parameters.

{"jobType":"EXPORT_DATA","jobName":"ExportJobDaily",
"parameters":{
 "delimiter":"tab",
 "exportSmartListAs":"name",
 "includeDynamicMembers":"true"
 }

Example 3: Executes the export data job ExportJobDaily and overrides the cube parameter
only. This job will now execute for the cube Vis1ASO.

{"jobType":"EXPORT_DATA","jobName":"ExportJobDaily",
"parameters":{
 "cube":"Vis1ASO
 }
}

Example 4: Executes the export data job ExportJobDaily and overrides the cube name along
with the rowMembers, columnMembers, and povMembers parameters. This job will now execute
for the cube Vis1ASO.

{"jobType":"EXPORT_DATA","jobName":"ExportJobDaily",
"parameters":{
 "cube":"Vis1ASO",
 "rowMembers":"Current,Variance,Actual,Scenario",
 "columnMembers":"Statistics,Account",
 "povMembers":"Period,Year,Version,Entity,Product,Channel"
 }
}

Example 5: Executes the export data job ExportJobDaily and overrides the cube name along
with the parameters rowMembers, columnMembers, and povMembers. We use substitution
variables while overriding the rowMembers, columnMembers, and povMembers definition. This job
executes for the cube Vis1ASO.

{"jobType":"EXPORT_DATA","jobName":"ExportJobDaily",
 "parameters":{
 "cube":"Vis1ASO",
 "rowMembers":"ILvl0Descendants(&Param1)",
 "columnMembers":"ILvl0Descendants(&Param2)",
 "povMembers":"Period,Year,Version,&Param3,Product,Channel"
 }
}

Example 6: Executes the export data job ExportJobDaily and overrides the cube name along
with the parameters exportDataDecimalScale, rowMembers, and columnMembers. We use

Chapter 8
Manage Jobs

8-27

substitution variables while overriding the rowMembers, columnMembers, and povMembers
definition. This job executes for the cube Vis1ASO.

{"jobType":"EXPORT_DATA","jobName":"ExportJobDaily",
"parameters":{
 "cube":"Vis1ASO",
 "rowMembers":"ILvl0Descendants(&Param1)",
 "columnMembers":"ILvl0Descendants(&Param2)",
 "povMembers":"Period,Year,Version,&Param3,Product,Channel",
 "exportDataDecimalScale":"2"
 }
}

Example 7: Executes the export data job with all the mandatory parameters, cube, rowMembers,
columnMembers, and povMembers. Default values are assumed for other non-mandatory
parameters.

{"jobType": "EXPORT_DATA",
"parameters": {
 "cube": "Vis1ASO",
 "rowMembers": "ILvl0Descendants(&Param1)",
 "columnMembers": "ILvl0Descendants(&Param2)",
 "povMembers": "Period,Year,Version,&Param3,Product,Channel"
 }
}

Example 8: Executes the export data job with all the mandatory parameters, cube, rowMembers,
columnMembers, and povMembers. Decimal precision is set to 3. Default values are assumed for
other non-mandatory parameters.

{"jobType": "EXPORT_DATA",
"parameters":{
 "cube": "Plan1",
 "rowMembers": "ILvl0Descendants(&Param1)",
 "columnMembers": "ILvl0Descendants(&Param2)",
 "povMembers": "Period,Year,Version,&Param3,Product,Channel",
 "exportDataDecimalScale": 3
 }
}

Example 9: Executes the export data job with all the mandatory parameters, cube, rowMembers,
columnMembers, and povMembers. Decimal precision is set to 3. Dynamic members are not
exported. Default values are assumed for all other non-mandatory parameters.

{"jobType": "EXPORT_DATA",
"parameters":{
 "cube": "Plan1",
 "rowMembers": "ILvl0Descendants(&Param1)",
 "columnMembers": "ILvl0Descendants(&Param2)",
 "povMembers": "Period,Year,Version,&Param3,Product,Channel",
 "exportDataDecimalScale": 3,
 "includeDynamicMembers": false

Chapter 8
Manage Jobs

8-28

 }
}

Import Metadata
Imports metadata from a file in the Planning repository into the application using the import
metadata settings specified in a Planning job of type import metadata.

You can also override some of the parameters of the job definition while executing this job from
a REST API.

For Planning, Financial Consolidation and Close, and Tax Reporting, you can specify an error
file that captures the metadata records that are not imported for each dimension. If an error file
is specified, a separate error file is created for each dimension. The error files are then zipped
together and the zip file is stored in the Outbox where you can download the file using Inbox/
Outbox Explorer or tools like EPM Automate or REST APIs, for example, with the Download
API.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-15 Import Metadata

Name Description Require
d

Default

jobType Import Metadata or IMPORT_METADATA (both parameters
are supported)

Yes None

jobName The name of a job of type import metadata exactly as it is
already defined in the Planning application.

Example: importAccount

Yes None

Chapter 8
Manage Jobs

8-29

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-15 (Cont.) Import Metadata

Name Description Require
d

Default

importZipFileName Optionally, you can specify the name of the ZIP file from
which metadata is to be imported. The contents of the ZIP
file that you specify take precedence over the file names
defined in the job. The ZIP file may contain one or more
CSV files.

The file names containing metadata for dimensions should
match the import file names defined in the job or end with
_DIMENSIONNAME.csv; for example,
metadata_Entity.csv,
metadata_HSP_SmartLists.csv, and
metadata_Exchange Rates.csv.

Only metadata for the dimensions for which metadata
import is set up in the job is imported. Metadata for other
dimensions, if contained in the ZIP file, is ignored.

Example: {importZipFileName:importAccount.zip}

No The import file name
defined in the job
definition.

refreshCube You can override the option to perform a refresh cube
action defined in the job.

Allowed values are either true or false.

No "Refresh Database if
Import Metadata is
successful" parameter
of the job definition.

errorFile Optionally, create a separate error file for each dimension.
The error files are zipped with the name of this parameter.
The ZIP file is stored in the Outbox. You can download it
with the Download API. This API overrides any existing
error file with the same name
Example: ImportMetaDataErrorFile.zip

No No error files are
created.

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example: Executes the job ImportMetaDataJob and overrides only the importZipFileName
parameter.

{
 "jobType": "IMPORT_METADATA",
 "jobName": "ImportMetaDataJob",
 "parameters": {
 "importZipFileName": "myMetaDataDailyJob.zip"
 }
}

Example: Executes the job ImportMetaDataJob and overrides the errorFile parameter with a
value ImportMetaDataErrorFile.zip. If there are error records found during the Import
Metadata operation for one or more dimensions, a ZIP file called
ImportMetaDataErrorFile.zip is created in the repository that contains one error CSV file for
each failed dimension. The generated error file can be downloaded from the Outbox from the
job status page or using the Download REST API or EPM Automate downloadfile command.

{
 "jobType": "IMPORT_METADATA",

Chapter 8
Manage Jobs

8-30

 "jobName": "ImportMetaDataJob",
 "parameters": {
 "errorFile":"ImportMetaDataErrorFile.zip"
 }
}

Export Metadata
Use this REST API to export metadata into a file using the settings specified in a Planning job
of type export metadata. The file containing the exported metadata is stored in the Planning
repository.

You can also override some of the parameters of the job definition while executing this job from
a REST API.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-16 Export Metadata

Name Description Require
d

Default

jobType Export Metadata or EXPORT_METADATA (both parameters
are supported)

Yes None

jobName The name of a job of type export metadata exactly as it is
already defined in the Planning application.

Example: dailyAccountExport

Yes None

exportZipFileName Optionally, you can specify a file name for the exported
metadata. Metadata is exported as a ZIP file only.

The value must use JSON syntax.

Example: {exportZipFileName:Accountexport.zip}

No The file name for the
exported metadata will
be the same as Job
Name

For a sample URL, see Sample URL and Payload in Execute a Job.

Example Payload

Example: Executes the export metadata job "ExportMetadataDaily" and overrides the
exportZipFileName parameter.

{
 "jobType": "EXPORT_METADATA",
 "jobName": "ExportMetadataDaily",
 "parameters": {

Chapter 8
Manage Jobs

8-31

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

 "exportZipFileName": "dailyMetaData.zip"
 }
}

Cube Refresh
Use this REST API to refresh the Planning application cube. Typically, you refresh the cube
after importing metadata into the application.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-17 Cube Refresh

Name Description Required Default

jobType Cube Refresh or
CUBE_REFRESH (both
parameters are
supported)

Yes None

jobName Name of the job to run.
You must use the exact
name of a job that is
already defined in the
application.

Example: refreshcube

Yes None

allowedUsersDuri
ngCubeRefresh

Possible values:
Administrators or
All Users

No None

terminateActiveR
equestsBeforeCub
eRefresh

Possible values: true
or false

No None

logOffAllUsersBe
foreCubeRefresh

Possible values: true
or false

No None

allowedUsersAfte
rCubeRefresh

Possible values:
Administrators or
All Users

No None

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

{"jobType":"CUBE_REFRESH","jobName":"CubeRefresh"}

Chapter 8
Manage Jobs

8-32

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Sample Payload overriding parameters:

{"jobType":"CUBE_REFRESH","jobName":"MyRefreshCube","parameters":
{"allowedUsersDuringCubeRefresh":" All Users",
"terminateActiveRequestsBeforeCubeRefresh":"false","logOffAllUsersBeforeCubeRe
fresh":"true","allowedUsersAfterCubeRefresh":"Administrators"}}

Clear Cube
Use this REST API to clear specific data within input and reporting cubes.

You can clear the data using member selection or a valid MDX query. Using member selection,
you can also optionally clear related supporting details, comments, and attachments. You can
also elect to do a physical or logical clear of data. This gives you more flexibility and granularity
when clearing the cube.

NOTE: The Clear Cube job deletes the data you specify within input and reporting cubes, but it
does not delete the application definition in the application's relational tables.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-18 Clear Cube

Name Description Required Default

jobType Clear Cube or
CLEAR_CUBE (both
parameters are
supported)

Yes None

jobName Name of the job to run.
Important: You must
use the exact name of a
job that is already
defined in the
application.

Example: ClearPlan1

Yes None

cube Valid ASO cube name No As per the job definition

Chapter 8
Manage Jobs

8-33

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-18 (Cont.) Clear Cube

Name Description Required Default

members Valid member selection
that is comma
separated. Applicable
only for Partial Clear
Job, for an ASO cube,
defined with member
selection.
Example:
"ILvl0Descendants(E
xchange
Rates),Total
Expense"

No As per the job definition

mdxQuery Valid MDX query.
Applicable only for
Partial Clear Job, for an
ASO cube, defined with
MDX query support.
Example:
"Crossjoin({[Apr],
[May],[Jun]},
{[Expense1]})"

No As per the job definition

clearSupportingDeta
ils

Specify if supporting
details should be
cleared. Allowed values:
true or false.
Applicable only for
Partial Clear Job, for an
ASO cube, defined with
member selection.

No As per the job definition

clearComments Specify if comments
should be cleared.
Allowed values: true or
false. Applicable only
for Partial Clear Job, for
an ASO cube, defined
with member selection.

No As per the job definition

clearAttachments Specify if attachments
should be cleared.
Allowed values: true or
false. Applicable only
for Partial Clear Job, for
an ASO cube, defined
with member selection.

No As per the job definition

clearPhysicalOnEssb
ase

Specify if this is a
physical clear on
Essbase. Allowed
values: true or false.
Applicable only for
Partial Clear Job, for an
ASO cube, defined with
member selection or
MDX query support.

No As per the job definition

For a sample URL, see Sample URL and Payload in Execute a Job.

Chapter 8
Manage Jobs

8-34

Sample Payload

{"jobType":"CLEAR_CUBE", "jobName":"ClearPlan1"}
Example: Executes the clear job Clear_Partial_Basic, which is defined with member
selection, and overrides the cube and members parameters.

{
 "jobType": "Clear Cube",
 "jobName": "Clear_Partial_Basic",
 "parameters": {
 "cube": "HP1_ASO",
 "members": "ILvl0Descendants(Exchange Rates),Siblings(Total Expense)"
 }
}

Example: Executes the clear job Clear_Partial_Basic, which is defined with member
selection, and overrides the cube, clearSupportingDetails, clearComments, and other
parameters.

{
 "jobType": "Clear Cube",
 "jobName": "Clear_Partial_Basic",
 "parameters": {
 "cube":"HP1_ASO",
 "members":"ILvl0Descendants(Exchange Rates),Siblings(Total Expense)",
 "clearSupportingDetails":"false",
 "clearComments":false,
 "clearAttachments":false,
 "clearPhysicalOnEssbase":false
 }
}

Example: Executes the clear job Clear_Partial_Advanced, which is defined with the MDX
query, and overrides the mdxQuery parameter.

{
 "jobType": "Clear Cube",
 "jobName": "Clear_Partial_Advanced",
 "parameters": {
 "mdxQuery":"Crossjoin({[Apr],[May],[Jun]},{[Expense1]})"
 }
}

Example: Executes the clear job Clear_Partial_Advanced, which is defined with the MDX
query, and overrides the cube, mdxQuery, and clearPhysicalOnEssbase parameters.

{
 "jobType": "Clear Cube",
 "jobName": "Clear_Partial_Advanced",
 "parameters": {
 "cube":"HP1_ASO",
 "mdxQuery":"Crossjoin({[Apr],[May],[Jun]},{[Expense1]})",
 "clearPhysicalOnEssbase":false

Chapter 8
Manage Jobs

8-35

 }
}

Administration Mode
Changes the login level for a Planning application. If you set login level to Administrators, all
Interactive Users and Planners will be logged off of the application upon completion of the job.
For details on administration mode, see Scheduling Jobs.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-19 Parameters

Name Description Required Default

jobType Administration Mode Yes None

jobName The job name to be
used for this job
execution. Example:
AppAdminJob

No Administration Mode

loginLevel Specify the login level
for users using
loginLevel. Possible
values are
Administrators or All
Users

Yes None

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example: This request will change the login level of the application to "Administrators" level.

{
 "jobType": "Administration Mode",
 "jobName": "AppAdminJob",
 "parameters": {
 "loginLevel": "Administrators"
 }
}

Chapter 8
Manage Jobs

8-36

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Compact Cube
Use this REST API to compact the outline file of an ASO cube.

Compaction helps keep the outline file at an optimal size. Compacting the outline does not
clear the data. For more information, see Scheduling Jobs.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-20 Parameters

Name Description Required Default

jobType Compact Cube Yes None

jobName The job name to be
used for this job
execution.
Example:
CompactCube

No Compact Outline

cubeName Name of the ASO cube Yes None

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example: This request will compact the outline of Vis1ASO ASO cube.

{
 "jobType": "Compact Cube",
 "jobName": "CompactCube",
 "parameters": {
 "cubeName": "Vis1Aso"
 }
}

Restructure Cube
Performs a full restructure of a BSO cube to eliminate or reduce fragmentation. For more
information, see Scheduling Jobs.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Chapter 8
Manage Jobs

8-37

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Required Roles

Service Administrator

REST Resource

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-21 Parameters

Name Description Required Default

jobType Restructure Cube Yes None

jobName The job name to be
used for this job
execution. Example:
RestructureCube

No Restructure Cube

cubeName Name of the BSO cube Yes None

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example: This request will restructure Plan1 BSO

{
 "jobType": "Restructure Cube",
 "jobName": "RestructureCube",
 "parameters": {
 "cubeName": "Plan1"
 }
}

Merge Data Slices
Merges incremental data slices of an ASO cube. Fewer slices improve a cube’s performance.
You can merge all incremental data slices into the main database slice or merge all
incremental data slices into a single data slice without changing the main database slice. You
can optionally remove cells that have a value of zero. For more information, see Scheduling
Jobs.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json

Chapter 8
Manage Jobs

8-38

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-22 Parameters

Name Description Required Default

jobType Merge Data Slices Yes None

jobName The job name to be
used for this job
execution. Example:
MergeDataSlice

No Merge Data Slices

cubeName Name of the ASO cube Yes None

keepZeroCells Possible values are
true or false

Yes None

mergeSliceType Possible values are
allIncrementalSlicesI
nMain (Merge all into
the main slice)
Or
allIncrementalSlicesI
nOneIncremental
(Merge all incremental
into a single
incremental slice)

Yes None

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example: This request will merge all incremental data slices in the main data slice and keep
zero value cells.

 {
 "jobType": "Merge Data Slices",
 "jobName": "MergeDataSlice",
 "parameters": {
 "cubeName": "VisASO",
 "mergeSliceType": "allIncrementalSlicesInMain",
 "keepZeroCells": "true"
 }
}

Optimize Aggregation
Improves the performance of ASO cubes. This job has two actions: Enable query tracking and
Execute aggregation process. It performs an aggregation, optionally specifying the maximum
disk space for the resulting files, and optionally basing the view selection on user querying
patterns. This API is only applicable to aggregate storage databases. For information about
scheduling jobs, see Scheduling Jobs.

Before using this API, you must first enable query tracking to capture tracking statistics on the
aggregate storage cube. Then, after you enable query tracking, you must allow sufficient time
to collect user data-retrieval patterns before you execute the aggregation process based on

Chapter 8
Manage Jobs

8-39

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html

query data. The execute aggregation process deletes existing aggregated views and
generates optimized views based on the collected query tracking data.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/jobs/
{jobId}

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-23 Parameters

Name Description Required Default

jobType Optimize Aggregation Yes None

jobName The job name to be
used for this job
execution

No Optimize Aggregation

parameters Parameters required
for the job

Yes None

cubeName Name of the ASO cube Yes None

type Can take one of these
values:
enableQueryTracking
or
executeAggregationP
rocess

Yes None

useQueryData Aggregate the views
the server selects
based on collected user
querying patterns. This
option is only available
if query tracking is
turned on. Permissible
values: true or false.
Default: false.
Applicable only if type
is
executeAggregationP
rocess.

No None

Chapter 8
Manage Jobs

8-40

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-23 (Cont.) Parameters

Name Description Required Default

includeAlternateRol
lups

Include secondary
hierarchies (with
default level usage) in
the view selection.
Permissible values:
disable or enable.
Default: disable (no
secondary hierarchies
are considered).
Applicable only if type
is
executeAggregationP
rocess.

No None

growthSizeRatio Aggregates the views
the server selects until
the maximum growth
of the aggregated
database exceeds the
limits you specify. The
value can be a real
number such as 1.01.
Default is that the
database will grow
without any growth
ratio limit. Applicable
only if type is
executeAggregationP
rocess .

No None

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example 1: This request will enable query tracking on the Vis1ASO cube.

{
 "jobType": "Optimize Aggregation",
 "jobName": "CubeOptimizeAggr",
 "parameters": {
 "cubeName": "Vis1ASO",
 "type": "enableQueryTracking"
 }
}

Example 2: This request will execute the aggregation process on the Vis1ASO cube.

{
 "jobType": "Optimize Aggregation",
 "jobName": "CubeOptimizeAggr",
 "parameters": {
 "cubeName": "Vis1ASO",
 "type": "executeAggregationProcess"

Chapter 8
Manage Jobs

8-41

 }
}

Example 3: This request will execute aggregation process on the Vis1ASO cube. Aggregation
process will use the query tracking data, will not include alternate roll ups, and use growth size
ratio as 1.01.

{
 "jobType": "Optimize Aggregation",
 "jobName": "CubeOptimizeAggr",
 "parameters": {
 "cubeName": "Vis1ASO",
 "type": "executeAggregationProcess",
 "useQueryData": "true",
 "includeAlternateRollups": "disable",
 "growthSizeRatio": "1.01"
 }
}

Import Security
Imports the security records or access control list (ACL) records from a Comma Separated
Values (CSV) file. For information about access permissions to application artifacts, see
Setting Up Access Permissions.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Excel File Format

• Object Name: The name of the object for which the ACL is defined

• Name: The name of the user or group for which the ACL is defined

• Parent: The name of the parent of the object

• Is User: The flag (Y or N) that determines if the ACL is defined for a user or for a group

• Object Type: The type of object, for example, Forms folder
• Access Type: The type of privilege, such as READ or READWRITE

• Access Mode: Additional information, such as if the ACL is applicable on the descendants

• Remove: To remove a particular ACL, set this to Y

All possible values:

Object Type:

• SL_FORM - Form

• SL_COMPOSITE - Composite Form

• SL_TASKLIST - Tasklist

• SL_CALCRULE - Rule

• SL_FORMFOLDER - Form Folder

• SL_CALCFOLDER - Rule Folder

• SL_DIMENSION - Dimension

Chapter 8
Manage Jobs

8-42

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/setting_up_access_permissions.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

• SL_CALCTEMPLATE - Template

• SL_REPORT - Management Report

• SL_REPORTSSHOT - Management Report Snapshot

Access Type:

• NONE - None

• READ - Read

• WRITE - Write

• READWRITE - Read Write

• LAUNCH - Launch

Access Mode:

• MEMBER

• CHILDREN

• @ICHILDREN

• @DESCENDANTS

• @IDESCENDANTS

CSV File Example:

Object Name,Name,Parent,Is User,Object Type,Access Type,Access Mode,Remove
"Exchange Rates to USD","ats_user3","Y","SL_FORM","READWRITE","MEMBER","N"
"Exchange Rates to USD","ats_user4","Y","SL_FORM","READWRITE","MEMBER","N"
"Exchange Rates to USD","ats_user15","Y","SL_FORM","READ","MEMBER","N"
"Exchange Rates to USD","ats_user10","Y","SL_FORM","NONE","MEMBER","N"
"Calculate Benefits","group_1","N","SL_COMPOSITE","READWRITE","MEMBER","N"
Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-24 Parameters

Name Description Required Default

jobType Import Security Yes None

jobName The job name to be
used for this job
execution. Example:
ImportSecurity

No Import Security

Chapter 8
Manage Jobs

8-43

Table 8-24 (Cont.) Parameters

Name Description Required Default

fileName The input CSV file for
import. The file
containing the ACL
records should be
present in the
Planning Cloud
repository.

Yes None

clearAll Clear existing access
permissions when
importing new access
permissions. Possible
values are true or
false

No False

errorFile Optionally, create a
separate error file for
recording any errors
that occur during the
import process.
The file containing the
error messages is
stored in the Outbox.
You can download it
with theDownload API.
This API overrides any
existing error file with
the same name.

No None

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example 1: Imports security records from the input file ImportSecurityRecordsFile.csv.
Existing security records are retained.

{
 "jobType": "Import Security",
 "jobName": "ImportSecurity",
 "parameters": {
 "fileName": "ImportSecurityRecordsFile.csv"
 }
}

Example 2: Imports security records from the input file ImportSecurityRecordsFile.csv.
Clears existing security records before importing.

{
 "jobType": "Import Security",
 "jobName": "ImportSecurity",
 "parameters": {
 "fileName": "ImportSecurityRecordsFile.csv"
 "clearAll": "true"

Chapter 8
Manage Jobs

8-44

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/download.html

 }
}

Example 3: Imports security records from the input file ImportSecurityRecordsFile.csv and
exports the error messages to the file SecurityImportErrors.txt. Existing security records
are retained.

{
 "jobType": "Import Security",
 "jobName": "ImportSecurity",
 "parameters": {
 "fileName": "ImportSecurityRecordsFile.csv"
 "clearAll": "true"
 "errorFile": "SecurityImportErrors.txt"
 }
}

Export Security
Exports the security records or access control list (ACL) records for specified users or groups
to a Comma Separated Values (CSV) file. For information about access permissions to
application artifacts, see Setting Up Access Permissions.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-25 Parameters

Name Description Required Default

jobType Export Security Yes None

jobName The name of this job.
Example:
ExportSecurity

No Export Security

Chapter 8
Manage Jobs

8-45

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/setting_up_access_permissions.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-25 (Cont.) Parameters

Name Description Required Default

fileName The name of the file to
which records should
be exported. The file
containing the
exported data is stored
in the Planning
repository. If fileName
is not specified, a file is
auto-generated with a
name containing the
user name, current
date, and time stamp.
For example,
test_admin_Security
Records_2019-02-26-
04-34-45-420.csv.

No The file name is auto-
generated

exportUsers Comma separated user
names. Only ACL
records related to the
specified users are
exported.

No None

exportGroups Comma separated user
names. Only ACL
records related to the
specified groups are
exported.

No None

Notes:

• This job can take only exportGroups or exportUsers at one time. If you need to export
groups and users, you must run the job twice, once with each parameter.

• If a user name or group name contains a comma, escape the comma in the request. For
example, if a user name is test,User, the request should contain test\\,User.

• For the file format, see the definition in Import Security Records.

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example 1: Exports all security records to the ExportSecurityRecordsFile.csv file.

{
 "jobType": "Export Security",
 "jobName": "ExportSecurity",
 "parameters": {
 "fileName": "ExportSecurityRecordsFile.csv"
 }
}

Chapter 8
Manage Jobs

8-46

Example 2: Exports security records of two groups, group1 and group2, to the
ExportSecurityRecordsFile.cv file.

{
 "jobType": "Export Security",
 "jobName": "ExportSecurity",
 "parameters": {
 "exportGroups": "group1,group2"
 "fileName": "ExportSecurityRecordsFile.csv"
 }
}

Example 3: Exports security records of two users, test1 and test,User2 to the
ExportSecurityRecordsFile.csv file. Note that one user name contains a comma in it.

{
 "jobType": "Export Security",
 "jobName": "ExportSecurity",
 "parameters": {
 "exportUsers": "test1,test\\,User2"
 "fileName": "ExportSecurityRecordsFile.csv"
 }
}

Export Audit
Exports the audit records to a Comma Separated Values (CSV) file. The output CSV file
contains the first character as a Byte Order Mark (BOM) character \ufeff. The API writes an
encrypted application identifier following the BOM character. This application identifier is
written between double-quotes. Headers for the CSV file follow the application identifier. For
more information, see Auditing Tasks and Data.

You can use an optional excludeApplicationId parameter to not write the application identifier
in the export file. Exported audit reports without the application identifier cannot be imported
back into the application.

The generated CSV file is compressed and the output is a ZIP file. The file can be downloaded
using the Download REST API.

Required Roles

Service Administrator

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Chapter 8
Manage Jobs

8-47

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/auditing_tasks_and_data.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/download.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-26 Parameters

Name Description Required Default

jobType Export Audit Yes None

jobName The job name to be
used for this job
execution. Example:
ExportAudit

No Export Audit

userNames Comma separated user
names. Audit records
created by only the
specified users are
exported. If not
specified, audit records
created by all users are
exported.

No None

fileName The name of the file to
which records should
be exported. The file
containing the
exported data is stored
in the Oracle Planning
and Budgeting Cloud
repository.
If fileName is not
specified, a file is auto-
generated with a name
containing the user
name, current date,
and time stamp. For
example,
test_admin_AuditRec
ords_2019-02-26-04-
34-45-420.zip

No The file name is auto-
generated

Chapter 8
Manage Jobs

8-48

Table 8-26 (Cont.) Parameters

Name Description Required Default

nDays Number of days for
which audit records
should be exported.
Possible values are:
• 1: Export audit

records for the last
24 hours

• 2: Export audit
records for the last
two days

• 7: Export audit
records for the last
seven days

• 30: Export audit
records for the last
30 days

• 60: Export audit
records for the last
60 days

• 180: Export all
existing audit
records for the last
180 days

• All: Export all
audit records
Note: Audit
information is
maintained for up
to 365 days from
the current system
date.

No 7

excludeApplicationI
d

Optionally, you can
specify if the
application identifier
should be written in
the export file.
Possible values: true
or false
This parameter can
benefit those
customers who do not
want the application
identifier to be
included in the export
file to help import into
their own systems.
This export file cannot
be used to import into
an EPM Cloud
environment.

No false

Notes:

• This job does not export records based on group names.

Chapter 8
Manage Jobs

8-49

• If a user name contains a comma, escape the comma in the request. For example, if a
user name is test,User then add test\\,User to the request.

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example 1: Exports the last 180 days of audit records to the ExportAuditLast180Days.zip file.

{
 "jobType": "Export Audit",
 "jobName": "Export180DaysAudit",
 "parameters": {
 "fileName": "ExportAuditLast180Days.zip",
 "ndays": "180"
 }
}

Example 2: Exports the last seven days of audit records created by planner1 and planner2.
Records are exported to a zip file with an auto-generated file name.

{
 "jobType": "Export Audit",
 "jobName": "AllAuditRecordsOfPlanners",
 "parameters": {
 "userNames": "planner1, planner2"
 }
}

Example 3: Exports the last 180 days of audit records to the ExportAuditLast180Days.zip file.
The application identifier will be not written in the generated file. This export file cannot be used
to import into an EPM Cloud environment.

{
 "jobType": "Export Audit",
 "jobName": "Export180DaysAudit",
 "parameters": {
 "fileName": "ExportAuditLast180Days.zip",
 "ndays": "180",
 "excludeApplicationId": "true"
 }
}

Export Job Console
Use this REST API to export the job console records to a Comma Separated Values (CSV) file.

The output CSV file contains the first character as a Byte Order Mark (BOM) character, \ufeff.
The API writes an encrypted application identifier following the BOM character. This application
identifier is written between double-quotes. Headers for the CSV file follow the application
identifier.

Chapter 8
Manage Jobs

8-50

You can use an optional excludeApplicationId parameter to not write the application identifier
in the export file. Exported job console data files without the application identifier cannot be
imported back into the application.

The generated CSV file is compressed and the output is a ZIP file. The file can be downloaded
using the Download REST API.

To view pending jobs, see Viewing Pending Jobs and Recent Activity.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-27 Parameters

Name Description Required Default

jobType Export Job Console Yes None

jobName The job name to be
used for this job
execution. Example:
ExportWeeklyJobStat
usRecords

No Export Job Console

userNames Comma separated user
names. Job console
records created by
only the specified
users are exported. If
not specified, job
console records
created by all users are
exported.

No None

Chapter 8
Manage Jobs

8-51

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/viewing_pending_jobs_and_recent_activity.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-27 (Cont.) Parameters

Name Description Required Default

fileName The name of the file to
which records should
be exported. The file
containing the
exported data is stored
in the Planning
repository.
If fileName is not
specified, a file is auto-
generated with a name
containing the user
name, current date,
and time stamp. For
example,
test_admin_JobConso
leRecords_2019-02-2
6-04-34-45-420.zip

No The file name is auto-
generated

ndays Number of days for
which audit records
should be exported.
Possible values are.
• 1: Export job

console records
for the last 24
hours

• 2: Export job
console records
for the last two
days

• 7: Export job
console records
for the last seven
days

• 30: Export job
console records
for the last 30 days

• 60: Export job
console records
for the last 60 days

• All: Export all job
console records

No 7

jobNames Comma-separated job
names for which job
console records should
be exported.

No None

Chapter 8
Manage Jobs

8-52

Table 8-27 (Cont.) Parameters

Name Description Required Default

jobTypes Comma-separated job
codes for which job
console records should
be exported.
Possible values are:
• ALL
• Rules or RULES
• Ruleset or

RULESET
• Clear Cell Details

or
CLEAR_CELL_DET
AILS

• Copy Data or
COPY_DATA

• Invalid
Intersection
Report/
INVALID_INTERSE
CTION_RPT

• Copy Versions or
COPY_VERSIONS

• Content Upgrade
or
CONTENT_UPGRA
DE

• Plan Type Map or
PLAN_TYPE_MAP

• Import Data or
IMPORT_DATA

• Export Data or
EXPORT_DATA

• Export Metadata
or
EXPORT_METADAT
A

• Import Metadata
or
IMPORT_METADA
TA

• Cube Refresh or
CUBE_REFRESH

• Clear Cube or
CLEAR_CUBE

• Administration
Mode or
ADMIN_MODE

• Compact Cube or
COMPACT_CUBE

• Restructure Cube
or
RESTRUCTURE_CU
BE

• Merge Data Slices
or

No Rules

Chapter 8
Manage Jobs

8-53

Table 8-27 (Cont.) Parameters

Name Description Required Default

MERGE_DATA_SLI
CES

• Optimize
Aggregation or
OPTIMIZE_AGGRE
GATION

• Import Security or
SECURITY_IMPORT

• Export Security or
SECURITY_EXPORT

• Export Audit or
AUDIT_EXPORT

• Export Job Console
or
JOBCONSOLE_EXP
ORT

• Sort Members or
SORT_MEMBERS

• Smart Push or
SMART_PUSH

• Import Exchange
Rates or
IMPORT_EXCHAN
GE_RATES

• Execute Bursting
Definition or
EXECUTE_MR_BUR
ST

jobStatusCodes Comma-separated
status code of the jobs
for which job records
are exported. Possible
values are:
1 - Processing

2 - Completed
successfully
3 - Failed with errors

4 - Completed with
unknown status
5 - Completed with
threshold violation
status
6 - Pending
cancellation
7 - Cancelled

8 - Completed with
errors
9 - Completed with
warnings
all - All jobs with any
status

No 2

Chapter 8
Manage Jobs

8-54

Table 8-27 (Cont.) Parameters

Name Description Required Default

exportErrorDetails If true, exports the
details of failed/error
jobs as separate error
log file in the final
output file.
Job status details of
jobs having one of the
status listed below are
exported in separate
files.
• Error
• Unknown
• Completed with

Threshold
Exception

• Completed with
Errors

• Completed with
Warnings

No true

topCountDuration Filters the top n job
status records by
completion time. This
is useful for finding the
longest running jobs.
For example, enter 10
for this parameter to
review the top 10
longest running jobs,
as in this example:

"topCountDuration
":"10"

No 0
Represents all records

excludeApplicationI
d

Optionally, you can
specify if the
application identifier
should be written in
the export file.
Possible values: true
or false
This parameter can
benefit those
customers who do not
want the application
identifier to be
included in the export
file to help import into
their own systems.
This export file cannot
be used to import into
an EPM Cloud
environment.

No false

Chapter 8
Manage Jobs

8-55

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example 1: Exports the job console records for all default parameters into the NewFile.csv file.
Exports status of all Rule jobs completed in the last seven days.

{
 "jobType":"JOBCONSOLE_EXPORT",
 "jobName":"AllJobConsoleExports",
 "parameters":{"fileName":"NewFile.csv"}
}

Example 2: Exports the job console records for Rule and Export Data jobs that completed
normally or with an error status over the last month into the exportFile.csv file. Job details of
the failed jobs are exported in separate files in the final compressed file.

{
 "jobType":"JOBCONSOLE_EXPORT",
 "parameters":{"fileName":"exportFile.csv", "jobTypes": "Rules,
EXPORT_DATA", "jobStatusCodes": "2,3", "ndays":"30"}
}

Example 3: Exports the job console records for the jobs named Daily Consolidation and Smart
Push to a Reporting Cube. Includes jobs that completed normally or with an error status over
the last month into the exportFile.csv file. Job details of the failed jobs are not exported in
separate files because exportErrorDetails is false.

{
 "jobType":"JOBCONSOLE_EXPORT",
 "parameters":{"fileName":"exportFile.csv", "jobNames":"Daily
Consolidation, Smart Push to Reporting Cube", "jobStatusCodes": "2,3",
"ndays":"30", "exportErrorDetails":"false"}
}

Example 4: Exports the top 10 longest running jobs:

{
 "jobType":"JOBCONSOLE_EXPORT",
 "parameters":{"fileName":"exportFile.csv", "jobStatusCodes": "all",
"ndays":"all", "jobTypes":"all", "exportErrorDetails":"false",
"topCountDuration":"10"}
}

Example 5: Exports the job console records for all default parameters into to the NewFile.csv
file. This exports status of all Rule jobs completed in the last seven days. The application
identifier will be not written in the generated file. This export file cannot be used to import into
an EPM Cloud environment.

{
 "jobType":"JOBCONSOLE_EXPORT",
 "jobName":"AllJobConsoleExports",
 "parameters":{
 "fileName":"NewFile.csv",

Chapter 8
Manage Jobs

8-56

 "excludeApplicationId": "true"
 }

Sort Members
Sorts the dimension members of a business process.

You can sort Entity, Account, Scenario, Version, and user-defined custom dimension members.
You cannot sort Period, Years, or Currency dimension members. This feature is only supported
for the Planning, Module, and Free Form business processes. For more information, see
Sorting Members.

For Planning Module applications, you cannot sort these dimensions:

• Any dense dimension

• The "Plan Element" dimension, even if it is renamed, from Financials

• The "Project Element" dimension, even if it is renamed, from Projects

After sorting members, administrators must perform a cube refresh.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-28 Parameters

Name Description Required Default

jobType Sort Members Yes None

jobName The job name to be
used for this job
execution. Example:
SortEntity

No Sort Members

member Parent member whose
children or
descendants are being
sorted.

Yes None

order Order of sorting.
Possible values are:
• ascending
• descending

No ascending

Chapter 8
Manage Jobs

8-57

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/sorting_members.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-28 (Cont.) Parameters

Name Description Required Default

type Sort children or
descendants.
Possible values are:
• children - sorting

by children affects
only members in
the level
immediately
below the
specified member

• descendants -
sorting by
descendants
affects all
descendants of the
specified member.

No children

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example 1: Sorts the child members of the Account dimension in ascending order.

{
 "jobType": "Sort Members",
 "jobName": "SortAccount",
 "parameters":
 {
 "member":"Account"
 }
}

Example 2: Sorts the child members of the Account dimension in descending order.

{
 "jobType": "Sort Members",
 "jobName": "SortAccountDesc",
 "parameters":
 {
 "member":"Account", "order":"descending"
 }
}

Example 3: Sorts the descendants of member account200 in descending order.

{
 "jobType": "Sort Members",
 "jobName": "SortAccount200Desc",
 "parameters":

Chapter 8
Manage Jobs

8-58

 {
 "member":"account200", "order":"descending", "type":"descendants"
 }
}

Import Exchange Rates
Export the Exchange Rates template in the Planning repository and change the rates if
required. You can then import the rates into the application using the Import Exchange Rates
settings specified in a Planning job of type import exchange rates. For more information, see
Job Types.

You can also override some of the parameters of the job definition while executing this job from
a REST API.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-29 Import Exchange Rates

Name Description Required Default

jobType Import Exchange
Rates or
IMPORT_EXCHANGE_RAT
ES (both parameters
are supported)

Yes None

jobName The name of the job to
be used for this job
execution.
Important: You must
use the exact name of
a job that is already
defined in Planning as
described in Managing
Jobs.

Example:
importNewExchangeRa
te

Yes None

Chapter 8
Manage Jobs

8-59

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-29 (Cont.) Import Exchange Rates

Name Description Required Default

importFileName Optionally, you can
specify the name of the
CSV file from which
exchange rates are to
be imported.
If you specify a file
name, the Import
Exchange Rate file
name in the job is
ignored.

No The source file of the
job definition

includeMetaData You can override the
option to include
metadata. Allowed
value is true or false.

No Include Metadata
parameter of the job
definition

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example 1: Executes the import exchange rates job MyExchangeRates and overrides the
importFileName parameter.

{"jobType":"Import Exchange Rates","jobName":"MyExchangeRates",
 "parameters":{
 "importFileName":"ExportExchangeRatesTemplate.csv"
 }
}

Example 2: Executes the import exchange rates job MyExchangeRates and overrides the
importFileName and includeMetaData parameters.

{"jobType":"Import Exchange Rates","jobName":"MyExchangeRates",
 "parameters":{
 "importFileName":"ExchangeRateTemplate2.csv",
 "includeMetaData":"false"
 }
}

Auto Predict
Schedule predictions using the Auto Predict job. With Auto Predict, administrators can define a
prediction to predict future performance based on historical data and schedule a job to run that
prediction definition, automating the prediction process. For details about Auto Predict, see
Setting Up Predictions to Run Automatically in Administering Planning.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Job Types.

Required Roles

Service Administrator

Chapter 8
Manage Jobs

8-60

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/auto_predict_about_100x011f6b67.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 8-30 Import Exchange Rates

Name Description Required Default

jobType Auto Predict Yes None

jobName The name used to
define Auto Predict in
the user interface in
Overview, then
Actions, and then Auto
Predict. This name will
be used for the job
execution.
Important: You must
use the exact name of
a job that is already
defined in Planning as
described in Managing
Jobs.

Example:
Prediction1

Yes None

forceRun If this is set to true,
the job will always
execute. If not, the job
executes only for the
first time. In
subsequent attempts, if
there is no change in
the job definition, this
message displays:
"Auto Prediction
definition hasn't
changed since the last
time the Auto Predict
job ran; the job will not
execute. If you want to
run the Auto Predict
definition, for example
if there are new actual
values, you can run the
Auto Predict definition
from the Auto Predict
page. From the Actions
menu, click Actions
and then click Run."

No False

Chapter 8
Manage Jobs

8-61

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-30 (Cont.) Import Exchange Rates

Name Description Required Default

paginatedDim Speeds up an Auto
Predict job by running
predictions in parallel
in separate prediction
threads. For the
parallel jobs to be
efficient, choose a
dimension that will
result in evenly spread
data for each
prediction thread.
Example: Entity

No False

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload

Example 1: Executes the Auto Predict job ASO->BSO.

{
 "jobType": "Auto Predict",
 "jobName": "ASO->BSO",
 "parameters": {
 "forceRun": true,
 "paginatedDim": "Entity"
 }
}

Import Cell-Level Security
This REST API imports cell-level security settings from a ZIP file that contains an Excel file
with cell-level security definitions into Planning or Tax Reporting business processes. Cell-level
security enables Service Administrators to restrict who can view data in the application by
defining rules that remove read or write access to cells that a user would normally have access
to due to their regular security.

The file must be present in the Inbox. You can use the Upload REST API to upload the file. Any
rejected records are generated in an Excel file that is zipped and copied to the Outbox.

The best method to get the import file format template is to export cell-level security from the
application.

The following is a general explanation of the Excel file. The file contains two Excel worksheets:

1. Rules - contains cell-level security definitions, dimensions included, properties such as
Unspecified Valid, and Additional Dims Required

2. Sub Rules - contains member selections and exclusions

The Rules worksheet has the following column headings:

• Name

• Position

Chapter 8
Manage Jobs

8-62

• Description

• Enabled

• Valid Cubes - This column can contain either All or a list of comma-separate names of
cubes, such as Plan1, Plan2

• Anchor Dim Name

• Anchor Dimension Apply to Unselected Members

• Dim1

• Dim1 Required

• Dim2

• Dim2 Required

• DimX

• DimX Required

The Sub Rules worksheet has the following column headings:

• Name - This column must contain the name of the Rules from the first worksheet

• Users

• User Groups

• Restriction - This column can contain Deny Read or Deny Write
• Anchor Members

• Anchor Exclusion

• Dim1 Members

• Dim1 Exclusion

• Dim2 Members

• Dim2 Exclusion

• DimX Members

• DimX Exclusion

Required Roles

Service Administrator

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
jobs

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For
parameters that are common to all jobs, see Execute a Job.

Chapter 8
Manage Jobs

8-63

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-31 Import Cell-Level Security

Name Description Required Default

jobType Import Cell-Level Security or
IMPORT_CELL_LEVEL_SECURITY

Yes None

jobName The name of the job to be used. This
job name appears on the job console.

Example: ImportCLSPlan1

No Import Cell-Level Security
Definitions

fileName The name of the ZIP file containing the
input Excel file. The file must be
present in the Inbox.

Before using this REST API, you can
use the Upload REST API to upload
the file.

Yes None

errorFile Optionally, create a separate error file
for recording any errors that occur
during the import process. If this is not
specified, an error file is auto-
generated with a name containing the
user name, current date, and time
stamp. For example,
admin_ImportError_2020-
02-26-04-34-45-420.txt.
The file containing the error messages
is stored in the Outbox. You can
download it using the Download API.
This API overrides any existing error
file with the same name.

No The file is auto-generated

For a sample URL, see the sample URL and payload in Execute a Job

Example 1: Imports cell-level security records from the input file ImportCLSRecordsFile.zip.

{
 "jobType": "Import Cell-Level Security",
 "jobName": "ImportCLSJob",
 "parameters": {
 "fileName": "ImportCLSRecordsFile.zip"
 }
}

Example 2: Imports cell-level security records from the input file ImportCLSRecordsFile.zip
and exports the error messages to the file ImportCLSFileLog.txt.

{
 "jobType": "Import Cell-Level Security",
 "jobName": "ImportCLSJob",
 "parameters": {
 "fileName": "ImportCLSRecordsFile.zip",
 "errorFile": "ImportCLSRecordsFileLog.txt"
 }
}

Chapter 8
Manage Jobs

8-64

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/download.html

Export Cell-Level Security
This REST API exports cell-level security settings from Planning or Tax Reporting into a ZIP
file that contains an Excel file. Cell-level security enables Service Administrators to restrict who
can view data in the application by defining rules that remove read or write access to cells that
a user would normally have access to due to their regular security.

The generated file is compressed, and the output is a ZIP file that is added to the Outbox. You
can download the file using the Download REST API.

Note the following requirements for the format of the Excel file used with this REST API.

The exported Excel file contains two worksheets with these names:

1. Rules
2. Sub Rules
The Rules worksheet has the following column headings:

• Name

• Position

• Description

• Enabled

• Valid Cubes - This column contains either All or a list of comma-separate names of
cubes, such as Plan1, Plan2

• Anchor Dim Name

• Anchor Dimension Apply to Unselected Members

• Dim1

• Dim1 Required

• Dim2

• Dim2 Required

• DimX Members

• DimX Required

The Sub Rules worksheet has the following column headings:

• Name - This column contains the names of the Rules from the first sheet

• Users

• User Groups

• Restriction - This column can contain Deny Read or Deny Write
• Anchor Members

• Anchor Exclusion

• Dim1 Members

• Dim1 Exclusion

• Dim2 Members

• Dim2 Exclusion

Chapter 8
Manage Jobs

8-65

• DimX Members

• DimX Exclusion

Required Roles

Service Administrator

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
jobs

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For
parameters that are common to all jobs, see Execute a Job.

Table 8-32 Export Cell Level Security

Name Description Required Default

jobType Export Cell-Level Security or
EXPORT_CELL_LEVEL_SECURITY

Yes None

jobName The name of the job to be used. This
job name appears on the job console.

Example: ExportCLSDPlan1

No Export Cell-Level Security
Definitions

fileName The name of the ZIP file that will be
created to hold the Excel file
containing cell-level security
information. The file containing the
exported data is stored in the Outbox.

Yes None

names Optionally, include a comma-separated
list of cell-level security definitions in
the application. Information from each
definition is exported to a separate
Excel file and then zipped. For
example, the list could contain
CLSDAccountPeriod,CLSDEntityPe
riod,CLSDProductPeriod .

If this parameter is not provided, all
cell-level security records are
exported.

No All records are exported

For a sample URL, see the sample URL and payload in Execute a Job

Example 1: Exports all cell-level security records to the file ExportCLSDRecordsFile.zip.

Chapter 8
Manage Jobs

8-66

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Sample Payload

{
 "jobType": "Export Cell-Level Security",
 "jobName": "ExportCellLevelSecurityJob",
 "parameters": {
 "fileName": "ExportCLSDRecordsFile.zip"
 }
}

Example 2: Exports three cell-level security records with names CLSDAccountPeriod,
CLSDEntityPeriod, and CLSDProductPeriod to the file Export3CLSDRecordsFile.zip.

{
 "jobType": "Export Cell-Level Security",
 "jobName": "ExportCellLevelSecurityJob",
 "parameters": {
 "fileName": "Export3CLSDRecordsFile.zip",
 "names": "CLSDAccountPeriod,CLSDEntityPeriod,CLSDProductPeriod"
 }
}

Import Valid Intersections
This REST API imports valid intersections groups from a ZIP file that contains an Excel file with
valid intersection definitions into a Financial Consolidation and Close, Planning, or Tax
Reporting business process.

The Excel file must be present in the Inbox. You can use the Upload REST API to upload the
file. Any rejected records are generated in an Excel file that is zipped and copied to the
Outbox.

The following is a general explanation of the Excel file. The file contains two Excel worksheets:

1. Rules - defines the intersection group, dimensions included, and properties such as
Unspecified Valid and Additional Dims Required

2. Sub Rules - provides member selections and exclusions

The Rules worksheet has the following column headings.

• Name

• Position

• Description

• Enabled

• Valid Cubes - This column can contain either All or a list of comma-separate names of
cubes, such as Plan1, Plan2

• Anchor Dim Name

• Anchor Dimension Apply to Unselected Members

• Dim1

• Dim1 Required

• Dim2

Chapter 8
Manage Jobs

8-67

• Dim2 Required

• DimX

• DimX Required

The Sub Rules worksheet must have the following column headings:

• Name - This column must contain the name of the Rule from the first worksheet

• Users

• User Groups

• Restriction - This column can contain Deny Read or Deny Write
• Anchor Members

• Anchor Exclusion

• Dim1 Members

• Dim1 Exclusion

• Dim2 Members

• Dim2 Exclusion

• DimX Exclusion

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
jobs

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For
parameters that are common to all jobs, see Execute a Job.

Table 8-33 Import Valid Intersections

Name Description Required Default

jobType Import Valid Intersections or
IMPORT_VALID_INTERSECTIONS

Yes None

jobName The name of the job to be used for
this job execution, exactly as it is
defined in the application.

Example: ImportVIAccountPeriod

No Import Valid Intersections

Chapter 8
Manage Jobs

8-68

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-33 (Cont.) Import Valid Intersections

Name Description Required Default

fileName The name of the ZIP file containing
the input Excel file. The file must be
present in the Outbox.

Before using this REST API, you can
use the Upload REST API to upload
the file.

Yes None

errorFile Optionally, identify the name of a text
file for recording any errors that occur
during the import process. If this is not
specified, an error file is auto-
generated with a name containing the
user name, current date, and time
stamp. For example,
admin_ImportError_2020-02-26-
04-34-45-420.txt.

The file containing the error messages
is stored in the Outbox. You can
download it using the Download REST
API.

No The file name is auto-
generated

For a sample URL, see the sample URL and payload in Execute a Job

Example 1: Imports valid intersections records from the input file ImportVIRecordsFile.zip.

{
 "jobType": "Import Valid Intersections",
 "jobName": "ImportVIJob",
 "parameters": {
 "fileName": "ImportVIRecordsFile.zip"
 }
}

Example 2: Imports valid intersections records from the input file ImportVIRecordsFile.zip
and exports the error messages to the file ImportVIRecordsFileLog.txt.

{
 "jobType": "Import Valid Intersections",
 "jobName": "ImportVIJob",
 "parameters": {
 "fileName": "ImportVIRecordsFile.zip",
 "errorFile": "ImportVIRecordsFileLog.txt"
 }
}

Chapter 8
Manage Jobs

8-69

Export Valid Intersections
This REST API exports valid intersection groups (certain cell intersections filtered by rules
when users enter data or select runtime prompts) from Financial Consolidation and Close,
Planning, or Tax Reporting business processes.

The output is a ZIP file that is added to the Outbox. You can download the file using the
Download REST API.

Note the following requirements for the format of the Excel file used with this REST API.

The exported Excel file contains two worksheets with these names:

1. Rules
2. Sub Rules
The Rules worksheet has the following column headings:

• Name

• Position

• Description

• Enabled

• Anchor Dim Name

• Anchor Dimension Apply to Unselected Members

• Dim1

• Dim1 Required

• Dim2

• Dim2 Required

• DimX

• DimX Required

The Sub Rules worksheet has the following column headings:

• Name - This column contains the names of the Rules from the first worksheet

• Anchor Members

• Anchor Exclusion

• Dim1 Members

• Dim1 Exclusion

• Dim2 Members

• Dim2 Exclusion

• DimX Members

• DimX Exclusion

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

Chapter 8
Manage Jobs

8-70

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
jobs

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For
parameters that are common to all jobs, see Execute a Job.

Table 8-34 Export Valid Intersections

Name Description Required Default

jobType Export Valid Intersections or
EXPORT_VALID_INTERSECTIONS

Yes None

jobName The name of the job to be used. This
job name appears on the job console.

Example: ExportVIRecords

No Export Valid Intersections

fileName The name of the ZIP file that will be
created to hold the Excel file
containing valid intersection records.
The file containing the exported data is
stored in the Outbox.

Yes None

names If provided, exports some of the
records using the names in a comma-
separated list of valid intersection
record names. For example, the list
could contain
VIAccountPeriod,VIEntityPeriod
,VIProductPeriod .

If this parameter is not provided, all
valid intersection records are exported.

No All records are exported

For a sample URL, see the sample URL and payload in Execute a Job

Sample Payload

Example 1: Exports all valid intersections records to the file ExportVIRecordsFile.zip.

{
 "jobType": "Export Valid Intersections",
 "jobName": "ExportVIJob",
 "parameters": {
 "fileName": "ExportVIRecordsFile.zip"
 }
}

Chapter 8
Manage Jobs

8-71

Example 2: Exports three valid intersection records with names VIAccountPeriod,
VIEntityPeriod, and VIProductPeriod to the file Export3VIRecordsFile.zip.

{
 "jobType": "Export Valid Intersections",
 "jobName": "ExportVIJob",
 "parameters": {
 "fileName": "Export3VIRecordsFile.zip",
 "names": "VIAccountPeriod,VIEntityPeriod,VIProductPeriod"
 }
}

Execute a Report Bursting Definition
You can execute bursting for a single report or book for more than one member of a single
dimension, and publish a PDF or Excel output for each member.

The bursting definition must be present in the folder that you specify with the
burstingDefinitionName parameter.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
jobs

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For
parameters that are common to all jobs, see Execute a Job.

Table 8-35 Execute a Report Bursting Definition

Name Description Required Default

jobType Execute Bursting Definition or
EXECUTE_MR_BURST (both parameters
are supported)

Yes None

jobName The name of the job to be used. This
job name appears on the job console.

Example: MonthlySalesBurstDev

No Execute Bursting Definition

burstingDefinitionN
ame

Bursting definition name with the
complete path to where the bursting
definition is stored.

Example: /Library/Jan/
MonthlySalesBurstDef

Yes None

Chapter 8
Manage Jobs

8-72

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

For a sample URL, see the sample URL and payload in Execute a Job

Sample Payload

Example 1: Executes the bursting definition named MonthlySalesBurstDev that is present in
the Library folder.

{
 "jobType":"Execute Bursting Definition",
 "jobName":"Execute MonthlySalesBurstDef",
 "parameters": {
 "burstingDefinitionName":"Library/MonthlySalesBurstDef"
 }
}

Example 2: Executes the bursting definition named MonthlySalesBurstDev that is present in
the Reports subfolder under the Library folder.

{
 "jobType":"Execute Bursting Definition",
 "jobName":"Execute MonthlySalesBurstDef",
 "parameters": {
 "burstingDefinitionName":"Library/Reports/MonthlySalesBurstDef"
}

Export Library Documents
Creates a job to copy a documente from the library. The Copy Artifact from Library (Export
Library Document) job copies the content of a library document to the default download
location, where you can download it to your local computer. Using REST APIs allows you to
automate the tasks of exporting documents and downloading them.

You can use the Inbox/Outbox Explorer to view the details of the copied file. Use the Download
REST API to download the file.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.
For additional details, see Job Types.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Chapter 8
Manage Jobs

8-73

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html
https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/job_types_100xc5512062.html

Table 8-36 Parameters

Name Description Required Default

jobType Copy Artifact From
Library or Export
Library Document or
COPY_ARTIFACT_FRO
M_LIBRARY (all values
are supported)

Yes None

jobName The name of this job.
Example:
Copy_Quarterly_Sales

No Export Library
Document

idOrFullyQualifiedN
ame

The name of the
document. This can be
the document name
with a fully qualified
path or UUID.

Yes None

saveAsFile The output file name,
in the default
download location, to
which the document
should be copied. If
you don’t provide the
extension in
saveAsFile, the file
will take the extension
from the document
being copied. If a file
with the same name
exists, the job will
error out unless the
overwrite flag is
passed as true.

The default output file
name is the name of
the document. The
extension of the
document is used as
the extension of the
output file name.

No Name of the document

overwrite If a file with the same
name exists in the
default download
location, the file will
not be overwritten by
default unless the
overwrite flag is
passed as true.

No false

Chapter 8
Manage Jobs

8-74

Table 8-36 (Cont.) Parameters

Name Description Required Default

errorFile The error file name, in
the default download
location, which
contains the details
(including errors) of
the operation. Any
existing error file with
the same name is
overwritten.
If you don’t provide
the extension in
errorFile, the file will
use .log as the default
extension.
Use the Inbox/Outbox
Explorer to view the
details of the error file.
Use the Download REST
API to download the
file.

No None

exportFormat The format of the
copied document.
Allowed values are
file and zip.

• file - copies the
document in its
original binary
format. For
example, if the
document is a PDF
or Microsoft Word
document, it is
copied as a PDF or
a Microsoft Word
document.

• zip - copies the
document in its
original binary
format and zips it.

No file

For a sample URL, see Sample URL and Payload in Execute a Job.

Sample Payload Example

Copies a document called WeeklySales.txt, identified with the complete path of the
document, to the default download location and compresses it. The output file name will be
WeeklySales.zip. If a file with the same name exists in the Inbox/Outbox, the existing file will
be overwritten. An error file with the name WeeklySalesErrorLog.log will be created with the
details of the activity.

{
 "jobType": "COPY_ARTIFACT_FROM_LIBRARY",
 "jobName": "Copy Invalid SKU Q1 List",

Chapter 8
Manage Jobs

8-75

 "parameters":
 {
 "artifactName": "Library/folder1/WeeklySales.txt",
 "saveAsFile": "WeeklySales.txt",
 "overwrite": "true",
 "errorFile": "WeeklySalesErrorLog.log",
 "exportFormat": "zip"
 }
}

Execute Job Code Samples
Example 8-1 Java Sample – executeJob.java

//
// BEGIN - Execute a Job (EXPORT_DATA, EXPORT_METADATA, IMPORT_DATA,
IMPORT_METADATA, CUBE_REFRESH, ...)
//
public void executeJob(String jobType, String jobName, String parameters)
throws Exception {
 String urlString = String.format("%s/HyperionPlanning/rest/%s/
applications/%s/jobs", serverUrl, apiVersion, applicationName);
 JSONObject payload = new JSONObject();
 payload.put("jobName",jobName);
 payload.put("jobType",jobType);
 payload.put("parameters",new JSONObject(parameters));
 String response = executeRequest(urlString, "POST", payload.toString());
 System.out.println("Job started successfully");
 getJobStatus(fetchPingUrlFromResponse(response, "self"), "GET");
}
//
// END - Execute a Job (EXPORT_DATA, EXPORT_METADATA, IMPORT_DATA,
IMPORT_METADATA, CUBE_REFRESH, ...)
//

Example 8-2 cURL Sample – ExecuteJob.sh

funcExecuteJob() {
 url="$SERVER_URL/HyperionPlanning/rest/$API_VERSION/
applications/$APP_NAME/jobs"
 encodedJobName=$(echo $2 | sed -f urlencode.sed)
 if [! -z "$3"]; then

param="{\"jobType\":\"$1\",\"jobName\":\"$encodedJobName\",\"parameters\":$3}"
 else
 param="{\"jobType\":\"$1\",\"jobName\":\"$encodedJobName\"}"
 fi
 funcExecuteRequest "POST" $url $param

 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == -1]; then

Chapter 8
Manage Jobs

8-76

 echo "Started executing job successfully"
 funcGetStatus "GET"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Example 8-3 Groovy Sample – ExecuteJob.groovy

def executeJob(jobType, jobName, parameters) {
 def url = new URL(serverUrl + "/HyperionPlanning/rest/" + apiVersion + "/
applications/" + appName + "/jobs");
 JSONObject payload = new JSONObject();
 try {
 if (parameters != null) {
 JSONObject params = new JSONObject();
 def args = parameters.split(';');
 for (int i = 0; i < args.length; i++) {
 if (args[i].indexOf("=") != -1) {
 String[] param = args[i].split("=");
 if
(param[0].equalsIgnoreCase("clearData")) {

params.put("clearData",Boolean.valueOf(param[1]));
 }
 else {
 params.put(param[0],param[1]);
 }
 }
 }
 payload.put("jobName",jobName);
 payload.put("jobType",jobType);
 payload.put("parameters",params);
 }
 else {
 payload.put("jobName",jobName);
 payload.put("jobType",jobType);
 }
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "POST", payload);
 if (response != null) {
 getJobStatus(fetchPingUrlFromResponse(response, "self"), "GET");
 }
}

Chapter 8
Manage Jobs

8-77

Retrieve Job Status
Use this REST API to poll the server to get the processing state for a job with a specified ID.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/jobs/
{jobIdentifier}

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-37 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

applicationName The name of the application Path Yes None

jobIdentifier The ID of the job Path Yes None

Response

Parameters

The following table summarizes the response parameters.

Table 8-38 Parameters

Name Description

status Status of the job: -1 = in progress; 0 = success; 1 = error; 2 = cancel
pending; 3 = cancelled; 4 = invalid parameter; Integer.MAX_VALUE =
unknown

details Details about the job status, such as "Metadata import was successful"
for metadata import

jobID The ID of the job, such as 224

jobName The name of the job, such as Refresh Database

descriptiveStatus The status of the job, such as Completed or Error

Supported Media Types: application/json
Example of Response Body

Chapter 8
Manage Jobs

8-78

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

The following shows an example of the response body for metadata import:

{
 "status": 0,
 "details": "Metadata import was successful",
 "jobId": 224,
 "jobName": "Import Account Metadata",
 "descriptiveStatus": "Completed",
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/test2/jobs/224",
 "action": "GET"
 }, {
 "rel": "job-details",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/test2/jobs/224/details",
 "action": "GET"
 }]
}
The following shows an example of the response body when an error occurs
during cube refresh:
{
 "status": 1,
 "details": "An error occurred while updating the relational database.",
 "jobStatus": "Error",
 "jobId": 145,
 "jobName": "Refresh Database",
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/jobs/145",
 "action": "GET"
 }}, {
 "rel": "job-details",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/test2/jobs/145/details",
 "action": "GET"
 }]
}

The following shows an example of the response body when an error occurs during cube
refresh:

{
 "status": 1,
 "details": "An error occurred while updating the relational database.",
 "jobStatus": "Error",
 "jobId": 145,
 "jobName": "Refresh Database",
 "links": [{

Chapter 8
Manage Jobs

8-79

 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/jobs/145",
 "action": "GET"
 }}, {
 "rel": "job-details",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/test2/jobs/145/details",
 "action": "GET"
 }]
}

Retrieve Job Status Details
Use this REST API to poll the server to get execution details for a Job with the specified Job
ID.

The job types for which details are returned by this service are: IMPORT_DATA, EXPORT_DATA,
EXPORT_METADATA, and IMPORT_METADATA.

Supports paging for jobs of type IMPORT_DATA, IMPORT_METADATA, EXPORT_DATA, and
EXPORT_METADATA using the offset and limit query parameters shown in the table.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/jobs/
{jobIdentifier}/details

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-39 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

jobIdentifier The ID of the job, such as 224 Path Yes None

q
msgType Optionally, return messages for a particular message

type. If no messageType is provided, returns messages
of types ERROR, WARNING, and INFO.

Query No None

Chapter 8
Manage Jobs

8-80

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Table 8-39 (Cont.) Parameters

Name Description Type Required Default

offset For paging of jobs. Indicates the actual index from which
the records are returned. It is 0 based.

Query No 0

limit For paging for jobs. Controls how many items to return.
Defaults to 25 if not specified.

Query No 25

Example Requests

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobs/145/details
Optionally specifying messageType:

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobs/145/details?
q={"messageType":"ERROR"}
Optionally specifying paging for jobs of type IMPORT_DATA and EXPORT_DATA with the
offset and limit:

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobs/145/details?
q={"messageType":"ERROR"}&offset=0&limit=5}

Response

The following table summarizes the response parameters.

Table 8-40 Parameters

Name Description

items Version of the API you are developing with

recordsRead The name of the application

recordsRejected The ID of the job for records rejected

recordsProcessed The ID of the job for records processed

dimensionName For paging of jobs. Indicates the actual index from which the records are
returned. It is 0 based.

loadType For paging for jobs. Controls how many items to return. Defaults to 25 if
not specified.

Supported Media Types: application/json
Example of Response Body

The following shows an example of the response body for metadata import with messageType
= ERROR:

{
 "items": [{
 "links": [{
 "rel": "child-job-details",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/

Chapter 8
Manage Jobs

8-81

applications/test2/jobs/224/childjobs/12/details?
limit=10&q=%7BmessageType:ERROR%7D&offset=10",
 "action": "GET"
 }],
 "recordsRead": 8,
 "recordsRejected": 0,
 "recordsProcessed": 8,
 "dimensionName": "Entity",
 "loadType": "Metadata Import"
 }, {
 "links": [{
 "rel": "child-job-details",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/test2/jobs/224/childjobs/13/details?
limit=10&q=%7BmessageType:ERROR%7D&offset=10",
 "action": "GET"
 }],
 "recordsRead": 2,
 "recordsRejected": 0,
 "recordsProcessed": 2,
 "dimensionName": "Job",
 "loadType": "Metadata Import"
 }],
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/test2/jobs/224/details?
limit=10&q=%7BmessageType:ERROR%7D&offset=10",
 "action": "GET"
 }],
}

Retrieve Child Job Status Details
Use this REST API to get the execution details for the child Job with the specified ID.

Certain types of jobs, such as metadata import and export, create child jobs for each
dimension being exported or imported.

The job types for which child details are returned by this service are IMPORT_METADATA and
EXPORT_METADATA. Supports paging for jobs of type IMPORT_DATA and EXPORT_DATA using the
offset and limit query parameters shown in the table.

Using this REST API requires prerequisites, such as understanding how to use jobs. See
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/jobs/
{jobIdentifier}/childjobs/{childJobIdentifier}/details

Chapter 8
Manage Jobs

8-82

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-41 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

applicationName The name of the application Path Yes None

jobIdentifier The ID of the job, such as 224 Path Yes None

childJobIdentifier The ID of the child job Path Yes None

childJobID The ID of the child job, such as 8 Path Yes None

q
messageType Optionally, return messages for a particular message type. If no

messageType is provided, returns messages of types ERROR,
WARNING, and INFO.

Query Yes None

offset For paging of jobs. Indicates the actual index from which the
records are returned. It is 0 based.

Query No 0

limit For paging of jobs. Controls how many items to return. Defaults to
25 if not specified.

Query No 25

Example Requests

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobs/145/childjobs/123/details
Optionally specifying messageType:

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobs/145/ childjobs/123/details?
q={"messageType":"ERROR"}
Optionally specifying paging for jobs of type IMPORT_METADATA and EXPORT_METADATA
with an offset and limit:

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/jobs/145/ childjobs/123/details?
q={"messageType":"ERROR"}&offset=0&limit=5

Response

The following table summarizes the response parameters.

Table 8-42 Parameters

Name Description

items The number of records read, such as 8

msgType Message type, such as INFO

msgCategory Message category, such as Argument parsing

msgText Message text

Chapter 8
Manage Jobs

8-83

Supported Media Types: application/json
Example of Response Body

The following example shows a response body with messageType = INFO, offset=5, limit=5.
Notice the prev and next links.

{
 "items": [{
 "msgType": "INFO",
 "msgCategory": "Argument parsing",
 "msgText": "The column alias mapping list specified with the /C2A
switch did not match a key in the Command Properties file \"null\" so it will
be used as the mapping directly: \"(<ignoreUndefined>,@Plan*)\"."
 }, {
 "msgType": "INFO",
 "msgCategory": "Unclassified",
 "msgText": "Header record fields: Entity, Parent, Alias: Default,
Alias: SLAliases, Valid For Consolidations, Data Storage, Two Pass
Calculation, Description, Formula, UDA, Smart List, Data Type, Hierarchy
Type, Enable for Dynamic Children, Number of Possible Dyn..."
 }, {
 "msgType": "INFO",
 "msgCategory": "Dimension, member, or cube retrieval",
 "msgText": "Located and using \"Entity\" dimension for loading data
in \"Test2\" application."
 }, {
 "msgType": "INFO",
 "msgCategory": "Unclassified",
 "msgText": "HspOutlineLoad::dateFormatSpecified is true,
SessionHalDateFormat stored on session: M/d/yy, sessionId: 759992870"
 }, {
 "msgType": "INFO",
 "msgCategory": "Dimension, member, or cube retrieval",
 "msgText": "Load dimension \"Entity\" has been unlocked successfully."
 }],
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/test2/jobs/224/childjobs/12/details?limit=5&offset=5",
 "action": "GET"
 }, {
 "rel": "prev",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/test2/jobs/224/childjobs/12/details?offset=0&limit=5",
 "action": "GET"
 }, {
 "rel": "next",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/test2/jobs/224/childjobs/12/details?offset=10&limit=5",
 "action": "GET"
 }],
}

Chapter 8
Manage Jobs

8-84

Working with Members
You can get and add members using a set of REST resources, as summarized below.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

Table 8-43 Working with Members

Task Request REST Resource

Add Member POST /HyperionPlanning/rest/{api_version}/applications/
{application}/dimensions/{dimensionname}/members

Get Member GET /HyperionPlanning/rest/{api_version}/applications/
{application}/dimensions/{dimension}/members/{member}

Add Member
Use this REST API to add a new member to the application outline in the specified dimension
and plan type and under the specified parent member.

Note:

Prerequisite: The parent member must be enabled for dynamic children and a cube
refresh must have happened after the parent was enabled.

Required Roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/dimensions/
{dimname}/members

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-44 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application to which to add a
member

Path Yes None

dimname Name of the dimension to which to add a member Path Yes None

Chapter 8
Working with Members

8-85

Example URL and Payload

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/dimensions/Entity/members
{"memberName":"North America","parentName":"Enterprise Global"}

Response

Payload Parameters:

The following table summarizes the payload parameters.

Table 8-45 Parameters

Name Description

name Name of the member, such as North America

children Whether the member has children

description Description of the member

parentName Name of the parent, such as Enterprise Global

dataType Data type, if available

objectType Type of object

dataStorage Storage attribute for the member, such as STOREDATA

dimName Dimension name

twoPass Boolean value to indicate whether the member has the Two-Pass
Calculation associated attribute

instance Information about the instance

type Type of member

detail Detailed information in case of error

status Request status, such as 400

errorPath Path of the error, if available

title Error title, if available

errorCode Error code, if available

errorDetails Error details, if available

message Message text

localizedMessage Localized message, if available

Example of Response Body

Sample response body where the member is added successfully

{
 "name": "North America",
 "children": null,
 "description": null,
 "parentName": "Enterprise Global",
 "dataType": "UNSPECIFIED",
 "objectType": 33,
 "dataStorage": "STOREDATA",
 "dimName": "Entity",
 "twoPass": false,
 "links": [{
 "rel": "self",

Chapter 8
Working with Members

8-86

 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/Vision/dimensions/Entity/members/North%20America",
 "action": "GET"
 }]
}

Sample response when an error occurs when adding the member:

{
 "detail": "Error occurred adding member. Unable to find parent
<Enterprise GlobalX> defined for a dynamic member.",
 "status": 400,
 "message": "com.hyperion.planning.HspRuntimeException: Error occurred
adding member. Unable to find parent <Enterprise GlobalX> defined for a
dynamic member.",
 "localizedMessage": "com.hyperion.planning.HspRuntimeException: Error
occurred adding member. Unable to find parent <Enterprise GlobalX> defined
for a dynamic member."
}

Get Member
Gets the specified member’s properties.

Required Roles

Service Administrator

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/dimensions/
{dimname}/members/{member}

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-46 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application for which to get
member properties

Path Yes None

dimname Name of the dimension for which to get member
properties

Path Yes None

member Name of the member for which to get member
properties

Path Yes None

Request Payload:

The following table summarizes the payload parameters.

Chapter 8
Working with Members

8-87

Table 8-47 Parameters

Name Description

name Name of the member, such as North America

children Whether the member has children

description Description of the member

parentName Name of the parent, such as Enterprise Global

dataType Data type, if available

objectType Type of object

dataStorage Storage attribute for the member, such as
STOREDATA

dimName Dimension name

twoPass Boolean value to indicate whether the member has
the Two-Pass Calculation associated attribute

Example URL and Payload

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/dimensions/Entity/North America
{"memberName":"North America","parentName":"Enterprise Global"}
Example of Response Body

Sample response body where the member is added successfully

{
 "name": "North America",
 "children": null,
 "description": null,
 "parentName": "Enterprise Global",
 "dataType": "UNSPECIFIED",
 "objectType": 33,
 "dataStorage": "STOREDATA",
 "dimName": "Entity",
 "twoPass": false,
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/Vision/dimensions/Entity/members/North%20America",
 "action": "GET"
 }]
}

Get Applications
This REST API returns a list of applications to which the specified user is assigned. It also
provides certain key information about the application.

Required Roles

Service Administrator

Chapter 8
Get Applications

8-88

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-48 Parameters

Name Description Type Required Default

api_version Version of the API you
are developing with

Path Yes None

Response

Supported Media Types: application/json
Parameters:

Table 8-49 Parameters

Name Description

Items A list of applications

name Application name

type Product type. Possible values: HFM, HP

adminMode Indicates if the application's login level is set to
Administrators. Returns a Boolean value where
true indicates that the login level for the
application is set to Administrators and false
indicates that the login level is set to All Users.

theme Current theme of the application

webBotDetails Web bot details of the application

webBotAppId Web bot application ID register for the application

dpEnabled Indicates if decision package is enabled in the
application. Returns a Boolean value true when
enabled.

unicode Indicates if the application is Unicode enabled.
Returns a Boolean value where true indicates that
the application is Unicode enabled.

appStorage Returns the storage type of the application, such as
Default, Multidim, or ASO.

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "type": "HP",
 "items": [
 {

Chapter 8
Get Applications

8-89

 "appType": "PBCS",
 "webBotDetails": "null",
 "helpServerUrl": "https://www.oracle.com",
 "workpaceServerUrl": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com",
 "appStorage": "Multidim",
 "unicode": true,
 "name": "Vision",
 "type": "HP",
 "adminMode": "true",
 "theme": "REDWOOD_R13"
 }
],
 "links": [
 {
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications",
 "action": "GET"
 }
]
}

Manage Planning Units
You can manage planning units using a set of REST resources, as summarized here.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

For detailed information on managing planning units, see Managing Approvals.

Note: The manage planning unit resources use the parameters puIdentifier and
puhIdentifier:

• puIdentifier: Planning unit identifier

• puhIdentifier: Planning unit hierarchy identifier

Use the following format for these parameters:

• puIdentifier:

"scenarioName"::"versionName"::"pmMember"
• pmMember:

"Entity: SecondaryMember"
• puhIdentifier

"scenarioName"::"versionName"

Chapter 8
Manage Planning Units

8-90

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusu/getting_plans_approved.html

Table 8-50 Managing Planning Units

Task Reque
st

REST Resource

List All Planning Units POST /HyperionPlanning/rest/{version}/applications/
{application}/planningunits?
q={"scenario":"scenarioName","version":"versionName"}&of
fset=10&limit=10

Get Planning Unit History and
Annotations

GET /HyperionPlanning/rest/{api_version}/applications/
{application}/planningunits?q={"scenario":
{"scenario"},"version":
{"version"}}&offset={offset}&limit={limit}

Get a Planning Unit Owner Photo GET /HyperionPlanning/rest/{api_version}/applications/
{application}/users/{userId}/photo

Get Planning Unit Promotional Path GET /HyperionPlanning/rest/{api_version}/applications/
{application}/planningunits/{puIdentifier}/promotionpath

Get Available Planning Unit Actions GET /HyperionPlanning/rest/{api_version}/applications/
{applicationName}/planningunits{puhIdentifier}/
availableactions

Get Filters with All Possible Values GET /HyperionPlanning/rest/{api_version}/applications/
{application}/pufilters

Change Planning Unit Status POST /HyperionPlanning/rest/{api_version}/applications/
{application}/planningunits/{puhIdentifier}/actions

List All Planning Units
You can use REST APIs to return a list of planning units for the specified application and
owned by the user initiating the REST API. (Note that this does not return all planning units for
all applications and users.)

Paging is supported if the optional offset and limit parameters are provided.

Required Roles

Service Administrator

REST Resource

POST
/HyperionPlanning/rest/{version}/applications/{application}/planningunits?
q={"scenario":"scenarioName","version":"versionName"}&offset=10&limit=10

Request

Supported Media Types: application/x-www-form-urlencoded
Parameters:

The following table summarizes the client request.

Chapter 8
Manage Planning Units

8-91

Table 8-51 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

q Paging options for planning units. Possible values are
described in the following rows.

Query No Limit = 25

scenario Scenario for the application; required Query No None

version Version for the application; required Query No None

offset Indicates the actual index from which the records are
returned; 0 based.

Query No 1

limit Controls how many items to return; defaults to 25 if not
specified.

Query No 25

Request Payload:

The following table summarizes the payload parameters.

Table 8-52 Parameters

Name Description Type Required

filter Name, type, and values to filter on.

Example:

filter={name:"SubStatus",type:3,
values:[0,4]}

Payload No

Example URL and Payload

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/{version}/applications/{application}/planningunits?
q={"scenario":"scenarioName","version":"versionName"}&offset=10&limit=10
Example without filters:

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/planningunits?
q={"scenario":"Forecast","version":"BU Version_1"}
Example with two filters, multiple values provided:

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/planningunits?
q={"scenario":"Forecast","version":"BU Version_1"}
Payload:

filter={name:"Status",type:4,values:
[2,5]}&filter={name:"SubStatus",type:3,values:[0,4]}

Response

Supported Media Types: application/json
Parameters:

Chapter 8
Manage Planning Units

8-92

Table 8-53 Parameters

Name Description

name Planning unit name, such as Marketing

value Planning unit value

owner Planning unit owner, such as Admin

version Planning unit version, such as BU Version_1

entity Planning unit entity, such as Marketing

status Planning unit status, such as Under Review

scenario Planning unit scenario, such as Forecast

Formatted value Formatted value, if any

puName Planning unit name, such as Marketing

subStatus Planning unit substatus

secMember Secondary dimension member, if any

puAlias Planning unit alias, such as Marketing

versionAlias Version alias, if any

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "items": [{
 "name": null,
 "value": -1.0,
 "owner": "admin",
 "version": "BU Version_1",
 "entity": "Marketing",
 "status": "Under Review",
 "scenario": "Forecast",
 "formattedValue": "",
 "puName": "Marketing",
 "subStatus": "",
 "secMember": null,
 "puAlias": "Marketing",
 "scenarioAlias": null,
 "versionAlias": null,
 "puId": 50410,
 "links": [{
 "rel": "promotion-path",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/planningunits/
%22Forecast%22::%22BU%20Version_1%22::%22Marketing%22::%22%22/promotionpath",
 "action": "GET"
 }, {
 "rel": "annotations-and-history",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/planningunits/
%22Forecast%22::%22BU%20Version_1%22::%22Marketing%22::%22%22/
historyandannotations?q=%7B%22annotSeq%22:-1,%22logSeq%22:-1%7D",

Chapter 8
Manage Planning Units

8-93

 "action": "GET"
 }, {
 "rel": "actions",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/planningunits/%22Forecast%22::%22BU%20Version_1%22/
actions",
 "action": "POST",
 "data": {
 "pmMembers": "Marketing"
 }
 }, {
 "rel": "change-status",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/planningunits/
%22Forecast%22::%22BU%20Version_1%22::%22Marketing%22::%22%22/actions/6",
 "action": "POST",
 "data": {
 "pmMembers": "Marketing",
 "comments": "comments"
 }
 }]
 }],
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/planningunits?
q=%7Bscenario:%22Forecast%22,version:%22BU+Version_1%22%7D",
 "action": "POST",
 "data": {
 "filter": [{
 "name": "Status",
 "type": 4,
 "values": [2, 5],
 "defIndex": 0
 }, {
 "name": "SubStatus",
 "type": 3,
 "values": [0, 4],
 "defIndex": 0
 }]
 }
 }],
 "type": "HP"
}

Get Planning Unit History and Annotations
You can use REST APIs to return a merged list of history and annotations for the planning unit
that the requesting user owns for the specified Scenario, Version, and PM Member.

If both annotSeq and logSeq are < 0, parent level nodes are returned. If annotSeq or logSeq is
provided, the replies to that annotation or history are returned respectively.

Chapter 8
Manage Planning Units

8-94

If both annotSeq and logSeq are < 0, parent level nodes are returned. If annotSeq or logSeq is
provided, the replies to that annotation or history are returned respectively.

Required Roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
planningunits/{puIdentifier}/historyandannotations?
q={annotSeq=-1,logSeq=-1}&offset=10&limit=10

Request

Supported Media Types: application/x-www-form-urlencoded
Parameters:

The following table summarizes the client request.

Table 8-54 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

scenario Scenario for the application; required Path Yes None

version Version for the application; required Path Yes None

pmMember Entity; secondary member Path Yes None

offset Indicates the actual index from which the records
are returned; 0 based.

Query No 1

limit Controls how many items to return; defaults to 25 if
not specified.

Query No 25

Example URL and Payload

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/planningunits/Forecast::"BU
Version_1"::Marketing::/historyandannotations?q={annotSeq:-1,logSeq:-1}
Filter can include name, type, and values to filter on. For example:
filter={name:"SubStatus",type:3,values:[0,4]}

Response

Supported Media Types: application/x-www-form-urlencoded
Parameters:

Table 8-55 Parameters

Name Description

comment Comment entered by the planning unit owner when
performing an action

hasHistory True if the planning unit has history

Chapter 8
Manage Planning Units

8-95

Table 8-55 (Cont.) Parameters

Name Description

logSeq Sequence of the action performed on the planning
unit

staticImage Whether a static image exists for this note

authorImagePath The path to the user image for the user who
performed the action

commentTitle The author name and the action the author
performed

commentDate The date when the action was performed or the
annotation was added

commentSubTitle Processing state of the planning unit when the
action was performed

parentAnntSeq Sequence of the annotation or the parent
annotation added to the planning unit

isChildNode true if this is a reply to an annotation

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "items": [{
 "comment": "Enough justification provided, Approving it.<p></p>",
 "hasHistory": false,
 "logSeq": -1,
 "staticImage": true,
 "authorImagePath": "/Images/GhostUser.png",
 "commentTitle": "admin",
 "commentDate": "8/22/14 3:41 PM",
 "commentSubTitle": "",
 "parentAnntSeq": 1,
 "isChildNode": false,
 "links": [{
 "rel": "annotation-replies",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/planningunits/
%22Forecast%22::%22BU%20Version_1%22::%22Marketing%22::/historyandannotations?
q=%7B%22annotSeq%22:1,%22logSeq%22:-1%7D",
 "action": "GET"
 }]
 }, {
 "comment": "",
 "hasHistory": true,
 "logSeq": 2,
 "staticImage": true,
 "authorImagePath": "/Images/GhostUser.png",
 "commentTitle": "Originate by admin",
 "commentDate": "4/22/14 12:26 PM",
 "commentSubTitle": "Under Review",
 "parentAnntSeq": -1,
 "isChildNode": false,

Chapter 8
Manage Planning Units

8-96

 "type": "HP",
 "links": [{
 "rel": "annotation-replies",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/planningunits/
%22Forecast%22::%22BU%20Version_1%22::%22Marketing%22::/historyandannotations?
q=%7B%22annotSeq%22:-1,%22logSeq%22:2%7D",
 "action": "GET"
 }]
 }, {
 "comment": "",
 "hasHistory": true,
 "logSeq": 1,
 "staticImage": true,
 "authorImagePath": "/Images/GhostUser.png",
 "commentTitle": "Originate by admin",
 "commentDate": "4/22/14 12:26 PM",
 "commentSubTitle": "Under Review",
 "parentAnntSeq": -1,
 "isChildNode": false,
 "type": "HP",
 "links": [{
 "rel": "annotation-replies",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/planningunits/
%22Forecast%22::%22BU%20Version_1%22::%22Marketing%22::/historyandannotations?
q=%7B%22annotSeq%22:-1,%22logSeq%22:1%7D",
 "action": "GET"
 }]
 }],
"type": "HP",
"links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/planningunits/
%22Forecast%22::%22BU%20Version_1%22::%22Marketing%22::%22%22/
historyandannotations?q=%7B%22annotSeq%22:-1,%22logSeq%22:-1%7D",
 "action": "GET"
 }],
 "type": "HP",

}

Get a Planning Unit Owner Photo
You can use REST APIs to get an image for the requested planning unit owner if a photo is
uploaded for the owner.

Required Roles

Service Administrator

Chapter 8
Manage Planning Units

8-97

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/users/
{userId}/photo

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-56 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

userID The identifier of the user for whom to
retrieve a photo

Path Yes

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/users/5000100/photo

Response

Supported Media Types: In case of success, returns application/octet-stream. In case of
error, returns application/json.

Error Response:

Table 8-57 Parameters

Name Description

detail Detail about the status of the planning unit photo for this user. For
example: PU photo not available, make sure that a valid
user identifier is provided.

status HTTP status, such as 400.

message Informational message about the status of the photo for this user.

localizedMessage A localized informational message about the status.

Example of Error Response Body

The following shows an example of the response body in JSON format.

{
 "detail": "PU photo not available, make sure the a valid user identifier
is provided.",
 "status": 400,
 "message": "java.lang.RuntimeException: PU photo not available, make sure
the a valid user identifier is provided.",
 "localizedMessage": "java.lang.RuntimeException: PU photo not available,

Chapter 8
Manage Planning Units

8-98

make sure the a valid user identifier is provided."
}

Get Planning Unit Promotional Path
You can use REST APIs to get a list of promotion path nodes for a given application, user, and
planning unit. The planning unit is identified by the provided scenario, version, and PM
member.

The list can have up to three nodes: the node before the current location, the node at the
current location, and the one after the current location. If the planning unit is at the starting
location or the last location in the path, only two nodes are returned.

Required Roles

Service Administrator

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/
planningunits{puIdentifier}/promotionpath

Request

Parameters:

The following table summarizes the client request.

Table 8-58 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

puIdentifier The name of the planning unit, such as
Sales

Path Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/planningunits/Forecast::"BU
Version_1"::Dev/promotionpath

Response

Supported Media Types: application/json
Parameters:

Table 8-59 Parameters

Name Description

Items Planning unit promotional path information

name Name of the planning unit

ownerType Planning unit owner type

Chapter 8
Manage Planning Units

8-99

Table 8-59 (Cont.) Parameters

Name Description

group Returns whether the owner is a group of users or
an individual users, true or false

staticImage Returns whether the image is a static manage, true
or false

nodeImagePath Path to the planning unit owner photo

ownerName Name of the planning unit owner

currentLoc Returns if this is the current location of the planning
unit, true or false

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "items": [{
 "name": "ent_111: Regular Coke",
 "ownerType": 0,
 "group": false,
 "staticImage": true,
 "nodeImagePath": "../ui_themes/tadpole/images_product/pm/75X89/
PUOwner.png",
 "ownerName": "Planner1",
 "currentLoc": true
 }, {
 "name": "Total Entity",
 "ownerType": 0,
 "group": false,
 "staticImage": false,
 "nodeImagePath": "v3/applications/PS4app1/puphoto?appOwner=50001",
 "ownerName": "admin",
 "currentLoc": false
 }],
 "links": [{
 "rel": "self",
 "href": "hhttps://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/planningunits/Forecast::%22BU%20Version_1%22::Dev/
promotionpath",
 "action": "GET"
 }],
}

Get Available Planning Unit Actions
You can use REST APIs to return a list of the next set of applicable actions available for the
planning units, consisting of the specified scenario, version, and PM Members (Entity:
Secondary member) that are owned by the requesting user.

Required Roles

Service Administrator

Chapter 8
Manage Planning Units

8-100

REST Resource

POST
/HyperionPlanning/rest/{api_version}/applications/{application}/
planningunits{puhIdentifier}/availableactions

Request

Parameters:

The following table summarizes the client request.

Table 8-60 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

puIdentifier The name of the planning unit, such as Sales Path Yes None

q Optionally, return limited or full approvals
functionality. Options are listed here.

Query No None

0 Returns limited approvals functionality - useful for
mobile clients

Query No None

1 Returns full approvals functionality; default is 1. Query No None

URL and Payload Examples

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/planningunits/Forecast::"BU
Version_1"/availableactions?q={"options":1}
Payload examples:

pmMembers=pmMemberNames
pmMembers=Dev,Marketing

Response

Supported Media Types: application/json
Parameters:

Table 8-61 Parameters

Name Description

Items Planning unit available actions

actionId ID of the action

Name Name of the action

Example of Response Body

Chapter 8
Manage Planning Units

8-101

The following shows an example of the response body in JSON format.

{
 "items": [{
 "actionId": 6,
 "name": "Promote"
 }, {
 "actionId": 3,
 "name": "Sign Off"
 }, {
 "actionId": 1,
 "name": "Reject"
 }, {
 "actionId": 7,
 "name": "Delegate"
 }, {
 "actionId": 8,
 "name": "Take Ownership"
 }, {
 "actionId": 9,
 "name": "Originate"
 }, {
 "actionId": 10,
 "name": "Freeze"
 }],
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4_HP2/planningunits/Current::%22BU%20Version_1%22/
availableactions?q=%7Boptions:1%7D",
 "action": "GET",
 "data": {
 "pmMembers": "ent_111: Regular Coke"
 }
 }],
}

Get Filters with All Possible Values
Returns all filter types with all possible values by which users can filter planning units for a
given application. For every value, there is a label (in the client locale) representation and an
integer value. The labels are shown to end users to pick from, but whenever possible, the
client should submit the integer value that is unique to the server. Every application supports
several types of filters that are indicated by the type field.

Name is optional. The defIndex is the index in the value array for the default selection value.

Required Roles

Service Administrator

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/pufilters

Chapter 8
Manage Planning Units

8-102

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-62 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

q Optionally, return filters for limited or full functionality.
Options are listed here.

Query No None

0 Returns filters for limited Approvals functionality - useful
for mobile clients.

Query No None

1 Returns filters for full Approvals functionality; default is 1. Query No None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/pufilters?q={"options":"0"}

Response

Supported Media Types: application/json
Parameters:

Table 8-63 Parameters

Name Description

Names Planning unit available actions

aliases Aliases for values to be displayed instead of labels
if user preference is defined as such

name Name for the filter

type Type of the filter

values Integer values; usually the client will submit this
value to indicate the selected filter

labels Labels for values to be displayed in the client for
the filter

defIndex Index of the value to be displayed as the default
value

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "items": [{
 "aliases": ["Forecast"],
 "name": "Scenarios",
 "type": 1,

Chapter 8
Manage Planning Units

8-103

 "values": [50218],
 "labels": ["Forecast"],
 "defIndex": 0
 }, {
 "aliases": ["BU Version_1"],
 "name": "Versions",
 "type": 2,
 "values": [1500],
 "labels": ["BU Version_1"],
 "defIndex": 0
 }, {
 "aliases": null,
 "name": "SubStatus",
 "type": 3,
 "values": [0, 1, 2, 3, 4, 10008, 10009, 10000],
 "labels": ["", "Processing", "Aborted", "Validating", "No Additional
Approval Required", "Invalid Data", "Additional Approval Required", "Failed"],
 "defIndex": 0
 }, {
 "aliases": null,
 "name": "Status",
 "type": 4,
 "values": [2, 3, 4, 5, 6],
 "labels": ["Under Review", "Approved", "Signed Off", "Not Signed
Off", "Frozen"],
 "defIndex": 0
 }],
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/pufilters?q=%7Boptions:%220%22%7D",
 "action": "GET"
 }],
}

Change Planning Unit Status
You can use REST APIs to change the status of the planning units consisting of the specified
scenario, version, and PM Members (Entity: Secondary member) that are owned by the
requesting user.

An error will display if the planning units belong to same hierarchy but different levels, or if the
statuses for the planning units are not the same.

Supported actions for limited approvals functionality are: "PROMOTE" (6), "SIGN_OFF" (3),
"APPROVE" (2), "DELEGATE" (7), "TAKE_OWNERSHIP" (8), "ORIGINATE" (9), "FREEZE"
(10)

Required Roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
planningunits/{puhIdentifier}/actions

Chapter 8
Manage Planning Units

8-104

Request

Supported Media Types: application/x-www-form-urlencoded
Parameters:

The following table summarizes the client request.

Table 8-64 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

Example URL and Payload

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/planningunits/Forecast::"BU
Version_1"/actions
Payload

actionId=actionId&pmMembers=pmMemberNames&comments=comments

Response

Supported Media Types: application/json
Example of Response Body

The following shows an example of the response body in JSON format.

{
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/planningunits/Forecast::%22BU%20Version_1%22/actions",
 "action": "POST",
 "data": {
 "pmMembers": "\"Dev\"",
 "action": "PROMOTE",
 "comments": "\"Promoting the PU\""
 }
 }]
}

Get User Preferences
Returns the requesting user’s display preferences.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

Required Roles

Chapter 8
Get User Preferences

8-105

Service Administrator

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/
userpreferences

Request

Parameters:

The following table summarizes the client request.

Table 8-65 Parameters

Name Description Type Required Default

api_version Version of the API you are developing
with

Path Yes None

application The name of the application Path Yes None

userpreferences The requesting user’s display
preferences

path Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/PS4app1/userpreferences

Response

Supported Media Types: application/json

Table 8-66 Parameters

Name Description

decimal separator Preference for decimal separator

scale Preference for scale

thousandsSeparator Preference for the thousands separator

thousandsSeparator Preference for the style of negative numbers

negativeStyle Preference for the minimum precision

minPrecision Preference for the minimum precision

maxPrecision Preference for the maximum precision

showPUAlias Preference for showing the planning unit alias

currSymbol Preference for the currency symbol

type The type of application, such as HP

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "decimalSeparator": "",
 "scale": 0,
 "thousandsSeparator": "",
 "negativeStyle": 255,

Chapter 8
Get User Preferences

8-106

 "minPrecision": 0,
 "maxPrecision": 0,
 "showPUAlias": false,
 "currSymbol": "",
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/PS4app1/userpreferences",
 "action": "GET"
 }]
}

Working with Data Slices
You can import, export, and clear data slices, as summarized here. Note that attribute
dimensions are not supported in the payload.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

Table 8-67 Working with Data Slices

Task Request REST Resource

Import Data Slice POST /HyperionPlanning/rest/{api_version}/applications/
{application}/plantypes/{plantype}/importdataslice

Export Data Slice POST /HyperionPlanning/rest/{api_version}/applications/
{application}/plantypes/{plantype}/exportdataslice

Clear Data Slice POST /HyperionPlanning/rest/{api_version}/applications/
{application}/plantypes/{plantype}/cleardataslice

Import Data Slices
Can be used to import data given a JSON data grid with a point of view, columns, and one or
more data rows. Data will be imported only for cells that the user has read-write access to.
Imports data of types Text, Date and Smart List along with numeric data. Returns JSON with
details on the number of cells that were accepted, the number of cells that were rejected, and
the first 100 cells that were rejected. You can set custom parameters to view rejected cells to
understand the reason for the rejection.

Required roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/plantypes/
{plantype}/importdataslice

Request

Supported Media Types: application/json
Parameters:

Chapter 8
Working with Data Slices

8-107

The following table summarizes the client request.

Table 8-68 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application for which to import the
data slice

Path Yes None

plantype Name of the plan type for which to import the data
slice

Path Yes None

Example URL and Payload:

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/plantypes/plan1/importdataslice
Payload Parameters

The Payload is JSON with the following parameters.

Table 8-69 Parameters

Name Description

dataGrid JSON data grid

aggregateEssbaseData True or false.

If true, the values being saved will be added to the existing values.
Only numeric values can be aggregated. Cells with Smart list, Text and
Date data types will be rejected.

If false, the data values will be overwritten. A value of "#missing" will
clear the cell value as shown in the example. The default is false.

Note: Values provided in the "data" section of the JSON payload will
be used even for cells with supporting details provided. For cells with
supporting details, make sure the total calculated for the incoming
supporting details matches the value provided in the row "data"
section.

See the following table for examples.

cellNotesOption Possible values are: "Overwrite", "Append", and "Skip".

• "Overwrite": The existing cell notes will be overwritten. An empty
array for cell notes [] will indicate deletion of existing cell notes. A
value of "null" will leave the existing cell notes intact.

• "Append": New cell notes will be appended to existing cell notes.
• "Skip": Cell notes will not be processed.

dateFormat Date format used in the input data grid. Valid formats are: "MM-DD-
YYYY", "DD-MM-YYYY", "YYYY-MM-DD", "MM/DD/YYYY", "DD/MM/
YYYY", "YYYY/MM/DD"

strictDateValidation Optionally, influence how Date cell values are validated. When set to
true, date values are validated against the dateFormat specified in
the payload and are rejected if the format for the value does not
conform to the dateFormat. If set to false, date values are
interpreted more leniently. Default is true.

customParams
PostDataImportRuleNames Optionally, provide the post data import rule names. This is primarily

used by Data Management for planners. Default is false.

Chapter 8
Working with Data Slices

8-108

Table 8-69 (Cont.) Parameters

Name Description

includeRejectedCells Optionally, indicate if the response should include the first 100 rejected
cells. Default is true.

includeRejectedCellsWith
Details

Optionally, indicate if the response should include the reasons why
cells are rejected. Default is false.

Table 8-70 Import Data Slice Examples

Source Cell Target Cell Resulting Target Cell

Supporting Detail (SD) #missing SD

SD Value Add SD value to the existing value, do not add SD

Value SD Delete SD, add Value to the existing value

SD1 SD2 Delete SD2, add SD value to the existing value, do not
add SD1

Sample payload:

{
 "aggregateEssbaseData":true,
 "cellNotesOption":"Overwrite",
 "dateFormat":"DD/MM/YYYY",
 "strictDateValidation":true,
 "dryRun": true,
 "customParams":{
 "PostDataImportRuleNames":"Post data rule 1, \"post, data rule
2\"",
 "IncludeRejectedCells":true,
 "IncludeRejectedCellsWithDetails":true
 },

Response

Supported Media Types: application/json
JSON Output

The rejected cells consist of cells that the user does not have read-write access to; cells where
row or column member names are invalid and do not exist; cells where the data is invalid (for
example, an invalid Smart List value); and cells that are non-numeric (Smart List, Text, or Date
type) with data when aggregateEssbaseData is set to true.

{
"numAcceptedCells": 3,
"numRejectedCells": 9,
"rejectedCells": ["[BaseData, FY15, Plan, Working, 410, P_160, Jan, Project
Number]", "[BaseData, FY15, Plan, Working, 410, P_160, Feb, Project Number]",
"[BaseData, FY15, Plan, Working, 410, P_160, Mar, Project Number]", "[BaseData,
FY15, Plan, Working, 410, P_160, Jan, Request Date]", "[BaseData, FY15, Plan,

Chapter 8
Working with Data Slices

8-109

Working, 410, P_160, Feb, Request Date]", "[BaseData, FY15, Plan, Working, 410,
P_160, Mar, Request Date]", "[BaseData, FY15, Plan, Working, 410, P_160, Jan,
Project Type]", "[BaseData, FY15, Plan, Working, 410, P_160, Feb, Project Type]",
"[BaseData, FY15, Plan, Working, 410, P_160, Mar, Project Type]"],

Export Data Slices
Use this REST API to export data for a specified region.

The exported data will be in the form of a JSON grid with pov, columns, and 0 or more data
rows. Data will be exported only for cells for which the user has read-write access.

Required Roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/plantypes/
{plantype}/exportdataslice

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-71 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application for which to export the
data slice

Path Yes None

plantype Name of the plan type for which to export the data
slice

Path Yes None

Example URL and payload:

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/plantypes/plan1/exportdataslice
Payload Parameters

The Payload is JSON with the following parameters.

Table 8-72 Parameters

Name Description

gridDefinition JSON grid definition to define the region

exportPlanningData True or false. Optionally, you can provide the parameter
exportPlanningData, which, when set to true, will export
supporting details and cell notes along with Essbase numeric data.
Default is false.

suppressMissingBlocks True or false. Optionally, you can set suppressMissingBlocks to
true to suppress blocks with missing data.

Chapter 8
Working with Data Slices

8-110

Table 8-72 (Cont.) Parameters

Name Description

suppressMissingRows True or false. Optionally, you can set suppressMissingRows to true
to suppress rows with missing data.

suppressMissingColumns True or false. Optionally, you can set suppressMissingColumns to
true to suppress rows with missing data.

Supported Media Type: application

Sample Payload

Example 1: Providing dimension names as follows in the gridDefinition is recommended
and is more efficient.

{
 "exportPlanningData": false,
 "gridDefinition": {
 "suppressMissingBlocks": true,
 "pov": {
 "dimensions": [
 "HSP_View",
 "Year",
 "Scenario",
 "Version",
 "Entity",
 "Product"
],
 "members": [
 [
 "BaseData"
],
 [
 "FY15"
],
 [
 "Plan"
],
 [
 "Working"
],
 [
 "410"
],
 [
 "P_160"
]
]
 },
 "columns": [
 {
 "dimensions": [

Chapter 8
Working with Data Slices

8-111

 "Period"
],
 "members": [
 [
 "IDescendants(Q1)"
]
]
 },
 {
 "dimensions": [
 "Period"
],
 "members": [
 [
 "IDescendants(Q2)"
]
]
 }
],
 "rows": [
 {
 "dimensions": [
 "Account"
],
 "members": [
 [
 "Project Number",
 "Request Date",
 "Project Type",
 "Project Investment"
]
]
 }
]
 }
}

OR

No dimension names provided is less efficient:

{
 "exportPlanningData": true,
 "gridDefinition": {
 "suppressMissingBlocks": true,
 "pov": {
 "members": [
 ["BaseData"], ["FY15"], ["Plan"],["Working"],["410"],
["P_160"]
]
 },
 "columns": [
 {

Chapter 8
Working with Data Slices

8-112

 "members": [
 [
 "IDescendants(Q1)"
]
]
 },
 {
 "members": [
 ["IDescendants(Q2)"]
]
 }
],
 "rows": [
 {
 "members": [
 [
 "Project Number",
 "Request Date",
 "Project Type",
 "Project Investment"
]
]
 }
]
 }
}

JSON Output

The following shows an example of the response body with exportPlanningData : true.

{
 "pov": [
 "BaseData",
 "FY15",
 "Plan",
 "Working",
 "410",
 "P_160"
],
 "columns": [
 [
 "Jan",
 "Feb",
 "Mar",
 "Q1",
 "Apr",
 "May",
 "Jun",
 "Q2"
]
],
 "rows": [

Chapter 8
Working with Data Slices

8-113

 {
 "headers": [
 "Project Number"
],
 "data": [
 "1",
 "2",
 "3",
 " ",
 " ",
 " ",
 " ",
 " "
],
 "cellNotes": [
 [
 {
 "contents": "Internal Project
"
 },
 {
 "contents": "Project delayed
"
 }
],
 [],
 [],
 [],
 [],
 [],
 [],
 []
]
 },
 {
 "headers": [
 "Request Date"
],
 "data": [
 "",
 "",
 "",
 "",
 "",
 "",
 "",
 ""
]
 },
 {
 "headers": [
 "Project Type"
],
 "data": [
 "Other",
 "IT",
 "Construction",
 "",

Chapter 8
Working with Data Slices

8-114

 "",
 "",
 "",
 ""
]
 },
 {
 "headers": [
 "Project Investment"
],
 "data": [
 "100000",
 "110000",
 "200000",
 "410000",
 "",
 "",
 "",
 ""
],
 "cellNotes": [
 [],
 [
 {
 "contents": "Internal + External investments made
here.
"
 }
],
 [],
 [],
 [],
 [],
 [],
 []
],
 " supportingDetail": [
 null,
 {
 "items": [
 {
 "value": "60000",
 "position": 0,
 "label": "Internal",
 "generation": 0,
 "operator": "+"
 },
 {
 "value": "50000",
 "position": 1,
 "label": "External",
 "generation": 0,
 "operator": "+"
 }
]
 },
 null,

Chapter 8
Working with Data Slices

8-115

 null,
 null,
 null,
 null,
 null
]
 }
]
}

Example 2: Suppress missing blocks, rows, and columns when exporting a data slice:

{
 "exportPlanningData": false,
 "gridDefinition": {
 "suppressMissingBlocks": true,
 "suppressMissingRows": true,
 "suppressMissingColumns": true,
 "pov": {
 "dimensions": [
 "HSP_View",
 "Year",
 "Scenario",
 "Version",
 "Entity",
 "Product"
],
 "members": [
 [
 "BaseData"
],
 [
 "FY15"
],
 [
 "Plan"
],
 [
 "Working"
],
 [
 "410"
],
 [
 "P_160"
]
]
 },
 "columns": [
 {
 "dimensions": [
 "Period"

Chapter 8
Working with Data Slices

8-116

],
 "members": [
 [
 "IDescendants(Q1)"
]
]
 },
 {
 "dimensions": [
 "Period"
],
 "members": [
 [
 "IDescendants(Q2)"
]
]
 }
],
 "rows": [
 {
 "dimensions": [
 "Account"
],
 "members": [
 [
 "Project Number",
 "Request Date",
 "Project Type",
 "Project Investment"
]
]
 }
]
 }
}

JSON Output:

{
 "pov": [
 "BaseData",
 "FY15",
 "Plan",
 "Working",
 "410",
 "P_160"
],
 "columns": [
 [
 "Jan",
 "Feb",
 "Mar",

Chapter 8
Working with Data Slices

8-117

 "Q1",
 "Apr",
 "May",
 "Jun",
 "Q2"
]
],
 "rows": [
 {
 "headers": [
 "Project Number"
],
 "data": [
 "1",
 "2",
 "3",
 " "
]
 },
 {
 "headers": [
 "Project Type"
],
 "data": [
 "Other",
 "IT",
 "Construction",
 ""
]
 },
 {
 "headers": [
 "Project Investment"
],
 "data": [
 "100000",
 "110000",
 "200000",
 "410000"
]
 }
]
}

Example payload with multiple dimensions:

{
 "exportPlanningData": false,
 "gridDefinition": {
 "suppressMissingBlocks": true,
 "pov": {
 "dimensions": [
 "HSP_View",

Chapter 8
Working with Data Slices

8-118

 "Scenario",
 "Version",
 "Product"
],
 "members": [
 [
 "BaseData"
],
 [
 "Plan"
],
 [
 "Working"
],
 [
 "P_160"
]
]
 },
 "columns": [
 {
 "dimensions": [
 "Year", "Period"
],
 "members": [
 [
 "FY19"
],
 [
 "IDescendants(Q1)"
]
]
 },
 {
 "dimensions": [
 "Year", "Period"
],
 "members": [
 [
 "FY20"
],
 [
 "IDescendants(Q1)"
]
]
 }
],
 "rows": [
 {
 "dimensions": [
 "Entity", "Account"
],
 "members": [
 [
 "410",
 "420"

Chapter 8
Working with Data Slices

8-119

],
 [
 "Project Number",
 "Request Date",
 "Project Type",
 "Project Investment"
]
]
 },
 {
 "dimensions": [
 "Entity", "Account"
],
 "members": [
 [
 "430"
],
 [
 "Project Investment"
]
]
 }
]
 }
}

Clear Data Slices
Use this REST API to clear Planning and Essbase data for a specified region. In order to run
this operation, the user must be an administrator.

Required Roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/plantypes/
{plantype}/cleardataslice

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-73 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application for which to export the data
slice

Path Yes None

plantype Name of the plan type for which to export the data slice Path Yes None

Chapter 8
Working with Data Slices

8-120

Example URL and Payload:

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/plantypes/plan1/cleardataslice
Payload Parameters

The Payload is JSON with the following parameters.

Table 8-74 Parameters

Name Description

gridDefinition JSON grid definition to define the region

clearEssbaseData True or false. If true, will clear Essbase numeric
data. Default is true.

clearPlanningData True or false. If true, will delete the cell notes,
attachments, and supporting details. Default is
false.

Sample Payload

Providing dimension names as follows in the gridDefinition is recommended and is more
efficient.

{

"clearEssbaseData":true,

"clearPlanningData":false,

"gridDefinition" : {

"suppressMissingBlocks" : true,

"pov" : {

"dimensions" : ["HSP_View", "Year", "Scenario", "Version", "Entity", "Product"],

"members" : [["BaseData"], ["FY15"], ["Plan"], ["Working"], ["410"], ["P_160"]]

},

"columns" : [{

"dimensions" : ["Period"],

"members" : [["IDescendants(Q1)"]]

}, {

"dimensions" : ["Period"],

"members" : [["IDescendants(Q2)"]]

}],

"rows" : [{

"dimensions" : ["Account"],

"members" : [["Project Number", "Request Date", "Project Type", "Project Investment"]]

}]

Chapter 8
Working with Data Slices

8-121

}

}

OR

No dimension names provided is less efficient:

{

"clearEssbaseData":true,

"clearPlanningData":false,

"gridDefinition" : {

"suppressMissingBlocks" : true,

"pov" : {

"members" : [["BaseData"], ["FY15"], ["Plan"], ["Working"], ["410"], ["P_160"]]

},

"columns" : [{

"members" : [["IDescendants(Q1)"]]

}, {

"members" : [["IDescendants(Q2)"]]

}],

"rows" : [{

"members" : [["Project Number", "Request Date", "Project Type", "Project Investment"]]

}]

}

}

Response

Supported Media Types: application/json
JSON Output

The following shows an example of the response body with clearEssbaseData true and
clearPlanningData false. There is one rejected cell due to the presence of supporting details
because clearPlanningData is false:

{

"numClearedCells": 31,

"numRejectedCells": 1

"rejectedCells": ["Project Investment,Feb,BaseData,FY15,Plan,Working,410,P_160"],

}

Chapter 8
Working with Data Slices

8-122

Getting and Setting Substitution Variables
You can use REST APIs to get and set substitution variables at the plan level and application
level, as summarized here.

You can also use REST APIs to delete substitution variables. See Deleting Substitution
Variables.

Required Roles

Service Administrator, Power User (with Rule Launch access)

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

Table 8-75 Getting and Setting Substitution Variables

Task Request REST Resource

Get All Substitution Variables Defined for the
Application

GET /HyperionPlanning/rest/
{api_version}/applications/
{application}/
substitutionvariables

Get a Substitution Variable Defined for the
Application

GET /HyperionPlanning/rest/
{api_version}/applications/
{application}/
substitutionvariables/MyPeriod

Create or Update All Substitution Variables
Defined for the Application

POST /HyperionPlanning/rest/
{api_version}/applications/
{application}/
substitutionvariables

Get Substitution Variables Defined at the Plan
Type Level

GET /HyperionPlanning/rest/
{api_version}/applications/
{application}/plantypes/
{plantype}/substitutionvariables

Get Derived Substitution Variables at the Plan
Type Level

GET /HyperionPlanning/rest/
{api_version}/applications/
{application}/plantypes/
{plantype}/substitutionvariables?
q={"derivedValues":true}

Get a Substitution Variable Defined at the
Plan Type Level

GET /HyperionPlanning/rest/
{api_version}/applications/
{application}/plantypes/
{plantype}/substitutionvariables/
CurrYear

Get a Derived Substitution Variable Defined at
the Plan Type Level

GET HyperionPlanning/rest/
{api_version}/applications/
{application}/plantypes/
{plantype}/substitutionvariables/
MyPeriod?q={"derivedValues":true}

Create and Update Substitution Variables at
the Plan Type Level

POST /HyperionPlanning/rest/
{api_version}/applications/
{application}/plantypes/
{plantype}/substitutionvariables

Chapter 8
Getting and Setting Substitution Variables

8-123

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_all_subst_variables_for_app_1.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_all_subst_variables_for_app_1.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_a_subst_variable_for_app_2.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_a_subst_variable_for_app_2.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_create_or_replace_all_subst_variables_for_app_3.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_create_or_replace_all_subst_variables_for_app_3.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_subst_variables_defined_at_plan_type_level_5.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_subst_variables_defined_at_plan_type_level_5.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_derived_subst_variables_at_plan_type_level_6.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_derived_subst_variables_at_plan_type_level_6.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_a_subst_variables_defined_at_plan_type_level_7.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_a_subst_variables_defined_at_plan_type_level_7.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_derived_subst_variables_defined_at_plan_type_level_8.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_derived_subst_variables_defined_at_plan_type_level_8.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_and_set_subst_variables_at_plan_type_level_9.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/planning_get_and_set_subst_variables_at_plan_type_level_9.html

Get All Substitution Variables Defined for the Application
You can use REST APIs to retrieve all substitution variables defined for the application (all plan
types).

Required Roles

Service Administrator, Power User (with Rule Launch access)

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/
substitutionvariables

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-76 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/substitutionvariables

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 8-77 Parameters

Name Description

items Collection of information about the resource

name Name of the substitution variable, such as CurrYear

value Value of the substitution variable, such as FY16

planType Plan type, such as Plan1, or ALL for all plan types

Chapter 8
Getting and Setting Substitution Variables

8-124

Example of Response Body

The following shows an example of the response body.

{
 "items": [{
 "name": "CurrYear",
 "value": "FY16",
 "planType": "ALL"
 }, {
 "name": "CurrYear",
 "value": "FY17",
 "planType": "Plan2"
 },{
 "name": "CurrPeriod",
 "value": "Jan",
 "planType": "Plan1"
 }, {
 "name": "CurrPeriod",
 "value": "Feb",
 "planType": "ALL"
 }]
}

Get a Substitution Variable Defined for the Application
You can use REST APIs to retrieve a substitution variable defined for the application.

Required Roles

Service Administrator, Power User (with Rule Launch access)

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/
substitutionvariables/CurrPeriod

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-78 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

Example URL

Chapter 8
Getting and Setting Substitution Variables

8-125

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/substitutionvariables/CurrPeriod

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 8-79 Parameters

Name Description

name Name of the substitution variable, such as CurrPeriod

value Value of the substitution variable, such as Jan

planType Plan type, such as Plan1, or ALL for all plan types

Example of Response Body

The following shows an example of the response body.

{
 "name": "CurrPeriod",
 "value": "Jan",
 "planType": "ALL",
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/vision/substitutionvariables/CurrPeriod",
 "action": "GET"
 }]
}

Create or Update All Substitution Variables Defined for the Application
Can be used to create or update substitution variables for the application.

Variables in the payload that exit in the application at the defined scope will be updated; new
variables will be created at the defined scope.

Required Roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
substitutionvariables

Request

Supported Media Types: application/json
Parameters

Chapter 8
Getting and Setting Substitution Variables

8-126

The following table summarizes the client request.

Table 8-80 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/substitutionvariables
Example Payload

With the following payload, CurrYear at the application level will be updated, and CurrPeriod
will be created at the Plan3 level.

{
 "items": [{
 "name": "CurrYear",
 "value": "FY18",
 "planType": "ALL"
 }, {
 "name": "CurrPeriod",
 "value": "Dec",
 "planType": "Plan3"
 }]
}

Response

Supported Media Types: application/json
Example of a successful response

Http status code: 204 (No content)

Example of an error response

Http status: 400

To confirm the results, you can go to the application to see the updates.

Get Substitution Variables Defined at the Plan Type Level
You can use REST APIs to retrieve a list of retrieve a list of substitution variables defined at the
plan type level.

Required Roles

Service Administrator, Power User (with Rule Launch access)

Chapter 8
Getting and Setting Substitution Variables

8-127

Rest Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/
plantypes/{plantype}/substitutionvariables

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-81 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

plantype The plan type for which to get substitution variables Path Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/plantypes/Plan1/
substitutionvariables

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 8-82 Parameters

Name Description

items Collection of information for the resource

name Name of the substitution variable, such as CurrPeriod

value Value of the substitution variable, such as Jan

planType Name of the plan type, such as Plan1

Example of Response Body

The following shows an example of the response body.

{
 "items": [{
 "name": "CurrPeriod",
 "value": "Jan",
 "planType": "Plan1"
 }]

Chapter 8
Getting and Setting Substitution Variables

8-128

}

Get Derived Substitution Variables at the Plan Type Level
You can use REST APIs to retrieve a list of derived substitution variables at the plan type level.

Required Roles

Service Administrator, Power User (with Rule Launch access)

Rest Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/
plantypes/{plan}/substitutionvariables?q={"derivedValues":true}

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-83 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

plantype Name of the plan type for which to get substitution
variables

Path Yes None

q Options for returning derived values, as described
in the following row

Query No

derivedValues If set to true, the derived list shows all variables
available at run time to be used against the plan
type. This includes variables defined at the
application level and at the plan type level.

If a substitution variable with the same name is
defined both at the plan type level and at the
application level, the plan type level is returned.

Query No derivedValues
= true when
getting derived
substitution
variables

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/plantypes/Plan1/
substitutionvariables?q={"derivedValues":true}

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Chapter 8
Getting and Setting Substitution Variables

8-129

Table 8-84 Parameters

Name Description

items Collection of information about the resource

name Name of the substitution variable, such as CurrYear

value Value of the substitution variable, such as FY16

planType Name of the plan type, such as Plan1, or ALL for all plan types

Example of Response Body

The following shows an example of the response body.

{
 "items": [{
 "name": "CurrYear",
 "value": "FY16",
 "planType": "ALL"
 }, {
 "name": "CurrPeriod",
 "value": "Jan",
 "planType": "Plan1"
 }]
}

Get a Substitution Variable Defined at the Plan Type Level
You can use REST APIs to retrieve a substitution variable defined at the plan type level.

Required Roles

Service Administrator, Power User (with Rule Launch access)

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/
plantypes/{plantype}/substitutionvariables/CurrYear

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-85 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

Example URL

Chapter 8
Getting and Setting Substitution Variables

8-130

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/vision/plantypes/plan1/
substitutionvariables/CurrYear

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 8-86 Parameters

Name Description

name Name of the substitution variable, such as CurrYear

value Value of the substitution variable, such as FY16

planType Name of the plan type, such as Plan1

Example of Response Body

The following shows an example of the response body.

{
 "name": "CurrYear",
 "value": "FY17",
 "planType": "Plan1",
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/vision/plantypes/plan1/substitutionvariables/CurrYear",
 "action": "GET"
 }]
}

Get a Derived Substitution Variable Defined at the Plan Type Level
You can use REST APIs to retrieve a derived substitution variable defined at the plan type
level.

Required Roles

Service Administrator, Power User (with Rule Launch access)

REST Resource

GET /HyperionPlanning/rest/{api_version}/applications/{application}/
plantypes/{plan}/substitutionvariables/CurrPeriod?q={"derivedValues":true}

Request

Supported Media Types: application/json
Parameters

Chapter 8
Getting and Setting Substitution Variables

8-131

The following table summarizes the client request.

Table 8-87 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

plan Name of the plan type for which to get substitution
variables

Path Yes None

q Options for returning derived values. The value is
described in the following row.

Query No derivedValues
= false

derivedValues true
If set to true, the derived list shows all variables
available at run time to be used against the plan
type. This includes variables defined at the
application level and at the plan type level.

If a substitution variable with the same name is
defined both at the plan type level and at the
application level, the plan type level is returned.

Query No false

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/plantypes/Plan1/
substitutionvariables?q={"derivedValues"=true}

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 8-88 Parameters

Name Description

items Collection of information about the resource

name Name of the substitution variable, such as CurrYear

value Value of the substitution variable, such as FY16

planType Name of the plan type, such as Plan1, or ALL for all plan types

Example of Response Body

The following shows an example of the response body.

{
 "name": "CurrPeriod",
 "value": "Jan",
 "planType": "ALL",
 "links": [{
 "rel": "self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/

Chapter 8
Getting and Setting Substitution Variables

8-132

applications/vision/plantypes/plan1/substitutionvariables/CurrPeriod?
q=%7B%22derivedValues%22:true%7D",
 "action": "GET"
 }]
}

Create and Update Substitution Variables at the Plan Type Level
You can use REST APIs to create and update substitution variables at the plan type level.
Variables in the payload that exist at the plan type level are updated. New variables are
created at the plan type level.

Required Roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
plantypes/{plantype}/substitutionvariables

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-89 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

plantype Name of the plan type for which to get and set
substitution variables

Path Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/plantypes/Plan1/
substitutionvariables
Response

Supported Media Types: application/json
Example of a successful response

Http status code: 204 (No content)

Example of an error response

Http status: 400

Chapter 8
Getting and Setting Substitution Variables

8-133

To confirm the results, you can go to the application to see the updates.

Deleting Substitution Variables
You can use REST APIs to delete substitution variables at the plan level and application level,
as summarized here.

Before deleting substitution variables, you can use REST APIs to get information on what
substitution variables are defined for the application or plan type. See Getting and Setting
Substitution Variables.

Required Roles

Service Administrator

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

Table 8-90 Deleting Substitution Variables

Task Request REST Resource

Delete a Substitution Variable at the Plan
Type Level

DELETE /HyperionPlanning/rest/
{api_version}/applications/
{application}/plantypes/
{plantype}/substitutionvariables/
subvarname

Delete a Substitution Variable for the
Application

DELETE /HyperionPlanning/rest/
{api_version}/applications/
{application}/
substitutionvariables/subvarname

Delete Substitution Variables at the Plan Type
Level

POST /HyperionPlanning/rest/
{api_version}/applications/
{application}/plantypes/
{plantype}/
substitutionvariables:delete

Delete Substitution Variables for the
Application

POST /HyperionPlanning/rest/
{api_version}/applications/
{application}/
substitutionvariables:delete

Delete a Substitution Variable at the Plan Type Level
Use this REST API to delete a substitution variable defined at the plan type level.

Before deleting substitution variables, you can use REST APIs to get information on what
substitution variables are defined for the application or plan type. See Getting and Setting
Substitution Variables.

Required Roles

Service Administrator

Chapter 8
Deleting Substitution Variables

8-134

REST Resource

Delete /HyperionPlanning/rest/{api_version}/applications/{application}/
plantypes/{plantype}/substitutionvariables/subvarname

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-91 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with, v3 Path Yes None

plantype The name of the plan type for which to delete the
substitution variable

Path Yes None

subvarname Name of the substitution variable to be deleted Path Yes None

Example URL

The following URL will delete CurrPeriod at Plan1.

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/plantypes/Plan1/
substitutionvariables/CurrPeriod

Response

Supported Media Types: application/json
Example of a successful response

Http status code: 204 (No content)

Example of an error response

Http status: 400

Delete a Substitution Variable for the Application
Use this REST API to delete a substitution variable defined at the application level.

Before deleting substitution variables, you can use REST APIs to get information on what
substitution variables are defined for the application or plan type. See Getting and Setting
Substitution Variables.

Required Roles

Service Administrator

Chapter 8
Deleting Substitution Variables

8-135

REST Resource

DELETE /HyperionPlanning/rest/{api_version}/applications/{application}/
substitutionvariables/subvarname

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-92 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with, v3 Path Yes None

subvarname The name of the substitution variable to be deleted Path Yes None

Example URL

The following URL will delete CurrPeriod at the application level.

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/substitutionvariables/CurrPeriod

Response

Supported Media Types: application/json
Example of a successful response

Http status code: 204 (No content)

Example of an error response

Http status: 400

Delete Substitution Variables at the Plan Type Level
Use this REST API to delete substitution variables at the plan type level. Variables in the
payload that exist at the plan type level are deleted.

Before deleting substitution variables, you can use REST APIs to get information on what
substitution variables are defined for the application or plan type. See Getting and Setting
Substitution Variables.

Required Roles

Service Administrator

Chapter 8
Deleting Substitution Variables

8-136

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
plantypes/{plantype}/substitutionvariables:delete

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-93 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with, v3 Path Yes None

plantype The name of the plan type for which to delete the
substitution variables

Path Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/plantypes/Plan1/
substitutionvariables:delete
Example Payload

The following payload will delete CurrYear and CurrPeriod at the Plan1 level.

{
 "items": [{
 "name": "CurrYear",
 "value": "FY23",
 "planType": "Plan1"
 }, {
 "name": "CurrPeriod",
 "value": "Jan",
 "planType": "Plan1"
 }]
}

Response

Supported Media Types: application/json
Example of a successful response

Http status code: 204 (No content)

Example of an error response

Http status: 400

Chapter 8
Deleting Substitution Variables

8-137

Delete Substitution Variables for the Application
Use this REST API to delete substitution variables defined for the application (for all plan
types). Variables that exist at the plan type level or application level are deleted.

Before deleting substitution variables, you can use REST APIs to get information on what
substitution variables are defined for the application or plan type. See Getting and Setting
Substitution Variables.

Required Roles

Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/
substitutionvariables:delete

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 8-94 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with, v3 Path Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/v3/applications/Vision/substitutionvariables:delete
Example Payload

The following payload will delete CurrPeriod at the application level and CurrYear at Plan1.

{
 "items": [{
 "name": "CurrPeriod",
 "value": "Jan",
 "planType": "ALL"
 }, {
 "name": "CurrYear",
 "value": "FY23",
 "planType": "Plan1"
 }]
}

Response

Supported Media Types: application/json

Chapter 8
Deleting Substitution Variables

8-138

Example of a successful response

Http status code: 204 (No content)

Example of an error response

Http status: 400

Example of Response Body

The following shows an example of the response body.

{
 "items": [{
 "name": "CurrYear",
 "value": "FY16",
 "planType": "ALL"
 }, {
 "name": "CurrYear",
 "value": "FY17",
 "planType": "Plan2"
 },{
 "name": "CurrPeriod",
 "value": "Jan",
 "planType": "Plan1"
 }, {
 "name": "CurrPeriod",
 "value": "Feb",
 "planType": "ALL"
 }]
}

Working with Connections
Use these REST APIs to work with connections.

With multiple environments, using REST APIs saves you time and effort by automating the
process of logging in and configuring connections. For information about accessing
environments, see Accessing EPM Cloud.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using these REST APIs requires prerequisites. See Prerequisites.

Table 8-95 Working with Connections

Task Request REST Resource

View a Connection GET /HyperionPlanning/rest/epm/{api_version}/
applications/{application}/connections/
{connectionRef}

View all Connections GET /HyperionPlanning/rest/epm/{api_version}/
applications/{application}/connections

Chapter 8
Working with Connections

8-139

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsad/1_epm_cloud_accessing_intro.html

Table 8-95 (Cont.) Working with Connections

Task Request REST Resource

Update a Connection POST /HyperionPlanning/rest/epm/{api_version}/
applications/{application}/connections/
{connectionRef}

View a Connection
Use this REST API to view details for a connection that is saved in an application.

Required Roles

Service Administrator

REST Resource

GET /HyperionPlanning/rest/epm/{api_version}/applications/{application}/
connections/{connectionRef}

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-96 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application for which to view the
connection

Path Yes None

connectionRef The connection to view. The value can be either a
connection name or ID.

Path Yes None

Response

Supported Media Types: application/json
Payload Parameters:

The following table summarizes the parameters.

Table 8-97 Parameters

Parameters Description

items Collection of information about the resource

id Unique identifier for the connection, such as 1c89922d-92ba-46c1-850f-
e2a8a416ddf2

name Name of the connection, such as Connection29

description Description of the connection, such as Planning

Chapter 8
Working with Connections

8-140

Table 8-97 (Cont.) Parameters

Parameters Description

url The URL of the connection, such as https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning

username The username for the connection, such as admin

domain The domain name for the connection

modified The time stamp of the last modification to the connection details, such as
2021-01-18 12:23:49.0

modifiedBy The last service administrator to modify the connection details, such as
admin

Example Response

The identity domain information as shown as part of the response.

{
 "id": "f83b3da2-9505-415e-b7f7-3cf113cc94e4",
 "name": "Connection1",
 "description": "Test Connection",
 "url": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning",
 "username": "admin",
 "domain": "<DOMAIN_NAME>",
 "modified": "2021-02-02 09:16:02.0",
 "modifiedBy": "admin",
 "links": [
 {
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/epm/v1/applications/epbcs1/connections/f83b3da2-9505-415e-
b7f7-3cf113cc94e4",
 "action": "GET",
 "rel": "self",
 "data": null
 }
]
}

View All Connections
Use this REST API to view details for all of the connections saved in an application.

This API supports paging, so you can filter the number of connections you see in the output
using the offset and limit parameters shown in the table.

Required Roles

Service Administrator

Chapter 8
Working with Connections

8-141

REST Resource

GET /HyperionPlanning/rest/epm/{api_version}/applications/{application}/
connections

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-98 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application for which to view
connections

Path Yes None

offset For paging of jobs. Indicates the actual index from
which the records are returned. It is 0 based.

Query No 0

limit For paging for jobs. Controls how many items to
return. Defaults to 25 if not specified.

Query No 25

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com//
HyperionPlanning/rest/epm/v1/applications/epbcs1/connections?offset=2&limit=2

Response

The following table summarizes the parameters.

Table 8-99 Parameters

Parameters Description

items Collection of information about the resource

id Unique identifier for the connection, such as 1c89922d-92ba-46c1-850f-
e2a8a416ddf2

name Name of the connection, such as Connection29

description Description of the connection, such as Planning

url The URL of the connection, such as https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning

username The username for the connection, such as admin

domain The domain name for the connection

modified The time stamp of the last modification to the connection details, such as
2021-01-18 12:23:49.0

modifiedBy The last service administrator to modify the connection details, such as
admin

Example Response

Chapter 8
Working with Connections

8-142

The identity domain information as shown as part of the response.

{
 "links": [
 {
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/epm/v1/applications/epbcs1/connections?offset=2&limit=2",
 "action": "GET",
 "rel": "self",
 "data": null
 },
 {
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/epm/v1/applications/epbcs1/connections?offset=0&limit=2",
 "action": "GET",
 "rel": "prev",
 "data": null
 },
 {
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/epm/v1/applications/epbcs1/connections?offset=4&limit=2",
 "action": "GET",
 "rel": "next",
 "data": null
 }
],
 "items": [
 {
 "id": "1c89922d-92ba-46c1-850f-e2a8a416ddf2",
 "name": "Connection20",
 "url": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning",
 "username": "admin",
 "modified": "2021-01-18 12:23:49.0",
 "modifiedBy": "admin",
 "links": [
 {
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/epm/v1/applications/epbcs1/connections/1c89922d-92ba-46c1-850f-
e2a8a416ddf2",
 "action": "GET",
 "rel": "Self",
 "data": null
 }
]
 },
 {
 "id": "ec94a10e-717b-449a-89ce-0c16b1688caa",
 "name": "Connection29",
 "url": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning",
 "username": "admin",

Chapter 8
Working with Connections

8-143

 "domain": "<DOMAIN_NAME>",
 "modified": "2021-01-18 12:23:49.0",
 "modifiedBy": "admin",
 "links": [
 {
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/epm/v1/applications/epbcs1/connections/
ec94a10e-717b-449a-89ce-0c16b1688caa",
 "action": "GET",
 "rel": "Self",
 "data": null
 }
]
 }
],
 "type": null
}

Update a Connection
Use this REST API to update a specific connection that is saved in an application.

You can update the values using either a plain text password or encrypted password. The
response returns the updated connection details.

Required Roles

Service Administrator

REST Resource

GET /HyperionPlanning/rest/epm/{api_version}/applications/{application}/
connections/{connectionRef}

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 8-100 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application for which to update a
connection

Path Yes None

connectionRef The connection to refer to. The value can be
either a connection name or ID.

Path Yes None

Chapter 8
Working with Connections

8-144

Table 8-101 Parameters for Connection Information that Can Be Modified

Name Description

name Name of the connection, such as Connection29

description Description of the connection, such as Planning

url The URL of the connection, such as https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning

username The username for the connection, such as admin

password The password of the connection

encryptedPassword The password of the connection in the encrypted format using the EPM Automate
encrypt command. See encrypt.

Example Body

Example 1:

{
 "name": "<NEW_CONNECTION_NAME>",
 "description": "<NEW_DESCRIPTION>",
 "url": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning",
 "username": "<NEW_USERNAME>",
 "password": "<NEW_PASSWORD>"
}

Example 2:

{
 "name": "<NEW_CONNECTION_NAME>",
 "description": "<NEW_DESCRIPTION>",
 "url": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning",
 "username": "<NEW_USERNAME>",
 "encryptedPassword": "<ENCRYPTED_PASSWORD>"
}

Response

Supported Media Type: application/json

Table 8-102 Parameters

Parameters Description

items Collection of information about the resource

id Unique identifier for the connection, such as 1c89922d-92ba-46c1-850f-
e2a8a416ddf2

name Name of the connection, such as Connection29

description Description of the connection, such as Planning

url The URL of the connection, such as https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning

Chapter 8
Working with Connections

8-145

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_auto_encrypt.html

Table 8-102 (Cont.) Parameters

Parameters Description

domain The domain name for the connection

username The username for the connection, such as admin

modified The time stamp of the last modification to the connection details, such as
2021-01-18 12:23:49.0

modifiedBy The last service administrator to modify the connection details, such as
admin

Example Response

The identity domain information as shown as part of the response.

{
 "id": "<ID>",
 "name": "<NEW_CONNECTION_NAME>",
 "description": "<NEW_DESCRIPTION>",
 "url": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning",
 "domain": "<DOMAIN_NAME>",
 "username": "<NEW_USERNAME>",
 "modified": "2021-02-02 09:16:02.0",
 "modifiedBy": "admin",
 "links": [
 {
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/epm/v1/applications/epbcs1/connections/f83b3da2-9505-415e-
b7f7-3cf113cc94e4",
 "action": "GET",
 "rel": "self",
 "data": null
 }
]
}

Chapter 8
Working with Connections

8-146

9
Migration REST APIs

Use the Migration REST APIs to get API versions, work with files, manage services and
application snapshots, work with users, and skip updates.

Some Migration REST APIs are version 11.1.2.3.600 and others are version v1 or v2. Passing
the incorrect version will result in 404 errors when the API is invoked. Be sure to use the
correct version for the API. Be sure to use the correct version for the API. Migration REST API
versions are as follows.

These Migration APIs are version 11.1.2.3.600:

• Delete Files (v11.1.2.3.600)

• Download

• Get Information About All Application Snapshots

• Get Information About All Services

• Get Information About a Specific Application Snapshot

• List Files (v11.1.2.3.600)

• Provide Feedback (v11.1.2.3.600)

• Run Recreate on a Service (11.1.2.3.600)

• Upload

These Migration APIs are version v1:

• Clone an Environment

• Copy a File Between Instances (v1)

• Copy Application Snapshot (v1)

• Copy from Object Store (v1)

• Copy to Object Store (v1)

• Download Application Snapshot (v1)

• Get Essbase Query Governor Execution Time

• Get the Build Version and Daily Maintenance Window Time (v1)

• LCM Import (v1)

• LCM Export (v1)

• Manage Permission for Manual Access to Database (v1)

• Rename Application Snapshot (v1)

• Restart the Service Instance (v1)

• Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v1)

• Send Email (v1)

• Set Encryption Key (v1)

9-1

• Set Essbase Query Governor Execution Time

• Setting the Daily Maintenance Time (v1)

• Skip Updates (v1)

• Upload Application Snapshot (v1)

These Migration APIs are version v2:

• Copy a File Between Instances (v2)

• Copy Application Snapshot (v2)

• Copy from Object Store (v2)

• Copy to Object Store (v2)

• Delete Files (v2)

• Download Application Snapshot (v2)

• Export Essbase Data (v2)

• Get Essbase Query Governor Execution Time

• Get Idle Session Timeout

• Get the Build Version and Daily Maintenance Window Time (v2)

• Get Virus Scan on File Upload

• LCM Import (v2)

• LCM Export (v2)

• List Backups - Only for OCI (Gen 2) Environments (v2)

• List Files (v2)

• Manage Permission for Manual Access to Database (v2)

• Provide Feedback (v2)

• Rename Application Snapshot (v2)

• Restore Backup - Only for OCI (Gen 2) Environments (v2)

• Restart the Service Instance (v2)

• Run Recreate on a Service (v2)

• Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v2)

• Send Email (v2)

• Set Encryption Key (v2)

• Set Essbase Query Governor Execution Time

• Set Idle Session Timeout

• Set Virus Scan on File Upload

• Setting the Daily Maintenance Time (v2)

• Skip Updates (v2)

• Update the IP Allowlist - Only for OCI (Gen 2) Environments

• Upload Application Snapshot (v2)

• View the IP Allowlist - Only for OCI (Gen 2) Environments

Chapter 9

9-2

This Migration API is version v3:

Delete Files (v3)

URL Structure for Migration
This topic shows the general URL structure for the Migration REST APIs.

Some Migration REST APIs are version 11.1.2.3.600 and others are version v1 or v2. Be sure
to use the correct version for the API. Passing the incorrect version will result in 404 errors
when the API is invoked.

You can find an API version using REST APIs as described here: Getting API Versions for
Migration APIs. For a list of all of the Migration APIs and their version numbers, see Migration
REST APIs.

Use this URL structure to access the Migration REST resources:

https://<BASE-URL>/interop/rest/{api_version}/{path}

Where:

• <BASE-URL>: The first part of your service URL, before the context.

For example, if your service URL is https://epm-acme.epm.us-
phoenix-1.ocs.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm-
acme.epm.us-phoenix-1.ocs.oraclecloud.com. Similarly, if your service URL is https://
epm2-acme.epm.us6.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm2-
acme.epm.us6.oraclecloud.com.

• api_version: API version you are developing with.

• path: Identifies the resource.

Note:

Oracle does not authorize or support the use of REST APIs with the path token "/
internal/" in the URL.

Migration Status Codes
The status code returned in the response of REST API calls identifies the status of the
operation.

Table 9-1 Status Code

Status Code Description

O Operation success

-1 Operation in progress

+ve Operation failed, with the status signifying an error

Chapter 9
URL Structure for Migration

9-3

Getting API Versions for Migration APIs
You can manage versions using the set of REST resources summarized in the following table.

Important: The version number is case-sensitive. For example, if the version number is listed
as v1 with a lowercase v, you cannot enter the version number with a capital V as in this
incorrect example, V1, which would result in an error. Instead, you must enter the version
number with a lowercase v as in this correct example: v1.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

Table 9-2 Manage Versions of Migration APIs

Task Request REST Resource

Get REST API Versions for Migration GET /interop/rest/
Get Information About a Specific REST
API Version for Migration

GET /interop/rest/{apiVersion}

Get REST API Versions for Migration
Returns information about which REST APIs are available and supported. Multiple versions
may be supported simultaneously.

Required Roles

Service Administrator, Power User, User, Viewer

REST Resource

GET /interop/rest/

Request

Supported Media Types: application/json

Table 9-3 Parameters

Name Description

Details In case of errors, details are published with the error string

Status See Migration Status Codes

Items Detailed information about the API

Version The version

Lifecycle Possible values: active, deprecated
Latest Whether this version is the latest

Links Detailed information about the link

Href Links to API call

Action The HTTP call type

Rel Possible values: self

Data Parameters as key value pairs passed in the request

Chapter 9
Getting API Versions for Migration APIs

9-4

Table 9-3 (Cont.) Parameters

Name Description

lifecycle The stage in the lifecycle, such as active

version The version, such as 11.1.2.3.600, v1, and v2, for example,
"version": "11.1.2.3.600", "v1", v2"

serviceType The service type, such as PCMCS

serverVersion The server version, such as 21.05.70

buildVersion The build version, such as 21.05.52

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "links": [
 {
 "href": "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600",
 "rel": "self",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": 0,
 "items": [
 {
 "latest": true,
 "links": [
 {
 "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600",
 "rel": "version",
 "data": null,
 "action": "GET"
 }
],
 "lifecycle": "active",
 "version": "11.1.2.3.600",
 "serviceType": "PCMCS",
 "serverVersion": "21.05.70",
 "buildVersion": "21.05.52"
 }
],
}

Getting API Versions of Migration APIs Sample Code

Prerequisites: json.jar

Common functions: See Common Helper Functions for Java

Chapter 9
Getting API Versions for Migration APIs

9-5

Example 9-1 Java Sample – getVersionsOfLCM.java

//
//
// BEGIN - List all the versions in PBCS
//
public void getLCMVersions() throws Exception {
 String urlString = String.format("%s/interop/rest", serverUrl);
 String response = executeRequest(urlString, "GET", null);
 JSONObject json = new JSONObject(response);
 int resStatus = json.getInt("status");
 if (resStatus == 0) {
 JSONArray fileList = json.getJSONArray("items");
 System.out.println("List of files are :");
 JSONObject jObj = null;
 for(int i=0; i<fileList.length();i++){
 System.out.println("Version :" + jObj.getString("version"));
 System.out.println("Lifecycle :" + jObj.getString("lifecycle"));
 System.out.println("Latest :" + jObj.getString("latest"));
 System.out.println("Link :" + ((JSONObject) ((JSONArray)
jObj.getJSONArray("links")).get(0)).getString("href") + "\n");
 }
 }
}
//
// END - List all the versions in PBCS
//

Example 9-2 cURL Sample – GetVersionsOfLCM.sh

Prerequisites: jq

Common functions: See Common Helper Functions for cURL

funcGetLCMVersions() {
 url=$SERVER_URL/interop/rest
 funcExecuteRequest "GET" $url

 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == 0]; then
 echo "List of versions :"
 count=`echo $output | jq '.items | length'`
 i=0
 while [$i -lt $count]; do
 echo "Version : " `echo $output | jq '.items['$i'].version'`
 echo "Lifecycle :" `echo $output | jq '.items['$i'].lifecycle'`
 echo "Latest :" `echo $output | jq '.items['$i'].latest'`
 echo "Link :" `echo $output | jq '.items['$i'].links[0].href'`
 echo ""
 i=`expr $i + 1`
 done
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi

Chapter 9
Getting API Versions for Migration APIs

9-6

 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Example 9-3 Groovy Sample – GetVersionsOfLCM.groovy

Prerequisites: json.jar

Common functions: See CSS Common Helper Functions for Groovy

def getLCMVersions() {
 def url;
 try {
 url = new URL(serverUrl + "/interop/rest/")
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "GET", null);
 def object = new JsonSlurper().parseText(response)
 def status = object.status
 if (status == 0) {
 def items = object.items
 println "List of versions :"
 items.each{
 println "Version : " + it.version
 println "Lifecycle : " + it.lifecycle
 println "Latest : " + it.latest
 println "Link : " + it.links[0].href + "\n"
 }
 } else {
 println "Error occurred while listing versions"
 if (object.details != null)
 println "Error details: " + object.details
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Get Information About a Specific REST API Version for Migration
Returns information about a specific version.

Some Migration REST APIs are version 11.1.2.3.600, and others are other versions, such as
v1 or v3. Passing the incorrect version will result in 404 errors when the API is invoked. Be
sure to use the correct version for the API; api_version could be 11.1.2.3.600, v1, or v2.

Required Roles

Service Administrator, Power User, User, Viewer

Chapter 9
Getting API Versions for Migration APIs

9-7

REST Resource

GET /interop/rest/{api_version}

Request

Parameters:

The following table summarizes the client request.

Table 9-4 Parameters

Name Description Type Default

api_version Specific API version Path Yes

Response

Supported Media Types: application/json

Table 9-5 Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible values: self, recreate service

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "status":0,
 "details":null,
 "links":[{
 "data":null,
 "action":"GET",
 "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600",
 "rel":"self"
 },{
 "data":null,
 "action":"GET",
 "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600/
services",
 "rel":"recreate service"
 },{
 "data":null,
 "action":"GET",

Chapter 9
Getting API Versions for Migration APIs

9-8

 "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600/
applications",
 "rel":"application service"
 },{
 "data":null,
 "action":"GET", "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600/
applicationsnapshots "rel":"application snapshot service"
 },{
"data":null,
"action":"POST",
"rel":"feedback services",
"href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600/
feedback"
}]
}

Get Information about a Specific Version of Migration Sample Code

Example 9-4 Java Sample – getInfoAboutSpecificVersion.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

//
// BEGIN - List version details
//
public void getLCMVersionDetails() throws Exception {
 String urlString = String.format("%s/interop/rest/%s", serverUrl,
apiVersion);
 String response = executeRequest(urlString, "GET", null);
 JSONObject json = new JSONObject(response);
 int resStatus = json.getInt("status");
 if (resStatus == 0) {
 JSONArray linksArray = json.getJSONArray("links");
 System.out.println("Version " + apiVersion + " details :");
 JSONObject jObj = null;
 for(int i=0; i < linksArray.length(); i++){
 jObj = (JSONObject)linksArray.get(i);
 System.out.println("Service :" + jObj.getString("rel"));
 System.out.println("URL :" + jObj.getString("href"));
 System.out.println("Action :" + jObj.getString("action") + "\n");
 }
 }
}
//
// END - List version details
//

Example 9-5 cURL Sample – GetInfoAboutSpecificVersion.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Chapter 9
Getting API Versions for Migration APIs

9-9

Common Functions: See Common Helper Functions for cURL

funcGetLCMVersionDetails() {
 url=$SERVER_URL/interop/rest/$API_VERSION
 funcExecuteRequest "GET" $url

 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == 0]; then
 echo "Version $API_VERSION details :"
 count=`echo $output | jq '.links | length'`
 i=0
 while [$i -lt $count]; do
 echo "Service : " `echo $output | jq '.links['$i'].rel'`
 echo "URL :" `echo $output | jq '.links['$i'].href'`
 echo "Action :" `echo $output | jq '.links['$i'].action'`
 echo ""
 i=`expr $i + 1`
 done
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Example 9-6 Groovy Sample – GetInfoAboutSpecificVersion.groovy

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

def getLCMVersionDetails() {
 def url;
 try {
 url = new URL(serverUrl + "/interop/rest/" + apiVersion)
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "GET", null);
 def object = new JsonSlurper().parseText(response)
 def status = object.status
 if (status == 0) {
 def links = object.links
 println "Version " + apiVersion + " details :"
 links.each{
 println "Service : " + it.rel
 println "URL : " + it.href
 println "Action : " + it.action + "\n"
 }
 } else {
 println "Error occurred while fetching version details"
 if (object.details != null)
 println "Error details: " + object.details

Chapter 9
Getting API Versions for Migration APIs

9-10

 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Import and Export Files

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-6 Import and Export Files

Task Request REST Resource

LCM Import (v1) POST /interop/rest/{api_version}/applicationsnapshots/
{applicationSnapshotName}/migration?q={type:"import"}

LCM Import (v2) POST /interop/rest/v2/snapshots/import
LCM Export (v1) POST /interop/rest/{api_version}/applicationsnapshots/

{applicationSnapshotName}/migration?q={type:"export"}
LCM Export (v2) POST /interop/rest/v2/snapshots/export

LCM Import (v1)
Initiates import of a Migration snapshot so that the contents of the application snapshot are
imported into the application. You can complete these tasks for imported users: set a specific
password for all users in the snapshot, set a unique temporary password for each user in the
snapshot, and force password reset at first login.

The presence of status -1 in the response indicates that the import is in progress. You should
use the job status URI to determine whether the import is complete.

If the Job completes with status 1, the task details will be mentioned in the items from which
the source, destination, and URL to fetch the first set of errors is available. All issues for a
particular task can be fetched in the manner of pagination. Acceptable values for msgtype are:
error/warn/info; limit represents the number of issues requested per request, and offset
marks the beginning number to fetch the issues.

This API is version 11.1.2.3.600.

Required Roles

Service Administrator

Chapter 9
Import and Export Files

9-11

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

Identity Domain Administrator role is required to import user and predefined roles

REST Resource

POST /interop/rest/{api_version}/applicationsnapshots/{applicationSnapshotName}/
migration?q={type:"import"}

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-7 Tasks for LCM Import

Task Request REST Resource

LCM Import POST /interop/rest/{api_version}/applicationsnapshots/
{applicationSnapshotName}/migration?q={type:"import"}

Import Status; the 9
in the resource is
used as an
example here

GET /interop/rest/{api_version}/applicationsnapshots/
{applicationSnapshotName}/migration/9

Details GET /interop/rest/{api_version}/applicationsnapshots/
{applicationSnapshotName}/migration/9/0/details?
limit=25&msgtype=error&offset=0

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 9-8 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

applicationSnapsho
tName

Application snapshot that is to be imported Path Yes None

type Type of migration being performed, import Query Yes None

importUsers Whether to import users; true imports users and their
predefined role assignments. The import fails if the user does
not have the Identity Domain Administrator role.

Query No false

userPassword The default password for the imported users. Query No A unique
temporary
password
is
assigned
to each
user

Chapter 9
Import and Export Files

9-12

Table 9-8 (Cont.) Parameters

Name Description Type Required Default

resetPassword Whether to force reset password for the imported users on
first login, true or false

Query No true

Response

Supported Media Types: application/json

Table 9-9 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data Parameters as key value pairs passed in the request

items Details about the resource

source From where the navigation is being performed

destination To where the navigation is being performed

name Name of the task, usually "Task Information"

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Examples of Response Body

The following are examples of the response body in JSON format.

Example 1: Job is in Progress

{
 "details":null,
 "status":-1,
 "links":[{
 "data":null,
 "action":"POST",
 "rel":"self",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migrationq={type:"import"}"
 },{
 "data":null,
 "action":"POST",
 "rel":"Job Status",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/2"
 }]
}

Chapter 9
Import and Export Files

9-13

Example 2: Job Completes with Errors

{"status":1,
"items":[{
 "source":"/Nasdaq/HSS-Shared Services",
 "name":"Task Information",
 "destination":"Shared Services",
 "links":[{
 "data":null,
 "action":"GET",
 "rel":"Job Details",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=25&offset=0&msgtype=error"}]
 },
 {"source":"/Artifact Snapshot/HP-SS2",
 "name":"Task Information",
 "destination":"",
 "links":[{
 "data":null,
 "action":"GET",
 "rel":"Job Details",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/1/details?
limit=25&offset=0&msgtype=error"}]
 }],
 "details":null,
 "links":[{
 "data":null,
 "action":"POST",
 "rel":"self",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1"}
]}
 }

Example 3: Each Type of Task Informaton is Requested

{"status":0,
"items":[{
 "msgType":"error",
 "artifact":"/Native Directory/Groups",
 "msgText":"EPMIE-00069: Failed to find user during group children import.
User user0026 not found. Please ensure that a user exists in the system.",
 "msgCategory":"14000: Error reported.",
 "msgCategory":"14000: Error reported."
 },{
 "msgType":"error",
 "artifact":"/Native Directory/Groups",
 "msgText":"EPMIE-00069: Failed to find user during group children import.
User user0025 not found. Please ensure that a user exists in the system.",
 "msgCategory":"14000: Error reported." }
],
"details":null,
"links":[{

Chapter 9
Import and Export Files

9-14

 "data":null,
 "action":"GET",
 "rel":"self",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=2&msgtype=error&offset=25"},
 {"data":null,
 "action":"GET",
 "rel":"next",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=2&offset=27&msgType=error"},
 {"data":null,
 "action":"GET",
 "rel":"prev",
 "href":https://<BASE-URL>/rest/11.1.2.3.600/applicationsnapshots/ss2/
migration/1/0/details?limit=2&offset=23&msgType=error
 }]
 }

Java Sample – lcmImport.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

{"status":0,
"items":[{
 "msgType":"error",
 "artifact":"/Native Directory/Groups",
 "msgText":"EPMIE-00069: Failed to find user during group children import.
User user0026 not found. Please ensure that a user exists in the system.",
 "msgCategory":"14000: Error reported.",
 "msgCategory":"14000: Error reported."
 },{
 "msgType":"error",
 "artifact":"/Native Directory/Groups",
 "msgText":"EPMIE-00069: Failed to find user during group children import.
User user0025 not found. Please ensure that a user exists in the system.",
 "msgCategory":"14000: Error reported." }
],
"details":null,
"links":[{
 "data":null,
 "action":"GET",
 "rel":"self",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=2&msgtype=error&offset=25"},
 {"data":null,
 "action":"GET",
 "rel":"next",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=2&offset=27&msgType=error"},
 {"data":null,

Chapter 9
Import and Export Files

9-15

 "action":"GET",
 "rel":"prev",
 "href":https://<BASE-URL>/rest/11.1.2.3.600/applicationsnapshots/ss2/
migration/1/0/details?limit=2&offset=23&msgType=error
 }]
 }

cURL Sample – LcmImport.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

{"status":0,
"items":[{
 "msgType":"error",
 "artifact":"/Native Directory/Groups",
 "msgText":"EPMIE-00069: Failed to find user during group children import.
User user0026 not found. Please ensure that a user exists in the system.",
 "msgCategory":"14000: Error reported.",
 "msgCategory":"14000: Error reported."
 },{
 "msgType":"error",
 "artifact":"/Native Directory/Groups",
 "msgText":"EPMIE-00069: Failed to find user during group children import.
User user0025 not found. Please ensure that a user exists in the system.",
 "msgCategory":"14000: Error reported." }
],
"details":null,
"links":[{
 "data":null,
 "action":"GET",
 "rel":"self",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=2&msgtype=error&offset=25"},
 {"data":null,
 "action":"GET",
 "rel":"next",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=2&offset=27&msgType=error"},
 {"data":null,
 "action":"GET",
 "rel":"prev",
 "href":https://<BASE-URL>/rest/11.1.2.3.600/applicationsnapshots/ss2/
migration/1/0/details?limit=2&offset=23&msgType=error
 }]
 }

Groovy Sample – LcmImport.groovy

Prerequisites: json.jar

Chapter 9
Import and Export Files

9-16

Common Functions: See CSS Common Helper Functions for Groovy

{"status":0,
"items":[{
 "msgType":"error",
 "artifact":"/Native Directory/Groups",
 "msgText":"EPMIE-00069: Failed to find user during group children import.
User user0026 not found. Please ensure that a user exists in the system.",
 "msgCategory":"14000: Error reported.",
 "msgCategory":"14000: Error reported."
 },{
 "msgType":"error",
 "artifact":"/Native Directory/Groups",
 "msgText":"EPMIE-00069: Failed to find user during group children import.
User user0025 not found. Please ensure that a user exists in the system.",
 "msgCategory":"14000: Error reported." }
],
"details":null,
"links":[{
 "data":null,
 "action":"GET",
 "rel":"self",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=2&msgtype=error&offset=25"},
 {"data":null,
 "action":"GET",
 "rel":"next",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=2&offset=27&msgType=error"},
 {"data":null,
 "action":"GET",
 "rel":"prev",
 "href":https://<BASE-URL>/rest/11.1.2.3.600/applicationsnapshots/ss2/
migration/1/0/details?limit=2&offset=23&msgType=error
 }]
 }

Sample cURL Command Basic Auth

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -H
'Content-Type: application/x-www-form-urlencoded' 'https://<BASE-URL>
/interop/rest/11.1.2.3.600/applicationsnapshots/<APPLICATION-SNAPSHOT-NAME>/
migration?
q={type:"import",importUsers:"true"}'

Sample cURL Command OAuth 2.0

curl -X POST --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H
'Content-Type: application/x-www-form-urlencoded' 'https://<BASE-URL>
/interop/rest/11.1.2.3.600/applicationsnapshots/<APPLICATION-SNAPSHOT-NAME>/
migration?
q={type:"import",importUsers:"true"}'

Chapter 9
Import and Export Files

9-17

LCM Import (v2)
The LCM Import (v2) REST API initiates import of a Migration snapshot so that the contents of
the application snapshot are imported into the application. You can complete these tasks for
imported users: set a specific password for all users in the snapshot, set a unique temporary
password for each user in the snapshot, and force password reset at first login.

The presence of status -1 in the response indicates that the import is in progress. You should
use the job status URI to determine whether the import is complete.

If the Job completes with status 1, the task details will be mentioned in the items from which
the source, destination, and URL to fetch the first set of errors is available. All issues for a
particular task can be fetched in the manner of pagination. Acceptable values for msgtype are:
error/warn/info; limit represents the number of issues requested per request, and offset
marks the beginning number to fetch the issues.

This API is version v2.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

Identity Domain Administrator role is required to import user and predefined roles.

REST Resource

POST /interop/rest/v2/snapshots/import

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-10 Tasks for LCM Import

Task Request REST Resource

LCM Import POST /interop/rest/v2/snapshots/import
Import Status GET /interop/rest/v2/status/migration/22
Details GET /interop/rest/v2/status/migration/22/0/details?

limit=25&offset=0&msgtype=info

Request

Support Media Types: application/json
The following table summarizes the request parameters.

Chapter 9
Import and Export Files

9-18

Table 9-11 Parameters

Name Description Type Required Default

snapshotName Application snapshot that is to be imported Payload Yes None

importUsers Whether to import users; true imports users and their
predefined role assignments. The import fails if the user
issuing the request does not have the Identity Domain
Administrator role.

Payload No false

userPassword The default password for the imported users. Payload No A unique
temporar
y
password
is
assigned
to each
user

resetPassword Whether to force reset password for the imported users
on first login, true or false

Payload No true

Example URL and Payload

https://<BASE-URL>/interop/rest/v2/snapshots/import

{
 "snapshotName": "Artifact Snapshot",
 "parameters": {
 "importUsers": true,
 "userPassword": "epm_cloud",
 "resetPassword": false
 }
}

Response

Table 9-12 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href
to get the status of the import operation

data Parameters as key value pairs passed in the request

items Details about the resource

source From where the navigation is being performed

destination To where the navigation is being performed

Chapter 9
Import and Export Files

9-19

Table 9-12 (Cont.) Parameters

Parameters Description

name Name of the task, usually "Task Information"

links Details of the first URL to be requested to get the job details; rel is "Job
Details"

Examples of Response Body

The following are examples of the response body in JSON format.

Example 1: Import is in Progress

{
 "details": null,
 "status": -1,
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/snapshots/import",
 "action": "POST",
 "rel": "self",
 "data": null
 },
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/migration/24",
 "action": "POST",
 "rel": "Job Status",
 "data": null
 }
]
}

Example 2: Import Completes

{
 "details": null,
 "status": 0,
 "items": [
 {
 "name": "Task Information",
 "source": "/Artifact Snapshot/HSS-Shared Services",
 "destination": "Shared Services",
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/
migration/24/0/details?limit=25&offset=0&msgtype=warning",
 "action": "GET",
 "rel": "Job Details",
 "data": null
 }
]
 },
 {
 "name": "Task Information",

Chapter 9
Import and Export Files

9-20

 "source": "/Artifact Snapshot/HP-Vision",
 "destination": "Vision",
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/
migration/24/1/details?limit=25&offset=0&msgtype=warning",
 "action": "GET",
 "rel": "Job Details",
 "data": null
 }
]
 },
 {
 "name": "Task Information",
 "source": "/Artifact Snapshot/DOCREP-Document Repository",
 "destination": "Document Repository",
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/
migration/24/2/details?limit=25&offset=0&msgtype=warning",
 "action": "GET",
 "rel": "Job Details",
 "data": null
 }
]
 },
 {
 "name": "Task Information",
 "source": "/Artifact Snapshot/CALC-Calculation Manager",
 "destination": "Calculation Manager",
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/
migration/24/3/details?limit=25&offset=0&msgtype=warning",
 "action": "GET",
 "rel": "Job Details",
 "data": null
 }
]
 },
 {
 "name": "Task Information",
 "source": "/Artifact Snapshot/FDMEE-FDM Enterprise Edition",
 "destination": "FDM Enterprise Edition",
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/
migration/24/4/details?limit=25&offset=0&msgtype=warning",
 "action": "GET",
 "rel": "Job Details",
 "data": null
 }
]
 }
],
 "links": [

Chapter 9
Import and Export Files

9-21

 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/migration/24",
 "action": "GET",
 "rel": "self",
 "data": null
 }
]
}

Sample cURL Command Basic Auth

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -H
'Content-Type: application/json' -d '{"snapshotName":"<SNAPSHOT-
NAME>","parameters":
{"importUsers":<TRUE/FALSE>,"userPassword":"<PASSWORD>","resetPassword":<TRUE/
FALSE>}}'
'https://<BASE-URL>/interop/rest/v2/snapshots/import'

Sample cURL Command OAuth 2.0

curl -X POST --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H
'Content-Type: application/json' -d '{"snapshotName":"<SNAPSHOT-
NAME>","parameters":
{"importUsers":<TRUE/FALSE>,"userPassword":"<PASSWORD>","resetPassword":<TRUE/
FALSE>}}'
'https://<BASE-URL>/interop/rest/v2/snapshots/import'

LCM Export (v1)
Initiates a repeat export of a Migration artifact based on the settings that were used to export
artifacts using the Migration artifact export screen. This REST API is version 11.1.2.3.600.

You can also use EPM Automate to automate the repeat export of artifacts.

The presence of status -1 in the response indicates that the reexport is in progress. You should
use the job status URI to determine whether the reexport is complete.

If the Job completes with status 1, the task details will be mentioned in the items from which
the source, destination, and URL to fetch the first set of errors is available. All issues for a
particular task can be fetched in the manner of pagination. Acceptable values for msgtype are:
error/warn/info; limit represents the number of issues requested per request, and offset
marks the beginning number to fetch the issues.

This API is version v1.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

POST /interop/rest/{api_version}/applicationsnapshots/{applicationSnapshotName}/
migration?q={type:"export}

Chapter 9
Import and Export Files

9-22

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-13 Tasks for LCM Export

Task Request REST Resource

LCM Export POST /interop/rest/{api_version}/applicationsnapshots/
{applicationSnapshotName}/migration?q={type:"export"}

Export Status GET /interop/rest/{api_version}/applicationsnapshots/
{applicationSnapshotName}/migration/8

Details GET /interop/rest/{api_version}/applicationsnapshots/
{applicationSnapshotName}/migration/8/0/details?
limit=25&msgtype=error&offset=0

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 9-14 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

applicationSnapsho
tName

Application snapshot that has to be exported Path Yes None

type Type of migration being performed, can be export or import Query Yes None

Response

Supported Media Types: application/json

Table 9-15 Parameters

Attribute Description

details In case of errors, details are published with the error string

status See Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible values. Can be self and/or Job Status. If set to Job Status, you can
use the href to get the status of the re-export operation

data Parameters as key value pairs passed in the request

items Details about the resource

source From where the navigation is being performed

Chapter 9
Import and Export Files

9-23

Table 9-15 (Cont.) Parameters

Attribute Description

destination To where the navigation is being performed

name Name of the task, usually "Task Information"

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Examples of Response Body

The following are examples of the response body in JSON format.

Example 1: Export is in Progress

{
 "status":-1,
 "links":[{
 "data":null,
 "action":"POST",
 "rel":"self",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migrationq={type:"export"}"
 },{
 "data":null,
 "action":"POST",
 "rel":"Job Status",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/8"
 }],
 "details":null
}

Example 2: Export Completes with Errors

{"status":1,
"items":[{
 "source":"/Nasdaq/HSS-Shared Services",
 "name":"Task Information",
 "destination":"Shared Services",
 "links":[{
 "data":null,
 "action":"GET",
 "rel":"Job Details",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=25&offset=0&msgtype=error"}]
 },
 {"source":"/Artifact Snapshot/HP-NASDAQ",
 "name":"Task Information",
 "destination":"",
 "links":[{
 "data":null,
 "action":"GET",
 "rel":"Job Details",

Chapter 9
Import and Export Files

9-24

 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/1/details?
limit=25&offse=0&msgtype=error"}]
 }],
 "details":null,
 "links":[{
 "data":null,
 "action":"POST",
 "rel":"self",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1"}
]}

Example 3: Information on Each Task is Requested

{"status":0,
"items":[{
 "msgType":"error",
 "artifact":"/Native Directory/Groups",
 "msgText":"EPMIE-00069: Failed to find user during group children
import. User user0026 not found. Please ensure that a user exists in the
system.",
 "msgCategory":"14000: Error reported.",
 "msgCategory":"14000: Error reported."
 },{
 "msgType":"error",
 "artifact":"/Native Directory/Groups",
 "msgText":"EPMIE-00069: Failed to find user during group children
import. User user0025 not found. Please ensure that a user exists in the
system.",
 "msgCategory":"14000: Error reported." }
],
"details":null,
"links":[{
 "data":null,
 "action":"GET",
 "rel":"self",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=2&msgType=error&offset=25"},
 {"data":null,
 "action":"GET",
 "rel":"next",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?
limit=2&offset=27&msgType=error"},
 {"data":null,
 "action":"GET",
 "rel":"prev",
 "href":https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2/migration/1/0/details?limit=2&offset=23&msgType=error
 }]
 }

Chapter 9
Import and Export Files

9-25

Java Sample – LcmExport.java

Prerequisites: json.jar

Common functions: See Appendix A, Common Helper Functions for Java.

//
// BEGIN - Export an application snapshot
//
public void exportSnapshot(String applicationSnapshotName) throws Exception
{
 JSONObject params = new JSONObject();
 params.put("type","export");
 String urlString = String.format("%s/interop/rest/%s/
applicationsnapshots/%s/migration?q=%s", serverUrl, apiVersion,
URLEncoder.encode(applicationSnapshotName, "UTF-8"), params.toString());
 String response = executeRequest(urlString, "POST", null);
 System.out.println("Export started successfully");
 getMigrationJobStatus(fetchPingUrlFromResponse(response, "Job Status"),
"POST");
}
//
// END - Export an application snapshot
//

cURL Sample – LcmExport.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcExportSnapshot() {
 param=$(echo "{type:export}" | sed -f urlencode.sed)
 encodedFileName=$(echo $1 | sed -f urlencode.sed)
url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName/migration?q=$param
 funcExecuteRequest "POST" $url

 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == -1]; then
 echo "Started exporting successfully"
 funcGetMigrationStatus "POST"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – LcmExport.groovy

Prerequisites: json.jar

Chapter 9
Import and Export Files

9-26

Common Functions: See CSS Common Helper Functions for Groovy

def exportSnapshot(applicationSnapshotName) {
 def url;
 try {
 String snapshotName = URLEncoder.encode(applicationSnapshotName,
"UTF-8");
 JSONObject params = new JSONObject();
 params.put("type","export");
 url = new URL(serverUrl + "/interop/rest/" + apiVersion + "/
applicationsnapshots/" + snapshotName + "/migration?q=" + params.toString());
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "POST", null, "application/x-www-form-
urlencoded");
 if (response != null) {
 getMigrationJobStatus(fetchPingUrlFromResponse(response, "Job
Status"), "POST");
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

LCM Export (v2)
The LCM Export (v2) REST API initiates a repeat export of a Migration artifact based on the
settings that were used to export artifacts using the Migration artifact export screen.

The presence of status -1 in the response indicates that the reexport is in progress. You should
use the job status URI to determine whether the reexport is complete.

If the job completes with status 1, the task details will be mentioned in the items from which the
source, destination, and URL to fetch the first set of errors is available. All issues for a
particular task can be fetched in the manner of pagination. Acceptable values for msgtype are:
error/warn/info; limit represents the number of issues requested per request, and offset
marks the beginning number to fetch the issues.

This API is version v2.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

POST /interop/rest/v2/snapshots/export

Chapter 9
Import and Export Files

9-27

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-16 Tasls LCM Export

Task Request REST Resource

LCM Export POST /interop/rest/v2/snapshots/export
Export Status GET /interop/rest/v2/status/migration/28
Details GET /interop/rest/v2/status/migration/28/1/details?

limit=25&offset=0&msgtype=info

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 9-17 Parameters

Name Description Type Required Default

SnapshotName Application snapshot that has to be exported Payload Yes None

Example URL and Payload

https://<BASE-URL>/interop/rest/v2/snapshots/export

{
 "snapshotName": "Artifact Snapshot"
}

Response

Supported Media Types: application/json

Table 9-18 Parameters

Attribute Description

details In case of errors, details are published with the error string

status See Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible values. Can be self and/or Job Status. If set to Job Status, you
can use the href to get the status of the re-export operation

Chapter 9
Import and Export Files

9-28

Table 9-18 (Cont.) Parameters

Attribute Description

data Parameters as key value pairs passed in the request

items Details about the resource

source From where the navigation is being performed

destination To where the navigation is being performed

name Name of the task, usually "Task Information"

links Details of the first URL to be requested to get the job details; rel is "Job
Details"

Examples of Response Body

The following are examples of the response body in JSON format.

Example 1: Export is in Progress

{
 "details": null,
 "status": -1,
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/snapshots/export",
 "action": "POST",
 "rel": "self",
 "data": null
 },
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/migration/28",
 "action": "POST",
 "rel": "Job Status",
 "data": null
 }
]
}

Example 2: Export Completes

{
 "details": null,
 "status": 0,
 "items": [
 {
 "name": "Task Information",
 "source": "Shared Services",
 "destination": "/Artifact Snapshot1/HSS-Shared Services",
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/
migration/28/0/details?limit=25&offset=0&msgtype=info",
 "action": "GET",
 "rel": "Job Details",

Chapter 9
Import and Export Files

9-29

 "data": null
 }
]
 },
 {
 "name": "Task Information",
 "source": "Vision",
 "destination": "/Artifact Snapshot1/HP-Vision",
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/
migration/28/1/details?limit=25&offset=0&msgtype=info",
 "action": "GET",
 "rel": "Job Details",
 "data": null
 }
]
 },
 {
 "name": "Task Information",
 "source": "Document Repository",
 "destination": "/Artifact Snapshot1/DOCREP-Document Repository",
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/
migration/28/2/details?limit=25&offset=0&msgtype=info",
 "action": "GET",
 "rel": "Job Details",
 "data": null
 }
]
 },
 {
 "name": "Task Information",
 "source": "Calculation Manager",
 "destination": "/Artifact Snapshot1/CALC-Calculation Manager",
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/
migration/28/3/details?limit=25&offset=0&msgtype=info",
 "action": "GET",
 "rel": "Job Details",
 "data": null
 }
]
 },
 {
 "name": "Task Information",
 "source": "FDM Enterprise Edition",
 "destination": "/Artifact Snapshot1/FDMEE-FDM Enterprise Edition",
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/
migration/28/4/details?limit=25&offset=0&msgtype=info",
 "action": "GET",
 "rel": "Job Details",

Chapter 9
Import and Export Files

9-30

 "data": null
 }
]
 }
],
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/migration/28",
 "action": "GET",
 "rel": "self",
 "data": null
 }
]
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H'Content-Type: application/json' -d
'{"snapshotName":"Artifact Snapshot"}''https://<BASE-URL>/interop/rest/v2/
snapshots/export'

Upload and Download Files

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-19 Upload and Download Files

Task Request REST Resource

Upload POST /interop/rest/11.1.2.3.600/applicationsnapshots/
{applicationSnapshotName}/contents

Download GET /interop/rest/{api_version}/applicationsnapshots/
{applicationSnapshotName}/contents

Upload
Uploads a file from the current directory on the local machine to the repository. Files on the
repository cannot be accessed directly.

If a file already exists, the API gives an error and does not overwrite it. Use this command to
upload data, metadata, and back up snapshots to a service instance. See About EPM
Automate in Working with EPM Automate for Oracle Enterprise Performance Management
Cloud.

Chapter 9
Upload and Download Files

9-31

If a -1 status is returned and it is the last chunk to be uploaded, this means that an LCM artifact
snapshot has been uploaded and zip extraction is in progress. The client pings the URL until
the status is a positive integer. This job is done asynchronously.

Note: The entire path to the file must be encoded, for example, changing / to %2F and spaces
to %20.

For example, change this path to an .HTML file in the apr directory:

apr/2020-03-04 23_07_20/2020-03-04 23_07_20.html
to this:

apr%2F2020-03-04%2023_07_20%2F2020-03-04%2023_07_20.html
This REST API is version 11.1.2.3.600.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

POST /interop/rest/11.1.2.3.600/applicationsnapshots/{applicationSnapshotName}/
contents

Note:

For Data Management uploads, use the following JSON format for the query
parameter:

/interop/rest/11.1.2.3.600/applicationsnapshots/
{applicationSnapshotName}/contents?extDirPath=inbox

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/octet-stream
The following table summarizes the client request.

Table 9-20 Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

Chapter 9
Upload and Download Files

9-32

Table 9-20 (Cont.) Parameters

Name Description Type Required Default

applicationSnapsho
tName

Name of the application snapshot or file name to be
uploaded (for example, "Artifact Snapshot.zip" or s112.csv).
A file with this name is created in the repository. If a file or
folder with this name exists in the repository, an error
indicates that a file or folder exists

Path Yes None

extDirPath Used to support upload of Data Management files.

Supported values include:

• inbox - Upload files into the inbox; except for
Profitability and Cost Management, Oracle Enterprise
Performance Management Cloud business processes
look in this location for files to process

• profitinbox - Upload files to be processed by
Profitability and Cost Management

• to_be_imported - Upload a Narrative Reporting
snapshot that is to be imported during the next daily
maintenance of the environment

• outbox - Upload files to the outbox for all EPM Cloud
business processes except for Profitability and Cost
Management

• profitoutbox - Upload files to the outbox for Profitability
and Cost Management

You can also use a directory under inbox, outbox,
profitinbox, and profitoutbox, for example, inbox/
directory_name
Example: "extDirPath= inbox/directory_name" to
upload files to a directory within the inbox for processing by
Data Management.

Upload: /interop/rest/11.1.2.3.600/
applicationsnapshots/applicationSnapshotName/
contents?extDirPath=inbox%2Fdm_folder
Example: "extDirPath=inbox" where inbox is the folder
where the Data Management file is to be uploaded
Example of query parameters in JSON format for Data
Management Upload: /interop/rest/11.1.2.3.600/
applicationsnapshots/{applicationSnapshotName}/
contents?extDirPath=inbox

Query No None

Response

Supported Media Types: application/json

Table 9-21 Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

Chapter 9
Upload and Download Files

9-33

Table 9-21 (Cont.) Parameters

Name Description

rel Possible values: self, recreate service

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "status":0,
 "details":null,
 "links":[{
 "data":null,
 "action":"POST",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/applicationsnapshots/
{applicationSnapshotName}/contents

REST API Examples with Postman

See REST API Examples with Postman.

Upload Sample Code

Example 9-7 Java Sample – 11.1.2.3.600

Prerequisites: json.jar

/**
 *
 * Simple Implementation class to execute Upload functionality for API
version 11.1.2.3.600
 */
public class UploadFile
{

 private final static String userName ; // User name
 private final static String password ; // Password
 private final static String serverUrl; // Server URL
 private String filePath ; //zip File to be Uploaded
 private String extDirPath = "inbox"; // keep it null for uploading to
root directory
 private String details = null;

 public void uploadFile() {

 boolean status = true;

 try {
 status = sendFileContents(filePath, extDirPath);

 if(status)
 System.out.println("Uploaded contents to " + new

Chapter 9
Upload and Download Files

9-34

File(filePath).getName());
 else
 System.err.println(details);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 private boolean sendFileContents(String filePath, String extDirPath)
 throws Exception {
 HttpURLConnection connection = null;
 FileInputStream content = null;
 File file = new File(filePath);

 try {
 String restURL = String.format(
 "%s/interop/rest/11.1.2.3.600/applicationsnapshots/%s/
contents",
 serverUrl, URLEncoder.encode(file.getName(), "UTF-8"));
 if(null != extDirPath)
 restURL = restURL + "?extDirPath="+extDirPath;
 URL url = new URL(restURL);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("POST");
 connection.setInstanceFollowRedirects(false);
 connection.setDoOutput(true);
 connection.setUseCaches(false);
 connection.setDoInput(true);

 String creds = null;

 creds = userName + ":" + password;

 connection.setRequestProperty("Authorization",
 "Basic " + new
sun.misc.BASE64Encoder().encode(creds.getBytes()));
 connection.setRequestProperty("Content-Type", "application/octet-
stream");

 content = new FileInputStream(file);
 OutputStream paramOutputStream = connection.getOutputStream();
 if (content != null) {
 byte[] arrayOfByte = new byte[4096];
 boolean hasMore = true;
 while (hasMore) {
 int j = content.read(arrayOfByte);
 if (j < 0) {
 hasMore = false;
 continue;
 }
 paramOutputStream.write(arrayOfByte, 0,
j);

Chapter 9
Upload and Download Files

9-35

 }
 }

 int statusCode = connection.getResponseCode();

 String responseBody =
getStringFromInputStream(connection.getInputStream());
 if (statusCode == 200 && responseBody != null) {
 int commandStatus = getCommandStatus(responseBody);
 if (commandStatus == -1) {
 getJobStatus(fetchPingUrlFromResponse(responseBody, "Job
Status"), "GET");
 }
 if (commandStatus == 0) {
 return true;
 }
 else{
 details = getDetails(responseBody);
 }
 }

 return false;
 } finally {
 if(null != content)
 content.close();
 if (connection != null)
 connection.disconnect();
 }
 }

/**
 * Method to retrieve the error message
 * @param response
 * @return String details
 * @throws Exception
 */
 private String getDetails(String response) throws Exception {
 JSONObject json = new JSONObject(response);
 if (!JSONObject.NULL.equals(json.get("details")))
 return json.getString("details");
 else
 return "NA";
 }

}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Chapter 9
Upload and Download Files

9-36

Download
Downloads a file from the repository to the current directory in the local environment.

If the content type of the response is application/JSON, then an error with details is displayed
on the server. Otherwise, the content of the file is streamed through the response.

Note: The entire path to the file must be encoded, for example, changing / to %2F and spaces
to %20. This API can be used to download files up to 1GB in a single request.

For example, change this path to an .HTML file in the apr directory:

apr/2020-03-04 23_07_20/2020-03-04 23_07_20.html
to this:

apr%2F2020-03-04%2023_07_20%2F2020-03-04%2023_07_20.html
This REST API is version 11.1.2.3.600.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

GET /interop/rest/{api_version}/applicationsnapshots/{applicationSnapshotName}/
contents

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

The following table summarizes the GET request parameters.

Chapter 9
Upload and Download Files

9-37

Table 9-22 Parameters

Name Description Type Required Default

applicationSnapsho
tName

Application snapshot name or file name to download (for
example, "Artifact Snapshot" or s112.csv).

The entire applicationSnapshotName must be encoded
before sending the request.

To download a particular file, provide the path to that file as
the value of applicationSnapshotName. For example, to
download a Data Management file called s112.csv in the
inbox, refer to the file as "inbox\s112.csv" in the path
parameter.

To download the Activity Reports or access log, use the fully
qualified file name as shown in the output of List Files.

For example, to download a specific file from the apr
directory, use the following format:
pr%2F2020-03-04%0A23_07_20%2F2020-03-04%0A23_07
_20.html
apr%2F%0A2020-03-04%2023_07_20%2F%0Aaccess_log.
zip
apr%2F%0A2020-03-04%2023_07_20%2F%0Aactivityrep
ort.json.

Path Yes None

api_version Specific API version Path Yes None

Example of Request

https://<BASE-URL>/interop/rest/11.1.2.3.600/applicationsnapshots/Vision.zip/
contents

Table 9-23 Parameters

Name Description

Details In case of errors, details are published with the error string

Status See Migration Status Codes

Links Detailed information about the link

Href Links to API call

Action The HTTP call type

Rel Possibly value: self
Data Parameters as key value pairs passed in the request

Response

Supported Media Types: application/json or application/octet-stream
Example of Response Body

The following shows an example of the response body in JSON format in case there is an error
during download.

{
 "details": "Invalid file : Vision.zip",

Chapter 9
Upload and Download Files

9-38

 "status":1,
 "links":[{
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/Vision.zip/contents",
 "action":"GET",
 "rel":"self",
 "data":null
 }]
}

Download Sample Code

Example 9-8 Java Sample – downloadFile.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java.

public class DownloadFile600 {

 private String serverUrl; // PBCS server URL
 private String apiVersion = "11.1.2.3.600";
 private String userName; // Server Username
 private String password; // Server Password
 private static String fileName; // file to be downloaded.

 public DownloadFile600(String userName, String password, String
serverUrl, String apiVersion) {
 super();
 this.serverUrl = serverUrl;
 this.apiVersion = apiVersion;
 this.userName = userName;
 this.password = password;
 }

 public void downloadFile(String fileName) throws Exception {
 HttpURLConnection connection = null;
 InputStream inputStream = null;
 FileOutputStream outputStream = null;

 try {
 fileName = fileName.replaceAll("/", "\\\\");
 URL url = new URL(String.format("%s/interop/rest/%s/
applicationsnapshots/%s/contents", serverUrl,
 apiVersion, URLEncoder.encode(fileName, "UTF-8")));

 System.out.println("DOWNLOAD URL: " + url);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");
 connection.setInstanceFollowRedirects(false);
 connection.setDoOutput(true);
 connection.setUseCaches(false);
 connection.setDoInput(true);
 connection.setRequestProperty("Authorization",
 "Basic " + new sun.misc.BASE64Encoder().encode((userName
+ ":" + password).getBytes()));

Chapter 9
Upload and Download Files

9-39

 int status = connection.getResponseCode();
 if (status == 200) {
 if (connection.getContentType() != null &&
connection.getContentType().equals("application/json")) {
 JSONObject json = new
JSONObject(getStringFromInputStream(connection.getInputStream()));
 System.out.println("Error downloading file : " +
json.getString("details"));
 } else {
 inputStream = connection.getInputStream();
 outputStream = downloadContent(connection, inputStream);
 }
 } else {
 throw new Exception("Http status code: " + status);
 }
 } finally {
 if (connection != null)
 connection.disconnect();
 if (outputStream != null)
 outputStream.close();
 if (inputStream != null)
 inputStream.close();
 }
 }

 private FileOutputStream downloadContent(HttpURLConnection connection,
InputStream inputStream)
 throws FileNotFoundException, IOException {
 FileOutputStream outputStream;
 String downloadedFileName = fileName;
 if (fileName.lastIndexOf("/") != -1) {
 downloadedFileName = fileName.substring(fileName.lastIndexOf("/")
+ 1);
 }

 String ext = ".zip";
 if (connection.getHeaderField("fileExtension") != null) {
 ext = "." + connection.getHeaderField("fileExtension");
 }
 if (fileName.lastIndexOf(".") != -1 && fileName.lastIndexOf(".") != 0)
 ext = fileName.substring(fileName.lastIndexOf(".") + 1);

 outputStream = new FileOutputStream(new File(downloadedFileName +
ext));
 int bytesRead = -1;
 byte[] buffer = new byte[5 * 1024 * 1024];
 while ((bytesRead = inputStream.read(buffer)) != -1)
 outputStream.write(buffer, 0, bytesRead);
 System.out.println("File download completed.");
 return outputStream;
 }

}

Chapter 9
Upload and Download Files

9-40

View and Delete Files
This table shows the REST APIs to view and delete files.
These REST APIs are version 11.1.2.3.600 and v2.

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-24 View and Delete Files

Task Request REST Resource

List Files (v11.1.2.3.600) GET /applicationsnapshots
List Files (v2) GET /interop/rest/v2/files/list
Delete Files (v11.1.2.3.600) DELETE /applicationsnapshots/

{applicationSnapshotName}
Delete Files (v2) DELETE /interop/rest/v2/files/delete
Delete Files (v3) POST /interop/rest/v3/files/delete

List Files (v11.1.2.3.600)
This API (v11.1.2.3.600) lists the files in the Planning repository and returns information about
the available file and application snapshots.

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

This API provides details such as name, type, size and last modified time. Size and last
modified are not available for LCM snapshots. See About EPM Automate in Working with EPM
Automate for Oracle Enterprise Performance Management Cloud.

This REST API is version 11.1.2.3.600.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

GET /interop/rest/{api_version}/applicationsnapshots
Supported Media Types: application/json

Chapter 9
View and Delete Files

9-41

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Response

Table 9-25 Parameters

Name Description

Details Will be published in case of error with the error string

Status See Migration Status Codes

Items
Name Name of the application snapshot

Type Can be LCM or EXTERNAL

Type signifies if this snapshot is for LCM or EXTERNAL. LCM indicates that the file
is an LCM snapshot. EXTERNAL indicates that files are not LCM, such as
Planning files.

Size Size of the application snapshot in bytes. Available only for type EXTERNAL

Lastmodifiedtim
e

Time in Long value as per the last modified time of the file. Available only for type
EXTERNAL

Links Detailed information about the link

Href Link to API call/ status API

Action The HTTP call type

Rel Will be self
Data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "status":0,
 "items":[{
 "name":"sample.csv",
 "type":"EXTERNAL",
 "size":"18",
 "lastmodifiedtime":"1422534438000"
 },{
 "name":"snapshot1",
 "type":"LCM",
 "size":null,
 "lastmodifiedtime":null
 }],
 "details":null,
 "links":[{
 "data":null,
 "action":"GET",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/

Chapter 9
View and Delete Files

9-42

applicationsnapshots",
 "rel":"self"
 }]
}

List Files Sample Code

Example 9-9 Java Sample – listFiles.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

//
// BEGIN - List all the files in PBCS
//
public void listFiles() throws Exception {
 String urlString = String.format("%s/interop/rest/%s/
applicationsnapshots", serverUrl, apiVersion);
 String response = executeRequest(urlString, "GET", null);
 JSONObject json = new JSONObject(response);
 int resStatus = json.getInt("status");
 if (resStatus == 0) {
 if (json.get("items").equals(JSONObject.NULL))
 System.out.println("No files found");
 else {
 System.out.println("List of files :");
 JSONArray itemsArray = json.getJSONArray("items");
 JSONObject jObj = null;
 for (int i=0; i < itemsArray.length(); i++){
 jObj = (JSONObject)itemsArray.get(i);
 System.out.println(jObj.getString("name"));
 }
 }
 }
}
//
// END - List all the files in PBCS
//

Example 9-10 cURL Sample– ListFiles.sh

Prerequisites: json.jar

Common Functions: See Common Helper Functions for cURL

funcListFiles() {
 url=$SERVER_URL/interop/rest/$API_VERSION/applicationsnapshots
 funcExecuteRequest "GET" $url

 list=`cat response.txt | jq 'select(.items != null) | .items[].name'`
 if [[! -z $list]]; then
 echo $list
 else
 echo "No files found"
 fi

Chapter 9
View and Delete Files

9-43

 funcRemoveTempFiles "respHeader.txt" "response.txt"
}
Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Example 9-11 Groovy Sample– ListFiles.groovy

Prerequisites: json.jar

See CSS Common Helper Functions for Groovy

def listFiles() {
 def url;
 try {
 url = new URL(serverUrl + "/interop/rest/" + apiVersion + "/
applicationsnapshots")
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "GET", null);
 def object = new JsonSlurper().parseText(response)
 def status = object.status
 if (status == 0) {
 def items = object.items
 if (items == null) {
 println "No files found"
 }
 else {
 println "List of files :"
 items.each{
 println it.name
 }
 }
 } else {
 println "Error occurred while listing files"
 if (object.details != null)
 println "Error details: " + object.details
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

List Files (v2)
This REST API (v2) lists the files in the repository and returns information about the available
file and application snapshots.

This API provides details such as name, type, size and last modified time. Size and modified
time are not available for LCM snapshots. See About EPM Automate in Working with EPM
Automate for Oracle Enterprise Performance Management Cloud.

Chapter 9
View and Delete Files

9-44

This REST API is version v2.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

GET /interop/rest/v2/files/list
Supported Media Types: application/json

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Example URL

https://<BASE-URL>/interop/rest/v2/files/list

Response

Table 9-26 Parameters

Name Description

Details Will be published in case of error with the error string

Status See Migration Status Codes

Items
Name Name of the file or application snapshot

Type Can be LCM or EXTERNAL

Type signifies if this is an LCM snapshot or not. LCM indicates that the file is an
LCM snapshot. EXTERNAL indicates that the file is not an LCM snapshot, such as
a Planning file.

Size Size of the file in bytes. Available only for type EXTERNAL

Lastmodifiedtim
e

Last modified time of the file in milliseconds since 1970-01-01. Available only for
type EXTERNAL

Links Detailed information about the link

Href Link to API call/ status API

Action The HTTP call type

Rel Will be self
Data null

Example of Response Body

Chapter 9
View and Delete Files

9-45

The following shows an example of the response body in JSON format.

{
 "status":0,
 "items":[{
 "name":"sample.csv",
 "type":"EXTERNAL",
 "size":"18",
 "lastmodifiedtime":"1422534438000"
 },{
 "name":"Artifact Snapshot",
 "type":"LCM",
 "size":null,
 "lastmodifiedtime":null
 }],
 "details":null,
 "links":[{
 "data":null,
 "action":"GET",
 "href": "https://<BASE-URL>/interop/rest/v2/files/list",
 "rel":"self"
 }]
}

List Files Sample Code

Sample cURL command

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H
'Content-Type: application/json' 'https://<BASE-URL>/interop/rest/v2/files/
list'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Delete Files (v11.1.2.3.600)
Use the Delete Files (v11.1.2.3.600) REST API to delete a file from the Planning repository.

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

Specify the filename with path separators in percent-encoding format, for example, using %5C
as the encoded value for \ (file separator). For a file named inbox/file1.csv, pass it as
inbox%5Cfile1.csv. If you are calling the cURL command to trigger the REST API, you can
use a backslash \ for the path separator without URL encoding. See About EPM Automate in
Working with EPM Automate for Oracle Enterprise Performance Management Cloud.

This REST API is version 11.1.2.3.600.

Chapter 9
View and Delete Files

9-46

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

DELETE /interop/rest/{api_version}/applicationsnapshots/
{applicationSnapshotName

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 9-27 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

applicationSnapsho
tName

Application snapshot name that needs to be deleted Path Yes None

Response

Supported Media Types: application/json

Table 9-28 Parameters

Parameters Description

Details Published if there is an error with the error string

Status See Migration Status Codes

Links Detailed information about the link

Href Links to the API call

Action The HTTP call type

Rel Possible value: self
Data Parameters as key value pair passed in the request

Example of Response Body

{
 "status":0,

Chapter 9
View and Delete Files

9-47

 "links":[{
 "data":null,
 "action":"DELETE",
 "rel":"self",
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss2"
 }],
 "details":null
}

Delete Files Sample Code

Example 9-12 Java Sample – deleteFile.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

//
// BEGIN - Delete a file in PBCS
//
public void deleteFile(String fileName) throws Exception {
 String urlString = String.format("%s/interop/rest/%s/applicationsnapshots/
%s", serverUrl, apiVersion, fileName);
 String response = executeRequest(urlString, "DELETE", null);
 JSONObject json = new JSONObject(response);
 int resStatus = json.getInt("status");
 if (resStatus == 0)
 System.out.println("File deleted successfully");
 else
 System.out.println("Error deleting file : " +
json.getString("details"));
}
//
// END - Delete a file in PBCS
//

Example 9-13 cURL Sample – DeleteFile.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcDeleteFile() {
 encodedFileName=$(echo $1 | sed -f urlencode.sed)
 url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName
 funcExecuteRequest "DELETE" $url

 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == 0]; then
 echo "Deleted successfully"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error

Chapter 9
View and Delete Files

9-48

 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Example 9-14 Groovy Sample – DeleteFile.groovy

Prerequisites: json.jar

Common Functions: CSS Common Helper Functions for Groovy

def deleteFile(filename) {
 def url;
 try {
 String encodedFileName = URLEncoder.encode(filename, "UTF-8");
 url = new URL(serverUrl + "/interop/rest/" + apiVersion + "/
applicationsnapshots/" + encodedFileName)
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "DELETE", null);
 def object = new JsonSlurper().parseText(response)
 def status = object.status
 if (status == 0)
 println "File deleted successfully"
 else {
 println "Error occurred while deleting file"
 if (object.details != null)
 println "Error details: " + object.details
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Delete Files (v2)
The Delete Files (v2) REST API deletes a file from the repository. This topic describes the
simplified v2 version of this REST API. This version contains all parameters in the payload and
does not require URL encoding while calling the REST APIs. This makes the v2 API easier to
use. This API is backwards compatible.

Filenames that use a backslash \ as path separators must be handled using escape
characters, for example, using \\ as the value for \ (the file separator). For a file named
inbox\file1.csv, pass it as inbox\\file1.csv.

For more information on deleting files, see EPM Automate Commands in Working with EPM
Automate for Oracle Enterprise Performance Management Cloud.

Note: To delete files using EPM Groovy rules, use the v11.2.3.600 version of the same API
instead of the v2 version.

This REST API is v2.

Chapter 9
View and Delete Files

9-49

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

DELETE /interop/rest/v2/files/delete

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 9-29 Parameters

Name Description Type Required Default

fileName Application snapshot name that needs to be deleted Payload Yes None

Example URL and Payload

https://<BASE-URL>/interop/rest/v2/files/delete

{
"fileName": "inbox/file1.csv",
 }

Response

Supported Media Types: application/json

Table 9-30 Parameters

Parameters Description

Details Published if there is an error with the error string

Status See Migration Status Codes

Links Detailed information about the link

Href Links to the API call

Action The HTTP call type

Rel Possible value: self

Chapter 9
View and Delete Files

9-50

Table 9-30 (Cont.) Parameters

Parameters Description

Data Parameters as key value pair passed in the request

Example of Response Body

{
 "status":0,
 "links":[{
 "data":null,
 "action":"DELETE",
 "rel":"self",
 "href":"https://<BASE-URL>/interop/rest/v2/files/delete"
 }],
 "details":null
}

Sample cURL command

curl -X DELETE -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D
respHeader.txt -H 'Content-Type: application/json' -d
'{"fileName":"FILE_TO_BE_DELETED"}' 'https://<BASE-URL>/interop/rest/v2/files/
delete'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Delete Files (v3)
The Delete Files (v3) REST API deletes a file from the repository. This topic describes the
simplified v3 version of this REST API. This version contains all parameters in the payload and
does not require URL encoding while calling the REST APIs. This makes the v3 API easier to
use. This API is backwards compatible.

Filenames that use a backslash \ as path separators must be handled using escape
characters; for example, using \\ as the value for \ (the file separator). For a file named
inbox\file1.csv, pass it as inbox\\file1.csv.
For more information on deleting files, see EPM Automate Commands in Working with EPM
Automate for Oracle Enterprise Performance Management Cloud.

This API is v3.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

Chapter 9
View and Delete Files

9-51

REST Resource

POST /interop/rest/v3/files/delete

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 9-31 Parameters

Name Description Type Required Default

fileName File name to delete Payload Yes None

Example URL and Payload

https://<BASE-URL>/interop/rest/v3/files/delete

{
"fileName": "inbox/file1.csv",
 }

Response

Supported Media Types: application/json

Table 9-32 Parameters

Parameters Description

Details Published if there is an error with the error string

Status See Migration Status Codes

Links Detailed information about the link

Href Links to the API call

Action The HTTP call type

Rel Possible value: self
Data Parameters as key value pair passed in the request

Example Response Body

{
 "status":0,

Chapter 9
View and Delete Files

9-52

 "links":[{
 "data":null,
 "action": "POST",
 "rel":"self",
 "href":"https://<EPM-CLOUD-BASE-URL>/interop/rest/v3/files/delete"
 }],
 "details":null
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"fileName":"FILE_TO_BE_DELETED"}' 'https://<BASE-URL>/interop/rest/v3/files/
delete'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Manage Services
You can manage all available services using the following REST resources.

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-33 Manage Services

Task Request REST Resource

Get Information About All
Services

GET /interop/rest/{api_version}/services

Get Idle Session Timeout GET /interop/rest/{api_version}/config/
services/idlesessiontimeout

Set Idle Session Timeout PUT /interop/rest/{api_version}/config/
services/idlesessiontimeout

Restart the Service Instance
(v1)

POST /interop/rest/{api_version}/services/
{service_type}/resetservice

Restart the Service Instance
(v2)

POST /interop/rest/v2/config/services/reset

Run Recreate on a Service
(11.1.2.3.600)

GET /interop/rest/{api_version}/services/
{servicename}/recreate

Run Recreate on a Service
(v2)

POST /interop/rest/v2/config/services/
recreate

Chapter 9
Manage Services

9-53

Get Information About All Services
Returns information about all services that you can perform in a Planning environment.

This API is version 11.1.2.3.600.

Required Roles

Service Administrator

REST Resource

GET /interop/rest/{api_version}/services

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Response

Supported Media Types: application/json

Table 9-34 Parameters

Name Description

api_version Specific API version

details In case of errors, details are published with the error string

status See Migration Status Codes

details In case of error, details are published with the error string

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self, PBCS recreate service, PBCS reset service -
details are for PBCS recreate service

data Parameters as key value pair passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
 "details":null,
 "status":0,
 "links":[{
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/services",
 "rel":"self",
 "data":null,
 "action":"GET"
 },{

Chapter 9
Manage Services

9-54

 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/services/PBCS/
recreate",
 "rel":"PBCS recreate service",
 "data":null,
 "action":"POST"
 },{
 "href":"https://<EPM-CLOUD-BASE-URL>/interop/rest/11.1.2.3.600/
services/PBCS/resetservice",
 "rel":"PBCS reset service",
 "data":null,
 "action":"POST"
 }]
}

Get Information About All Services Sample Code

Java Sample – getInfoAboutAllServices.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

//
// BEGIN - Get services
//
public void getServices() throws Exception {
 String urlString = String.format("%s/interop/rest/%s/services",
serverUrl, apiVersion);
 String response = executeRequest(urlString, "GET", null);
 JSONObject json = new JSONObject(response);
 int resStatus = json.getInt("status");
 if (resStatus == 0) {
 JSONArray linksArray = json.getJSONArray("links");
 System.out.println("Services list :");
 JSONObject jObj = null;
 for(int i=0; i < linksArray.length(); i++){
 jObj = (JSONObject)linksArray.get(i);
 System.out.println("Service :" + jObj.getString("rel"));
 System.out.println("URL :" + jObj.getString("href"));
 System.out.println("Action :" + jObj.getString("action") + "\n");
 }
 }
}
//
// END - Get services
//

cURL Sample – GetInfoAboutAllServices.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcGetServices() {
 url=$SERVER_URL/interop/rest/$API_VERSION/services
 funcExecuteRequest "GET" $url

Chapter 9
Manage Services

9-55

 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == 0]; then
 echo "Services list :"
 count=`echo $output | jq '.links | length'`
 i=0
 while [$i -lt $count]; do
 rel=`echo $output | jq '.links['$i'].rel'`
 rel=`echo "$rel" | tr -d "\""`
 if ["$rel" != "self"]; then
 echo "Service : " `echo $output | jq '.links['$i'].rel'`
 echo "URL :" `echo $output | jq '.links['$i'].href'`
 echo "Action :" `echo $output | jq '.links['$i'].action'`
 echo ""
 fi
 i=`expr $i + 1`
 done
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – GetInfoAboutAllServices.groovy

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

def getServices() {
 def url;
 try {
 url = new URL(serverUrl + "/interop/rest/" + apiVersion + "/services")
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "GET", null);
 def object = new JsonSlurper().parseText(response)
 def status = object.status
 if (status == 0) {
 def links = object.links
 println "Services list :"
 links.each{
 if(!it.rel.equals("self")) {
 println "Service : " + it.rel
 println "URL : " + it.href
 println "Action : " + it.action + "\n"
 }
 }
 } else {
 println "Error occurred while fetching services list"
 if (object.details != null)
 println "Error details: " + object.details

Chapter 9
Manage Services

9-56

 }
}

Get Idle Session Timeout
Returns the session timeout (in minutes) of the Oracle Enterprise Performance Management
Cloud environment. After a session is idle for this duration, users are redirected to the Login
page.

This API is version v2.

Required Roles

Service Administrator

REST Resource

GET /interop/rest/{api_version}/config/services/idlesessiontimeout

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json

Table 9-35 Parameters

Name Description Type Require
d

Default

api_version Specific API version (v2) Path Yes None

Response

Supported Media Types: application/json

Table 9-36 Parameters

Name Description

details In case of errors, details are published with the error string

status • 0 - Operation success
• +ve - Operation failed, with the status signifying an error

timeout Session Timeout value in minutes

href Link to API call

action HTTP call type

rel Possible value: self
data null

Chapter 9
Manage Services

9-57

Example of Response Body

{
 "details": null,
 "links": [{
 "rel": "self",
 "href": "<uri>/interop/rest/v2/config/services/
idlesessiontimeout",
 "data": "null",
 "action": "GET"
 }],
 "status": "0",
 "items": [{
 "timeout": "30"
 }]
}

Sample cURL command

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -H
'Content-Type: application/json' 'https://<BASE-URL>/interop/rest/v2/config/
services/idlesessiontimeout '

Set Idle Session Timeout
Changes the session timeout (in minutes) of the Oracle Enterprise Performance Management
Cloud environment. The new session timeout becomes active after the next daily maintenance
of the environment.

Use this API to change the default session timeout (75 minutes) to a different value. After a
session is idle for the duration specified using this API, the user is redirected to the Login page.

This API is version v2.

Required Roles

Service Administrator

REST Resource

PUT /interop/rest/{api_version}/config/services/idlesessiontimeout

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json

Chapter 9
Manage Services

9-58

Table 9-37 Parameters

Name Description Type Require
d

Default

api_version Specific API version (v2) Path Yes None

timeout Session timeout value Payload Yes None

Example of Request Body

{
 "timeout": "30"
}

Response

Supported Media Types: application/json

Table 9-38 Parameters

Name Description

details In case of errors, details are published with the error string

status • 0 - Operation success
• +ve - Operation failed, with the status signifying an error

href Link to API call

action HTTP call type

rel Possible value: self
data null

Example of Response Body

{
 "links": [{
 "rel": "self",
 "href": "<uri>/interop/rest/v2/config/services/
idlesessiontimeout",
 "data": null,
 "action": "PUT"
 }],
 "details": "null",
 "status": 0,
 "items": null
}

Sample cURL command

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"timeout":"30"}' 'https://<BASE-URL>/interop/rest/v2/config/services/
idlesessiontimeout

Chapter 9
Manage Services

9-59

Restart the Service Instance (v1)
Use the Restart the Service Instance (v1) REST API to restart the service instance with a
REST API.

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

You can also use an optional AutoTune parameter to auto-tune the environment before
restarting it to ensure that Essbase index caches for Block Storage Option (BSO) cubes are
optimized for your application.

This API is version v1.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/{api_version}/services/{service_type}/resetservice

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
Payload: JSON

Table 9-39 Parameters

Name Description Type Require
d

Default

api_version Specific API version Path Yes None

service_type Value for the service type. Service type can be one
of the following: PBCS for Planning and Budgeting,
EPBCS for Enterprise Planning and Budgeting,
FCCS for Financial Consolidation and Close, TRCS
for Tax Reporting, EDMCS for Enterprise Data
Management, PCMCS for Profitability and Cost
Management, or ARCS for Account Reconciliation.

Path Yes None

comment Comment about executing the restart Payload Yes None

autotune If set to true, runs the auto tune algorithm before
the restart. This ensures that Essbase index
caches for BSO cubes are optimized for your
application.

Payload No false

Chapter 9
Manage Services

9-60

Example of Request Body

{
 "comment": "Reset requested by Administrator",
 "autotune": "true"
}

Response

Table 9-40 Parameters

Name Description

Details In case of errors, details are published with the error string

Status See Migration Status Codes

Links Detailed information about the link

Href Links to API call or status API

Action The HTTP call type

Rel Possible values: self and/or Job Status.

If the value is set to Job Status, you can use the href to get the status of the reset
service

Data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
 "details":null,
 "status":0,
 "links":[{
 "href":"https://<BASE-URL>/interop/rest/v1/services/PBCS/
resetservice",
 "rel":"self",
 "data":null,
 "action":"POST"
 },{
 "href":"https://<BASE-URL>/interop/rest/v1/services/PBCS/resetservice/
777",
 "rel":"Job Status",
 "data":null,
 "action":"GET"
 }]
}

Restart the Service Sample Code

Example 9-15 Java Sample – ResetServices.java

Prerequisites: json.jar

Chapter 9
Manage Services

9-61

Common Functions: See Common Helper Functions for Java

//
// BEGIN - Reset services
//
public void hardReset(String comment) throws Exception {
 Scanner in = new Scanner(System.in);
 System.out.println("Are you sure you want to restart the service instance
(yes/no): no ?[Press Enter]");
 String s = in.nextLine();
 if (!s.equals("yes")) {
 System.out.println("User cancelled the reset command");
 System.exit(0);
 }

 JSONObject params = new JSONObject();
 params.put("comment",java.net.URLEncoder.encode(comment));
 params.put("autotune","true");
 String urlString = String.format("%s/interop/rest/%s/services/PBCS/
resetservice", serverUrl, lcmVersion);
 String response = executeRequest(urlString, "POST", params.toString(),
"application/json");
 getJobStatus(fetchPingUrlFromResponse(response, "Job Status"),"GET");
}
//
// END - Reset services
//

Example 9-16 cURL Sample – ResetServices.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcHardReset() {
 echo "Are you sure you want to restart the service instance (yes/no): no ?
[Press Enter] "
 read toCreate
 if [$toCreate != "yes"]; then
 echo "User cancelled the reset command"
 exit 0
 fi

 url=$SERVER_URL/interop/rest/$LCM_VERSION/services/PBCS/resetservice
 comment=$(echo $1 | sed -f urlencode.sed)
 param="{\"comment\":\"$comment\",\"autotune\":\"true\"}"
 funcExecuteRequest "POST" $url $param "application/json"

 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == -1]; then
 echo "Started hard reset succesfully"
 funcGetStatus "GET"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error

Chapter 9
Manage Services

9-62

 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Example 9-17 Groovy Sample – ResetServices.groovy

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

def hardReset(comment) {
 def userInput = System.console().readLine 'Are you sure you want to
restart the service instance (yes/no): no ?[Press Enter] '
 if (userInput.equals("yes")) {
 def url;
 JSONObject params = new JSONObject();
 try {
 params.put("comment",comment);
 params.put("autotune","true");
 url = new URL(serverUrl + "/interop/rest/" + lcmVersion + "/
services/PBCS/resetservice");
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "POST", params.toString(),
"application/json");

 response = executeRequest(url, "POST", payload);
 if (response != null) {
 getJobStatus(fetchPingUrlFromResponse(response, "Job
Status"),"GET");
 }
 } else {
 println "User cancelled the resetservice command"
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Restart the Service Instance (v2)
Use the Restart the Service Instance (v2) REST API to restart the service instance.

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use. This API is backwards compatible.

You can also use an optional AutoTune parameter to auto-tune the environment before
restarting it to ensure that Essbase index caches for Block Storage Option (BSO) cubes are
optimized for your application.

Chapter 9
Manage Services

9-63

This REST API is version v2.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v2/config/services/reset

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
Payload: JSON

Table 9-41 Parameters

Name Description Type Require
d

Default

api_version Specific API version Path Yes None

comment Comment about executing the restart Payload Yes None

autotune If set to true, runs the auto tune algorithm before
the restart. This ensures that Essbase index
caches for BSO cubes are optimized for your
application.

Payload No false

Example of Request Body

{
 "comment": "Reset requested by Administrator",
 "parameters": {
 "autotune": "false"
 }
}

Response

Table 9-42 Parameters

Name Description

Details In case of errors, details are published with the error string

Status See Migration Status Codes

Links Detailed information about the link

Href Links to API call or status API

Chapter 9
Manage Services

9-64

Table 9-42 (Cont.) Parameters

Name Description

Action The HTTP call type

Rel Possible values: self and/or Job Status.

If the value is set to Job Status, you can use the href to get the status of the reset
service

Data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
 "details": null,
 "status": 0,
 "links": [{
 "href": "https://<URL>/interop/rest/v2/config/services/reset",
 "rel": "self",
 "data": null,
 "action": "POST"
 },
 {
 "href": "https://<URL>/interop/rest/v2/config/status/service/
hardreset/1",
 "rel": "Job Status",
 "data": null,
 "action": "GET"
 }]
}

Sample cURL Command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d ' {"comment":"<COMMENT>","parameters":
{"autotune":"false"}}' 'https://<BASE-URL>/interop/rest/v2/config/services/
reset'

Sample cURL Code

#!/bin/sh

USERNAME="<USERNAME>"
PASSWORD="<PASSWORD>"
SERVER_URL="<SERVICE_URL>"

APP_NAME="Vision"
API_VERSION="v2"

funcRemoveTempFiles() {
 for var in "$@"
 do

Chapter 9
Manage Services

9-65

 if [-f $var]; then
 rm $var
 fi
 done
}

funcPrintErrorDetails() {
 contentType=`echo $(grep 'Content-Type:' respHeader.txt) | tr -d
[:space:]`
 if [! -z $contentType] && [[$contentType = *"application/json"*]];
then
 output=`cat $1`
 error=`echo $output | jq '.details'`
 echo "Error details: " $error
 fi
}

funcExecuteRequest() {
 if [! -z "$4"]; then
 statusCode=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" -
o "response.txt" -D "respHeader.txt" -H "Content-Type: $4" -d "$3" $2`
 else
 statusCode=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" -
o "response.txt" -D "respHeader.txt" -H "Content-Type: $3" $2`
 fi

 if [$statusCode != 200]; then
 echo "Error executing request"
 if [$statusCode != 000]; then
 echo "Response error code : " $statusCode
 funcPrintErrorDetails "response.txt"
 funcRemoveTempFiles "respHeader.txt" "response.txt"
 fi
 exit 0
 fi
}

funcGetStatus() {
 output=`cat response.txt`
 count=`echo $output | jq '.links | length'`
 i=0
 pingUrl=""

 while [$i -lt $count]; do
 rel=`echo $output | jq '.links['$i'].rel'`
 rel=`echo "$rel" | tr -d "\""`
 if ["$rel" == "Job Status"]; then
 pingUrl=`echo $output | jq '.links['$i'].href'`
 pingUrl=`echo "$pingUrl" | tr -d "\""`
 fi
 i=`expr $i + 1`
 done

 echo $pingUrl
 completed="false"

Chapter 9
Manage Services

9-66

 while [$completed != "true"]; do
 statusCode2=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD"
-o "pingResponse.txt" -H "Content-Type: application/json" "$pingUrl"`
 if [$statusCode2 == 200]; then
 status2=`jq '.status' pingResponse.txt`
 if [$status2 != -1]; then
 completed="true"
 echo "Job completed"
 else
 echo "Please wait..."
 sleep 20
 fi
 else
 echo "Please wait..."
 sleep 20
 fi
 funcRemoveTempFiles "pingResponse.txt"
 done
}

funcHardReset() {
 echo "Are you sure you want to restart the service instance (yes/no): no?
[Press Enter] "
 read toReset
 if [$toReset != "yes"]; then
 echo "User cancelled the reset command"
 exit 0
 fi

 url=$SERVER_URL/interop/rest/$API_VERSION/config/services/reset
 comment=$(echo $1)
 param="{\"comment\":\"${comment}\",\"parameters\":
{\"autotune\":\"false\"}}"
 funcExecuteRequest "POST" "$url" "$param" "application/json"

 output=`cat response.txt`
 status=`echo $output | jq '.status'`

 if ["${status}" == -1]; then
 echo "Started hard reset succesfully"
 funcGetStatus "GET"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi

 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcRecreateService() {

 removeAll=$1
 essbaseChange=$2
 tempServiceType=$3

 echo "Are you sure you want to recreate the EPM environment (yes/no): no?

Chapter 9
Manage Services

9-67

[Press Enter] "
 read toCreate

 if [$toCreate != "yes"]; then
 echo "User cancelled the recreate command"
 exit 0
 fi

 url=$SERVER_URL/interop/rest/$API_VERSION/config/services/recreate
 param="{\"parameters\":{\"removeAll\":\"${removeAll}
\",\"essbaseChange\":\"${essbaseChange}\", \"tempServiceType\":\"$
{tempServiceType}\"}}"

 funcExecuteRequest "POST" "$url" "$param" "application/json"
 output=`cat response.txt`
 status=`echo $output | jq '.status'`

 if [$status == -1]; then
 echo "Started recreating the environment successfully"
 funcGetStatus "GET"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi

 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

if [["$#" != "1"]]; then
 echo "Mandatory argument missing"
 echo "Usage: EPMRestSamples <option>"
 echo " where <option> is -recreate or -reset"
 exit 1
fi

if ["${1}" == "-reset"]; then
 funcHardReset "POC Exit Criteria Check - cURL"
elif ["${1}" == "-recreate"]; then
 funcRecreateService "false" "default" ""
else
 echo "Incorrect usage"
 echo "Usage: EPMRestSamples <option>"
 echo " where <option> is -recreate or -reset"
 exit 1
fi

Sample Java Code

package com.oracle.test;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;

Chapter 9
Manage Services

9-68

import java.net.HttpURLConnection;
import java.net.URL;
import java.util.Scanner;
import java.util.Base64;

import org.json.JSONArray;
import org.json.JSONObject;

/*
 * EPM Rest Samples.
 * The userName variable uses the format <domain>.<username>.
 */
public class EPMRestSamples {

 private String userName; // EPMCloud user name
 private String password; // EPMCloud user password
 private String serverUrl; // EPMCloud server URL
 private String apiVersion="v2"; // Version of the EPMCloud Rest API

 private long startTime;
 private long endTime;
 private long maxLoopTime=(60 * 60 * 1000);

 public static void main(String[] args) {
 try {

 if(null == args || args.length != 1) {
 System.err.println("Mandatory argument missing");
 System.err.println("Usage: EPMRestSamples <option>");
 System.err.println(" where <option> is -recreate or -reset");
 System.exit(1);
 }

 // TODO: Use appropriate username, password, and URL
 EPMRestSamples samples = new EPMRestSamples(
 "<USERNAME>", "<PASSWORD>","<SERVICE_URL>");

 String option = args[0];
 if("-reset".equalsIgnoreCase(option)) {
 samples.hardReset("POC Exit Criteria Check - Java");
 }
 else if("-recreate".equalsIgnoreCase(option)) {
 samples.recreateService("false", "default", "");
 }
 else {
 System.err.println("Incorrect usage");
 System.err.println("Usage: EPMRestSamples <option>");
 System.err.println(" where <option> is -recreate or -reset");
 System.exit(1);
 }
 }
 catch (Throwable x) {
 System.err.println("Error: " + x.getMessage());
 }
 }

Chapter 9
Manage Services

9-69

 public EPMRestSamples(String userName, String password, String serverUrl)
throws Exception {
 this.userName = userName;
 this.password = password;
 this.serverUrl = serverUrl;
 }

 private String getStringFromInputStream(InputStream is) {
 BufferedReader br = null;
 StringBuilder sb = new StringBuilder();
 String line;

 try {
 br = new BufferedReader(new InputStreamReader(is));
 while ((line = br.readLine()) != null) {
 sb.append(line);
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 if (br != null) {
 try { br.close(); }
 catch (IOException e) { e.printStackTrace(); }
 }
 }
 return sb.toString();
 }

 private String executeRequest(String urlString, String requestMethod,
String payload, String contentType) throws Exception {
 HttpURLConnection connection = null;
 try {
 URL url = new URL(urlString);
 Base64.Encoder encoder = Base64.getEncoder();
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod(requestMethod);
 connection.setInstanceFollowRedirects(false);
 connection.setDoOutput(true);
 connection.setUseCaches(false);
 connection.setDoInput(true);
 connection.setRequestProperty("Authorization", "Basic " +
encoder.encodeToString((userName + ":" + password).getBytes()));
 connection.setRequestProperty("Content-Type", contentType);

 if (payload != null) {
 OutputStreamWriter writer = new
OutputStreamWriter(connection.getOutputStream());
 writer.write(payload);
 writer.flush();
 }

 int status = connection.getResponseCode();
 if (status == 200 || status == 201) {

Chapter 9
Manage Services

9-70

 return getStringFromInputStream(connection.getInputStream());
 }

 throw new Exception("Http status code: " + status);
 }
 finally {
 if (connection != null) { connection.disconnect(); }
 }
 }

 private void getJobStatus(String pingUrlString, String methodType) throws
Exception {
 boolean completed = false;

 while (!completed) {

 String pingResponse = null;
 try {
 pingResponse = executeRequest(pingUrlString, methodType,
null, "application/json");
 }
 catch (Exception e) {
 if(e instanceof java.net.ConnectException || e instanceof
java.net.SocketException) {
 if(System.currentTimeMillis()<endTime) {
 System.out.println("Processing. Please wait...");
 Thread.sleep(60000);
 continue;
 }
 throw new Exception("Command timeout..");
 }
 throw e;
 }

 JSONObject json = new JSONObject(pingResponse);
 int status = json.getInt("status");

 if (status == -1) {
 try {
 System.out.println("Processing. Please wait...");
 Thread.sleep(20000);
 }
 catch (InterruptedException ie) {
 completed = true;
 throw ie;
 }
 }
 else {
 if (status > 0) {
 System.out.println("Error occurred: " +
json.getString("details"));
 }
 else {
 System.out.println("Execution completed successfully");
 }
 completed = true;

Chapter 9
Manage Services

9-71

 }
 }
 }

 public String fetchPingUrlFromResponse(String response, String retValue)
throws Exception {
 String pingUrlString = null;
 JSONObject jsonObj = new JSONObject(response);
 int resStatus = jsonObj.getInt("status");

 if (resStatus == -1) {
 JSONArray lArray = jsonObj.getJSONArray("links");
 for (int i = 0; i < lArray.length(); i++) {
 JSONObject arr = lArray.getJSONObject(i);
 if (arr.get("rel").equals(retValue))
 pingUrlString = (String) arr.get("href");
 }
 }

 return pingUrlString;
 }

 public void hardReset(String comment) throws Exception {
 Scanner in = new Scanner(System.in);
 System.out.print("Are you sure you want to restart the service
instance (yes/no): no? [Press Enter] ");
 String s = in.nextLine();

 if (!s.equals("yes")) {
 System.out.println("User cancelled the recreate command");
 System.exit(0);
 }

 JSONObject params = new JSONObject();
 params.put("comment",comment);
 JSONObject innerParams = new JSONObject();
 innerParams.put("autotune","true");
 params.put("parameters",innerParams);

 String urlString = String.format("%s/interop/rest/%s/config/services/
reset", serverUrl, apiVersion);
 startTime=System.currentTimeMillis();
 endTime = startTime+maxLoopTime;
 String response = executeRequest(urlString, "POST",
params.toString(), "application/json");
 getJobStatus(fetchPingUrlFromResponse(response, "Job Status"),"GET");
 }

 public void recreateService(String removeAll, String essbaseChange,
String tempServiceType) throws Exception {
 Scanner in = new Scanner(System.in);
 System.out.print("Are you sure you want to recreate the EPM
environment (yes/no): no ?[Press Enter] ");
 String s = in.nextLine();

 if (!s.equals("yes")) {

Chapter 9
Manage Services

9-72

 System.out.println("User cancelled the recreate command");
 System.exit(0);
 }

 JSONObject params = new JSONObject();
 JSONObject innerParams = new JSONObject();

 innerParams.put("tempServiceType", tempServiceType);
 innerParams.put("essbaseChange", essbaseChange);
 innerParams.put("removeAll", removeAll);
 params.put("parameters", innerParams);

 String urlString = String.format("%s/interop/rest/%s/config/services/
recreate", serverUrl, apiVersion);
 startTime=System.currentTimeMillis();
 endTime = startTime+maxLoopTime;
 String response = executeRequest(urlString, "POST",
params.toString(), "application/json");
 getJobStatus(fetchPingUrlFromResponse(response, "Job Status"), "GET");
 }
}

Sample Groovy Code

package com.groovy

import org.json.JSONObject
import groovy.json.JsonSlurper

// TODO: Use appropriate username, password, and url
username="<USERNAME>"
password="<PASSWORD>"
serverUrl="<SERVICE_URL>"

endTime=0
maxLoopTime=(60 * 60 * 1000)

apiVersion = "v2"
userCredentials = username + ":" + password
basicAuth = "Basic " + userCredentials.bytes.encodeBase64().toString()

def getResponse(is) {
 BufferedReader br = new BufferedReader(new InputStreamReader(is))
 StringBuilder sb = new StringBuilder()
 String line

 while ((line = br.readLine()) != null) {
 sb.append(line+"\n")
 }

 br.close()
 return sb.toString()
}

def getJobStatus(pingUrlString, methodType) {

Chapter 9
Manage Services

9-73

 def pingUrl = new URL(pingUrlString)
 def completed = false

 while (!completed) {
 try {
 pingResponse = executeRequest(pingUrl, methodType, null,
"application/json")
 }
 catch(exp) {
 if(exp instanceof java.net.ConnectException || exp instanceof
java.net.SocketException) {
 if(System.currentTimeMillis()<endTime) {
 println("Processing. Please wait...")
 Thread.sleep(60000)
 continue
 }
 throw new Exception("Command timeout..")
 }
 }

 status = getJobStatusFromResponse(pingResponse)
 if (status == "Processing") {
 try {
 println "Processing. Please wait..."
 Thread.sleep(5000)
 }
 catch (InterruptedException e) {
 completed = true
 }
 }
 else {
 println "Execution completed successfully"
 completed = true
 }
 }
}

def getJobStatusFromResponse(response) {
 def object = new JsonSlurper().parseText(response)
 def status = object.status
 if (status == -1) { return "Processing" }
 else if (status == 0) { return "Completed" }
 else { return object.details }
}

def executeRequest(url, requestType, payload, contentType) throws Exception {
 HttpURLConnection connection = (HttpURLConnection) url.openConnection()
 connection.setDoOutput(true)
 connection.setInstanceFollowRedirects(false)
 connection.setRequestMethod(requestType)
 connection.setRequestProperty("Content-Type", contentType)
 connection.setRequestProperty("Authorization", basicAuth)
 connection.setUseCaches(false)

 if (payload != null) {
 OutputStreamWriter writer = new

Chapter 9
Manage Services

9-74

OutputStreamWriter(connection.getOutputStream())
 writer.write(payload)
 writer.flush()
 }

 int statusCode
 try { statusCode = connection.responseCode }
 catch (all) { throw all }

 def response
 if (statusCode == 200 || statusCode == 201) {
 if (connection.getContentType() != null && !
connection.getContentType().startsWith("application/json")) {
 println "Error occurred in server"
 System.exit(0)
 }
 InputStream is = connection.getInputStream()
 if (is != null) { response = getResponse(is) }
 }
 else {

 if (statusCode == 503) {
 throw new Exception("Service Unavailable")
 }

 InputStream is = connection.getErrorStream()
 if (is != null && connection.getContentType() != null &&
 connection.getContentType().startsWith("application/json")) {
 println getJobStatusFromResponse(getResponse(is))
 }
 }

 connection.disconnect()
 return response
}

def getUrlFromResponse(scenario, response, relValue) {
 def object = new JsonSlurper().parseText(response)
 def pingUrlStr
 if (object.status == -1) {
 println "Started - " + scenario
 def links = object.links
 links.each{
 if (it.rel.equals(relValue)) {
 pingUrlStr=it.href
 }
 }
 }
 else {
 println "Error details: " + object.details
 System.exit(0)
 }
 return pingUrlStr
}

def hardReset(comment) {

Chapter 9
Manage Services

9-75

 def scenario = "Hard reset"
 def toReset = System.console().readLine 'Are you sure you want to restart
the service instance (yes/no): no? [Press Enter] '

 if (!toReset.equals("yes")) {
 println "User cancelled the resetService command"
 System.exit(0)
 }

 def url
 JSONObject params = new JSONObject()
 JSONObject innerParams = new JSONObject()

 try {
 params.put("comment", comment)
 innerParams.put("autotune","true")
 params.put("parameters",innerParams)
 url = new URL(serverUrl+"/interop/rest/" + apiVersion + "/config/
services/reset")
 }
 catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0)
 }

 endTime=System.currentTimeMillis() +maxLoopTime
 response = executeRequest(url, "POST", params.toString(), "application/
json")

 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job
Status"),"GET")
 }
}

def recreateService(removeall,essabaseoption,tempServiceType) {

 def scenario="Recreate"
 def toCreate = System.console().readLine 'Are you sure you want to
recreate the EPM environment (yes/no): no? [Press Enter] '
 if (!toCreate.equals("yes")) {
 println "User cancelled the recreate command"
 System.exit(0)
 }

 def url
 JSONObject params = new JSONObject()
 JSONObject innerParams = new JSONObject()

 try {
 innerParams.put("tempServiceType", tempServiceType)
 innerParams.put("essbaseChange", essabaseoption)
 innerParams.put("removeAll", removeall)
 params.put("parameters", innerParams)
 url = new URL(serverUrl + "/interop/rest/" + apiVersion + "/config/

Chapter 9
Manage Services

9-76

services/recreate")
 }
 catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0)
 }

 endTime=System.currentTimeMillis() +maxLoopTime
 response = executeRequest(url, "POST", params.toString(), "application/
json")

 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job
Status"),"GET")
 }
}

if(this.args == null || this.args.length != 1) {
 println "Mandatory argument missing"
 println "Usage: EPMRestSamples <option>"
 println " where <option> is -recreate or -reset"
 System.exit(1)
}

def option = this.args[0]

if("-reset".equalsIgnoreCase(option)) {
 hardReset("POC Exit Criteria Check - Groovy");
}
else if("-recreate".equalsIgnoreCase(option)) {
 recreateService("false", "default", "");
}
else {
 println "Incorrect usage"
 println "Usage: EPMRestSamples <option>"
 println " where <option> is -recreate or -reset"
 System.exit(1)
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Run Recreate on a Service (11.1.2.3.600)
The Run Recreate on a Service (v11.1.2.3.600) REST API restores an environment to a clean
state by recreating the deployment.

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

Chapter 9
Manage Services

9-77

You re-create the deployment to complete these tasks:

• Clean up an environment before importing a full snapshot.

• Change the business process that can be deployed in an environment.

• Change the Essbase version in use in Oracle Enterprise Performance Management Cloud
environments other than Narrative Reporting, Oracle Enterprise Data Management Cloud,
and Account Reconciliation, which do not use Essbase.
By default, EPM Standard Cloud Service and EPM Enterprise Cloud Service environments
are deployed with Hybrid-enabled Essbase, while legacy environments are deployed with
Non-Hybrid Essbase. Downgrading the deployment of Hybrid-enabled Essbase in EPM
Standard Cloud Service and EPM Enterprise Cloud Service environments is required, if
you are importing a snapshot from an environment that has a Non-Hybrid Essbase version.
Upgrading the deployment of Non-Hybrid Essbase in legacy environments is required to:

– Support the extended dimensionality in existing legacy Financial Consolidation and
Close environments

– Enable hybrid block storage (BSO) applications in legacy Enterprise Planning and
Planning Modules environments

For detailed information about Hybrid Essbase and the considerations for upgrading to
Hybrid Essbase, see About Essbase in EPM Cloud in Getting Started with Oracle
Enterprise Performance Management Cloud for Administrators.

Caution:

• This API deletes the existing application and, optionally, all user defined artifacts
from the environment. Additionally, it re-creates the database and removes all
existing data. After recreating the service, you can create a new business process or
import one using REST APIs, Migration, or EPM Automate.

• This API deletes migration history. As a result, the Migration Status Report available
in Migration will not contain historic information.

• Before using this API, perform a complete backup of the environment. You can
create a backup snapshot by executing runDailyMaintenance.

This API is version 11.1.2.3.600.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/{api_version}/services/{servicename}/recreate

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/x-www-form-urlencoded

Chapter 9
Manage Services

9-78

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsad/1_about_one_epm_hybrid_essbase.html

Table 9-43 Parameters

Name Description Type Require
d

Default

api_version Specific API version Path Yes None

servicename Name of the service for which recreate needs to be
run, such as PBCS

Path Yes None

tempServiceType Optionally, convert an environment to a different
service environment. The business processes that
you can deploy in an environment is governed by
the type of subscription that you have. For
example, if you have an EPM Standard Cloud
Service subscription, you cannot create a
FreeForm application after converting the
environment from Account Reconciliation to
Planning. If you have an EPM Enterprise Cloud
Service subscription, you can create any business
process in your environment after changing the
service type appropriately. See "About the New
EPM Cloud Services" in Getting Started with
Oracle Enterprise Performance Management Cloud
for Administrators.

The behavior of this parameter is dependent on
your subscription. For details and examples, see
Recreate in Working with EPM Automate for Oracle
Enterprise Performance Management Cloud.

Acceptable tempServiceType values:

• ARCS to convert an environment to an
Account Reconciliation environment

• EDMCS to convert an environment to an
Oracle Enterprise Data Management Cloud
environment

• EPRCS to convert an environment to a
Narrative Reporting environment

• PCMCS to convert an environment to a
Profitability and Cost Management Cloud
environment

• PBCS to convert a Profitability and Cost
Management environment to a Planning,
Enterprise Planning, or Enterprise Profitability
and Cost Management environment

Note: You can create a Tax Reporting or Financial
Consolidation and Close application in a new
Planning environment. You do not need to change
the service type of the environment.

When you run this REST API with
tempserviceType, the serviceType change can
be verified by making a REST call to /interop/
rest.

Payload No None

removeAll If set to true, deletes all the snapshots and the
content of the Inbox and Outbox folders

Payload No None

Chapter 9
Manage Services

9-79

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_auto_recreate.html

Table 9-43 (Cont.) Parameters

Name Description Type Require
d

Default

essbaseChange Optionally, upgrade or downgrade the current
Essbase version. The REST API retains the current
Essbase version if you do not specify this option.
Permissible values are:

• upgrade to change from Non-Hybrid Essbase
to Hybrid Essbase

• downgrade to change from Hybrid Essbase to
Non-Hybrid Essbase

Caution: Before using this option, read and
understand the information available in About
Essbase in EPM Cloud in Getting Started with
Oracle Enterprise Performance Management Cloud
for Administrators.

Payload No None

Response

Table 9-44 Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self and/or Job Status.

If the value is set to Job Status, you can use the href to get the status of the
recreate service

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
 "details":null,
 "status":0,
 "links":[{
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/services/PBCS/
recreate",
 "rel":"self",
 "data":null,
 "action":"POST"
 },{
 "href":"https://<BASE-URL>/interop/rest/11.1.2.3.600/services/PBCS/
recreate/777",
 "rel":"Job Status",
 "data":null,
 "action":"GET"

Chapter 9
Manage Services

9-80

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsad/1_about_one_epm_hybrid_essbase.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsad/1_about_one_epm_hybrid_essbase.html

 }]
}

Run Recreate on a Service Sample Code

Example 9-18 Java Sample – runRecreateOnAService.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

//
// BEGIN - Recreate services
//
public void recreateService(String serviceName, String serviceType, String
removeAll, String essbaseChange) throws Exception {
 Scanner in = new Scanner(System.in);
 System.out.println("Are you sure you want to recreate the EPM environment
(yes/no): no ?[Press Enter]");
 String s = in.nextLine();
 if (!s.equals("yes")) {
 System.out.println("User cancelled the recreate command");
 System.exit(0);
 }

JSONObject params = new JSONObject();
//params.put("tempServiceType", serviceType);
params.put("removeAll", removeAll);
params.put("essbaseChange", essbaseChange);
 String parameters = "parameters="+ URLEncoder.encode(params.toString(),
"UTF-8");
 String urlString = String.format("%s/interop/rest/%s/
services/%s/recreate", serverUrl, apiVersion, serviceName);
 String response = executeRequest(urlString, "POST", parameters,
"application/x-www-form-urlencoded");
 getJobStatus(fetchPingUrlFromResponse(response, "Job Status"),"GET");
}

//
// END - Recreate services
//

Example 9-19 cURL Sample – RunRecreateOnAService.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcRecreateService() {
 echo "Are you sure you want to recreate the EPM environment (yes/no):
no ?[Press Enter]"
 read toCreate
 if [$toCreate != "yes"]; then
 echo "User cancelled the recreate command"

Chapter 9
Manage Services

9-81

 exit 0
 fi

 url=$SERVER_URL/interop/rest/$API_VERSION/services/EPM/recreate
 json=$(echo "{\"removeAll\":\"true\",\"essbaseChange\":\"upgrade\"}"
| sed -f urlencode.sed)
 param="parameters=$json"
 funcExecuteRequest "POST" $url $param "application/x-www-form-
urlencoded"
 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == -1]; then
 echo "Started recreating the environment successfully"
 funcGetStatus "GET"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Example 9-20 Groovy Sample – RunRecreateOnAService.groovy

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

def recreateService(serviceName) {
 def toCreate = System.console().readLine 'Are you sure you want to
recreate the EPM environment (yes/no): no ?[Press Enter]'
 if (!toCreate.equals("yes")) {
 println "User cancelled the recreate command"
 System.exit(0)
 }
 def url;
 JSONObject params = new JSONObject();
 try {
 //params.put("tempServiceType",serviceType);
 params.put("removeAll", "true");
 params.put("essbaseChange", "upgrade");
 url = new URL(serverUrl + "/interop/rest/" + apiVersion + "/
services/" + serviceName + "/recreate");
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "POST", "parameters="+param.toString(),
"application/x-www-form-urlencoded");
 if (response != null) {
 getJobStatus(response,"GET");
 }
}

Common Functions

• See Common Helper Functions for Java

Chapter 9
Manage Services

9-82

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Run Recreate on a Service (v2)
Use the Run Recreate on a Service (v2) REST API to restore an environment to a clean state
by recreating the deployment.

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use. This API is backwards compatible.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See About the REST APIs. Using this REST API requires
prerequisites. See Prerequisites.

You re-create the deployment to complete these tasks:

• Clean up an environment before importing a full snapshot.

• Change the business process that can be deployed in an environment.

• Change the Essbase version in use in Oracle Enterprise Performance Management Cloud
environments other than Narrative Reporting, Oracle Enterprise Data Management Cloud,
and Account Reconciliation, which do not use Essbase.
By default, EPM Standard Cloud Service and EPM Enterprise Cloud Service environments
are deployed with Hybrid-enabled Essbase, while legacy environments are deployed with
Non-Hybrid Essbase. Downgrading the deployment of Hybrid-enabled Essbase in EPM
Standard Cloud Service and EPM Enterprise Cloud Service environments is required, if
you are importing a snapshot from an environment that has a Non-Hybrid Essbase version.
Upgrading the deployment of Non-Hybrid Essbase in legacy environments is required to:

– Support the extended dimensionality in existing legacy Financial Consolidation and
Close environments

– Enable hybrid block storage (BSO) applications in legacy Enterprise Planning and
Planning Modules environments

For detailed information about Hybrid Essbase and the considerations for upgrading to
Hybrid Essbase, see About Essbase in EPM Cloud in Getting Started with Oracle
Enterprise Performance Management Cloud for Administrators.

Caution:

• This API deletes the existing application and, optionally, all user defined artifacts
from the environment. Additionally, it re-creates the database and removes all
existing data. After recreating the service, you can create a new business process or
import one using REST APIs, Migration, or EPM Automate.

• This API deletes migration history. As a result, the Migration Status Report available
in Migration will not contain historic information.

• Before using this API, perform a complete backup of the environment. You can
create a backup snapshot by executing runDailyMaintenance.

This API is version v2.

Required Roles

Service Administrator

Chapter 9
Manage Services

9-83

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsad/1_about_one_epm_hybrid_essbase.html

REST Resource

POST /interop/rest/v2/config/services/recreate

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
Payload: JSON

Table 9-45 Parameters

Name Description Type Require
d

Default

api_version Specific API version Path Yes None

Chapter 9
Manage Services

9-84

Table 9-45 (Cont.) Parameters

Name Description Type Require
d

Default

tempServiceType Optionally, convert an environment to a different
service environment. The business processes that
you can deploy in an environment is governed by
the type of subscription that you have. For
example, if you have an EPM Standard Cloud
Service subscription, you cannot create a
FreeForm application after converting the
environment from Account Reconciliation to
Planning. If you have an EPM Enterprise Cloud
Service subscription, you can create any business
process in your environment after changing the
service type appropriately. See "About the New
EPM Cloud Services" in Getting Started with
Oracle Enterprise Performance Management Cloud
for Administrators.

The behavior of this parameter is dependent on
your subscription. For details and examples, see
Recreate in Working with EPM Automate for Oracle
Enterprise Performance Management Cloud.

Acceptable tempServiceType values:

• ARCS to convert an environment to an Account
Reconciliation environment

• EDMCS to convert an environment to an Oracle
Enterprise Data Management Cloud
environment

• EPRCS to convert an environment to a
Narrative Reporting environment

• PCMCS to convert an environment to a
Profitability and Cost Management Cloud
environment

• PBCS to convert a Profitability and Cost
Management environment to a Planning,
Enterprise Planning, or Enterprise Profitability
and Cost Management environment

Note: You can create a Tax Reporting or Financial
Consolidation and Close application in a new
Planning environment. You do not need to change
the service type of the environment.

When you run this REST API with
tempserviceType, the serviceType change can
be verified by making a REST call to /interop/
rest.

Payload No None

removeAll If set to true, deletes all the snapshots and the
content of the Inbox and Outbox folders

Payload No None

Chapter 9
Manage Services

9-85

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_auto_recreate.html

Table 9-45 (Cont.) Parameters

Name Description Type Require
d

Default

essbaseChange Optionally, upgrade or downgrade the current
Essbase version. The REST API retains the current
Essbase version if you do not specify this option.
Permissible values are:

• upgrade to change from Non-Hybrid Essbase
to Hybrid Essbase

• downgrade to change from Hybrid Essbase to
Non-Hybrid Essbase

Caution: Before using this option, read and
understand the information available in About
Essbase in EPM Cloud in Getting Started with
Oracle Enterprise Performance Management Cloud
for Administrators.

Payload No None

Example of Request Payload

{
 "parameters": {
 "removeAll": "true",
 "tempServiceType": "ARCS",
 "essbaseChange": "default"
 }
}

Response

Table 9-46 Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self and/or Job Status.

If the value is set to Job Status, you can use the href to get the status of the
recreate service

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
 "details": null,
 "status": 0,
 "links": [{
 "href": "https://<BASE-URL>/interop/rest/v2/config/services/recreate",

Chapter 9
Manage Services

9-86

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsad/1_about_one_epm_hybrid_essbase.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsad/1_about_one_epm_hybrid_essbase.html

 "rel": "self",
 "data": null,
 "action": "POST"
 },
 {
 "href": "https://<BASE-URL>/interop/rest/v2/config/status/service/
recreate/1",
 "rel": "Job Status",
 "data": null,
 "action": "GET"
 }]
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d ‘"{"parameters":
{"removeAll":"false","essbaseChange":"upgrade", "tempServiceType":"PCMCS"}}"'
'https://<BASE-URL>/interop/rest/v2/config/services/recreate

Sample cURL code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

#!/bin/sh

USERNAME="<USERNAME>"
PASSWORD="<PASSWORD>"
SERVER_URL="<SERVICE_URL>"

APP_NAME="Vision"
API_VERSION="v2"

funcRemoveTempFiles() {
 for var in "$@"
 do
 if [-f $var]; then
 rm $var
 fi
 done
}

funcPrintErrorDetails() {
 contentType=`echo $(grep 'Content-Type:' respHeader.txt) | tr -d
[:space:]`
 if [! -z $contentType] && [[$contentType = *"application/json"*]];
then
 output=`cat $1`
 error=`echo $output | jq '.details'`
 echo "Error details: " $error
 fi
}

Chapter 9
Manage Services

9-87

funcExecuteRequest() {
 if [! -z "$4"]; then
 statusCode=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" -
o "response.txt" -D "respHeader.txt" -H "Content-Type: $4" -d "$3" $2`
 else
 statusCode=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" -
o "response.txt" -D "respHeader.txt" -H "Content-Type: $3" $2`
 fi

 if [$statusCode != 200]; then
 echo "Error executing request"
 if [$statusCode != 000]; then
 echo "Response error code : " $statusCode
 funcPrintErrorDetails "response.txt"
 funcRemoveTempFiles "respHeader.txt" "response.txt"
 fi
 exit 0
 fi
}

funcGetStatus() {
 output=`cat response.txt`
 count=`echo $output | jq '.links | length'`
 i=0
 pingUrl=""

 while [$i -lt $count]; do
 rel=`echo $output | jq '.links['$i'].rel'`
 rel=`echo "$rel" | tr -d "\""`
 if ["$rel" == "Job Status"]; then
 pingUrl=`echo $output | jq '.links['$i'].href'`
 pingUrl=`echo "$pingUrl" | tr -d "\""`
 fi
 i=`expr $i + 1`
 done

 echo $pingUrl
 completed="false"

 while [$completed != "true"]; do
 statusCode2=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD"
-o "pingResponse.txt" -H "Content-Type: application/json" "$pingUrl"`
 if [$statusCode2 == 200]; then
 status2=`jq '.status' pingResponse.txt`
 if [$status2 != -1]; then
 completed="true"
 echo "Job completed"
 else
 echo "Please wait..."
 sleep 20
 fi
 else
 echo "Please wait..."
 sleep 20
 fi
 funcRemoveTempFiles "pingResponse.txt"

Chapter 9
Manage Services

9-88

 done
}

funcHardReset() {
 echo "Are you sure you want to restart the service instance (yes/no): no?
[Press Enter] "
 read toReset
 if [$toReset != "yes"]; then
 echo "User cancelled the reset command"
 exit 0
 fi

 url=$SERVER_URL/interop/rest/$API_VERSION/config/services/reset
 comment=$(echo $1)
 param="{\"comment\":\"${comment}\",\"parameters\":
{\"autotune\":\"false\"}}"
 funcExecuteRequest "POST" "$url" "$param" "application/json"

 output=`cat response.txt`
 status=`echo $output | jq '.status'`

 if ["${status}" == -1]; then
 echo "Started hard reset succesfully"
 funcGetStatus "GET"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi

 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcRecreateService() {

 removeAll=$1
 essbaseChange=$2
 tempServiceType=$3

 echo "Are you sure you want to recreate the EPM environment (yes/no): no?
[Press Enter] "
 read toCreate

 if [$toCreate != "yes"]; then
 echo "User cancelled the recreate command"
 exit 0
 fi

 url=$SERVER_URL/interop/rest/$API_VERSION/config/services/recreate
 param="{\"parameters\":{\"removeAll\":\"${removeAll}
\",\"essbaseChange\":\"${essbaseChange}\", \"tempServiceType\":\"$
{tempServiceType}\"}}"

 funcExecuteRequest "POST" "$url" "$param" "application/json"
 output=`cat response.txt`
 status=`echo $output | jq '.status'`

Chapter 9
Manage Services

9-89

 if [$status == -1]; then
 echo "Started recreating the environment successfully"
 funcGetStatus "GET"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi

 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

if [["$#" != "1"]]; then
 echo "Mandatory argument missing"
 echo "Usage: EPMRestSamples <option>"
 echo " where <option> is -recreate or -reset"
 exit 1
fi

if ["${1}" == "-reset"]; then
 funcHardReset "POC Exit Criteria Check - cURL"
elif ["${1}" == "-recreate"]; then
 funcRecreateService "false" "default" ""
else
 echo "Incorrect usage"
 echo "Usage: EPMRestSamples <option>"
 echo " where <option> is -recreate or -reset"
 exit 1
fi

Sample Java Code

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

package com.oracle.test;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.Scanner;
import java.util.Base64;

import org.json.JSONArray;
import org.json.JSONObject;

/*
 * EPM Rest Samples.
 * The userName variable uses the format <domain>.<username>.
 */
public class EPMRestSamples {

Chapter 9
Manage Services

9-90

 private String userName; // EPMCloud user name
 private String password; // EPMCloud user password
 private String serverUrl; // EPMCloud server URL
 private String apiVersion="v2"; // Version of the EPMCloud Rest API

 private long startTime;
 private long endTime;
 private long maxLoopTime=(60 * 60 * 1000);

 public static void main(String[] args) {
 try {

 if(null == args || args.length != 1) {
 System.err.println("Mandatory argument missing");
 System.err.println("Usage: EPMRestSamples <option>");
 System.err.println(" where <option> is -recreate or -reset");
 System.exit(1);
 }

 // TODO: Use appropriate username, password, and URL
 EPMRestSamples samples = new EPMRestSamples(
 "<USERNAME>", "<PASSWORD>","<SERVICE_URL>");

 String option = args[0];
 if("-reset".equalsIgnoreCase(option)) {
 samples.hardReset("POC Exit Criteria Check - Java");
 }
 else if("-recreate".equalsIgnoreCase(option)) {
 samples.recreateService("false", "default", "");
 }
 else {
 System.err.println("Incorrect usage");
 System.err.println("Usage: EPMRestSamples <option>");
 System.err.println(" where <option> is -recreate or -reset");
 System.exit(1);
 }
 }
 catch (Throwable x) {
 System.err.println("Error: " + x.getMessage());
 }
 }

 public EPMRestSamples(String userName, String password, String serverUrl)
throws Exception {
 this.userName = userName;
 this.password = password;
 this.serverUrl = serverUrl;
 }

 private String getStringFromInputStream(InputStream is) {
 BufferedReader br = null;
 StringBuilder sb = new StringBuilder();
 String line;

 try {

Chapter 9
Manage Services

9-91

 br = new BufferedReader(new InputStreamReader(is));
 while ((line = br.readLine()) != null) {
 sb.append(line);
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 if (br != null) {
 try { br.close(); }
 catch (IOException e) { e.printStackTrace(); }
 }
 }
 return sb.toString();
 }

 private String executeRequest(String urlString, String requestMethod,
String payload, String contentType) throws Exception {
 HttpURLConnection connection = null;
 try {
 URL url = new URL(urlString);
 Base64.Encoder encoder = Base64.getEncoder();
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod(requestMethod);
 connection.setInstanceFollowRedirects(false);
 connection.setDoOutput(true);
 connection.setUseCaches(false);
 connection.setDoInput(true);
 connection.setRequestProperty("Authorization", "Basic " +
encoder.encodeToString((userName + ":" + password).getBytes()));
 connection.setRequestProperty("Content-Type", contentType);

 if (payload != null) {
 OutputStreamWriter writer = new
OutputStreamWriter(connection.getOutputStream());
 writer.write(payload);
 writer.flush();
 }

 int status = connection.getResponseCode();
 if (status == 200 || status == 201) {
 return getStringFromInputStream(connection.getInputStream());
 }

 throw new Exception("Http status code: " + status);
 }
 finally {
 if (connection != null) { connection.disconnect(); }
 }
 }

 private void getJobStatus(String pingUrlString, String methodType) throws
Exception {
 boolean completed = false;

Chapter 9
Manage Services

9-92

 while (!completed) {

 String pingResponse = null;
 try {
 pingResponse = executeRequest(pingUrlString, methodType,
null, "application/json");
 }
 catch (Exception e) {
 if(e instanceof java.net.ConnectException || e instanceof
java.net.SocketException) {
 if(System.currentTimeMillis()<endTime) {
 System.out.println("Processing. Please wait...");
 Thread.sleep(60000);
 continue;
 }
 throw new Exception("Command timeout..");
 }
 throw e;
 }

 JSONObject json = new JSONObject(pingResponse);
 int status = json.getInt("status");

 if (status == -1) {
 try {
 System.out.println("Processing. Please wait...");
 Thread.sleep(20000);
 }
 catch (InterruptedException ie) {
 completed = true;
 throw ie;
 }
 }
 else {
 if (status > 0) {
 System.out.println("Error occurred: " +
json.getString("details"));
 }
 else {
 System.out.println("Execution completed successfully");
 }
 completed = true;
 }
 }
 }

 public String fetchPingUrlFromResponse(String response, String retValue)
throws Exception {
 String pingUrlString = null;
 JSONObject jsonObj = new JSONObject(response);
 int resStatus = jsonObj.getInt("status");

 if (resStatus == -1) {
 JSONArray lArray = jsonObj.getJSONArray("links");
 for (int i = 0; i < lArray.length(); i++) {
 JSONObject arr = lArray.getJSONObject(i);

Chapter 9
Manage Services

9-93

 if (arr.get("rel").equals(retValue))
 pingUrlString = (String) arr.get("href");
 }
 }

 return pingUrlString;
 }

 public void hardReset(String comment) throws Exception {
 Scanner in = new Scanner(System.in);
 System.out.print("Are you sure you want to restart the service
instance (yes/no): no? [Press Enter] ");
 String s = in.nextLine();

 if (!s.equals("yes")) {
 System.out.println("User cancelled the recreate command");
 System.exit(0);
 }

 JSONObject params = new JSONObject();
 params.put("comment",comment);
 JSONObject innerParams = new JSONObject();
 innerParams.put("autotune","true");
 params.put("parameters",innerParams);

 String urlString = String.format("%s/interop/rest/%s/config/services/
reset", serverUrl, apiVersion);
 startTime=System.currentTimeMillis();
 endTime = startTime+maxLoopTime;
 String response = executeRequest(urlString, "POST",
params.toString(), "application/json");
 getJobStatus(fetchPingUrlFromResponse(response, "Job Status"),"GET");
 }

 public void recreateService(String removeAll, String essbaseChange,
String tempServiceType) throws Exception {
 Scanner in = new Scanner(System.in);
 System.out.print("Are you sure you want to recreate the EPM
environment (yes/no): no ?[Press Enter] ");
 String s = in.nextLine();

 if (!s.equals("yes")) {
 System.out.println("User cancelled the recreate command");
 System.exit(0);
 }

 JSONObject params = new JSONObject();
 JSONObject innerParams = new JSONObject();

 innerParams.put("tempServiceType", tempServiceType);
 innerParams.put("essbaseChange", essbaseChange);
 innerParams.put("removeAll", removeAll);
 params.put("parameters", innerParams);

 String urlString = String.format("%s/interop/rest/%s/config/services/
recreate", serverUrl, apiVersion);

Chapter 9
Manage Services

9-94

 startTime=System.currentTimeMillis();
 endTime = startTime+maxLoopTime;
 String response = executeRequest(urlString, "POST",
params.toString(), "application/json");
 getJobStatus(fetchPingUrlFromResponse(response, "Job Status"), "GET");
 }
}

Sample Groovy Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

package com.groovy

import org.json.JSONObject
import groovy.json.JsonSlurper

// TODO: Use appropriate username, password, and url
username="<USERNAME>"
password="<PASSWORD>"
serverUrl="<SERVICE_URL>"

endTime=0
maxLoopTime=(60 * 60 * 1000)

apiVersion = "v2"
userCredentials = username + ":" + password
basicAuth = "Basic " + userCredentials.bytes.encodeBase64().toString()

def getResponse(is) {
 BufferedReader br = new BufferedReader(new InputStreamReader(is))
 StringBuilder sb = new StringBuilder()
 String line

 while ((line = br.readLine()) != null) {
 sb.append(line+"\n")
 }

 br.close()
 return sb.toString()
}

def getJobStatus(pingUrlString, methodType) {
 def pingUrl = new URL(pingUrlString)
 def completed = false

 while (!completed) {
 try {
 pingResponse = executeRequest(pingUrl, methodType, null,
"application/json")
 }
 catch(exp) {
 if(exp instanceof java.net.ConnectException || exp instanceof
java.net.SocketException) {

Chapter 9
Manage Services

9-95

 if(System.currentTimeMillis()<endTime) {
 println("Processing. Please wait...")
 Thread.sleep(60000)
 continue
 }
 throw new Exception("Command timeout..")
 }
 }

 status = getJobStatusFromResponse(pingResponse)
 if (status == "Processing") {
 try {
 println "Processing. Please wait..."
 Thread.sleep(5000)
 }
 catch (InterruptedException e) {
 completed = true
 }
 }
 else {
 println "Execution completed successfully"
 completed = true
 }
 }
}

def getJobStatusFromResponse(response) {
 def object = new JsonSlurper().parseText(response)
 def status = object.status
 if (status == -1) { return "Processing" }
 else if (status == 0) { return "Completed" }
 else { return object.details }
}

def executeRequest(url, requestType, payload, contentType) throws Exception {
 HttpURLConnection connection = (HttpURLConnection) url.openConnection()
 connection.setDoOutput(true)
 connection.setInstanceFollowRedirects(false)
 connection.setRequestMethod(requestType)
 connection.setRequestProperty("Content-Type", contentType)
 connection.setRequestProperty("Authorization", basicAuth)
 connection.setUseCaches(false)

 if (payload != null) {
 OutputStreamWriter writer = new
OutputStreamWriter(connection.getOutputStream())
 writer.write(payload)
 writer.flush()
 }

 int statusCode
 try { statusCode = connection.responseCode }
 catch (all) { throw all }

 def response
 if (statusCode == 200 || statusCode == 201) {

Chapter 9
Manage Services

9-96

 if (connection.getContentType() != null && !
connection.getContentType().startsWith("application/json")) {
 println "Error occurred in server"
 System.exit(0)
 }
 InputStream is = connection.getInputStream()
 if (is != null) { response = getResponse(is) }
 }
 else {

 if (statusCode == 503) {
 throw new Exception("Service Unavailable")
 }

 InputStream is = connection.getErrorStream()
 if (is != null && connection.getContentType() != null &&
 connection.getContentType().startsWith("application/json")) {
 println getJobStatusFromResponse(getResponse(is))
 }
 }

 connection.disconnect()
 return response
}

def getUrlFromResponse(scenario, response, relValue) {
 def object = new JsonSlurper().parseText(response)
 def pingUrlStr
 if (object.status == -1) {
 println "Started - " + scenario
 def links = object.links
 links.each{
 if (it.rel.equals(relValue)) {
 pingUrlStr=it.href
 }
 }
 }
 else {
 println "Error details: " + object.details
 System.exit(0)
 }
 return pingUrlStr
}

def hardReset(comment) {

 def scenario = "Hard reset"
 def toReset = System.console().readLine 'Are you sure you want to restart
the service instance (yes/no): no? [Press Enter] '

 if (!toReset.equals("yes")) {
 println "User cancelled the resetService command"
 System.exit(0)
 }

 def url

Chapter 9
Manage Services

9-97

 JSONObject params = new JSONObject()
 JSONObject innerParams = new JSONObject()

 try {
 params.put("comment", comment)
 innerParams.put("autotune","true")
 params.put("parameters",innerParams)
 url = new URL(serverUrl+"/interop/rest/" + apiVersion + "/config/
services/reset")
 }
 catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0)
 }

 endTime=System.currentTimeMillis() +maxLoopTime
 response = executeRequest(url, "POST", params.toString(), "application/
json")

 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job
Status"),"GET")
 }
}

def recreateService(removeall,essabaseoption,tempServiceType) {

 def scenario="Recreate"
 def toCreate = System.console().readLine 'Are you sure you want to
recreate the EPM environment (yes/no): no? [Press Enter] '
 if (!toCreate.equals("yes")) {
 println "User cancelled the recreate command"
 System.exit(0)
 }

 def url
 JSONObject params = new JSONObject()
 JSONObject innerParams = new JSONObject()

 try {
 innerParams.put("tempServiceType", tempServiceType)
 innerParams.put("essbaseChange", essabaseoption)
 innerParams.put("removeAll", removeall)
 params.put("parameters", innerParams)
 url = new URL(serverUrl + "/interop/rest/" + apiVersion + "/config/
services/recreate")
 }
 catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0)
 }

 endTime=System.currentTimeMillis() +maxLoopTime
 response = executeRequest(url, "POST", params.toString(), "application/
json")

Chapter 9
Manage Services

9-98

 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job
Status"),"GET")
 }
}

if(this.args == null || this.args.length != 1) {
 println "Mandatory argument missing"
 println "Usage: EPMRestSamples <option>"
 println " where <option> is -recreate or -reset"
 System.exit(1)
}

def option = this.args[0]

if("-reset".equalsIgnoreCase(option)) {
 hardReset("POC Exit Criteria Check - Groovy");
}
else if("-recreate".equalsIgnoreCase(option)) {
 recreateService("false", "default", "");
}
else {
 println "Incorrect usage"
 println "Usage: EPMRestSamples <option>"
 println " where <option> is -recreate or -reset"
 System.exit(1)
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Manage Application Snapshots
You can manage the file system artifacts or application snapshots using the following REST
resources.

Note: The password of the source EPM Cloud environment must have already been encrypted
using EPM Automate. The encrypted password must then be passed as one of the parameters
for the copysnapshot REST API. See the encrypt command in Command Reference in
Working with EPM Automate for Oracle Enterprise Performance Management Cloud.

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 9
Manage Application Snapshots

9-99

https://docs.oracle.com/cloud/latest/epm-common/CEPMA/epm_automate_command_ref_section.htm

Table 9-47 Manage Application Snapshots

Task Request REST Resource

Get Information About All
Application Snapshots

GET /interop/rest/{api_version}/
applicationsnapshots

Get Information About a
Specific Application Snapshot

GET /interop/rest/{api_version}/
applicationsnapshots/
{applicationSnapshotName}

Upload Application Snapshot
(v1)

POST /interop/rest/{api_version}/
applicationsnapshots/
{applicationSnapshotName

Upload Application Snapshot
(v2)

POST /interop/rest/v2/files/upload

Download Application
Snapshot (v1)

GET /interop/rest/{api_version}/
applicationsnapshots/
{applicationSnapshotName}

Download Application
Snapshot (v2)

POST /interop/rest/v2/files/download

Copy Application Snapshot
(v1)

POST /interop/rest/v1/services/
{servicename}/copysnapshot

Copy Application Snapshot
(v2)

POST /interop/rest/v2/snapshots/
copyfrominstance

Rename Application Snapshot
(v1)

PUT /interop/rest/{api_version}/
renamesnapshot

Rename Application Snapshot
(v2)

PUT /interop/rest/v2/snapshots/rename

Get Information About All Application Snapshots
This API returns information about all application snapshots that are available in an Planning
instance. It provides details such as name, type, size, and last modified time. Type signifies
whether it is a Migration snapshot or an external snapshot. Size and last modified time are not
available for Migration type snapshots.

This API is version 11.1.2.3.600.

Required Roles

Service Administrator

REST Resource

GET /interop/rest/{api_version}/applicationsnapshots

Response

Supported Media Types: application/json

Table 9-48 Parameters

Name Description

api_version Specific API version

Chapter 9
Manage Application Snapshots

9-100

Table 9-48 (Cont.) Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

items Detailed information about the API

name Name of the application snapshot

type Possible values: LCM, EXTERNAL
size Size of the application snapshot in bytes. Available only for type EXTERNAL
lastmodifiedtim
e

Time in Long value as per the last modified time of the file. Will be available only for
type EXTERNAL

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible value: self
data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "status":0,
 "items":[{
 "name":"sample.csv",
 "type":"EXTERNAL",
 "size":"18",
 "lastmodififedtime":"1422534438000"
 },{
 "name":"snapshot1",
 "type":"LCM",
 "size":null,
 "lastmodififedtime":null
 }],
 "details":null,
 "links":[{
 "data":null,
 "action":"GET",
 "href":"https://<BASE URL>/interop/rest/11.1.2.3.600/
applicationsnapshots",
 "rel":"self"
 }]
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Chapter 9
Manage Application Snapshots

9-101

Get Information About a Specific Application Snapshot
Returns information about all the operations that can be performed on a particular application
snapshot. It provides details on operations such as Migration import and export, upload,
download, and delete.

This API is version 11.1.2.3.600.

Required Roles

Service Administrator

REST Resource

GET /interop/rest/{api_version}/applicationsnapshots/{applicationSnapshotName}

Request

The following table summarizes the GET request parameters.

Table 9-49 Parameters

Name Description Type Required Default

applicationSnapsho
tName

Application snapshot name to retrieve the details Path Yes N/A

Response

Supported Media Types: application/json

Table 9-50 Parameters

Name Description

details In the case of an error, details are published with the error string

status See Migration Status Codes

items Detailed information about the API

name Name of the application snapshot

type Possible values: LCM, EXTERNAL
canexport Identifies whether this application snapshot can be exported using Migration.

Applicable only to Migration application artifacts

canimport Identifies whether this application snapshot can be imported using Migration.
Applicable only to Migration application artifacts

canupload Identifies whether the application snapshot can be uploaded

candownload Identifies whether the application snapshot can be downloaded

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible values: self, import, export, upload, download, or delete
depending on the operation permitted on an application snapshot

data Parameters as key value pairs passed in the request

Chapter 9
Manage Application Snapshots

9-102

Example of Response Body

The following is an example of the response body in JSON format.

{
 "status":0,
 "items":[{
 "name":"snapshot1",
 "type":"LCM",
 "canexport":true,
 "canimport":true,
 "canupload":true,
 "candownload":true
 }],
 "details":null,
 "links":[{
 "data":null,
 "action":"GET",
 "href":"https://<BASE URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/snapshot1",
 "rel":"self"
 },{
 "data":null,
 "action":"GET",
 "href":"https://<BASE URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/snapshot1/contents",
 "rel":"download"
 },{
 "data":null,
 "action":"POST",
 "href":"https://<BASE URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/snapshot1/contents?
isLast=true&chunkSize=52428800&isFirst=true",
 "rel":"upload"
 },{
 "data":null,
 "action":"POST",
 "href":"https://<BASE URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/snapshot1/migrationq={type:"export}"
 "rel":"export"
 },{
 "data":null,
 "action":"POST",
 "href":"https://<BASE URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/snapshot1/migrationq={type:"import}",
 "rel":"import"
 },{
 "data":null,
 "action":"DELETE",
 "href":"https://<BASE URL>/interop/rest/11.1.2.3.600/
applicationsnapshots/ss1",
 "rel":"delete"
 }]
}

Chapter 9
Manage Application Snapshots

9-103

Java Sample – getInfoAboutSpecificSnapshots.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

//
// BEGIN - Get application snapshot details
//
public void getApplicationSnapshotDetails(String snapshotName) throws
Exception {
 String urlString = String.format("%s/interop/rest/%s/applicationsnapshots/
%s", serverUrl, apiVersion, snapshotName);
 String response = executeRequest(urlString, "GET", null);
 JSONObject json = new JSONObject(response);

 int resStatus = json.getInt("status");
 if (resStatus == 0) {
 System.out.println("Application details :");
 JSONArray itemsArray = json.getJSONArray("items");
 JSONObject item = (JSONObject) itemsArray.get(0);
 System.out.println("Application snapshot name : " +
item.getString("name"));
 System.out.println("Application snapshot type : " +
item.getString("type"));
 System.out.println("Can be exported flag : " +
item.getString("canExport"));
 System.out.println("Can be imported flag : " +
item.getString("canImport"));
 System.out.println("Can be uploaded flag : " +
item.getString("canUpload"));
 System.out.println("Can be downloaded flag : " +
item.getString("canDownload"));

 JSONArray linksArray = json.getJSONArray("links");
 JSONObject jObj = null;
 System.out.println("Services details :");
 for(int i=0; i < linksArray.length(); i++){
 jObj = (JSONObject)linksArray.get(i);
 System.out.println("Service :" + jObj.getString("rel"));
 System.out.println("URL :" + jObj.getString("href"));
 System.out.println("Action :" + jObj.getString("action") + "\n");
 }
 }
}
//
// END - Get application snapshot details
//

cURL Sample – GetInfoAboutSpecificSnapshots.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Chapter 9
Manage Application Snapshots

9-104

Common Functions: See Common Helper Functions for cURL

funcGetApplicationSnapshotDetails() {
 url=$SERVER_URL/interop/rest/$API_VERSION/applicationsnapshots/$1
 funcExecuteRequest "GET" $url

 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == 0]; then
 echo "Application details :"
 echo "Application snapshot name : " `echo $output | jq
'.items[0].name'`
 echo "Application snapshot type : " `echo $output | jq
'.items[0].type'`
 echo "Can be exported flag : " `echo $output | jq
'.items[0].canExport'`
 echo "Can be imported flag : " `echo $output | jq
'.items[0].canImport'`
 echo "Can be uploaded flag : " `echo $output | jq
'.items[0].canUpload'`
 echo "Can be downloaded flag : " `echo $output | jq
'.items[0].canDownload'`
 count=`echo $output | jq '.links | length'`
 i=0
 echo "Services details :"
 while [$i -lt $count]; do
 echo "Service : " `echo $output | jq '.links['$i'].rel'`
 echo "URL :" `echo $output | jq '.links['$i'].href'`
 echo "Action :" `echo $output | jq '.links['$i'].action'`
 echo ""
 i=`expr $i + 1`
 done
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – GetInfoAboutSpecificSnapshots.groovy

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

def getApplicationSnapshotDetails(applicationSnapshotName) {
 def url;
 try {
 String snapshotName = URLEncoder.encode(applicationSnapshotName,
"UTF-8");
 url = new URL(serverUrl + "/interop/rest/" + apiVersion + "/
applicationsnapshots/" + snapshotName)
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }

Chapter 9
Manage Application Snapshots

9-105

 response = executeRequest(url, "GET", null);
 def object = new JsonSlurper().parseText(response)
 def status = object.status
 if (status == 0) {
 println "Application details :"
 println "Application snapshot name : " + object.items[0].name
 println "Application snapshot type : " + object.items[0].type
 println "Can be exported flag : " + object.items[0].canExport
 println "Can be imported flag : " + object.items[0].canImport
 println "Can be uploaded flag : " + object.items[0].canUpload
 println "Can be downloaded flag : " + object.items[0].canDownload
 def links = object.links
 println "Services details :"
 links.each{
 println "Service : " + it.rel
 println "URL : " + it.href
 println "Action : " + it.action + "\n"
 }
 } else {
 println "Error occurred while fetching application snapshot details"
 if (object.details != null)
 println "Error details: " + object.details
 }

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Upload Application Snapshot (v1)
This API uploads an application snapshot to the Planning repository. The client needs to call
upload API multiple times based on the size of file to upload. The client needs to break the
existing stream into a number of chunks depending on the logic that each chunk size is not
greater than 50 * 1024 * 1024 bytes.

This API is version v1.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

POST /interop/rest/{api_version}/applicationsnapshots
Supported Media Types: application/octet-stream
The following table summarizes the client request.

Chapter 9
Manage Application Snapshots

9-106

Table 9-51 Parameters

Name Description Type Default

api_version Specific API version Path N/A

applicationSnapsho
tName

Name of the application snapshot to be uploaded. A file with this name is
created in the Planning repository. If a file or folder with this name exists
in the repository, an error is thrown indicating that a file or folder exists.

Path N/A

isLast If the chunk being passed is the last one then set to true Query N/A

chunkSize Size of the chunk being passed in bytes Query N/A

isFirst If the chunk being passed is the first one and there will be subsequent
requests for upload then set as true

Query N/A

fileSize The size of the file being uploaded Query N/A

Response

Supported Media Types: application/json

Table 9-52 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Is self, which denotes the URL of this REST API.

data Parameters as key value pairs passed in the request

Example of Response Body

{
 "status":0,
 "details":null,
 "links":[{
 "data":null,
 "action":"POST",
 "href":"https://<BASE URL>/interop/rest/v1/applicationsnapshots/
ss2.zip/contents,
 "rel":"self"
 }]
}

Examples of Uploading with Postman

To upload a file named snapshot.zip of size 12606 bytes, select request method as POST
and Basic Authorization header for all the requests.

Example Request 1: Create a File

Parameters

Chapter 9
Manage Application Snapshots

9-107

https://<BASE URL>//interop/rest/v1/applicationsnapshots/snapshot.zip/contents?
q=PARAMETERS ->
{"isFirst":true,"chunkSize":14,"fileSize":"12606","isLast":false} // utf-8
encoded value of it
{"isFirst":true,"chunkSize":14,"fileSize":"12606","isLast":false} // utf-8
encoded value of it
URL and Response

https://<BASE URL>/interop/rest/v1/applicationsnapshots/snapshot.zip/contents?
q=%7B%22isFirst%22%3Atrue%2C%22chunkSize%22%3A14%2C%22fileSize%22%3A%223318004
%22%2C%22isLast%22%3Afalse%7D

{
 "links": [
 {
 "rel": "self",{
 "href": "https://<BASE URL>/interop/rest/v1/applicationsnapshots/
snapshot.zip/contents?
q=%7B%22isFirst%22:true,%22chunkSize%22:14,%22fileSize%22:%223318004%22,%22isL
ast%22:false%7D",
 "data": null,
 "action": "POST"
 }
],
 "details": null,
 "status": 0
}

Example Request 2: Upload the Content

Parameters

https://<BASE URL>/interop/rest/v1/applicationsnapshots/snapshot.zip/contents?q=
{"startRange":"0","isFirst":false,"chunkSize":12606,"isLast":false,"fileSize":"12
606","endRange":"12605","chunkNo":1} // encoded value of it (Ensure the value of
the parameters chunkSize and fileSize is equivalent to the total size of the file
and endRange is set to fileSize - 1.)
URL and Response

https://<BASE URL>/interop/rest/v1/applicationsnapshots/snapshot.zip/contents?
q=%7B%22startRange%22%3A%220%22%2C%22isFirst%22%3Afalse%2C%22chunkSize%22%3A12
606%2C%22isLast%3A%22false%22%7D

{
 "links": [
 {
 "rel": "self",{
 "href": "https://<BASE URL>/interop/rest/v1/applicationsnapshots/
snapshot.zip/contents?
q=%7B%22startRange%22:%220%22,%22isFirst%22:false,%22chunkSize%22:12606,%22isL
ast%22:false,%22fileSize%22:%2212606%22,%22endRange%22:%2212605%22,%22chunkNo%

Chapter 9
Manage Application Snapshots

9-108

22:1%7D",
 "data": null,
 "action": "POST"
 }
],
 "details": null,
 "status": 0
}

To select the file, select tab Body, radio button Binary, and select File, Send.

Example Request 3: Extract the Content Out of the Zip File

Parameters

https://<<BASE URL>/interop/rest/v1/applicationsnapshots/snapshot.zip/contents?q=
{"isFirst":false,"chunkSize":14,"fileSize":"12606","isLast":true} // utf-8
encoded value of it
URL and Response

https://<BASE URL>/interop/rest/v1/applicationsnapshots/snapshot.zip/contents?
q=%7B%22isFirst%22%3Afalse%2C%22chunkSize%22%3A14%2C%22fileSize%22%3A%2212606%
22%2C%22isLast%22%3Atrue%7D

{
 "links": [
 {
 "rel": "self",{
 "href": "https://<BASE URL>/interop/rest/v1/applicationsnapshots/
snapshot.zip/contents?
q=%7B%22isFirst%22:false,%22chunkSize%22:14,%22fileSize%22:%223318004%22,%22is
Last%22:true%7D",
 "data": null,
 "action": "POST"
 }
],
 "details": null,
 "status": 0
}

To select the file:, select tab Body, radio button Binary, select File, Send.

Upload Application Snapshot (v2)
The Upload Application Snapshot (v2) REST API uploads an application snapshot to Oracle
Enterprise Performance Management Cloud. The client needs to call upload API multiple times
based on the size of the file to upload. The client needs to break the existing stream into a
number of chunks depending on the logic that each chunk size is not greater than 50 * 1024 *
1024 bytes.

This API is version v2.

Chapter 9
Manage Application Snapshots

9-109

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

POST /interop/rest/v2/files/upload

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-53 Tasks for Upload Application Snapshot

Task Reques
t

REST Resource

Create file POST /interop/rest/v2/files/upload
Upload content PATCH /interop/rest/v2/files/upload/7224986735511603
Extract the
content out of zip
file

POST /interop/rest/v2/files/upload/7224986735511603/complete

Extraction status GET /interop/rest/v2/status/jobs/7224986735511603

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 9-54 Parameters

Name Description Type Required Default

fileName Name of the application snapshot to upload. A file with
this name is created in EPM Cloud. If a file or folder with
this name already exists, an error is thrown indicating
that a file or folder exists.

Payload Yes None

fileSize The size of the file to upload Payload Yes None

Response

Supported Media Types: application/json

Chapter 9
Manage Application Snapshots

9-110

Table 9-55 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Is self, which denotes the URL of this REST API.

data Parameters as key value pairs passed in the request

Examples of Uploading with Postman

To upload a file named snapshot.zip of size 12606 bytes, select Basic Authorization header
for all the requests.

Example URL and Payload to Create the File

Request Method: POST

Supported Media Types: application/json

https://<BASE URL>/interop/rest/v2/files/upload

{
 "fileName": "snapshot.zip",
 "fileSize": "2468889"
}

Example Response 1

{
 "status":0,
 "details":null,
 "links":[{
 "data":null,
 "action":"POST",
 "href":"https://<BASE URL>/interop/rest/v2/interop/rest/v2/files/
upload,
 "rel":"self"
 }]
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"fileName": "snapshot.zip", "fileSize":"2468889"}' 'https://<BASE URL>/
interop/rest/v2/files/upload'

Chapter 9
Manage Application Snapshots

9-111

Example URL and Payload to Upload the Content

Request Method: PATCH

Supported Media Types: application/octet-stream
Chunk-Range has to be passed as a Header parameter(0-2468889)

Note:

Ensure the value of the fileSize is equivalent to the total size of the file and end
Range is set to fileSize -1.

https://<BASE URL>/interop/rest/v2/files/upload/7224986735511603

To select the file: Select tab Body, radio button Binary, and choose File to upload.

Example Response 2

{
 "details": null,
 "status": 0,
 "links": [
 {
 "href": " https://<BASE URL>/interop/rest/v2/files/upload/
7224986735511603",
 "action": "PATCH",
 "rel": "self",
 "data": null
 }
]
}

Sample cURL command

curl -X PATCH -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt
-H 'Content-Type: application/octet-stream' -H
'Chunk-Range: 0-2468888' --data-binary '@snapshot.zip' 'https://<BASE URL>/
interop/rest/v2/files/upload/7232824317092320'

Example URL and Payload to Extract the Content Out of the Zip File

Request method: POST

Supported Media Types: application/json

https://<BASE URL>/interop/rest/v2/files/upload/7224986735511603/complete

Example Response 3

{
 "details": null,

Chapter 9
Manage Application Snapshots

9-112

 "status": -1,
 "links": [
 {
 "href": "http://slcar282.usdv1.oraclecloud.com:13017/interop/
rest/v2/files/upload/7224986735511603/complete",
 "action": "POST",
 "rel": "self",
 "data": null
 },
 {
 "href": "http://slcar282.usdv1.oraclecloud.com:13017/interop/
rest/v2/status/jobs/7293659723083015",
 "action": "GET",
 "rel": "Job Status",
 "data": null
 }
]
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json'
'https://<BASE URL>/interop/rest/ v2/files/upload/7232824317092320/complete'

Example URL and Payload Extraction Status

Request method: POST

Supported Media Types: application/json
This API request needs to be requested when the status code received in the example 3
response is -1.

https://<BASE URL>/interop/rest/v2/status/jobs/7293659723083015

Example Response 4

{
 "details": null,
 "status": 0,
 "links": [
 {
 "href": " https://<BASE URL>/interop/rest/v2/status/jobs/
7293659723083015",
 "action": "GET",
 "rel": "self",
 "data": null
 }
]
}

Chapter 9
Manage Application Snapshots

9-113

Sample cURL command

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json'
'https://<BASE URL>/interop/rest/ v2/status/jobs/7293659723083015'

Download Application Snapshot (v1)
Downloads the application snapshot from EPM repository to the local location from where
client is being run. After receiving the response, if the content type is application/json then
there would be an error on server and refer to details. Else, if it’s application/octet-stream,
then the content to be downloaded is part of the response and can read from the response
body.

Note:

The entire path to the file must be encoded; for example, changing / to %2F.

For example, change this path to an .HTML file in the apr directory:

apr/2020-03-04 23_07_20/2020-03-04 23_07_20.html
to this:

apr%2F2020-03-04%2023_07_20%2F2020-03-04%2023_07_20.html

This API is version v1.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

GET /interop/rest/{api_version}/applicationsnapshots/{applicationSnapshotName}/
contents
Supported Media Types: application/x-www-form-urlencoded

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

The following table summarizes the GET request parameters.

Chapter 9
Manage Application Snapshots

9-114

Table 9-56 Parameters

Name Description Type Required Default

applicationSnapsho
tName

Application snapshot name or file name to download (for
example, "Artifact Snapshot" or s112.csv).

The entire applicationSnapshotName must be encoded
before sending the request.

To download a particular file, provide the path to that file as
the value of applicationSnapshotName. For example, to
download a Data Management file called s112.csv in the
inbox, refer to the file as "inbox\s112.csv" in the path
parameter.

To download the Activity Reports or access log, use the fully
qualified file name as shown in the output of List Files.

For example, to download a specific file from the apr
directory, use the following format:

pr%2F2020-03-04%0A23_07_20%2F2020-03-04%0A23_
07_20.html

apr%2F%0A2020-03-04%2023_07_20%2F%0Aaccess_lo
g.zip

apr%2F%0A2020-03-04%2023_07_20%2F%0Aactivityr
eport.json.

Path Yes None

api_version Specific API version Path Yes None

Example of Request

https://<BASE URL>/interop/rest/v1/applicationsnapshots/Vision.zip/contents

Response

Supported Media Types: application/json
Response Header

fileExtension: This will have the file extension that can be used to create a file locally. Can
contain values such as zip or csv.

Table 9-57 Parameters

Attribute Description

details Published in case of errors with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible value: self
data Parameters as key value pairs passed in the request

Chapter 9
Manage Application Snapshots

9-115

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/list_files.html

Example of Response Body

The following shows an example of the response body in JSON format in case there is an error
during download.

{
 "details":"Not a valid file.",
 "status":8,
 "links":[{
 "href":"https://<BASE URL>/interop/rest/v1/applicationsnapshots/
s112.csv/contents",
 "action":"GET",
 "rel":"self",
 "data":null
 }]
}

Download Sample Code

Java Sample – downloadFile.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java.

public class DownloadV1 {

 private String serverUrl ; // PBCS server URL
 private String apiVersion = "v1";
 private String userName ; // Server Username
 private String password ; //Server Password
 private static String fileName ; //snapshot to be downloaded.
 private String domain ;

 public void downloadFile(String fileName) throws Exception {
 HttpURLConnection connection = null;
 InputStream inputStream = null;
 FileOutputStream outputStream = null;

 try {
 fileName = fileName.replaceAll("/", "\\\\");
 URL url = new URL(
 String.format(
 "%s/interop/rest/%s/applicationsnapshots/%s/
contents",
 serverUrl, apiVersion,
 URLEncoder.encode(fileName, "UTF-8")));

 System.out.println("DOWNLOAD URL: " + url);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");
 connection.setInstanceFollowRedirects(false);
 connection.setDoOutput(true);
 connection.setUseCaches(false);
 connection.setDoInput(true);
 connection.setRequestProperty(

Chapter 9
Manage Application Snapshots

9-116

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/common_helper_functions_for_java.html

 "Authorization",
 "Basic "
 + new sun.misc.BASE64Encoder().encode((userName
 + ":" + password).getBytes()));
 int status = connection.getResponseCode();
 if (status == 200) {
 if (connection.getContentType() != null
 && connection.getContentType().equals(
 "application/json")) {
 JSONObject json = new JSONObject(
 getStringFromInputStream(connection
 .getInputStream()));
 System.out.println("Error downloading file : "
 + json.getString("details"));
 } else {
 String response = getStringFromInputStream(connection
 .getInputStream());
 String pingURL = fetchPingUrlFromResponse(response,
 "Job Status");

 getJobStatusDownload(pingURL, "GET");
 }
 } else {
 throw new Exception("Http status code: " + status);
 }
 } finally {
 if (connection != null)
 connection.disconnect();
 if (outputStream != null)
 outputStream.close();
 if (inputStream != null)
 inputStream.close();
 }
 }

 private void downloadContent(String downloadURL) throws Exception {
 HttpURLConnection connection = null;
 InputStream inputStream = null;
 FileOutputStream outputStream = null;

 try {
 URL url = new URL(downloadURL);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");
 connection.setInstanceFollowRedirects(false);
 connection.setDoOutput(true);
 connection.setUseCaches(false);
 connection.setDoInput(true);
 connection.setRequestProperty(
 "Authorization",
 "Basic "
 + new sun.misc.BASE64Encoder().encode((userName
 + ":" + password).getBytes()));
 connection.setRequestProperty("Content-Type",
 "application/x-www-form-urlencoded");

Chapter 9
Manage Application Snapshots

9-117

 int status = connection.getResponseCode();

 if (status == 200) {
 if (connection.getContentType() != null
 && connection.getContentType().equals(
 "application/json")) {
 JSONObject json = new JSONObject(
 getStringFromInputStream(connection
 .getInputStream()));
 System.out.println("Error downloading file : "
 + json.getString("details"));
 } else {
 inputStream = connection.getInputStream();
 String downloadedFileName = fileName;
 if (fileName.lastIndexOf("/") != -1) {
 downloadedFileName = fileName.substring(fileName
 .lastIndexOf("/") + 1);
 }

 String ext = ".zip";
 if (connection.getHeaderField("fileExtension") != null) {
 ext = "." +
connection.getHeaderField("fileExtension");
 }
 if (fileName.lastIndexOf(".") != -1
 && fileName.lastIndexOf(".") != 0)
 ext = fileName.substring(fileName.lastIndexOf(".") +
1);

 outputStream = new FileOutputStream(new File(
 downloadedFileName + ext));
 int bytesRead = -1;
 byte[] buffer = new byte[5 * 1024 * 1024];
 while ((bytesRead = inputStream.read(buffer)) != -1)
 outputStream.write(buffer, 0, bytesRead);
 System.out.println("File download completed.");

 }
 } else {
 throw new Exception("Http status code: " + status);
 }
 } finally {
 if (connection != null)
 connection.disconnect();
 if (outputStream != null)
 outputStream.close();
 if (inputStream != null)
 inputStream.close();
 }
 }

 private void getJobStatusDownload(String pingUrlString, String
methodType)
 throws Exception {
 boolean completed = false;
 while (!completed) {

Chapter 9
Manage Application Snapshots

9-118

 String pingResponse = executeRequest(pingUrlString, methodType,
 null, "application/x-www-form-urlencoded");
 JSONObject json = new JSONObject(pingResponse);
 int status = json.getInt("status");
 if (status == -1) {
 try {
 System.out.println("Please wait...");
 Thread.sleep(20000);
 } catch (InterruptedException e) {
 completed = true;
 throw e;
 }
 } else {
 if (status > 0) {
 System.out.println("Error occurred: "
 + json.getString("details"));
 } else {
 String downloadURL =
fetchPingUrlFromResponse(pingResponse,
 "Download link");
 downloadContent(downloadURL);
 }
 completed = true;
 }
 }
 }

}

cURL Sample – DownloadFile.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

#!/bin/sh

SERVER_URL=""
USERNAME=""
PASSWORD="1"

API_VERSION="v1"
FILENAME=$1

funcDownloadContent(){
 output=`cat pingResponse.txt`
 count=`echo $output | jq '.links | length'`

 i=0
 pingUrlC=""
 while [$i -lt $count]; do
 rel=`echo $output | jq '.links['$i'].rel'`
 rel=`echo "$rel" | tr -d "\""`

Chapter 9
Manage Application Snapshots

9-119

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/common_helper_functions_for_curl.html

 if ["$rel" == "Download link"]; then
 pingUrlC=`echo $output | jq
'.links['$i'].href'`
 pingUrlC=`echo "$pingUrlC" | tr -d "\""`
 fi
 i=`expr $i + 1`
 done

 #request has to be get
 statusWrite=`curl -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" --
request GET -D "respHeader.txt" -o "$1" -H "Content-Type: application/x-www-
form-urlencoded" "$pingUrlC"`

 if [$statusWrite == 200]; then

 contentType=`echo $(grep 'Content-Type:' respHeader.txt) |
tr -d [:space:]`
 #contentbody=`cat writeResponse.txt`
 if [! -z $contentType] && [[$contentType = *"application/
json"*]]; then
 echo "Error occurred. "
 else
 fileExtension=`echo $(grep -r "fileExtension: "
respHeader.txt | awk '{print ($2)}') | tr -d [:space:]`

 if [! -z $fileExtension]; then
 if [[! $filepath =~ \.$fileExtension$]]; then
 mv "$1" "$1".$fileExtension
 fi
 fi
 echo "Downloade file successfully"
 fi
fi
 funcRemoveTempFiles "response.txt" "respHeader.txt"
}

funcDownloadFile() {

 filepath="/u01/$FILENAME"
 encodedFileName=$(echo $FILENAME | sed -f urlencode.sed)
 url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName/contents

 statusCode=`curl -X GET -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" -
H "Content-Type: application/x-www-form-urlencoded" -D "respHeader.txt" -o
"response.txt" $url`

 if [$statusCode == 200]; then

 contentType=`echo $(grep 'Content-Type:' respHeader.txt) | tr
-d [:space:]`
 contentbody=`cat response.txt`

 if [-z $contentType] && [[$contentType = *"application/

Chapter 9
Manage Application Snapshots

9-120

json"*]]; then
 output=`cat $filepath`
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 funcRemoveTempFiles $filepath
 else
 funcGetStatus "GET"

 fi

 else
 echo "Error executing request"
 if [$statusCode != 000]; then
 echo "Response error code : " $statusCode
 funcPrintErrorDetails "response.txt"
 funcRemoveTempFiles "respHeader.txt"
"response.txt"
 fi
 exit 0
 fi

#funcRemoveTempFiles "respHeader.txt" "response.txt"

}
funcDownloadFile $FILENAME

Groovy Sample – DownloadFile.groovy

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

class DownloadV1 {

 def serverUrl ; // PBCS server URL
 def apiVersion = "v1";
 def userName ; //Server Username
 def password ; //Server Password
 def fileName ; //Snapshot to be downloaded

 void downloadFile(def fileName) throws Exception {
 HttpURLConnection connection = null;
 InputStream inputStream = null;
 FileOutputStream outputStream = null;

 try {
 fileName = fileName.replaceAll("/", "\\\\");
 URL url = new URL(String.format("%s/interop/rest/%s/
applicationsnapshots/%s/contents", serverUrl,
 apiVersion, URLEncoder.encode(fileName, "UTF-8")));

 println "DOWNLOAD URL: "+url
 connection = (HttpURLConnection) url.openConnection();

Chapter 9
Manage Application Snapshots

9-121

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/common_helper_functions_for_groovy.html

 connection.setRequestMethod("GET");
 connection.setInstanceFollowRedirects(false);
 connection.setDoOutput(true);
 connection.setUseCaches(false);
 connection.setDoInput(true);
 connection.setRequestProperty("Authorization",
 "Basic " + new sun.misc.BASE64Encoder().encode((userName
+ ":" + password).getBytes()));
 connection.setRequestProperty("Content-Type", "application/x-www-
form-urlencoded");
 int status = connection.getResponseCode();
 if (status == 200) {
 if (connection.getContentType() != null &&
connection.getContentType().equals("application/json")) {
 JSONObject json = new
JSONObject(getStringFromInputStream(connection.getInputStream()));
 println "Error downloading file : " +
json.getString("details")
 } else {
 def response =
getStringFromInputStream(connection.getInputStream());
 def pingURL = fetchPingUrlFromResponse(response, "Job
Status");

 getJobStatusDownload(pingURL, "GET");
 }
 } else {
 throw new Exception("Http status code: " + status);
 }
 } finally {
 if (connection != null)
 connection.disconnect();
 if (outputStream != null)
 outputStream.close();
 if (inputStream != null)
 inputStream.close();
 }
 }

 private void downloadContent(def downloadURL) throws Exception {
 HttpURLConnection connection = null;
 InputStream inputStream = null;
 FileOutputStream outputStream = null;

 try {
 URL url = new URL(downloadURL);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");
 connection.setInstanceFollowRedirects(false);
 connection.setDoOutput(true);
 connection.setUseCaches(false);
 connection.setDoInput(true);
 connection.setRequestProperty("Authorization",

Chapter 9
Manage Application Snapshots

9-122

 "Basic " + new sun.misc.BASE64Encoder().encode((userName
+ ":" + password).getBytes()));
 connection.setRequestProperty("Content-Type", "application/x-www-
form-urlencoded");
 int status = connection.getResponseCode();
 if (status == 200) {
 if (connection.getContentType() != null &&
connection.getContentType().equals("application/json")) {
 JSONObject json = new
JSONObject(getStringFromInputStream(connection.getInputStream()));
 System.out.println("Error downloading file : " +
json.getString("details"));
 } else {
 inputStream = connection.getInputStream();

 def downloadedFileName = fileName;
 if(fileName.lastIndexOf("/") != -1) {
 downloadedFileName =
fileName.substring(fileName.lastIndexOf("/") + 1);
 }
 String ext = ".zip";
 if(connection.getHeaderField("fileExtension") !=null){
 ext = "."+connection.getHeaderField("fileExtension");
 }
 if(fileName.lastIndexOf(".") != -1 &&
fileName.lastIndexOf(".") != 0)
 ext = fileName.substring(fileName.lastIndexOf(".")+1);
 outputStream = new FileOutputStream(new
File(downloadedFileName+ext));
 int bytesRead = -1;
 byte[] buffer = new byte[5 * 1024 * 1024];
 while ((bytesRead = inputStream.read(buffer)) != -1)
 outputStream.write(buffer, 0, bytesRead);
 System.out.println("File download completed.");

 }
 } else {
 throw new Exception("Http status code: " + status);
 }
 } finally {
 if (connection != null)
 connection.disconnect();
 if (outputStream != null)
 outputStream.close();
 if (inputStream != null)
 inputStream.close();
 }
 }

 private void getJobStatusDownload(def pingUrlString, def methodType)
throws Exception {
 boolean completed = false;
 while (!completed) {
 def pingResponse = executeRequest(pingUrlString, methodType,
null, "application/x-www-form-urlencoded");
 JSONObject json = new JSONObject(pingResponse);

Chapter 9
Manage Application Snapshots

9-123

 int status = json.getInt("status");
 if (status == -1) {
 try {
 System.out.println("Please wait...");
 Thread.sleep(20000);
 } catch (InterruptedException e) {
 completed = true;
 throw e;
 }
 } else {
 if (status > 0) {
 println "Error occurred: " + json.getString("details")
 } else {
 def downloadURL = fetchPingUrlFromResponse(pingResponse,
"Download link");
 downloadContent(downloadURL);
 }
 completed = true;
 }
 }
 }

}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Download Application Snapshot (v2)
The Download Application Snapshot (v2) REST API downloads the application snapshot from
EPM repository to the local location from where client is being run.

This API is version v2.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

POST /interop/rest/v2/files/download

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 9
Manage Application Snapshots

9-124

Table 9-58 Tasks for Download Application Snapshot

Task Request REST Resource

Initiate download POST /interop/rest/v2/files/download
Status of compression
of file

GET /interop/rest/v2/status/download/7234359469022936

Download link GET /interop/rest/v2/files/download/7234359469022936
Deletion of
temporary file
(Applicable to
snapshots)

DELETE /interop/rest/v2/files/download/7234359469022936

Request

Supported Media Types: application/json
The following table summarizes the GET request parameters.

Table 9-59 Parameters

Name Description Type Required Default

fileName Application snapshot name or to download (for example,
"Artifact Snapshot").

Payload Yes None

Response

Supported Media Types: application/json
Response Header

fileExtension:This will have the file extension that can be used to create a file locally. Can
contain values such as zip or csv.

Table 9-60 Parameters

Attribute Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible value: self
data Parameters as key value pairs passed in the request

Example of Downloading with Postman

To download a file named snapshot.zip, select Basic Authorization header for all the requests.

Example URL and Payload to Initiate Download

Request Method: POST

Chapter 9
Manage Application Snapshots

9-125

Supported Media Types: application/json

https://<BASE URL>/interop/rest/v2/files/download

{
 "fileName": "snapshot.zip"
}

Example Response 1

{
 "details": null,
 "status": -1,
 "links": [
 {
 "href": " https://<BASE URL>/interop/rest/v2/files/download",
 "action": "POST",
 "rel": "self",
 "data": null
 },
 {
 "href": " https://<BASE URL>/interop/rest/v2/status/download/
7236073834203988",
 "action": "GET",
 "rel": "Job Status",
 "data": null
 }
]
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"fileName":"snapshot.zip"}' 'https:///interop/rest/v2/files/download'

Example URL for Status of Compression File

Request Method: GET

Supported Media Types: application/json

https://<BASE URL>/interop/rest/v2/status/download/7236073834203988

Example Response 2

{
 "details": null,
 "status": 0,
 "items": null,
 "links": [
 {
 "href": " https://<BASE URL>/v2/status/download/7236073834203988",

Chapter 9
Manage Application Snapshots

9-126

 "action": "GET",
 "rel": "self",
 "data": null
 },
 {
 "href": "https://<BASE URL>/v2/files/download/7236073834203988",
 "action": "GET",
 "rel": "Download link",
 "data": null
 }
]
}

Sample cURL command

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json'
'https://<BASE URL>/interop/rest/v2/status/download/7237042873146169'

Example URL and Payload for Download Link

Request method: POST

Supported Media Types: application/json

https://<BASE URL>/interop/rest/v2/files/download/7236073834203988

Example Response 3

After receiving the response, if the content type is application/json, then there would be an
error on the server and refer to details. Otherwise, if it’s application/octet-stream, then the
content to be downloaded is part of the response and can read from the response body.

Sample cURL command

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -o snapshot.zip -D respHeader.txt -
H 'Content-Type: application/json'
'https://<BASE URL>/interop/rest/v2/files/download/7237042873146169'

Example URL and Payload for Deletion of Temporary File

Request method: DELETE

Supported Media Types: application/json

https://<BASE URL>/interop/rest/v2/files/download/7236073834203988

Example Response 4

{
 "details": null,
 "status": 0,
 "links": [
 {

Chapter 9
Manage Application Snapshots

9-127

 "href": " https://<BASE URL>/interop/rest/v2/files/download/
7236073834203988",
 "action": "DELETE",
 "rel": "self",
 "data": null
 }
]
}

Sample cURL command

curl -X DELETE -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D
respHeader.txt -H 'Content-Type: application/json'
'https://<BASE URL>/interop/rest/v2/files/download/7237042873146169'

Copy Application Snapshot (v1)
Use this API (v1) to copy a snapshot from one environment (source) to another environment
(target).

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

This API is executed on the target environment after details are provided for the source
environment from which the snapshot is to be copied.

Prerequisites: The password of the source EPM Cloud environment must have already been
encrypted using EPM Automate. The encrypted password must then be passed as one of the
parameters for the copysnapshot REST API. See the encrypt command in Command
Reference in Working with EPM Automate for Oracle Enterprise Performance Management
Cloud.

This REST API is version v1.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

POST /interop/rest/v1/services/{servicename}/copysnapshot

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 9
Manage Application Snapshots

9-128

https://docs.oracle.com/cloud/latest/epm-common/CEPMA/epm_automate_command_ref_section.htm
https://docs.oracle.com/cloud/latest/epm-common/CEPMA/epm_automate_command_ref_section.htm

Table 9-61 Tasks for Copy Application Snapshot

Task Request REST Resource

Trigger copysnapshot POST /interop/rest/{api_version}/services/{servicename}/copysnapshot
Retrieve
copysnapshot status

GET /interop/rest/{api_version}/services/{servicename}/
copysnapshot/777

Request

Supported Media Types: application/x-www-form-urlencoded

Response

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the POST request parameters.

Table 9-62 Parameters

Name Description Type Required Default

api_version Specific API version, such as v1 Path Yes None

serviceName Name of the service, such as PBCS Path Yes None

snapshotName Name of the snapshot to be copied Form Yes None

userName User with access to the source instance Form Yes None

fpwd The encrypted password for the source user to be passed as
a string. The encrypted password must then be passed as
one of the parameters for the REST API.

For information on encrypting and generating the
password.epw password file with EPM Automate, see the
encrypt command in Command Reference in Working with
EPM Automate for Oracle Enterprise Performance
Management Cloud.

Form Yes None

sourceURL The URL of the source instance

Note: This API also supports the previous name of this
parameter, targetURL.

Form Yes None

Table 9-63 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status of the copy snapshot

data Parameters as key value pairs passed in the request

Example of Response Body

Chapter 9
Manage Application Snapshots

9-129

https://docs.oracle.com/cloud/latest/epm-common/CEPMA/epm_automate_command_ref_section.htm

The following shows an example of the response body in JSON format.

{"status":-1, "items": null, "links":[{"rel":"self", "href":"https://<BASE
URL>/interop/rest/v1/services/PBCS/copysnapshot","data":null,"action":"POST"},
{"rel":"Job Status","href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/v1/services/
PBCS/copysnapshot/1502357937045","data":null,"action":"GET"}],"details":null

Java Sample – CopySnapshot.java

//
// BEGIN - copysnapshotfrominstance
//
public void copysnapshot() throws Exception {

String snapshotName = "SNAPSHOT NAME";
String srcUserName = "USER NAME";
String targetURL = "https://<BASE URL>";
String srcEPWfilePath = "C:\\logs\\pwd.epw";
String srcDomain = null;

String urlString = String.format("%s/interop/rest/v1/services/PBCS/
copysnapshot", serverUrl);

String fpwd = fetchPwdFromFile(srcEPWfilePath);
String params = null;

if (null == srcDomain) {
 params = "snapshotName=" + snapshotName + "&userName=" + srcUserName +
"&fpwd=" + fpwd + "&sourceURL="
 + targetURL;
} else {
 params = "snapshotName=" + snapshotName + "&userName=" + srcUserName +
"&fpwd=" + fpwd + "&sourceURL="
 + targetURL + "&dom=" + srcDomain;
}

String response = executeRequest(urlString, "POST", params, "application/x-
www-form-urlencoded");

getJobStatus(fetchPingUrlFromResponse(response, "Job Status"), "GET");
}

private String fetchPwdFromFile(String filePath) {
 BufferedReader br = null;

 try {
 br = new BufferedReader(new FileReader(filePath));
 String line = null;
 String pwdString = null;
 while ((line = br.readLine()) != null) {
 pwdString = line;
 }
 return pwdString;
 } catch (Exception e) {

Chapter 9
Manage Application Snapshots

9-130

 } finally {
 if (null != br)
 try {
 br.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }

 return null;
}
//
// END - copysnapshotfrominstance
//

cURL Sample – copysnapshot.sh

funcCopySnapshot() {
 url=$SERVER_URL/interop/rest/v1/services/PBCS/copysnapshot

 snapshotName="SNAPSHOT NAME"
 srcUserName="USER NAME"
 targetURL="https://<BASE URL>";
 srcEPWfilePath="pwd.epw"
 srcDomain=""

 fpwd=`cat $ srcEPWfilePath`

if ["X" == "X$ srcDomain "]; then
param="snapshotName=$snapshotName&userName=$srcUserName
&fpwd=$fpwd&sourceURL=$targetURL"
else
param="snapshotName=$snapshotName&userName=$srcUserName
&fpwd=$fpwd&targetURL=$sourceURL&dom=$srcDomain"
fi

 funcExecuteRequest "POST" $url $param "application/x-www-form-
urlencoded"
 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == -1]; then
 echo "Started Copysnapshot"
 funcGetStatus "GET"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Chapter 9
Manage Application Snapshots

9-131

Groovy Sample – copysnapshot.groovy

def copy() {

 def url;
 def params;

 try {

 snapshotName = "test";
 srcUserName = "epm_default_cloud_admin";
 sourceURL = "https://<BASE URL>";
 srcEPWfilePath = "pwd.epw";
 fpwd = fetchPwdFromFile(srcEPWfilePath);
 srcDomain = null;

 //println fpwd
 if (null == srcDomain) {
 params = "snapshotName=" + snapshotName + "&userName=" +
srcUserName + "&fpwd=" + fpwd + "&targetURL=" + targetURL;
 } else {
 params = "snapshotName=" + snapshotName + "&userName=" +
srcUserName + "&fpwd=" + fpwd + "&targetURL=" + targetURL + "&dom=" +
srcDomain;
 }
 //println params
 url = new URL(serverUrl + "/interop/rest/v1/services/PBCS/copysnapshot");
 } catch (MalformedURLException e) {
 println "Incorrect URL. Please a pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");

 if (response != null) {
 getJobStatus(fetchPingUrlFromResponse(response, "Job Status"), "GET");
 }

}

def fetchPwdFromFile(filePath) {
 BufferedReader br = null;

 try {
 br = new BufferedReader(new FileReader(filePath));
 String line = null;
 String pwdString = null;
 while ((line = br.readLine()) != null) {
 pwdString = line;
 }
 return pwdString;
 } catch (Exception e) {
 } finally {
 if (null != br)
 try {

Chapter 9
Manage Application Snapshots

9-132

 br.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }

 return null;
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Copy Application Snapshot (v2)
Use this REST API (v2) to copy a snapshot from one environment (source) to another
environment (target).

This API is executed on the target environment after details are provided for the source
environment from which the snapshot is to be copied.

Prerequisites: The password of the source EPM Cloud environment must have already been
encrypted using EPM Automate. The encrypted password must then be passed as one of the
parameters for the copyfrominstance REST API. See the encrypt command in Command
Reference in Working with EPM Automate for Oracle Enterprise Performance Management
Cloud.

This REST API is version v2.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

POST /interop/rest/v2/snapshots/copyfrominstance

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 9
Manage Application Snapshots

9-133

https://docs.oracle.com/cloud/latest/epm-common/CEPMA/epm_automate_command_ref_section.htm
https://docs.oracle.com/cloud/latest/epm-common/CEPMA/epm_automate_command_ref_section.htm

Table 9-64 Tasks for Copy Application Snapshot

Task Request REST Resource

Trigger copysnapshot POST /interop/rest/v2/snapshots/copyfrominstance
Retrieve
copysnapshot status

GET /interop/rest/v2/status/jobs/777

Request

Supported Media Types: application/json
The following table summarizes the POST request parameters.

Table 9-65 Parameters

Name Description Type Required Default

snapshotName Name of the snapshot to be copied Payload Yes None

userName User with the Service Administrator predefined role in the
source instance

Payload Yes None

fpwd The encrypted password for the source user to be passed as
a string.

For information on encrypting and generating the
password.epw password file with EPM Automate, see the
encrypt command in Command Reference in Working with
EPM Automate for Oracle Enterprise Performance
Management Cloud.

Payload Yes None

sourceURL The URL of the source instance Payload Yes None

Example URL and Payload

https://<BASE URL>/interop/rest/snapshots/copyfrominstance

{
 "snapshotName": "<NAME>",
 "userName": "<USERNAME>",
 "fpwd": "e0VQTUFUfWtWV3czam8xdDJlcFZJbUVhSVQ3VWc9PS5lcHcyMDE1LmFkbW",
"sourceURL": "https://<BASE URL>"
}

Response

Supported Media Types: application/json

Table 9-66 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

Chapter 9
Manage Application Snapshots

9-134

https://docs.oracle.com/cloud/latest/epm-common/CEPMA/epm_automate_command_ref_section.htm

Table 9-66 (Cont.) Parameters

Name Description

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status of the copy snapshot

data null

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "status": -1,
 "items": null,
 "links": [{
 "rel": "self",
 "href": "https://<BASE URL>/interop/rest/v2/snapshots/
copyfrominstance",
 "data": null,
 "action": "POST"
 }, {
 "rel": "Job Status",
 "href": "https://<BASE URL>/interop/rest/v2/status/jobs/
1502357937045",
 "data": null,
 "action": "GET"
 }],
 "details": null
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"snapshotName":"SNAPSHOT_TO_BE_COPIED",
"sourceURL":"SOURCE_URL","userName":"USER_NAME","fpwd":"ENCRYPTED_PASSWORD"}'
'https://<BASE URL>/interop/rest/v2/snapshots/copyfrominstance'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Rename Application Snapshot (v1)
This API renames a snapshot in EPM Cloud instances to a desired name. This gives you
flexibility in naming your snapshots.

This REST API is version v1.

Chapter 9
Manage Application Snapshots

9-135

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

PUT /interop/rest/{api_version}/renamesnapshot

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 9-67 Parameters

Name Description Type Required Default

{api_version} The version of the API, such as v1. Path Yes None

snapshotName The name of the snapshot to be renamed. Form Yes None

newSnapshotName The desired name of the existing snapshot. Form Yes None

Response

Supported Media Types: application/json

Table 9-68 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

Example of Response Body

Chapter 9
Manage Application Snapshots

9-136

The following shows an example of the response body in JSON format.

{
 "links":[{
"https://<BASE URL>/interop/rest/v1/renamesnapshot",
 "rel":"self",
 "data":null,
 "action":"PUT"
 }
],
 "details":null,
 "status":0
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Rename Application Snapshot (v2)
The Rename Application Snapshot (v2) REST API renames a snapshot in EPM Cloud
instances to a desired name. This gives you flexibility in naming your snapshots.

This API is version v2.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

PUT /interop/rest/v2/snapshots/rename

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Chapter 9
Manage Application Snapshots

9-137

Table 9-69 Parameters

Name Description Type Required Default

snapshotName The name of the snapshot to be renamed. Payload Yes None

newSnapshotName The desired name of the existing snapshot. Payload Yes None

Example URL and Payload

https://<BASE URL>/interop/rest/v2/snapshots/rename

{
 "snapshotName": "Artifact Snapshot",
 "newSnapshotName": "Backup_snapshot"
}

Response

Supported Media Types: application/json
Parameters:

Table 9-70 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you
can use the href to get the status

data null

Example of Response Body

{
 "details": null,
 "status": 0,
 "links": [
 {
 "href": " https://<SERVICE_NAME>-
 <TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/
rest/v2/snapshots/rename",
 "action": "PUT",
 "rel": "self",
 "data": null
 }

Chapter 9
Manage Application Snapshots

9-138

]
}

Sample cURL Command

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H
'Content-Type: application/json' -d '{"snapshotName":"Artifact Snapshot" ,
"newSnapshotName" :
"Original snapshot"}' 'https://<BASE URL>/interop/rest/v2/snapshots/rename'

Copy to and from the Object Store
This table table shows the REST APIs to copy a file or a backup snapshot from the outbox of
the current cloud environment (the source) to the Oracle Object Storage Cloud (the target). It
also shows the REST APIs to copy a file or a backup snapshot from the Oracle Object Storage
Cloud (the source) to the cloud environment (the target). These REST APIs are version v1 and
v2.

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-71 Application Snapshot Service

Task Request REST Resource

Copy to Object Store (v1) POST /interop/rest/v1/services/copytoobjectstore
Copy to Object Store (v2) POST /interop/rest/v2/objectstorage/copyto
Copy from Object Store (v1) POST /interop/rest/v1/services/copyfromobjectstore
Copy from Object Store (v2) POST /interop/rest/v2/objectstorage/copyfrom

Copy from Object Store (v1)
Use the Copy from Object Store (v1) REST API to copy a file or a backup snapshot from the
Oracle Object Storage Cloud (the source) to the cloud environment (the target). If you are
copying a backup snapshot, this API copies it from the Object Storage bucket and extracts its
contents in Oracle Enterprise Performance Management Cloud.

This topic describes the v1 version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

Chapter 9
Copy to and from the Object Store

9-139

Note:

The Object Storage requires an Other Web Services Provider type. Ensure that you
have access to the Web service you are connecting. You must also have URLs for
the Web service and an login details if required. For information see, Connecting to
External Web Services in Administering Planning.

This REST API is version v1.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v1/services/copyfromobjectstore

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-72 Tasks for Copy from Object Store

Task Request REST Resource

Trigger
copyfromobjectstor
e

POST /interop/rest/v1/services/copyfromobjectstore

Retrieve
copyfromobjectstor
e status

GET /interop/rest/v1/services/jobs/777

Request

Supported Media Types: application/json

Chapter 9
Copy to and from the Object Store

9-140

Table 9-73 Parameters

Name Description Type Required Default

url The URL of the Object Store, appended with the bucket
name and the name of the object to be copied.
The URL format:

https://
swiftobjectstorage.region_identifier.oracleclou
d.com/v1/namespace/bucket_name/object_name
Components of this URL:

• region_identifier is a Oracle Cloud Infrastructure hosting
region.

• namespace is the top-level container for all buckets and
objects. Each Oracle Cloud Infrastructure tenant is
assigned a unique system-generated and immutable
Object Storage namespace name at account creation
time. Your tenancy's namespace name, for example,
axaxnpcrorw5, is effective across all regions.

• bucket_name is the name of a logical container where
you store your data and files. Buckets are organized and
maintained under compartments. A system generated
bucket name, for example, bucket-20210301-1359
reflects the current year, month, day, and time.

• object_name is the name of the snapshot or file that you
want to copy from Oracle Object Storage Cloud.

For more information, see these topics in Oracle Cloud
Infrastructure Documentation:

• Regions and Availability Domains
• Understanding Object Storage Namespaces
• Managing Buckets

Form Yes None

username The ID of a user who has the required access rights to write
to Oracle Object Storage Cloud.

For users created in a federated identity provider, specify the
fully-qualified name of the user (for example, exampleIdP/
jdoe or exampleIdP/john.doe@example.com, where
exampleIdP is the name of the federated identity provider).
For other users, provide the User ID.

Form Yes None

password The Swift password or auth token associated with the user.
This password is not the same as the password that you use
to sign into the Object Storage Console. Auth token is an
Oracle-generated token that you use to authenticate with
third-party APIs, for example to authenticate with a Swift
client. For instructions to create this token, see To create an
auth token in Oracle Cloud Infrastructure Documentation .

Form Yes None

targetfile Name of the target filename (with path) of the downloaded
artifact. When copying snapshots, do not specify the ZIP
extension.

Examples: Artifact Snapshot_24_Sept_2020, inbox/
File_new.txt

Form Yes None

Response

Supported Media Types: application/json

Chapter 9
Copy to and from the Object Store

9-141

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/understandingnamespaces.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/managingbuckets.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password

Table 9-74 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{"status":-1, "items": null, "links":[{"rel":"self", "href":"https://<BASE
URL>/interop/rest/v1/services/
copyfromobjectstore","data":null,"action":"POST"},{"rel":"Job
Status","href":"https://<BASE URL>/interop/rest/v1/services/jobs/
1502357937045","data":null,"action":"GET"}],"details":null

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Copy from Object Store (v2)
Use the Copy from Object Store (v2) REST API to copy a file or a backup snapshot from the
Oracle Object Storage Cloud (the source) to the cloud environment (the target). If you are
copying a backup snapshot, this API copies it from the Object Storage bucket and extracts its
contents in Oracle Enterprise Performance Management Cloud.

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use. This API is backwards compatible.

Note:

The Object Storage requires an Other Web Services Provider type. Ensure that you
have access to the Web service you are connecting. You must also have URLs for
the Web service and an login details if required. For information see, Connecting to
External Web Services in Administering Planning.

This REST API is version v2.

Chapter 9
Copy to and from the Object Store

9-142

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v2/objectstorage/copyfrom

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-75 Tasks

Task Request REST Resource

Trigger
copyfromobjectstor
e

POST /interop/rest/v2/objectstorage/copyfrom

Retrieve
copyfromobjectstor
e status

GET /interop/rest/v2/status/jobs/777

Request

Supported Media Types: application/json

Chapter 9
Copy to and from the Object Store

9-143

Table 9-76 Parameters

Name Description Type Required Default

url The URL for Oracle Cloud Object Storage, appended with
the bucket name and an optional object name.

This is the URL format: :

https://
swiftobjectstorage.region_identifier.oracleclou
d.com/v1/namespace/bucket_name/object_name
Components of this URL:

• region_identifier is a Oracle Cloud Infrastructure
hosting region.

• namespace is the top-level container for all buckets and
objects. Each Oracle Cloud Infrastructure tenant is
assigned a unique system-generated and immutable
Object Storage namespace name at account creation
time. Your tenancy's namespace name, for example,
axaxnpcrorw5, is effective across all regions.

• bucket_name is the name of a logical container where
you store your data and files. Buckets are organized and
maintained under compartments. A system-generated
bucket name, for example, bucket-20210301-1359
reflects the current year, month, day, and time.

• object_name is the name of the snapshot or file that
you want to copy from Oracle Object Storage Cloud.

For more information, see these topics in Oracle Cloud
Infrastructure Documentation:

• Regions and Availability Domains
• Understanding Object Storage Namespaces
• Managing Buckets

Payload Yes None

userName The ID of a user who has the required access rights to write
to Oracle Object Storage Cloud.

For users created in a federated identity provider, specify the
fully-qualified name of the user (for example, exampleIdP/
jdoe or exampleIdP/john.doe@example.com, where
exampleIdP is the name of the federated identity provider).
For other users, provide the User ID.

Payload Yes None

password The Swift password or auth token associated with the user.
This password is not the same as the password that you use
to sign into the Object Storage Console. Auth token is an
Oracle-generated token that you use to authenticate with
third-party APIs, for example to authenticate with a Swift
client. For instructions to create this token, see To create an
auth token in Oracle Cloud Infrastructure Documentation .

Payload Yes None

targetFile Name of the target filename (with path) of the downloaded
artifact. When copying snapshots, do not specify the ZIP
extension.

Examples: Artifact Snapshot_24_Sept_2020, inbox/
File_new.txt

Payload Yes None

Chapter 9
Copy to and from the Object Store

9-144

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/understandingnamespaces.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/managingbuckets.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password

Example URL and Payload

https://<BASE URL>/interop/rest/v2/objectstorage/copyfrom

{
 "url":"https://swiftobjectstorage.<region_identifier>.oraclecloud.com/v1/
namespace/bucket_name/object_name",
 "userName": "epm_user",
 "password": "epm_password",
 "targetFile": "Artifact snapshot"
}

Response

Supported Media Types: application/json

Table 9-77 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "details": null,
 "status": -1,
 "items": null,
 "links": [
 {
 "href": " https://<BASE URL>/interop/rest/v2/objectstorage/
copyfrom",
 "action": "POST",
 "rel": "self",
 "data": null
 },
 {
 "href": " https://<BASE URL>/interop/rest/v2/status/jobs/
4003051833546274",
 "action": "GET",
 "rel": "Job Status",
 "data": null
 }

Chapter 9
Copy to and from the Object Store

9-145

]
}

Sample cURL Command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H
'Content-Type: application/json' -d
'{"url":"OBJECT_STORAGE_URL","userName":"USER_NAME","password":"PASSWORD",
"targetFile":"FILEPATH/FILENAME"}' 'https://<BASE URL>/interop/rest/v2/
objectstorage/copyfrom'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Copy to Object Store (v1)
Use the Copy to Object Store (v1) REST API to copy a file or a backup snapshot from the
current cloud environment (the source) to the Oracle Object Storage Cloud (the target). You
can copy any file or snapshot available in the EPM Cloud. For example, if you export data to a
file, the exported file is stored in the Outbox. You can then use this API to copy the file directly
to Oracle Object Storage, assuming you have an account.

This topic describes the v1 version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

Note:

The Object Storage requires an Other Web Services Provider type. Ensure that you
have access to the Web service you are connecting. You must also have URLs for
the Web service and an login details if required. For information see, Connecting to
External Web Services in Administering Planning.

This REST API is version v1.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v1/services/copytoobjectstore

Chapter 9
Copy to and from the Object Store

9-146

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-78 Tasks for Copy to Object Store

Task Request REST Resource

Trigger
copytoobjectstore

POST /interop/rest/v1/services/copytoobjectstore

Retrieve
copytoobjectstore
status

GET /interop/rest/v1/services/jobs/777

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Chapter 9
Copy to and from the Object Store

9-147

Table 9-79 Parameters

Name Description Type Required Default

url Oracle Object Storage Cloud bucket with an optional object
name appended. The URL format without object name:
https://
swiftobjectstorage.region_identifier.oracleclou
d.com/v1/namespace/bucket_name
The URL format with object name:

https://
swiftobjectstorage.region_identifier.oracleclou
d.com/v1/namespace/bucket_name/object_name
Components of this URL:

• region_identifier is an Oracle Cloud Infrastructure
hosting region.

• namespace is the top-level container for all buckets and
objects. Each Oracle Cloud Infrastructure tenant is
assigned a unique system-generated and immutable
Object Storage namespace name at account creation
time. Your tenancy's namespace name, for example,
axaxnpcrorw5, is effective across all regions.

• bucket_name is the name of a logical container where
you store your data and files. Buckets are organized and
maintained under compartments. A system generated
bucket name, for example, bucket-20210301-1359
reflects the current year, month, day, and time.

• object_name, optionally, is name that you want to use
for the file on Oracle Object Storage Cloud. If an object
name is not specified, the file will be copied with its
original name.

For more information, see these topics in Oracle Cloud
Infrastructure Documentation:

• Regions and Availability Domains
• Understanding Object Storage Namespaces
• Managing Buckets

Form Yes None

username The ID of a user who has the required access rights to write
to Oracle Object Storage Cloud.

For users created in a federated identity provider, specify the
fully-qualified name of the user (for example, exampleIdP/
jdoe or exampleIdP/john.doe@example.com, where
exampleIdP is the name of the federated identity provider).
For other users, provide the User ID.

Form Yes None

password The Swift password or auth token associated with the user.
This password is not the same as the password that you use
to sign into the Object Storage Console. Auth token is an
Oracle-generated token that you use to authenticate with
third-party APIs, for example to authenticate with a Swift
client. For instructions to create this token, see To create an
auth token in Oracle Cloud Infrastructure Documentation .

Form Yes None

filepath Name of the file (with path) to be copied to the Store. If you
are copying a snapshot, do not specify the ZIP extension.

Examples: Artifact Snapshot, inbox/File.txt

Form Yes None

Chapter 9
Copy to and from the Object Store

9-148

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/understandingnamespaces.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/managingbuckets.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password

Sample Request Payload

url: https://swiftobjectstorage.<region_identifier>.oraclecloud.com/v1/
epmclouddev/epm_artifact_snapshot
username: <username>
password: <password>
filepath: Artifact Snapshot

Response

Supported Media Types: application/json

Table 9-80 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status,
you can use the href to get the status

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "status": -1,
 "items": null,
 "links": [{
 "rel": "self",
 "href": "https://<BASE URL>/interop/rest/v1/services/
copytoobjectstore",
 "data": null,
 "action": "POST"
 }, {
 "rel": "Job Status",
 "href": "https://<BASE URL>/interop/rest/v1/services/jobs/
1502357937045",
 "data": null,
 "action": "GET"
 }],
 "details": null
}

The password parameter value is clear text.

copyToObjectStore Sample code:

public void copyToObjectStore() throws Exception {

Chapter 9
Copy to and from the Object Store

9-149

 String filepath = "FILE NAME/FILE PATH";
 String username = "USER NAME";
 String url = "https://
swiftobjectstorage.<region_identifier>.oraclecloud.com/v1/<namespace>/
<bucket_name>";
 String password = "PASSWORD";

 String urlString = String.format("%s/interop/rest/v1/services/
copytoobjectstore", serverUrl);

 String params = "url=" + url + "&userName=" + username + "&password=" +
password + "&filepath=" +filepath;

 String response = executeRequest(urlString, "POST", params,
"application/x-www-form-urlencoded");

 getJobStatus(fetchPingUrlFromResponse(response, "Job Status"), "GET");
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Copy to Object Store (v2)
Use the Copy to Object Store (v2) REST API to copy a file or a backup snapshot from the
current cloud environment (the source) to the Oracle Object Storage Cloud (the target). You
can copy any file or snapshot available in the EPM Cloud. For example, if you export data to a
file, the exported file is stored in the Outbox. You can then use this API to copy the directly to
Oracle Object Storage, assuming you have an account.

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use. This API is backwards compatible.

Note:

The Object Storage requires an Other Web Services Provider type. Ensure that you
have access to the Web service you are connecting. You must also have URLs for
the Web service and an login details if required. For information see, Connecting to
External Web Services in Administering Planning.

This REST API is version v2.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v2/objectstorage/copyto

Chapter 9
Copy to and from the Object Store

9-150

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-81 Tasks

Task Request REST Resource

Trigger
copytoobjectstore

POST /interop/rest/v2/objectstorage/copyto

Retrieve
copytoobjectstore
status

GET /interop/rest/v2/status/jobs/777

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Chapter 9
Copy to and from the Object Store

9-151

Table 9-82 Parameters

Name Description Type Required Default

url The URL for Oracle Cloud Object Storage, appended with
the bucket name and an optional object name.

This is the URL format without the object name:

https://
swiftobjectstorage.region_identifier.oraclecl
oud.com/v1/namespace/bucket_name

This is the URL format with the object name:

https://
swiftobjectstorage.region_identifier.oracleclou
d.com/v1/namespace/bucket_name/object_name
Components of this URL:

• region_identifier is a Oracle Cloud Infrastructure
hosting region.

• namespace is the top-level container for all buckets and
objects. Each Oracle Cloud Infrastructure tenant is
assigned a unique system-generated and immutable
Object Storage namespace name at account creation
time. Your tenancy's namespace name, for example,
axaxnpcrorw5, is effective across all regions.

• bucket_name is the name of a logical container where
you store your data and files. Buckets are organized and
maintained under compartments. A system-generated
bucket name, for example, bucket-20210301-1359
reflects the current year, month, day, and time.

• object_name, optionally, is a name that you want to use
for the file on Oracle Object Storage Cloud. If an object
name is not specified, the file will be copied with its
original name.

For more information, see these topics in Oracle Cloud
Infrastructure documentation:

• Regions and Availability Domains
• Understanding Object Storage Namespaces
• Managing Buckets

Payload Yes None

userName The ID of a user who has the required access rights to write
to Oracle Object Storage Cloud.

For users created in a federated identity provider, specify the
fully-qualified name of the user (for example, exampleIdP/
jdoe or exampleIdP/john.doe@example.com, where
exampleIdP is the name of the federated identity provider).
For other users, provide the User ID.

Payload Yes None

password The Swift password or auth token associated with the user.
This password is not the same as the password that you use
to sign into the Object Storage Console. Auth token is an
Oracle-generated token that you use to authenticate with
third-party APIs, for example to authenticate with a Swift
client. For instructions to create this token, see To create an
auth token in Oracle Cloud Infrastructure Documentation .

Payload Yes None

Chapter 9
Copy to and from the Object Store

9-152

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/understandingnamespaces.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/managingbuckets.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password

Table 9-82 (Cont.) Parameters

Name Description Type Required Default

filePath Name of the file (with path) to be copied to the Object Store.
If you are copying a snapshot, do not specify the ZIP
extension.

Examples: Artifact Snapshot, inbox/File.txt

Payload Yes None

Example URL and Payload

https://<BASE URL>/interop/rest/v2/objectstorage/copyto

{
 "url": "https://swiftobjectstorage.<region_identifier>.oraclecloud.com/v1/
epmclouddev/epm_artifact_snapshot",
 "userName": "username",
 "password": "password",
 "filePath": "Artifact Snapshot"
}

Response

Supported Media Types: application/json

Table 9-83 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "status": -1,
 "items": null,
 "links": [{
 "rel": "self",
 "href": "https://<BASE URL>/interop/rest/v2/objectstorage/copyto",
 "data": null,
 "action": "POST"
 }, {
 "rel": "Job Status",

Chapter 9
Copy to and from the Object Store

9-153

 "href": "https://<BASE URL>/interop/rest/v2/status/jobs/
1502357937045",
 "data": null,
 "action": "GET"
 }],
 "details": null
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"url":"OBJECT_STORAGE_URL","userName":"USER_NAME","password":"PASSWORD","fil
ePath":"FILEPATH/FILENAME"}' 'https://<BASE URL>/interop/rest/v2/
objectstorage/copyto'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Working with Essbase

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-84 Working with Essbase

Task Request REST Resource

Export Essbase Data
(v2)

POST /interop/rest/v2/essbase/export

Essbase Block
Analysis Report

POST /interop/rest/diag/v1/services/essbaseblockanalysisreport

Get Essbase Query
Governor Execution
Time

GET /interop/rest/{api_version}/config/services/
essbaseqrygovexectime

Set Essbase Query
Governor Execution
Time

PUT /interop/rest/{api_version}/config/services/
essbaseqrygovexectime

Export Essbase Data (v2)
The Export Oracle Essbase (v2) REST API exports level 0 or all data for the specified cube.
Export data files are written to the Outbox directory as a zip file. You can download it using the
EPM Automate downloadFile command or the Download REST API. Running an export places

Chapter 9
Working with Essbase

9-154

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_auto_download_file.html

the cube into read-only mode and prevents any write activity during the period of the execution
of the export.

This API is version v2.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v2/essbase/export

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 9-85 Parameters

Name Description Type Required Default

cubeName Name of the BSO or ASO cube Payload Yes None

fileName Name of a zip file in which the Essbase data will be
exported. This file will be available in the outbox from
where it can be downloaded.

Payload Yes None

level The value is 0 or ALL, Level 0 and ALL are valid for BSO
cubes. Only level 0 is valid for ASO cubes.

Payload Yes level=0

Example URL and Payload

https://<BASE URL>V/interop/rest/v2/ essbase/export

{
 "cubeName": "Plan1",
 "fileName": "Plan1Export.zip",
 "parameters": {
 "level": "0"
 }
}

Response

Supported Media Types: application/json

Chapter 9
Working with Essbase

9-155

Table 9-86 Parameters

Attribute Description

details In case of errors, details are published with the error string

status See Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible values. Can be self and/or Job Status. If set to Job Status, you
can use the href to get the status of the re-export operation

data Parameters as key value pairs passed in the request

Examples of Response Body

The following are examples of the response body in JSON format.

Example 1: Export is in Progress

{
 "details": "Essbase Database Export",
 "status": -1,
 "items": null,
 "links": [
 {
 "href": "https://<BASE URL>/interop/rest/v2/essbase/export",
 "action": "POST",
 "rel": "self",
 "data": null
 },
 {
 "href": "https://<BASE URL>/interop/rest/v2/status/jobs/
19974850954170405",
 "action": "GET",
 "rel": "Job Status",
 "data": null
 }
]
}

Example 2: Export Completes Successfully

{
 "details": null,
 "status": 0,
 "items": null,
 "links": [
 {
 "href": "https://<BASE URL>/interop/rest/v2/status/jobs/
19974850954170405",
 "action": "GET",
 "rel": "self",

Chapter 9
Working with Essbase

9-156

 "data": null
 }
]
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"cubeName": "Plan1","fileName": "Plan1Export.zip","parameters":{"level":
"0" }}' 'https://<BASE URL>/interop/rest/v2/essbase/export'

Essbase Block Analysis Report
Use this REST API to create an Oracle Essbase Block Analysis Report that helps you analyze
Oracle Essbase data to support the tuning of Block Storage Option (BSO) cubes (generally,
used for calculations) in your application. The Essbase Block Analysis report is helpful to
resolve performance issues resulting from patterns of data; for example, repeated numbers in
Essbase BSO cubes.

The Essbase Block Analysis report provides information in these areas:

• Percentage of blocks with only Zero: Shows the blocks that contain only zeros as a
percentage of all the blocks contained in the export file.

• Top 10 Repeated Numerical Cell Values By Percentage of Numerical Cells: Shows the
top 10 repeated values as a percentage of all the values in the export file.

• Top 100 Dense Member Combinations with Repeated Values: Shows the top 100
dense combinations with repeated values in the cube. The "Cell Value" column shows a
value for each member, in the order it appears in the hierarchy, as a different column. For
example, if Period is across the column, there will be a different column for January,
February, and so on. Other dense dimension(s) appear in the rows. This should help you
identify the locations of the repeated values.

Before executing this API, use the Export Essbase Data (v2) API to export the data from the
cube for which you want to create the Block Analysis report to a zip file. You may export level0
or all data as needed. Execute this API to create the Block Analysis report for this zip file. The
report is created in the outbox; you can use the Download API to download it to a local
computer or the Send Email (v1) or Send Email (v2) API to email it.

This API is version v1.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/diag/v1/services/essbaseblockanalysisreport

Chapter 9
Working with Essbase

9-157

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the POST request parameters:

Table 9-87 Parameters

Name Description Type Required Default

exportDataFile Name of the zip file that contains the Essbase data that
was previously exported from a BSO cube

Payload Yes None

reportFile Name for the HTML formatted Block Analysis Report file Payload Yes None

Sample URL and Payload

https//<BASE URL>/interop/rest/diag/v1/services/essbaseblockanalysisreport
{"zipFilename":"essbaseexport.zip","outputFileName":"Essbase.html"}

Response

Supported Media Types: application/json

Table 9-88 Parameters

Name Description

details Detailed status of the operation performed.

status See Migration Status Codes

links Detailed information about the link and HTTP call type

items Detailed information about the API

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you
can use the href to get the status

data Parameters as key value pairs passed in the request

Example of Response Body

{
 "details": null,
 "status": -1,
 "items": [],
 "links": [
 {
 "href": http://

Chapter 9
Working with Essbase

9-158

phoenix223599.appsdev1.fusionappsdphx1.oraclevcn.com:9380/interop/rest/
diag/v1/services/essbaseblockanalysisreport,
 "action": "POST",
 "rel": "self",
 "data": null
 },
 {
 "href": http://
phoenix223599.appsdev1.fusionappsdphx1.oraclevcn.com:9380/interop/rest/
diag/v1/services/jobs/537707435156101,
 "action": "GET",
 "rel": "Job Status",
 "data": null
 }
]
}

Get Essbase Query Governor Execution Time
This API returns the Oracle Essbase Query Governor Execution Time (maximum number of
seconds that a query can run before Essbase Server terminates it) of all the Essbase cubes.

This API is version v2.

Required Roles

Service Administrator

REST Resource

GET /interop/rest/{api_version}/config/services/essbaseqrygovexectime

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json

Table 9-89 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

Response

Supported Media Types: application/json

Chapter 9
Working with Essbase

9-159

Table 9-90 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href
to get the status of the import operation

data Parameters as key value pairs passed in the request

Example of Response Body

{
 "details": null,
 "status": 0,
 "items": [
 {
 "qryexectime": "600"
 }
],
 "links": [
 {
 "href": "<uri>/interop/rest/v2/config/services/
essbaseqrygovexectime",
 "action": "GET",
 "rel": "self",
 "data": null
 }
]
}

Set Essbase Query Governor Execution Time
This API sets the Oracle Essbase Query Governor Execution Time (maximum number of
seconds that a query can run before the Essbase Server terminates it) for all the Essbase
cubes.

The governor value can be set to any value from 0 to 70000.

This API is version v2.

Required Roles

Service Administrator

REST Resource

PUT /interop/rest/{api_version}/config/services/essbaseqrygovexectime

Chapter 9
Working with Essbase

9-160

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json

Table 9-91 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

qryexectime Query Governor Execution Time Value Payload Yes None

Example of Request Body

{
 "qryexectime": "600"
}

Response

Supported Media Types: application/json

Table 9-92 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href
to get the status of the import operation

data Parameters as key value pairs passed in the request

Example of Response Body

{
 "links": [{
 "rel": "self",
 "href": "<uri>/interop/rest/v2/config/services/
essbaseqrygovexectime",
 "data": null,
 "action": "PUT"
 }],
 "details": "null",

Chapter 9
Working with Essbase

9-161

 "status": 0,
 "items": null
}

Copy a File Between Instances (v1)
Use this API (v1) to copy a file from one environment (source) to another environment (target).

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

This API is executed on the target environment after details are provided for the source
environment from which the file is to be copied. This feature gives you flexibility in copying files
from one cloud environment to another.

Prerequisites: The password of the source EPM Cloud environment must have already been
encrypted using EPM Automate. The encrypted password must then be passed as one of the
parameters for the Copy File REST API. See the encrypt command in Command Reference in
Working with EPM Automate for Oracle Enterprise Performance Management Cloud.

This REST API is version v1.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

POST /interop/rest/v1/services/copyfile

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the POST request parameters.

Table 9-93 Parameters

Name Description Type Required Default

api_version Specific API version, such as v1 Path Yes None

sourceFileName Name of the file to be copied Form Yes None

userName User with access to the source instance Form Yes None

Chapter 9
Copy a File Between Instances (v1)

9-162

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_automate_command_ref_section.html

Table 9-93 (Cont.) Parameters

Name Description Type Required Default

pwd The location and name of the file containing the encrypted
password for the user. The encrypted password must then be
passed as one of the parameters for the Copy File REST
API.
For information on encrypting and generating the
password.epw file with EPM Automate, see the encrypt
command in Command Reference in Working with EPM
Automate for Oracle Enterprise Performance Management
Cloud.

Form Yes None

sourceURL The URL of the source instance Form Yes None

targetFileName Name of the file to be copied to the target environment Form Yes None

Response

Supported Media Types: application/json

Table 9-94 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can use the
href to get the status

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{"status":-1, "items": null, "links":[{"rel":"self", "href":"https://<<BASE
URL>/interop/rest/v1/services/copyfile","data":null,"action":"POST"},
{"rel":"Job Status","href":"https://<BASE URL>/interop/rest/v1/services/jobs/
1502357937045","data":null,"action":"GET"}],"details":null

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Chapter 9
Copy a File Between Instances (v1)

9-163

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_automate_command_ref_section.html

Copy a File Between Instances (v2)
Use this REST API (v2) to copy a file from one environment (source) to another environment
(target).

This API is executed on the target environment after details are provided for the source
environment from which the file is to be copied. This feature gives you flexibility in copying files
from one cloud environment to another.

Prerequisites: The password of the source EPM Cloud environment must have already been
encrypted using EPM Automate. The encrypted password must then be passed as one of the
parameters for the Copy File REST API. See the encrypt command in Command Reference in
Working with EPM Automate for Oracle Enterprise Performance Management Cloud.

This REST API is version v2.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

POST /interop/rest/v2/files/copyfrominstance

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the POST request parameters.

Table 9-95 Parameters

Name Description Type Required Default

sourceFileName Name of the file to copy Payload Yes None

userName User with the Service Administrator predefined role in the
source instance

Payload Yes None

pwd The location and name of the file containing the encrypted
password for the user.
For information on encrypting and generating the
password.epw file with EPM Automate, see the encrypt
command in Command Reference in Working with EPM
Automate for Oracle Enterprise Performance Management
Cloud.

Payload Yes None

sourceURL The URL of the source instance Payload Yes None

Chapter 9
Copy a File Between Instances (v2)

9-164

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_automate_command_ref_section.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_automate_command_ref_section.html

Table 9-95 (Cont.) Parameters

Name Description Type Required Default

targetFileName Name of the file to be copied to the target environment Payload Yes None

Example URL and Payload

https://<BASE URL>/interop/rest/files/copyfrominstance

{
 "sourceFileName": "<NAME>",
 "userName": "<USERNAME>",
 "pwd": "<PASSWORDFILE>",
 "sourceURL": "https://<BASE URL>,"
 "targetFileName": "<NAME>"
}

Response

Supported Media Types: application/json

Table 9-96 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data null

Example of Response Body

The following shows an example of the response body in JSON format.

 "status": -1,
 "items": null,
 "links": [{
 "rel": "self",
 "href": "https://<BASE URL>/interop/rest/v2/files/copyfrominstance",
 "data": null,
 "action": "POST"
 }, {
 "rel": "Job Status",
 "href": "https://<BASE URL>/interop/rest/v2/status/jobs/
1502357937045",
 "data": null,
 "action": "GET"

Chapter 9
Copy a File Between Instances (v2)

9-165

 }],
 "details": null
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d '{"sourceFileName":"FILE_TO_BE_COPIED",
"sourceURL":"SOURCE_URL","userName":"USER_NAME","targetFileName":"TARGET_FILEN
AME","pwd":"ENCRYPTED_PASSWORD"}' 'https://<BASE URL>/interop/rest/v2/files/
copyfrominstance'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Clone an Environment
Use this REST API to clone the current environment and, optionally, identify domain artifacts
(users and predefined roles), Data Management records, audit records, Job Console records,
contents of the inbox and outbox, and stored snapshots.

This API is executed on the source environment after details are provided for the target
environment to be cloned. It is an alternative to using the Clone Environment feature in a
browser or the EPM Automate cloneEnvironment command.

Prerequisites: The password of the target EPM Cloud environment must have already been
encrypted using EPM Automate. The encrypted password string must then be passed as one
of the parameters for the Clone Environment REST API. See the encrypt command in Working
with EPM Automate for Oracle Enterprise Performance Management Cloud.

For considerations with cloning an environment, see Cloning EPM Cloud Environments in
Administering Migration for Oracle Enterprise Performance Management Cloud.

This REST API is version v1.

Required Roles

Service Administrator

Identity Domain Administrator role is required to clone users and predefined roles.

REST Resource

POST /interop/rest/v1/services/clone

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 9
Clone an Environment

9-166

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_auto_encrypt.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/epmss/migration_gen1_gen2_clone.html

Request

Supported Media Types: application/json
The following table summarizes the POST request parameters.

Table 9-97 Parameters

Name Description Type Required Default

api_version Specific API version, such as v1 Path Yes None

targetUsername The ID of a Service Administrator in the target
environment. If you plan to clone user and role
assignments in the target environment, this user must
also have the Identity Domain Administrator role.

Payload Yes None

targetEncryptPassw
ord

The encrypted password of the user identified by
targetUsername to be passed as a string.

For information on encrypting and generating the
password.epw file with EPM Automate, see encrypt in
Working with EPM Automate for Oracle Enterprise
Performance Management Cloud.

Payload Yes None

targetURL The URL of the environment that will become the cloned
environment

Payload Yes None

snapshotName Optionally, the name of a snapshot that should be used
for cloning. This snapshot must be present in the source
environment.

Payload No Last
maintena
nce
snapshot

migrateUsers Whether to clone users and their predefined and
application role assignments, True or False.
For this option to work, the user identified by
targetUsername must have the Identity Domain
Administrator role in the target environment.

Payload No False

maintenanceStartTi
me

Whether to reset the maintenance start time of the
cloned environment to that of the source environment.
To keep the current maintenance start time of the target
environment, set this value to False.

Payload No True

dataManagement Whether to clone the Data Management records of the
source to the target environment for all environments
other than Oracle Enterprise Data Management Cloud
and Narrative Reporting, True or False.

Payload No True

applicationAudit Whether to clone the application audit data in the
source to the target environment for FreeForm,
Planning, Planning Modules, Financial Consolidation
and Close, and Tax Reporting environments, True or
False. Including application audit data while cloning an
environment makes the target environment keep the
application audit history.

Payload No True

jobConsole Whether to clone the job console data in the source to
the target environment for FreeForm, Planning,
Planning Modules, Financial Consolidation and Close,
and Tax Reporting environments, True or False.
Including job console data while cloning an
environment makes the target environment keep the job
console history.

Payload No True

Chapter 9
Clone an Environment

9-167

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_auto_encrypt.html

Table 9-97 (Cont.) Parameters

Name Description Type Required Default

storedSnapshotsAnd
Files

Whether to clone the contents of the inbox, outbox, and
stored snapshots in the source to the target environment
for all environments, True or False. Including stored
snapshots and files while cloning an environment makes
sure that the stored snapshots and files are not lost. This
is useful especially while cloning a Classic environment
to an OCI (Gen 2) environment.

Payload No False

Example URL and Payload

{
 "targetURL":"https://<BASE URL>,targetUserName":"cloneUser@oracle.com",
"targetEncryptPassword":"<targetUserEncryptedPasswordString>",
 "parameters":{"snapshotName":"Artifact Snapshot"
"migrateUsers":"true","maintenanceStartTime":"true", "dataManagement":"true",
"jobConsole":"true", "applicationAudit":"true",
"storedSnapshotsAndFiles":"false"}
}

Response

Supported Media Types: application/json

Table 9-98 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you
can use the href to get the status

intermittentSta
tus

Status of each step performed; can be polled regularly from the job status
URL

Example of Response Body

The following shows an example of the response body in JSON format.

{"intermittentStatus":null, "links":[{"rel":"Job Status","href":"https://
<<BASE URL>/interop/rest/v1/services/
status","data":null,"action":"GET"}],"details":null,"status":-1"items":null)

Java Sample – CloneEnvironment.java

Prerequisites: json.jar

Chapter 9
Clone an Environment

9-168

Common functions: See Appendix A, Common Helper Functions for Java.

//
 // BEGIN – Clone Environment
 //
 public void cloneEnvironment() throws Exception {
 String targetUrl = "https://<BASE URL>";
 String targetUsername = "<Target User name>";
 String encryptedPwdString =
fetchPwdFromFile("epw_file_Path") ; //"<Target system encrypted password>";
 String snapshotToClone = "Artifact Snapshot";
 JSONObject params = new JSONObject();
 JSONObject payload = new JSONObject();
 //Optional parameters if not passed default values will be picked
 /*
 params.put("snapshotName", snapshotToClone);
 params.put("migrateUsers", Boolean.TRUE.toString());
 params.put("maintenanceStartTime", Boolean.TRUE.toString());
 params.put("dataManagement", Boolean.TRUE.toString());
 */
 //Mandatory parameters
 payload.put("targetURL", targetUrl);
 payload.put("targetUserName", targetUsername);
 payload.put("targetEncryptPassword", encryptedPwdString);
 payload.put("parameters", params);

 String urlString = String.format("%s/interop/rest/v1/services/clone",
serverUrl);
 String response = executeRequest(urlString, "POST", payload.toString(),
"application/json");

 getMigrationJobStatus(fetchPingUrlFromResponse(response, "Job
Status"),"GET");
 }

 private String fetchPwdFromFile(String filePath) {
 BufferedReader br = null;

 try {
 br = new BufferedReader(new FileReader(filePath));
 String line = null;
 String pwdString = null;
 while ((line = br.readLine()) != null) {
 pwdString = line;
 }
 return pwdString;
 } catch (Exception e) {
 } finally {
 if (null != br)
 try {
 br.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

Chapter 9
Clone an Environment

9-169

 }

 return null;
}
//
// END – Clone Environment
//

cURL Sample – cloneEnvironment.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcCloneEnvironment() {
 url="$SERVER_URL/interop/rest/v1/services/clone"
 local targetUrl="<TargetSystemURL>"
 local targetUserName="<TargetSystemUsername>"
 local targetEncryptedPassword= $(cat $EPWfilePath)
#"<TargetSystemEncryptedPasswordString>"

 #optionalParams="{\"snapshotName\":\"Artifact
Snapshot\",\"migrateUsers\":\"true\",\"maintenanceStartTime\":\"true\",\"dataM
anagement\":\"true\"}"

param="{\"targetURL\":\"$targetUrl\",\"targetUserName\":\"$targetUserName\",\"
targetEncryptPassword\":\"$targetEncryptedPassword\"}"
#,\"parameters\":\"$optionalParams\"}"
 funcExecuteRequest "POST" $url "$param" "application/json"

 output=$(cat response.txt)
 status=$(echo $output | jq '.status')
 if [$status == -1]; then
 echo "CloneEnvironment is in progress.."
 funcGetStatus "GET"
 else
 error=$(echo $output | jq '.details')
 echo "Error occurred. " $error
 fi
}

Groovy Sample – cloneEnvironment.groovy

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

def cloneEnvironment(targetURL,targetUsername,targetEncyptedPasswordFile){
 String scenario = "Clone Environment";
 def targetEncyptedPassword = fetchPwdFromFile(targetEncyptedPasswordFile);
 def json = new JsonBuilder()
 //Optional parameter to be set if needed
 //def optionalParams = [snapshotName: "Artifact Snapshot", migrateUsers:
"true", maintenanceStartTime: "true" ,dataManagement:"true"]

Chapter 9
Clone an Environment

9-170

 def payload = new JsonBuilder()
 payload targetURL: targetURL,
 targetUserName: targetUsername,
 targetEncryptPassword: targetEncyptedPassword //,
 //parameters: optionalParams

 params=payload.toString();
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/v1/services/clone");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "POST", params, "application/json");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}
def fetchPwdFromFile(filePath) {
 BufferedReader br = null;

 try {
 br = new BufferedReader(new FileReader(filePath));
 String line = null;
 String pwdString = null;
 while ((line = br.readLine()) != null) {
 pwdString = line;
 }
 return pwdString;
 } catch (Exception e) {
 } finally {
 if (null != br)
 try {
 br.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }

 return null;
}

Sample cURL Command Basic Auth

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -H 'Content-Type: application/
json' -d '{"targetURL":
" https://<BASE URL>","targetUserName":"<TARGET-
USERNAME>","targetEncryptPassword":"<TARGET-ENCRYPTED-PASSWORD>",
"parameters":{"snapshotName":"<SNAPSHOT-
NAME>","migrateUsers":"true","maintenanceStartTime":"<TRUE/

Chapter 9
Clone an Environment

9-171

FALSE>","dataManagement":
"<TRUE/FALSE>","jobConsole":"<TRUE/FALSE>","applicationAudit":"<TRUE/
FALSE>","storedSnapshotsAndFiles":"<TRUE/FALSE>"}}'
'https://<EPM-CLOUD-BASE-URL>/interop/rest/v1/services/clone'

Sample cURL Command OAuth 2.0

curl -X POST --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H
'Content-Type: application/json' -d '{"targetURL":
" https://<BASE URL>","targetUserName":"<TARGET-
USERNAME>","targetEncryptPassword":"<TARGET-ENCRYPTED-PASSWORD>",
"parameters":{"snapshotName":"<SNAPSHOT-
NAME>","migrateUsers":"true","maintenanceStartTime":"<TRUE/
FALSE>","dataManagement":
"<TRUE/FALSE>","jobConsole":"<TRUE/FALSE>","applicationAudit":"<TRUE/
FALSE>","storedSnapshotsAndFiles":"<TRUE/FALSE>"}}'
'https://<EPM-CLOUD-BASE-URL>/interop/rest/v1/services/clone'

Provide Feedback (v11.1.2.3.600)
This feedback service sends feedback or reports an issue to Oracle.

This API is version 11.1.2.3.600.

Required Roles

Service Administrator, Power User, User, Viewer

REST Resource

POST /interop/rest/{api_version}/feedback

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 9-99 Parameters

Name Description

details Published in case of errors with the error string

status See Migration Status Codes

items Details about the resource

issueRef Feedback reference to contact Oracle support

Chapter 9
Provide Feedback (v11.1.2.3.600)

9-172

Table 9-99 (Cont.) Parameters

Name Description

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible value: self
data Parameters as key value pairs passed in the request

Example of Response Body

Supported Media Types: application/json
The following shows an example of the response body in JSON format.

{
 "details":null,
 "status":0,
 "items":[{"issueRef":"UDR_default_fin_superuser_2015_09_14_11_10_18"}],
 "links":[{
 "data":null,
 "action":"POST",
 "rel":"self",
 "href":"https://<BASE URL>/interop/rest/{api_version}/feedback"
 }]
}

Java Sample – ProvideFeedback.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

//
// BEGIN - Provide Feedback
//
public void provideFeedback(String description) throws Exception {
 JSONObject params = new JSONObject();
 JSONObject config = new JSONObject();
 config.put("URL",serverUrl);
 params.put("configuration",config);
 params.put("description",description);

 String urlString = String.format("%s/interop/rest/%s/feedback",
serverUrl, lcmVersion);
 String response = executeRequest(urlString, "POST", params.toString(),
"application/json");
 JSONObject json = new JSONObject(response);
 int resStatus = json.getInt("status");
 if (resStatus == 0) {
 System.out.println("Feedback successful");
 } else {
 System.out.println("Error occurred: " + json.getString("details"));
 }

Chapter 9
Provide Feedback (v11.1.2.3.600)

9-173

}
//
// END - Provide Feedback
//

cURL Sample – ProvideFeedback.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcProvideFeedback() {
 url=$SERVER_URL/interop/rest/$LCM_VERSION/feedback
 description=$(echo $1 | sed -f urlencode.sed)
 param="{\"configuration\":
{\"URL\":\"$SERVER_URL\"},\"description\":\"$description\"}"
 funcExecuteRequest "POST" $url $param "application/json"

 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == 0]; then
 echo "Feedback successful"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – ProvideFeedback.groovy

Prerequisites: json.jar

See CSS Common Helper Functions for Groovy

def provideFeedback(description) {
 def url;
 JSONObject params = new JSONObject();
 try {
 JSONObject config = new JSONObject();
 config.put("URL",serverUrl)
 params.put("configuration",config);
 params.put("description",description);
 url = new URL(serverUrl + "/interop/rest/" + lcmVersion + "/
feedback");
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "POST", params.toString(), "application/
json");

 def object = new JsonSlurper().parseText(response)
 def status = object.status
 if (status == 0) {
 println "Feedback successful"

Chapter 9
Provide Feedback (v11.1.2.3.600)

9-174

 } else {
 println "Error occurred while listing files"
 if (object.details != null)
 println "Error details: " + object.details
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Provide Feedback (v2)
The Provide Feedback (v2) feedback service sends feedback or reports an issue to Oracle.

This API is version v2.

Required Roles

Service Administrator, Power User, User, Viewer

REST Resource

POST /interop/rest/v2/services/feedback

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: multipart/form-data

Name Description Type Require
d

Default

fileName The name of the zip file that you want Oracle
support to use to resolve the current issue.

Multipa
rt

Yes None

file Multiple files like EPM Automate scripts or
Fiddler traces required to be submitted to
Oracle can be zipped altogether and uploaded.

Multipa
rt

Yes None

configuration Details of the client, OS, URL, and description of
the issue.

Multipa
rt

Yes None

Chapter 9
Provide Feedback (v2)

9-175

Example URL and Payload

https://<BASE URL>/interop/rest/v2/services/feedback

configuration:{"configuration":{"Operating_System": "Windows
10","EPMAutomate_Version":"22.11.12","Java_Vendor":"Oracle Corporation",
"Java_Version":"1.8.0_341","URL":"http://
slcar287.usdv1.oraclecloud.com:12847"},"description":"Issue description"}}

Response

Supported Media Types: application/json

Table 9-100 Parameters

Name Description

details Published in case of errors with the error string

status See Migration Status Codes

items Details about the resource

issueRef Feedback reference to contact Oracle support

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible value: self
data Parameters as key value pairs passed in the request

Example of Response Body

"details": null,
 "status": 0,
 "items": [
 {
 "issueRef":
"UDR_default_epm_default_cloud_admin_2022_10_11_01_47_10"
 }
],
 "links": [
 {
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/v2/services/
feedback",
 "action": "POST",
 "rel": "self",
 "data": null
 }
]
}

Chapter 9
Provide Feedback (v2)

9-176

Sample cURL Command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: multipart/form-data' -F 'fileName=abc.zip' -
F'configuration={"configuration":{"Operating_System": "Windows 10",
"EPMAutomate_Version":"22.11.12","Java_Vendor":"Oracle
Corporation","Java_Version":"1.8.0_341","URL":"https://<BASE
URL>","description":"abc"}}' -F 'file=@/
C:/Users/abc/Sample.zip' 'https://<BASE URL>/interop/rest/v2/services/
feedback'

Send Email (v1)
Use the Send Mail (v1) REST API to send an email to specified recipients, optionally attaching
files from EPM Cloud. You can attach any file up to 10 MB in size, other than a snapshot, that
is available in EPM Cloud environments. This API can be incorporated into REST API
programs and scripts to notify users of various conditions or to send reports.

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

The API is asynchronous and returns the Job ID. Use the job status URI to determine whether
the process is complete. The presence of status -1 in the response indicates that the process
is in progress. Any non-zero status except -1 indicates failure.

This REST API is version v1.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/<api_version>/services/sendmail

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-101 Tasks

Task Request REST Resource

Trigger sendmail POST /interop/rest/<api_version>/services/sendmail
Retrieve sendmail
status

GET /interop/rest/<api_version>/services/jobs/777

Chapter 9
Send Email (v1)

9-177

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 9-102 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

to The recipient email addresses separated by semi-colons Form Yes None

subject The subject for the email Form Yes None

body The body of the email providing details. Form Yes None

attachments One or more file names separated by commas to be added
as attachments to the email, for example, outbox/
Errorfile.txt or inbox/Errorfile2.txt
You can attach any file up to 10 MB in size, other than a
snapshot, that is available in EPM Cloud environments.

Form No None

Sample Request Payload

to:abc@oracle.com
subject:EPM
body:EPM weekly email
attachments:apr/2021-08-10 11_30_25/2021-08-10 11_30_25.html

Response

Table 9-103 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Example of Response Body

{
 "status": -1,
 "items": null,
 "links": [{
 "rel": "self",
 "href": "https://<BASE URL>/interop/rest/v1/services/sendmail",

Chapter 9
Send Email (v1)

9-178

 "data": null,
 "action": "POST"
 }, {
 "rel": "Job Status",
 "href": "https://<BASE URL>/interop/rest/v1/services/jobs/
1502357937045",
 "data": null,
 "action": "GET"
 }],
 "details": null
}

JobID is appended only to the API used to fetch the status of the progress.

Sample code:

public void sendMail() throws Exception {

 String to = "RECIPIENT EMAIL ADDRESS";
 String subject = "SUBJECT OF THE MAIL";
 String body = "BODY OF THE MAIL";
 String attachments = "NAME OF THE FILE TO BE ATTACHED";

 String urlString = String.format("%s/interop/rest/v1/services/sendmail",
serverUrl);

 String params = "to=" + to + "&subject=" + subject + "&body=" + body +
"&attachments=" +attachments;

 String response = executeRequest(urlString, "POST", params,
"application/x-www-form-urlencoded");

 getJobStatus(fetchPingUrlFromResponse(response, "Job Status"), "GET");
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Send Email (v2)
Use the Send Mail (v2) REST API to send an email to specified recipients, optionally attaching
files from EPM Cloud. You can attach any file up to 10 MB in size, other than a snapshot, that
is available in EPM Cloud environments. This API can be incorporated into REST API
programs and scripts to notify users of various conditions or to send reports.

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use. This API is backwards compatible.

The API is asynchronous and returns the Job ID. Use the job status URI to determine whether
the process is complete. The presence of status -1 in the response indicates that the process
is in progress. Any non-zero status except -1 indicates failure.

Chapter 9
Send Email (v2)

9-179

This REST API is version v2.

Required Roles

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v2/mails/send

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 9-104 Tasks

Task Request REST Resource

Trigger sendmail POST /interop/rest/v2/mails/send
Retrieve sendmail status GET /interop/rest/v2/status/jobs/777

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 9-105 Parameters

Name Description Type Required Default

to The recipient email addresses separated by semi-colons Payload Yes None

subject The subject for the email Payload Yes None

body The body of the email providing details. Payload Yes None

parameters Parameters for this REST API Payload No None

attachments One or more file names separated by commas to be added
as attachments to the email, for example, outbox/
Errorfile.txt or inbox/Errorfile2.txt
You can attach any file up to 10 MB in size, other than a
snapshot, that is available in EPM Cloud environments.

Payload No None

Sample URL and Payload

https://<BASE URL>/interop/rest/v2/mails/send

{
 "to": "<EMAIL_ADDRESS>",
 "subject": "EPM",
 "body": "EPM weekly email",

Chapter 9
Send Email (v2)

9-180

 "parameters": {
 "attachments":"apr/Feedback 2022-03-01 07_42_04/access_log.zip"
 }
}

Response

Table 9-106 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Example of Response Body

{
 "status": -1,
 "items": null,
 "links": [{
 "rel": "self",
 "href": "https://<BASE URL>/interop/rest/v2/mails/send",
 "data": null,
 "action": "POST"
 }, {
 "rel": "Job Status",
 "href": "https://<BASE URL>/interop/rest/v2/status/jobs/
1502357937045",
 "data": null,
 "action": "GET"
 }],
 "details": null
}

Sample cURL Command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d '{"subject":"SUBJECT_OF_THE_MAIL",
"to":"RECIPIENT_EMAIL_ADDRESS","body":"BODY_OF_THE_MAIL","parameters":
{"attachments":"NAME_OF_THE_FILE_TO_BE_ATTACHED"}}' 'https://<BASE URL>/
interop/rest/v2/mails/send'

Common Functions

• See Common Helper Functions for Java

Chapter 9
Send Email (v2)

9-181

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Skip Updates (v1)
Use the Skip Updates (v1) API to add, list, or remove a skip update request. Using this API,
you can ask Oracle to skip applying a monthly update to an environment, or remove all
previous skip update requests so that the environment is updated to the main code line. This
allows you to skip updates to an EPM Cloud production environment at times when you need
to complete time-sensitive tasks, for example, closing a quarter, without creating a service
request.

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

You can also list the skip update requests currently specified for an environment. You can set
skip update requests for a maximum of two update cycles. You cannot skip updates for an
environment that is on a one-off patch. Additionally, you cannot skip monthly updates that are
more than two months apart from the update that the environment is currently on. For example,
if the environment is currently on 20.12, you can skip 21.01 and 21.02 updates, but not 21.03.
This gives you better control over monthly and weekly updates.

This REST API is version v1.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v1/services/skipupdate

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 9-107 Parameters

Name Description Type Required Default

type The desired action to be performed (Add, List, or Remove) Form Yes None

Chapter 9
Skip Updates (v1)

9-182

Table 9-107 (Cont.) Parameters

Name Description Type Required Default

version The version to be skipped from update, for example, 20.12 Form No

(Yes, only
when the
type is
Add)

None

comment The business reason for skipping an update, such as Year
End

Form No

(Yes, only
when the
type is
Add)

None

Response

Supported Media Types: application/json

Table 9-108 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "links":[{
"https://<BASE URL>/interop/rest/v1/services/skipupdate",
 "rel":"self",
 "data":null,
 "action":"POST"
 }
],
 "details":null,
 "status":0
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Chapter 9
Skip Updates (v1)

9-183

Skip Updates (v2)
Use the Skip Updates (v2) REST API to add, list, or remove a skip update request. Using this
API, you can ask Oracle to skip applying a monthly update to an environment, or remove all
previous skip update requests so that the environment is updated to the main code line. This
allows you to skip updates to an EPM Cloud production environment at times when you need
to complete time-sensitive tasks, for example, closing a quarter, without creating a service
request.

You can also list the skip update requests currently specified for an environment. You can set
skip update requests for a maximum of two update cycles. You cannot skip updates for an
environment that is on a one-off patch. Additionally, you cannot skip monthly updates that are
more than two months apart from the update that the environment is currently on. For example,
if the environment is currently on 22.10, you can skip 22.11 and 22.12 updates, but not 23.01.
This gives you better control over monthly and weekly updates.

This REST API is version v2.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v2/services/skipupdate

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 9-109 Parameters

Name Description Type Required Default

type The desired action to be performed (Add, List, or Remove) Payload Yes None

version The version to be skipped from update, for example, 22.12 Payload No

(Yes, only
when the
type is
Add)

None

comment The business reason for skipping an update, such as Year
End

Payload No

(Yes, only
when the
type is
Add)

None

Chapter 9
Skip Updates (v2)

9-184

Example URL and Payload

https://<BASE URL>/interop/rest/v2/services/skipupdate

{
 "type":"Add",
 "parameters": {
 "version": "22.12",
 "comment": "Year end"
 }
}

Response

Supported Media Types: application/json

Table 9-110 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data null

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "status": 0,
 "items": null,
 "links": [{
 "rel": "self",
 "href": "https://<BASE URL>/interop/rest/v2/services/skipupdate",
 "data": null,
 "action": "POST"
 }
 "details": null
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d '{"type":"Add","parameters":
{"version":"22.10","comment":"Year End"}}' 'https://<BASE URL>/interop/
rest/v2/services/skipupdate'

Chapter 9
Skip Updates (v2)

9-185

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

List or Restore Backups - Only for OCI (Gen2) Environments
In OCI (Gen 2) environments, you can use a REST APIs to list available backup snapshots
archived by Oracle in the Oracle Object Storage Cloud, or to restore an available backup
snapshot archived by Oracle in the Oracle Object Storage Cloud (that is, copy it to the
environment).

Table 9-111 List or Restore Backups

Task Request REST Resource

List Backups - Only for OCI (Gen 2)
Environments

GET /interop/rest/v2/backups/list

Restore Backup - Only for OCI (Gen
2) Environments

POST /interop/rest/v2/backups/restore

List Backups - Only for OCI (Gen 2) Environments
In OCI (Gen 2) environments, you can list available backup snapshots archived by Oracle in
the Oracle Object storage Cloud.

You can then restore available backup snapshots (copy them to the environment), To restore
backup snapshots in OCI (Gen 2) environments, see Restore Backup. After copying the
backup, you can archive it or use it to restore the current environment by yourself. With the List
Backups and Restore Backup APIs, you no longer have to create a service request to request
a backup from an OCI environment.

This API is version v2.

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

GET /interop/rest/v2/backups/list

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 9
List or Restore Backups - Only for OCI (Gen2) Environments

9-186

Response

Supported Media Types: application/json

Table 9-112 Parameters

Attribute Description

details Published in case of errors with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible value: self
intermittentSta
tus

Stats of each step perormed; can be polled regularly from the job status URL

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "details": null,
 "links": [{
 "href": "https://<BASE URL>/interop/rest/v2/backups/list",
 "rel": "self",
 "data": null,
 "action": "GET"
 }],
 "status": 0,
 "items": ["2022-02-16T05:49:15/Artifact_Snapshot.zip",
"2022-02-18T05:44:54/Artifact_Snapshot.zip"]
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Restore Backup - Only for OCI (Gen 2) Environments
In OCI (Gen 2) environments, you can restore an available backup snapshot archived by
Oracle in Oracle Object Storage (that is, copy it to the environment).

To view available backup snapshots, see List Backups. If a backup snapshot is available, you
can copy it to the current environment using the Restore Backup API.

After copying the backup, you can archive it or use it to restore the current environment by
yourself. With the List Backups and Restore Backup APIs, you no longer have to create a
service request to request a backup from an OCI environment.

This REST API is version v2.

Chapter 9
List or Restore Backups - Only for OCI (Gen2) Environments

9-187

Required Roles

Required Roles

Service Administrator

Power User assigned to the Migration Administrator Profitability and Cost Management
application role

REST Resource

POST /interop/rest/v2/backups/restore

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the POST request parameters.

Table 9-113 Parameters

Name Description Type Required Default

backupName The name of the backup snapshot, as listed in the response
for List Backups

Payload Yes None

Chapter 9
List or Restore Backups - Only for OCI (Gen2) Environments

9-188

Table 9-113 (Cont.) Parameters

Name Description Type Required Default

targetName The name of the backup snapshot, without an extension, in
the target environment

Payload No If you do
not specify
this
parameter,
the backup
snapshot
is restored
to the
target
environme
nt pre-
pended
with the
current
timestamp,
for
example,
2022-03-
10T06:37
:48_Arti
fact_Sna
pshot.zi
p or
2022-03-
30T06:22
:35_EPRC
S_Backup
.tar.gz.

Example of Request Body

{
 "backupName": "2022-02-16T21:00:02/Artifact_Snapshot_2021-12-16T21:00:02",
 "parameters": {
 "targetName": "Backup_16Dec"
 }
}

Response

Supported Media Types: application/json

Table 9-114 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

Chapter 9
List or Restore Backups - Only for OCI (Gen2) Environments

9-189

Table 9-114 (Cont.) Parameters

Name Description

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status of the copy snapshot

intermittentSta
tus

Status of each step performed; can be polled regularly from the job status URL

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "links": [
 {
 "rel": "self",
 "href": "http://<BASE URL>/interop/rest/v2/backups/restore",
 "data": null,
 "action": "POST"
 },
 {
 "rel": "Job Status",
 "href": "http://<BASE URL>/interop/rest/v2/status/jobs/
4534730166024804",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": -1,
 "items": null
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Chapter 9
List or Restore Backups - Only for OCI (Gen2) Environments

9-190

10
Security REST APIs

This section describes the REST APIs to manage security features in Oracle Enterprise
Performance Management Cloud.

Table 10-1 Security

Task Request REST Resource

Get Restricted Data Access GET /interop/rest/{api_version}/config/
services/restricteddataaccess

Set Restricted Data Access PUT /interop/rest/{api_version}/config/
services/restricteddataaccess

Get Virus Scan on File Upload GET /interop/rest/{api_version}/config/
services/virusscanonfileupload

Set Virus Scan on File Upload PUT /interop/rest/{api_version}/config/
services/virusscanonfileupload

Manage Permission for Manual Access
to Database (v1)

PUT /interop/rest/{api_version}/
services/dataaccess?
accessType={allow|
revoke}&disableEmergencyAccess={tru
e|false}

Manage Permission for Manual Access
to Database (v2)

PUT /interop/rest/v2/services/
setmanualdataaccess

Set Encryption Key (v1) PUT /interop/rest/{api_version}/
services/encryptionkey

Set Encryption Key (v2) PUT interop/rest/v2/services/
setencryptionkey

View the IP Allowlist - Only for OCI (Gen
2) Environments

GET /interop/rest/epmociservice/v2/
ipallowlist

Update the IP Allowlist - Only for OCI
(Gen 2) Environments

POST /interop/rest/epmociservice/v2/
ipallowlist

Get Restricted Data Access
The Get Restricted Data Access REST API returns true if the environment is configured so that
"Submit Application Snapshot" cannot be selected by a Service Administrator while submitting
Provide Feedback; otherwise, returns false.

This REST API is version v2.

Required Roles

Service Administrator

10-1

REST Resource

GET /interop/rest/{api_version}/config/services/restricteddataaccess

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the GET request parameters:

Table 10-2 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

Response

Supported Media Types: application/json

Table 10-3 Parameters

Name Description

details Detailed status of the operation performed.

status See Migration Status Codes

links Detailed information about the link and HTTP call type

items Detailed information about the API

dataAccessRestr
iction

Whether the restricted data access is enabled

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you
can use the href to get the status

data Parameters as key value pairs passed in the request

Example of Response Body

{
 "details": null,
 "status": 0,
 "items": [
 {
 "dataAccessRestriction": "true"
 }

Chapter 10
Get Restricted Data Access

10-2

],
 "links": [
 {
 "href": "<uri>/interop/rest/v2/config/services/
restricteddataaccess",
 "action": "GET",
 "rel": "self",
 "data": null
 }
]
}

Sample cURL command

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -H
'Content-Type: application/json' 'https://<BASE-URL>/interop/rest/v2/config/
services/restricteddataaccess'

Set Restricted Data Access
The Set Restricted Data Access REST API enables/disables the selection of "Submit
Application Snapshot" by the Service Administrator while submitting Provide Feedback.

This REST API is version v2.

Required Roles

Service Administrator

REST Resource

PUT /interop/rest/{api_version}/config/services/restricteddataaccess

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the PUT request parameters:

Table 10-4 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

dataAccessRestrict
ion

Enable/Disable restricted data access; possible values are
true and false

Payload Yes None

Chapter 10
Set Restricted Data Access

10-3

Example of Request Body

{
 "dataAccessRestriction": "true"
}

Response

Supported Media Types: application/json

Table 10-5 Parameters

Name Description

details Detailed status of the operation performed.

status See Migration Status Codes

links Detailed information about the link and HTTP call type

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you
can use the href to get the status

error Detailed information about the error

data Parameters as key value pairs passed in the request

Example of Response Body

{
 "details": null,
 "status": 0,
 "items": null,
 "links": [
 {
 "href": "<uri>/interop/rest/v2/config/services/
restricteddataaccess",
 "action": "PUT",
 "rel": "self",
 "data": null
 }
]
}

Sample cURL command

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H
'Content-Type: application/json' -d '{"dataAccessRestriction":"true"}'
'https://<BASE-URL>/interop/rest/v2/config/services/restricteddataaccess'

Chapter 10
Set Restricted Data Access

10-4

Get Virus Scan on File Upload
The Get Virus Scan on File Upload REST API returns true if virus scan on file upload is
enabled; otherise, it returns false.

This API is version v2.

Required Roles

Service Administrator

REST Resource

GET /interop/rest/{api_version}/config/services/virusscanonfileupload

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json

Table 10-6 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

Response

Supported Media Types: application/json

Table 10-7 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

items Detailed information about the API

scanfiles Indicates whether the virus scan is enabled

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data Parameters as key value pairs passed in the request

Chapter 10
Get Virus Scan on File Upload

10-5

Example of Response Body

{
 "details": null,
 "links": [{
 "rel": "self",
 "href": "<uri>/interop/rest/v2/config/services/
virusscanonfileupload",
 "data": "null",
 "action": "GET"
 }],
 "status": "0",
 "items": [{
 "scanfiles": "true"
 }]
}

Sample cURL command

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -H
'Content-Type: application/json' 'https://<BASE-URL>/interop/rest/v2/config/
services/virusscanonfileupload'

Set Virus Scan on File Upload
The Set Virus Scan on File Upload REST API enables/disables the virus scan on a file upload.

This API is version v2.

Required Roles

Service Administrator

REST Resource

PUT /interop/rest/{api_version}/config/services/virusscanonfileupload

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json

Table 10-8 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

Chapter 10
Set Virus Scan on File Upload

10-6

Table 10-8 (Cont.) Parameters

Name Description Type Required Default

scanfiles Enable/Disable virus scan Payload Yes None

Response

Supported Media Types: application/json

Table 10-9 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data Parameters as key value pairs passed in the request

Example of Response Body

{
 "links": [{
 "rel": "self",
 "href": "<uri>/interop/rest/v2/config/services/
virusscanonfileupload",
 "data": null,
 "action": "PUT"
 }],
 "details": "null",
 "status": 0,
 "items": null
}

Sample cURL command

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"virusscan":"true"}' 'https://<BASE-URL>/interop/rest/v2/config/services/
virusscanonfileupload'

Manage Permission for Manual Access to Database (v1)
Use this API (v1) to manage permission for manual access to database by Oracle.

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not

Chapter 10
Manage Permission for Manual Access to Database (v1)

10-7

require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

This gives you the ability to allow or disallow Oracle personnel to manually access your
database in emergency situations when an environment is unresponsive and you have not yet
created a service request to investigate the issue.

In an emergency situation, Oracle follows an internal process whereby a high-level
development executive, after an independent verification process, permits manual access to
the database without your explicit approval. You can also prohibit Oracle from manually
accessing the EPM Cloud database, even if a service request to remedy a database issue is
open.

This API is version v1.

Required Roles

Service Administrator

REST Resource

PUT /interop/rest/{api_version}/services/dataaccess?accessType={allow|
revoke}&disableEmergencyAccess={true|false}

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 10-10 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

accessType Allow or revoke the manual access to database by Oracle,
where the value can be allow or revoke

Query Yes None

disableEmergencyAc
cess

Whether to prohibit all manual access to the database. The
possible values are true and false. Setting this parameter
value to true stops Oracle from manually accessing the
database even if a service request is open. Oracle does not
recommend setting this parameter value to true because
Oracle cannot access the database if access is required to
troubleshoot and fix a down environment. If the environment
is down, you will not be able to issue this REST API to allow
Oracle to manually access the database.

Query No False

Chapter 10
Manage Permission for Manual Access to Database (v1)

10-8

Response

Table 10-11 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

Copy
{
"links": [1]
 0: {
 "rel":"self", "href":"https://<BASE-URL>/interop/rest/v1/services/
dataaccess?accessType=allow&disableEmergencyAccess=true"
 "data":"null",
 "action":"PUT,
 }-
 -
 "details":"null",
 "status":"0"
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Manage Permission for Manual Access to Database (v2)
Use this REST API (v2) to manage permission for manual access to database by Oracle.

This gives you the ability to allow or disallow Oracle personnel to manually access your
database in emergency situations when an environment is unresponsive and you have not yet
created a service request to investigate the issue.

In an emergency situation, Oracle follows an internal process whereby a high-level
development executive, after an independent verification process, permits manual access to
the database without your explicit approval. You can also prohibit Oracle from manually
accessing the EPM Cloud database, even if a service request to remedy a database issue is
open.

Chapter 10
Manage Permission for Manual Access to Database (v2)

10-9

This API is version v2

Required Roles

Service Administrator

REST Resource

PUT /interop/rest/v2/services/setmanualdataaccess

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 10-12 Parameters

Name Description Type Required Default

accessType Allow or revoke the manual access to database by Oracle,
where the value can be allow or revoke

Payload Yes None

parameters
disableEmergencyAc
cess

Whether to prohibit all manual access to the database. The
possible values are true and false. Setting this parameter
value to true stops Oracle from manually accessing the
database even if a service request is open. Oracle does not
recommend setting this parameter value to true because
Oracle cannot access the database if access is required to
troubleshoot and fix a down environment. If the environment
is down, you will not be able to issue this REST API to allow
Oracle to manually access the database.

Payload No False

Example URL and Payload

https://<BASE URL>/interop/rest/v2/services/setmanualdataaccess

{
 "accessType": "Revoke",
 "parameters": {
 "disableEmergencyAccess": "False"
 }
}

Response

Supported Media Types: application/json

Chapter 10
Manage Permission for Manual Access to Database (v2)

10-10

Table 10-13 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data null

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "details": null,
 "status": 0,
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/services/
setmanualdataaccess",
 "action": "PUT",
 "rel": "self",
 "data": null
 }
]
}

Sample cURL command

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d '{"accessType":"Revoke","parameters":
{"disableEmergencyAccess":"True"}}' 'https://<BASE-URL>/interop/rest/v2/
services/setmanualdataaccess'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Set Encryption Key (v1)
Provides a Bring Your Own Key (BYOK) solution to include Oracle EPM Cloud in your
standard key management rotation.

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not

Chapter 10
Set Encryption Key (v1)

10-11

require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

The API can be used to set and remove a user-defined encryption key for access to database
used in an Oracle EPM Cloud instance.

This is an asynchronous job and uses the job status URI to determine if the operation is
complete.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

This API is version v1.

Required Roles

Service Administrator

Table 10-14 Set Encryption Key Tasks

Task Request REST Resource

Execute a Job PUT /interop/rest/{api_version}/services/
encryptionkey

Retrieve Job Status GET /interop/rest/v1/services/jobs/{jobID}

REST Resource

PUT /interop/rest/{api_version}/services/encryptionkey

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 10-15 Parameters

Name Description Type Required Default

Key The user-defined encryption key. If empty or no key is
passed, encryption is reset.

Form No None

Response

Supported Media Types: application/json

Chapter 10
Set Encryption Key (v1)

10-12

Table 10-16 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "details":null,
 "status":-1,
 "links":[{
 "href":"https://<BASE-URL>/interop/rest/v1/services/encryptionkey",
 "rel":"self",
 "data":null,
 "action":"PUT"
 },{
 "href":"https://<BASE-URL>/interop/rest/v1/services/jobs/777",
 "rel":"Job Status",
 "data":null,
 "action":"GET"
 }]
}

cURL Sample – setencryptionkey.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcSetEncryptionKey() {
 url=$SERVER_URL/interop/rest/v1/services/encryptionkey

 key="xcfddrerghgArfh" #use a strong key to set the encryption
key
 param="key=$key"

 funcExecuteRequest "PUT" $url $param "application/json"
 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == -1]; then
 echo "Setting Encryption Key"
 funcGetStatus "GET"
 else
 error=`echo $output | jq '.details'`

Chapter 10
Set Encryption Key (v1)

10-13

 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcResetEncryptionKey() {
 url=$SERVER_URL/interop/rest/v1/services/encryptionkey

 param=""

 funcExecuteRequest "PUT" $url $param "application/json"
 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == -1]; then
 echo "Resetting Encryption Key"
 funcGetStatus "GET"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Set Encryption Key (v2)
The Set Encryption Key (v2) REST API provides a Bring Your Own Key (BYOK) solution to
include Oracle EPM Cloud in your standard key management rotation.

The API can be used to set and remove a user-defined encryption key for access to database
used in an Oracle EPM Cloud instance.

This is an asynchronous job and uses the job status URI to determine if the operation is
complete.

This API is version v2.

Required Roles

Service Administrator

REST Resource

PUT interop/rest/v2/services/setencryptionkey

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 10
Set Encryption Key (v2)

10-14

Table 10-17 Set Encryption Key Tasks

Task Request REST Resource

Execute a Job PUT /interop/rest/v2/services/setencryptionkey
Retrieve Job Status GET /interop/rest/v2/status/jobs/777

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 10-18 Parameters

Name Description Type Required Default

parameters
key The user-defined encryption key. If empty or no key is

passed, encryption is reset.
Payload No None

Example URL and Payload

https://<BASE URL>/interop/rest/v2/services/setencryptionkey

{"parameters": {"key": "se!m+a2J"}}

Response

Supported Media Types: application/json

Table 10-19 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data null

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "status": -1,
 "items": null,
 "links": [{

Chapter 10
Set Encryption Key (v2)

10-15

 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/v2/services/
setencryptionkey",
 "data": null,
 "action": "PUT"
 }, {
 "rel": "Job Status",
 "href": "https://<BASE-URL>/interop/rest/v2/status/jobs/
8921378039543483",
 "data": null,
 "action": "GET"
 }],
 "details": null
}

Sample cURL command

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d '{"parameters":{"key":"abc"}}' 'https://
<BASE-URL>/interop/rest/v2/services/setencryptionkey'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

View or Update the IP Allowlist - Only for OCI (Gen 2)
Environments

In OCI (Gen 2) environments, you can use a REST API to update or list the IP allowlist.

• Use the POST method with the action parameter set to add to add the IP addresses and
Classless Inter-Domain Routings (CIDRs) to the allowlist of your environment.

• Use the POST method with the action parameter set to remove to remove the IP
addresses and CIDRs from the allowlist of your environment.

• Use the GET method to list IP addresses and CIDRs in the allowlist of your environment.

Table 10-20 IP Allowlist

Task Request REST Resource

View the IP allowlist GET /interop/rest/epmociservice/v2/ipallowlist
Update the IP allowlist POST /interop/rest/epmociservice/v2/ipallowlist

Chapter 10
View or Update the IP Allowlist - Only for OCI (Gen 2) Environments

10-16

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

View the IP Allowlist - Only for OCI (Gen 2) Environments
In OCI (Gen 2) environments, you can use a REST API to list the IP allowlist.

Use the GET method to list IP addresses and CIDRs in the allowlist of your environment.

This REST API is version v2.

Required Roles

Service Administrator

REST Resource

GET /interop/rest/epmociservice/v2/ipallowlist

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Response

Supported Media Types: application/json

Table 10-21 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status.

items List of IP addresses and CIDRs that are set as the allowlist for your environment.

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "links": [

Chapter 10
View or Update the IP Allowlist - Only for OCI (Gen 2) Environments

10-17

 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/epmociservice/v2/
ipallowlist",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": 0,
 "items": [
 "ip_address1/24",
 "ip_address2",
 "ip_address3",
 "ip_address4",
 "ip_address5"
]
}

Update the IP Allowlist - Only for OCI (Gen 2) Environments
In OCI (Gen 2) environments, you can use a REST API to update the IP allowlist.

Use the POST method with the action parameter set to add to add the IP addresses and
Classless Inter-Domain Routings (CIDRs) to the allowlist of your environment.

Use the POST method with the action parameter set to remove to remove the IP addresses
and CIDRs from the allowlist of your environment.

This REST API is version v2.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/epmociservice/v2/ipallowlist

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the POST request parameters.

Chapter 10
View or Update the IP Allowlist - Only for OCI (Gen 2) Environments

10-18

Table 10-22 Parameters

Name Description Type Required Default

fileName The path to a filename with a list of IP addresses and CIDRs
that you want to add to or remove from the allowlist.

If you want the file to be uploaded to the default location, the
path is not required and you only need to specify the file
name.

Example: IPList.txt
Each line in the file must be an IP address or CIDR in the
following format:

xxx.xxx.xxx.xxx
xxx.xxx.xxx.xxx/n

Note:
• Only IP V4 IP addresses are supported.
• Use CIDR format, rather than individual IP addresses, to

specify a continuous range of IP addresses.

Payload Yes None

action Use add to add IP addresses and CIDRs to the allowlist of
your environment.

Use remove to remove IP addresses and CIDRs from the
allowlist.

Payload Yes None

Examples of Request Body

Example 1: Add to the IP Allow List

{
 "fileName" : "IPList.txt",
 "action" : "add"
}

Example 2: Remove from the IP Allow lLst

{
 "fileName" : "IPList.txt",
 "action" : "remove"
}

Response

Supported Media Types: application/json

Table 10-23 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

Chapter 10
View or Update the IP Allowlist - Only for OCI (Gen 2) Environments

10-19

Table 10-23 (Cont.) Parameters

Name Description

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status of the copy snapshot

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "links": [
 {
 "rel": "self",
 "href": "http://<BASE-URL>interop/rest/epmociservice/v2/
ipallowlist",
 "data": null,
 "action": "POST"
 },
 {
 "rel": "Job Status",
 "href": "http://<BASE-URL>/interop/rest/epmociservice/v2/status/
jobs/2126145698194859",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": -1,
 "items": null
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Chapter 10
View or Update the IP Allowlist - Only for OCI (Gen 2) Environments

10-20

11
Viewing and Setting the Daily Maintenance
Window Time

Use these REST APIs to get the current build version and daily maintenance window time, and
to set the daily maintenance window time. You can also run the daily maintenance while
skipping the scheduled daily maintenance.

Table 11-1 Getting and Setting the Daily Maintenance Time

Task Request REST Resource

Get the Build
Version and Daily
Maintenance Time
(v1)

GET /interop/rest/{api_version}/services/dailymaintenance

Get the Build
Version and Daily
Maintenance
Window Time (v2)

GET /interop/rest/v2/maintenance/
getdailymaintenancestarttime

Setting the Daily
Maintenance Time
(v1)

PUT /interop/rest/{api_version}/services/dailymaintenance?
StartTime={N}

Setting the Daily
Maintenance Time
(v2)

PUT /interop/rest/v2/maintenance/
setdailymaintenancestarttime

Running Daily
Maintenance While
Skipping the
Scheduled Daily
Maintenance (v1)

POST /interop/rest/{api_version}/services/maintenancewindow

Running Daily
Maintenance While
Skipping the
Scheduled Daily
Maintenance (v2)

POST /interop/rest/v2/maintenance/rundailymaintenance

Get the Build Version and Daily Maintenance Time (v1)
This API (v1) returns information about the current build version and the scheduled daily
maintenance window time.

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

This API is version v1.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See About the REST APIs. Using this REST API requires
prerequisites. See Prerequisites.

11-1

Required Roles

Service Administrator

REST Resource

GET /interop/rest/{api_version}/services/dailymaintenance

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

The following table summarizes the request parameters.

Table 11-2 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

Response

Supported Media Types: application/json

Table 11-3 Parameters

Parameters De
scr
ipti
on

details In
cas
e of
err
ors,
det
ails
are
pub
lish
ed
wit
h
the
err
or
stri
ng

Chapter 11
Get the Build Version and Daily Maintenance Time (v1)

11-2

Table 11-3 (Cont.) Parameters

Parameters De
scr
ipti
on

status Se
e
Mig
rati
on
Sta
tus
Co
des

items Det
aile
d
info
rm
atio
n
abo
ut
the
API

Chapter 11
Get the Build Version and Daily Maintenance Time (v1)

11-3

Table 11-3 (Cont.) Parameters

Parameters De
scr
ipti
on

amwTime Sc
hed
ule
d
star
t
tim
e of
the
dail
y
mai
nte
nan
ce
win
do
w
in
24-
hou
r
for
mat
in
Etc
/UT
C
tim
ezo
ne
by
def
ault
or
in
the
spe
cifi
ed
tim
e
zon
e
wh
en
the
"sh
ow
Tim
eZ
one
"
opti

Chapter 11
Get the Build Version and Daily Maintenance Time (v1)

11-4

Table 11-3 (Cont.) Parameters

Parameters De
scr
ipti
on

ona
l
par
am
ete
r is
tru
e.

buildVersion Cur
ren
t
buil
d
ver
sio
n

links Det
aile
d
info
rm
atio
n
abo
ut
the
link

href Lin
ks
to
API
call

action Th
e
HT
TP
call
typ
e

rel Po
ssi
ble
val
ue:
se
lf

Chapter 11
Get the Build Version and Daily Maintenance Time (v1)

11-5

Table 11-3 (Cont.) Parameters

Parameters De
scr
ipti
on

data Par
am
ete
rs
as
key
val
ue
pair
s
pas
sed
in
the
req
ues
t

Example of Response Body

The following shows an example of the response body in JSON format.

{
"details":null,
"links":[
{
"rel":"self","href":"https://<BASE-URL>/interop/rest/v1/services/
dailymaintenance",
"data":"null",
"action":"GET"}],
"status":"0",
"items":[
{
"amwTime":"19",
"buildVersion":"16.10.17"}
]
}

Get Build Version and Daily Maintenance Time Sample Code

Example 11-1 Java Sample – GetMaintenanceDetails.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

//
// BEGIN
//
public void getMaintenanceDetails () throws Exception {
 String urlString = String.format("%s/interop/rest/v1/services/

Chapter 11
Get the Build Version and Daily Maintenance Time (v1)

11-6

dailymaintenance", serverUrl);
 String response = executeRequest(urlString, "GET", null);
 JSONObject json = new JSONObject(response);
 int resStatus = json.getInt("status");
 if (resStatus == 0) {
 JSONArray fileList = json.getJSONArray("items");
 System.out.println("List of items are :");
 JSONObject jObj = null;
 for(int i=0; i<fileList.length(); i++){
 jObj = (JSONObject)fileList.get(i);
 System.out.println("build version :" +
jObj.getString("buildVersion"));
 System.out.println("AMW time :" + jObj.getString("amwTime"));
 System.out.println("Link :" + ((JSONObject)
((JSONArray)json.getJSONArray("links")).get(0)).getString("href") + "\n");
 }
 }
}
//
// END
//

Example 11-2 cURL Sample – GetMaintenanceDetails.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcGetMaintenanceDetails () {
 url=$SERVER_URL/interop/rest/v1/services/dailymaintenance
 funcExecuteRequest "GET" $url

 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == 0]; then
 echo "List of items :"
 count=`echo $output | jq '.items | length'`
 i=0
 while [$i -lt $count]; do
 echo "Build Version : " `echo $output | jq
'.items['$i'].buildVersion'`
 echo "AMW Time :" `echo $output | jq '.items['$i'].amwTime`
 echo "Link :" `echo $output | jq '.links[0].href'`
 echo ""
 i=`expr $i + 1`
 done
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Example 11-3 Groovy Sample – GetMaintenanceDetails.groovy

Prerequisites: json.jar

Chapter 11
Get the Build Version and Daily Maintenance Time (v1)

11-7

Common Functions: See CSS Common Helper Functions for Groovy

def getMaintenanceDetails () {
 def url;
 try {
 url = new URL(serverUrl + "/interop/rest/v1/services/
dailymaintenance ")
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "GET", null);
 def object = new JsonSlurper().parseText(response)
 def status = object.status
 if (status == 0) {
 def items = object.items
 println "List of items :"
 items.each{
 println "Build Version : " + it.buildVersion
 println "AMW Time : " + it.amwTime
 println "Link : " + it.links[0].href + "\n"
 }
 } else {
 println "Error occurred while listing versions"
 if (object.details != null)
 println "Error details: " + object.details
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Get the Build Version and Daily Maintenance Window Time (v2)
This REST API (v2) returns information about the current build version and the scheduled daily
maintenance window start time.

This API is version v2

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See About the REST APIs. Using this REST API requires
prerequisites. See Prerequisites.

Required Roles

Service Administrator

REST Resource

GET /interop/rest/v2/maintenance/getdailymaintenancestarttime

Chapter 11
Get the Build Version and Daily Maintenance Window Time (v2)

11-8

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

The following table summarizes the request parameters.

Table 11-4 Parameters

Name Description Type Require
d

Default

showTimeZone Displays the time in the time zone specified while
setting it

Query No false

Example URL

https://<BASE URL>/interop/rest/v2/maintenance/getdailymaintenancestarttime?
showTimeZone=true

Response

Supported Media Types: application/json

Table 11-5 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

items Detailed information about the API

amwTime Scheduled start time of the daily maintenance window in 24-hour format in
Etc/UTC timezone by default or in the specified time zone when the
"showTimeZone" optional parameter is true.

buildVersion Current build version

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible value: self
data null

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "details": null,
 "status": 0,
 "items": [

Chapter 11
Get the Build Version and Daily Maintenance Window Time (v2)

11-9

 {
 "buildVersion": "22.09.40",
 "amwTime": "19:00",
 "timeZone": "Etc/UTC"
 }
],
 "links": [
 {
 "href": "https://<BASE URL>/interop/rest/v2/maintenance/
getdailymaintenancestarttime",
 "action": "GET",
 "rel": "self",
 "data": null
 }
]
}

Sample cURL command

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' 'https://<BASE URL>/interop/rest/v2/
maintenance/getdailymaintenancestarttime?showTimeZone=true'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Setting the Daily Maintenance Time (v1)
Use this REST API (v1) to set the daily maintenance window start time.

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

Use this REST API to set the daily maintenance window time.

Note:

To ensure that the use of this API does not interfere with the Oracle requirement for
creating backups, this API will not change the maintenance start time if the daily
maintenance process did not run in the last 36 hours.

This API is version v1.

Required Roles

Service Administrator

Chapter 11
Setting the Daily Maintenance Time (v1)

11-10

REST Resource

PUT /interop/rest/{api_version}/services/dailymaintenance?StartTime={N}

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See About the REST APIs. Using this REST
API requires prerequisites. See Prerequisites.

Request

The following table summarizes the request parameters.

Table 11-6 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

StartTime Scheduled Time (in HH:00 format using a 24 hour clock) at
which the maintenance process should start and an optional
time zone. Acceptable start time value range is 00:00 - 23:00.
If the start time is not to be set in UTC, specify a valid
standard time zone; for example, "14:00 America/
Los_Angeles" for 2:00 pm Pacific Standard Time.

Query Yes None

Response

Supported Media Types: application/json

Table 11-7 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible value: self
data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
"links": [1]
0: {
"rel":"self",
"href":"https://<BASE-URL>/interop/rest/v1/services/dailymaintenance?
StartTime=23"

Chapter 11
Setting the Daily Maintenance Time (v1)

11-11

"data":"null",
"action":"PUT,
}-
-
"details":"null",
"status":"0"
}

Maintenance Window Time Sample Code

Example 11-4 Java Sample – SetMaintenanceDetails.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

//
// BEGIN
//
public void setMaintenanceDetails () throws Exception {
 String urlString = String.format("%s/interop/rest/v1/services/
dailymaintenance?StartTime=23", serverUrl);
 String response = executeRequest(urlString, "PUT", null);
 JSONObject json = new JSONObject(response);
 int resStatus = json.getInt("status");
 if (resStatus == 0) {
 System.out.println("Updated successfully");
 }

}
//
// END
//

Example 11-5 cURL Sample – SetMaintenanceDetails.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

uncSetMaintenanceDetails () {
 rl=$SERVER_URL/interop/rest/v1/services/dailymaintenance?StartTime=23
 funcExecuteRequest "PUT" $url

 output='cat response.txt'
 status='echo $output | jq '.status''
 if [$status == 0]; then
 echo "Updated Successfully"
 else
 error='echo $output | jq '.details''
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Chapter 11
Setting the Daily Maintenance Time (v1)

11-12

Example 11-6 Groovy Sample – SetMaintenanceDetails.groovy

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

def setMaintenanceDetails () {
 def url;
 try {
 url = new URL(serverUrl + "/interop/rest/v1/services/
dailymaintenance?StartTime=23 ")
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "PUT", null);
 def object = new JsonSlurper().parseText(response)
 def status = object.status
 if (status == 0) {
 println "Updated Successfully"
 } else {
 println "Error occurred while listing versions"
 if (object.details != null)
 println "Error details: " + object.details
 }
}

Setting the Daily Maintenance Time (v2)
Use this REST API (v2) to set the daily maintenance window start time.

Note:

To ensure that the use of this API does not interfere with the Oracle requirement for
creating backups, this API will not change the maintenance start time if the daily
maintenance process did not run in the last 36 hours.

This API is version v2

Required Roes

Service Administrator

REST Resource

PUT /interop/rest/v2/maintenance/setdailymaintenancestarttime

Chapter 11
Setting the Daily Maintenance Time (v2)

11-13

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See About the REST APIs. Using this REST
API requires prerequisites. See Prerequisites.

Request

The following table summarizes the request parameters.

Table 11-8 Parameters

Name Description Type Required Default

StartTime Scheduled time (in HH:00 format using a 24 hour clock) at
which the maintenance process should start and an optional
time zone. Acceptable start time value range is 00:00 - 23:00.
If the start time is not to be set in UTC, specify a valid
standard time zone; for example, "14:00 America/
Los_Angeles" for 2:00 pm Pacific Standard Time.

Payload Yes None

Example URL and Payload

https://<BASE URL>/interop/rest/v2/maintenance/setdailymaintenancestarttime

{"startTime":"08:00"}

Response

Supported Media Types: application/json

Table 11-9 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible value: self
data null

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "details": null,
 "status": 0,
 "items": null,
 "links": [

Chapter 11
Setting the Daily Maintenance Time (v2)

11-14

 {
 "href": " https://<BASE-URL>/interop/rest/v2/maintenance/
setdailymaintenancestarttime",
 "action": "PUT",
 "rel": "self",
 "data": null
 }]
}

Sample cURL command

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d '{"startTime":"08:00"}' 'https://<BASE-
URL>/interop/rest/v2/maintenance/setdailymaintenancestarttime'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Running Daily Maintenance While Skipping the Scheduled Daily
Maintenance (v1)

Use this API (v1) if you want to run daily maintenance while skipping the scheduled daily
maintenance.

This topic describes the original version of this REST API. You can also use the simplified v2
version of the REST API. The v2 version contains all parameters in the payload and does not
require URL encoding while calling the REST APIs. This makes the v2 API easier to use. The
v2 version is backwards compatible.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See About the REST APIs. Using this REST API requires
prerequisites. See Prerequisites.

This API is version v1.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/{api_version}/services/maintenancewindow

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 11
Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v1)

11-15

Request

The following table summarizes the request parameters.

Table 11-10 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

skipNext Specifies if the set maintenance time should be used, true
or false

String Yes false

Response

Supported Media Types: application/json

Table 11-11 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible value: self
data Parameters as key value pairs passed in the request

• Java Code using skipNext:
DailyMaintenanceWithSkipNextv1.java Main method:
runDailyMaintenanceWithSkipNext() Helper method waitForCompletion

• Curl Code using skipNext:
Main method: funcSetMaintenancewithSkipNext

• Groovy Code using skipNext:
DailyMaintenanceWithSkipNextv1.groovy Main method:
runDailyMaintenanceWithSkipNext()

Maintenance Window Time Sample Code

Example 11-7 Java Sample – SetMaintenanceDetails.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

public class DailyMaintenanceWithSkipNextv1 {
 private String userName ; // PBCS user name
 private String password ; // PBCS user password
 private String serverUrl ; // PBCS server URL
 private String lcmVersion = "v1"; // Version of the PBCS API that you are

 public void runDailyMaintenanceWithSkipNext(String comment) throws

Chapter 11
Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v1)

11-16

Exception {
 Scanner in = null;
 try {

 String skipNext = "false";
 JSONObject params = new JSONObject();

 /*Parameter to Skip the next scheduled maintenance report to be
run .
 It is either true or false
 If true the scheduled daily maintenance is run
 If false the scheduled daily maintenance is skipped*/

 params.put("skipNext", skipNext);

 String urlString = String.format(
 "%s/interop/rest/%s/services/maintenancewindow",
serverUrl,
 lcmVersion);
 String response = executeRequest(urlString, "POST",
 params.toString(), "application/json");
 waitForCompletion(fetchPingUrlFromResponse(response, "Job
Status"),"GET");
 } catch (Exception e) {

 } finally {
 in.close();
 }
 }

 private void waitForCompletion(String pingUrlString, String methodType)
 throws Exception {
 boolean completed = false;
 while (!completed) {
 try {
 String pingResponse = executeRequest(pingUrlString,
methodType,
 null, "application/x-www-form-urlencoded");
 JSONObject json = new JSONObject(pingResponse);
 int status = json.getInt("status");
 if (status == -1) {
 try {
 System.out.println("Please wait...");
 Thread.sleep(20000);
 } catch (InterruptedException e) {
 completed = true;
 throw e;
 }
 } else {
 if (status > 0) {
 System.out.println("Error occurred: "
 + json.getString("details"));
 } else {

Chapter 11
Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v1)

11-17

 System.out.println("Completed");
 }
 completed = true;
 }
 } catch (Exception e) {
 System.out.println(e.getMessage());
 // services are down, waiting to come up
 Thread.sleep(60000);
 }
 }
 }

}

Example 11-8 cURL Sample – SetMaintenanceDetails.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

#!/bin/sh
SERVER_URL=""
USERNAME=""
PASSWORD=""
API_VERSION=""
DOMAIN=""

funcSetMaintenancewithSkipNext () {
 url=$SERVER_URL/interop/rest/v1/services/maintenancewindow

 skipNext="false"

 param="{\"skipNext\":\"$skipNext\"}"
 funcExecuteRequest "POST" $url $param "application/json"

 output=`cat response.txt`
 status=`echo $output | jq '.status'`
 if [$status == -1]; then
 echo "Started Daily Maintainence succesfully"
 funcGetStatus "GET"
 else
 error=`echo $output | jq '.details'`
 echo "Error occurred. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"

}

Example 11-9 Groovy Sample – SetMaintenanceDetails.groovy

Prerequisites: json.jar

Chapter 11
Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v1)

11-18

Common Functions: See CSS Common Helper Functions for Groovy

class DailyMaintenanceWithSkipNextv1 {

 def userName // PBCS user name
 def password // PBCS user password
 def serverUrl // PBCS server URL
 def lcmVersion = "v1"; // Version of the PBCS API that you are

 void runDailyMaintenanceWithSkipNext() throws Exception {
 def skipNext = "false"; //true or false based on requirement

 JSONObject params = new JSONObject();
 params.put("skipNext",skipNext);

 String urlString = String.format("%s/interop/rest/%s/services/
maintenancewindow", serverUrl, lcmVersion);
 String response = executeRequest(urlString, "POST",
params.toString(), "application/json");
 waitForCompletion(fetchPingUrlFromResponse(response, "Job Status"));
 }

}

Running Daily Maintenance While Skipping the Scheduled Daily
Maintenance (v2)

Use this REST API (v2) if you want to run daily maintenance with an option to skip the next
scheduled daily maintenance.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See About the REST APIs. Using this REST API requires
prerequisites. See Prerequisites.

This API is version v2

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v2/maintenance/rundailymaintenance

Chapter 11
Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v2)

11-19

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 11-12 Parameters

Name Description Type Required Default

skipNext Specifies if the next scheduled daily maintenance time
should be skipped, true or false

String Yes false

Example URL and Payload

https://<BASE URL>/interop/rest/v2/maintenance/rundailymaintenance

Response

Supported Media Types: application/json

{"skipNext":"true"}

Table 11-13 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible value: self
data Null

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "details": null,
 "status": -1,
 "items": null,
 "links": [
 {
 "href": " https://<BASE-URL>/interop/rest/v2/maintenance/

Chapter 11
Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v2)

11-20

rundailymaintenance",
 "action": "POST",
 "rel": "self",
 "data": null
 },
 {
 "href": " https://<BASE-URL>/interop/rest/v2/status/service/
maintenancewindow/1660115130723",
 "action": "GET",
 "rel": "Job Status",
 "data": null
 }
]
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d '{"skipNext":"true"}' 'https://<BASE
URL>/interop/rest/v2/maintenance/rundailymaintenance'

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Chapter 11
Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v2)

11-21

12
Managing Users

This section describes the REST APIs to manage users.

Table 12-1 Manage Users

Task Request REST Resource

Add Users to an Identity Domain (v1) POST /interop/rest/security/<api_version>/
users

Add Users to an Identity Domain (v2) POST /interop/rest/security/v2/users/add
Remove Users from an Identity Domain
(v1)

DELETE /interop/rest/security/<api_version>/
users?filename=<filename>

Remove Users from an Identity Domain
(v2)

POST /interop/rest/security/v2/users/remove

Assign Users to a Predefined Role or
Application Role (v1)

PUT /interop/rest/security/<api_version>/
users

Assign Users to a Predefined Role or
Application Role (v2)

PUT /interop/rest/security/v2/role/assign/
user

Remove Users' Role Assignment (v1) PUT /interop/rest/security/<api_version>/
users

Remove Users' Role Assignment (v2) PUT /interop/rest/security/v2/role/
unassign/user

Add Users to a Group (v1) PUT /interop/rest/security/<api_version>/
groups

Add Users to a Group (v2) PUT /interop/rest/security/v2/groups/
adduserstogroup

Remove Users from a Group (v1) PUT /interop/rest/security/<api_version>/
groups

Remove Users from a Group (v2) PUT /interop/rest/security/v2/groups/
removeusersfromgroup

Update Users PUT /interop/rest/security/<api_verion>/
users

Add a User to a Batch of Groups PUT /interop/rest/security/<api_version>/
groups

Remove a User from a Batch of Groups PUT /interop/rest/security/<api_version>/
groups

Add Groups (v1) POST /interop/rest/security/<api_version>/
groups

Add Groups (v2) POST /interop/rest/security/v2/groups/add
Remove Groups (v1) DELETE /interop/rest/security/<api_version>/

groups
Remove Groups (v2) POST /interop/rest/security/v2/groups/remove
User Group Report (v1) POST /interop/rest/security/<api_version>/

usergroupreport
User Group Report (v2) GET /interop/rest/security/v2/report/

usergroupreport

12-1

Table 12-1 (Cont.) Manage Users

Task Request REST Resource

User Access Report (v1) POST /interop/rest/{api_version}/reports?
q={type:provisionreport,fileName:provre
port.csv,format=simplified,usertype=ser
viceusers}

User Access Report (v2) POST /interop/rest/v2/reports/useraccess
User Audit Report (v1) POST /interop/rest/{api_version}/reports?

q={type:userauditreport,fileName:userau
ditreport.csv,since=2017-12-10,until=20
18-06-10}

User Audit Report (v2) POST /interop/rest/v2/reports/useraudit
Role Assignment Report (v1) POST /interop/rest/security/{api_version}/

roleassignmentreport
Role Assignment Report for Users (v2) GET /interop/rest/security/v2/report/

roleassignmentreport/user?
userlogin=<userlogin>&rolename=<rolenam
e>

Role Assignment Report for Groups (v2) GET /interop/rest/security/v2/report/
roleassignmentreport/group?
groupname=<groupname>&rolename=<rolenam
e>

Get Available Roles GET /interop/rest/security/v2/role/
getavailableroles

Role Assignment Audit Report for OCI
(Gen 2) Environments

PUT /interop/rest/security/{api_version}/
roleassignmentauditreport/

Invalid Login Report for OCI (Gen 2)
Environments

PUT /interop/rest/security/{api_version}/
invalidloginreport/

Group Assignment Audit Report POST /interop/rest/{api_version}/reports/
groupaudit

Adding Users to a Team for Account
Reconciliation

POST /armARCS/rest/{version}/jobs

Adding Users to a Team for Financial
Consolidation and Close and Tax
Reporting

POST /HyperionPlanning/rest/{api_version}/
applications/{application}/fcmjobs

Removing Users from a Team for
Account Reconciliation

POST /armARCS/rest/{version}/jobs

Removing Users from a Team for
Financial Consolidation and Close and
Tax Reporting

POST /HyperionPlanning/rest/{api_version}/
applications/{application}/fcmjobs

Add Users to an Identity Domain (v1)
Creates a batch of users in an identity domain using an ANSI or UTF-8 encoded Comma
Separated Value (CSV) file that was previously uploaded to the environment. The CSV file
should not include the account of the user who executes this command. You can use the
Upload REST API to upload the file. The file should be deleted after the API executes. With

Chapter 12
Add Users to an Identity Domain (v1)

12-2

this API, you can see which records failed and the reason why they failed in addition to how
many records passed and failed. The file format is as follows:

First Name,Last Name,Email,User Login
Jane,Doe,jane.doe@example.com,jdoe
John,Doe,john.doe@example.com,john.doe@example.com

This API sends each new user an email with details about their accounts (user name and
password) if resetpassword is set to true. If resetpassword is set to false, the email is not
sent. If you set resetpassword to false, you should specify userpassword. Otherwise, a
unique temporary password will be assigned to each user, but, because no email is sent, the
passwords will not be known to the users so they will not be able to log in.

See Importing a Batch of User Accounts in Getting Started with Oracle Cloud for a detailed
description of the CSV file format.

If a user definition in the CSV file matches a user account that exists in the identity domain, no
changes will be made to the existing user account. This API creates accounts only for new
users whose account information is included in the file. Because user accounts are common to
all service environments that an identity domain supports, new users are available to all the
environments that share the identity domain.

This API should be run only by an Identity Domain Administrator in the identity domain where
users are to be created. In addition, the user running the API must also be the Service
Administrator of the environment where the API is targeted.

The API is asynchronous and returns the Job ID. The presence of status -1 in the response
indicates that the creation of users is in progress. Use the job status URI to determine whether
the creation of users is complete. Any non-zero status except -1 indicates failure of adding
users.

Note:

This API assigns one password (value of userpassword) to all the users specified in
the CSV file. Assigning the same password to all users may be desirable if you are
creating users purely for testing purposes.

If you are creating real EPM Cloud users and want to assign a specific password to
each user, use this API for a single user at a time. That is, specify a single user in the
CSV file and provide a password for this user in the API. Then, specify the other user
in the CSV file and provide a different password for this user in the API.

When you add users using this API, unlike when you add users from My Services,
Oracle Cloud does not send automatic emails to each newly added user. You should
manually email credentials (login name and password) to each new user.
Additionally, you should force new users to change password at first login by
specifying resetpassword as true.

This API is version v1.

Required Roles

Identity Domain Administrator and any predefined role (Service Administrator, Power User,
User, or Viewer)

Chapter 12
Add Users to an Identity Domain (v1)

12-3

https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/saas/enterprise-performance-management-common/cepma&id=CSGSG-CSGSG584

REST Resource

POST /interop/rest/security/<api_version>/users

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-2 Tasks for Add Users to an Identity Domain

Task Request REST Resource

Add users POST /interop/rest/security/<api_version>/users
Add users status GET /interop/rest/security/<api_version>/jobs/<jobid>

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the POST request parameters.

Table 12-3 Parameters

Name Description Type Required Default

filename The name of the uploaded ANSI or UTF-8 encoded CSV file
containing the users to add, such as addUsers.csv.

Form Yes None

userpassword Optionally, indicates the default password that you want to
assign to all the new users who are created in the identify
domain. If specified, this password must meet the minimum
identity domain password requirements.
If specified, the value of the user password parameter is
used as the password for all users specified in the CSV file.
Assigning the same password to all users may be desirable if
you are creating users purely for testing purposes. If you are
creating real EPM Cloud users and want to assign a specific
password to each user, use this command without specifying
a valid for the userpassword optional parameter.

Form No None

resetpassword Optionally, indicates whether new users must change
password at the first login. Unless this parameter is set to
false, new users will be forced to change the password at
the first login.
This parameter sends each new user an email with details
about their accounts (user name and password) if
resetPassword is set to true.

If resetPassword is set to false, the email is not sent.

Note: If you set resetPassword to false, you should
specify userPassword. Otherwise, a unique temporary
password will be assigned to each user, but, because no
email is sent, the passwords will not be known to the users,
so they will not be able to log in.

Form No true

Chapter 12
Add Users to an Identity Domain (v1)

12-4

Response

Supported Media Types: application/json

Table 12-4 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/users",
 "data": {
 "jobType": "ADD_USERS",
 "filename": "<filename>",
 "resetpassword": "<true|false>" },
 "action": "POST"
 },
 {
 "rel": "Job Status",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/users",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": -1,
 "items": null
}

Example 2: Job Completes with Errors

{
 "links": [
 {

Chapter 12
Add Users to an Identity Domain (v1)

12-5

 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/",
 "data": null,
 "action": "GET"
 }
],
 "details": "Failed to add users. Input file <fileName> is not found.
Specify a valid file name.",
 "status": 1,
 "items": null
}

Example 3: Job Completes without Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/",
 "data": null,
 "action": "GET"
 }
],
 "details": "Processed - 3, Succeeded - 2, Failed - 1.",
 "status": 0,
 "items": [
 {
 "UserName":"<USERNAME>","Error_Details": "User <USERNAME> already exists.
Please provide a different user name."
 }
]
)

Java Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java

public void addUsers(String fileName, String userPassword, boolean
resetPassword) {
 try {
 String url = this.serverUrl + "/interop/rest/security/
<api_version>/users";
 Map<String, String> reqHeaders = new HashMap<String, String>();
 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", fileName);
 reqParams.put("userpassword", userPassword);
 reqParams.put("resetpassword", resetPassword + "");

 Map<String, String> resetResult = CSSRESTHelper.callRestApi(new

Chapter 12
Add Users to an Identity Domain (v1)

12-6

HashMap(), url, reqHeaders, reqParams,
 "POST");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL

funcAddUsers() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
 params="filename=$1&userpassword=$2&resetpassword=$3"
 header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
 cssRESTAPI="AddUsers"
 statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME"
"$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def addUsers(fileName, resetPassword, userPassword) {

 String scenario = "Creating users in " + fileName;
 String params = "jobtype=ADD_USERS&filename="+ fileName
+"&resetpassword="+ resetPassword +"&userpassword="+ userPassword;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Chapter 12
Add Users to an Identity Domain (v1)

12-7

Sample cURL Command Basic Auth

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -H
'Content-Type: application/x-www-form-urlencoded' -d
'filename=<CSV-FILE-NAME>&resetpassword=<TRUE/FALSE>&userpassword=<PASSWORD>'
'https://<BASE-URL>/interop/rest/security/v1/users'

Sample cURL Command OAuth 2.0

curl -X POST --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H
'Content-Type: application/x-www-form-urlencoded' -d
'filename=<CSV-FILE-NAME>&resetpassword=<VALUE>&userpassword=<PASSWORD>'
'https://<BASE-URL>/interop/rest/security/v1/users'

Add Users to an Identity Domain (v2)
The Add Users to an Identity Domain (v2) REST API adds users that are provided in the
request payload. It sends each new user an email with details about their accounts (user name
and password) if resetpassword is set to true. If resetpassword is set to false, the email is
not sent. If you set resetpassword to false, you should specify userpassword; otherwise, a
unique temporary password will be assigned to each user; but, because no email is sent, the
users will not know that password and they will not be able to log in. If a user definition in the
payload matches a user account that exists in the identity domain, no changes are made to the
existing user account. This API creates accounts only for new users whose account
information is provided in the payload. Because user accounts are common to all service
environments that an identity domain supports, new users are available to all the environments
that share the identity domain.

This API should be run only by an Identity Domain Administrator in the identity domain where
users will be created. In addition, the user running the API must also be assigned a predefined
role in the environment where the API is targeted. With this API, you can see which records
failed and the reason why they failed in addition to how many records passed and failed.

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use.
The API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates failure of adding users.

This API is version v2.

Required Roles

Identity Domain Administrator and any predefined role (Service Administrator, Power User,
User, or Viewer)

REST Resource

POST /interop/rest/security/v2/users/add

Chapter 12
Add Users to an Identity Domain (v2)

12-8

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-5 Tasks for Add Users to an Identity Domain

Task Request REST Resource

Add users POST /interop/rest/security/v2/users/add

Request

Supported Media Types: application/json
The following table summarizes the POST request parameters.

Table 12-6 Parameters

Name Description Type Required Default

users List of users to add Payload Yes None

Example URL and Payload

https://<BASE-URL>/interop/rest/security/v2/users/add

{
 "users":
 [
 {
 "firstname": "Jane",
 "lastname": "Doe",
 "email": "jane.doe@example.com",
 "userlogin": "jdoe",
 "resetpassword": true
 },
 {
 "firstname": "chris",
 "lastname": "west",
 "email": "chris.west@example.com",
 "userlogin": "chris",
 "password": "userPassword",
 "resetpassword": false
 }
]
}

Response

Supported Media Types: application/json

Chapter 12
Add Users to an Identity Domain (v2)

12-9

Table 12-7 Parameters

Name Description

links Detailed information about the link and HTTP call type

status Identifies the status of the operation
• 0: Operation succeeded
• 1: Operation failed

error Detailed information about the error

details Detailed status of the operation performed. Total number of records
processed, succeeded, and failed and reason why they failed.

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job Completes without Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/users/add",
 "action": "POST"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 3,
 "succeeded": 3,
 "failed": 0,
 "faileditems": null
 }
}

Example 2: Job Completes with Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/users/add",
 "action": "POST"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21146",
 "errormessage": "Failed to add users. Invalid or insufficient
parameters specified. Provide all required parameters for the REST API."
 },
 "details": null
}

Example 3: Job Completes with Partial Errors

{
 "links": {

Chapter 12
Add Users to an Identity Domain (v2)

12-10

 "href": "https://<BASE-URL>/interop/rest/security/v2/users/add",
 "action": "POST"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 5,
 "succeeded": 3,
 "failed": 2,
 "faileditems":
 [
 {
 "userlogin": "jdoe",
 "errorcode": "EPMCSS-21150",
 "errormessage": "Failed to add user. Invalid email
jdoe.com. Please provide a valid email."
 },
 {
 "userlogin": "chris",
 "errorcode": "EPMCSS-21151",
 "errormessage": "Failed to add user. Missing
[firstname]. Please provide value: [firstname]."
 }
]
 }
}

Sample cURL Command Basic Auth

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -H
'Content-Type: application/json' -d'{"users":
[{"firstname":"<FIRSTNAME>","lastname":"<LASTNAME>",
"email":"<EMAIL>","userlogin":"<USERLOGIN>","password":"<PASSWORD>","resetpass
word":<TRUE/FALSE>}]}'
'https://<BASE-URL>/interop/rest/security/v2/users/add'

Sample cURL Command OAuth 2.0

curl -X POST --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H
'Content-Type: application/json' -d '{"users":
[{"firstname":"<FIRSTNAME>","lastname":"<LASTNAME>",
"email":"<EMAIL>","userlogin":"<USERLOGIN>","password":"<PASSWORD>","resetpass
word":<TRUE/FALSE>}]}
' 'https://<BASE-URL>/interop/rest/security/v2/users/add'

Chapter 12
Add Users to an Identity Domain (v2)

12-11

Remove Users from an Identity Domain (v1)
Deletes the identity domain accounts identified in an ANSI or UTF-8 encoded CSV file that was
uploaded to the environment. Before running this command, use the Upload REST API to
upload the file. The file format is as follows:

User Login
jane.doe@example.com
jdoe@example.com

This API should be run only by Service Administrators who are also assigned to the Identity
Domain Administrator role in the identity domain from which users are to be removed. The
CSV file should not include the account of the user who executes this command. Because user
accounts are common to all service environments that an Identity Domain Administrator
supports, deleting an account for one environment deletes it for all environments that share the
Identity Domain Administrator. With this API, you can see which records failed and the reason
why they failed in addition to how many records passed and failed.

The API is asynchronous and returns the Job ID. The presence of status -1 in the response
indicates that the removal of users is in progress. Use the job status URI to determine whether
the removal of users is complete. Any non-zero status except -1 indicates failure of removing
users.

This API is version v1.

Required Roles

Identity Domain Administrator and any predefined role (Service Administrator, Power User,
User, or Viewer)

REST Resource

DELETE /interop/rest/security/<api_version>/users?filename=<filename>

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-8 Tasks for Remove Users from an Identity Domain

Task Request REST Resource

Remove users DELETE /interop/rest/security/<api_version>/users?filename=<filename>
Remove users status GET /interop/rest/security/<api_version>/jobs/

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the DELETE request parameters.

Chapter 12
Remove Users from an Identity Domain (v1)

12-12

Table 12-9 Parameters

Name Description Type Required Default

filename The name of the uploaded ANSI or UTF-8 encoded CSV file
name of a CSV file containing the login names of the users to
be removed, for example, removeUsers.csv.

Query Yes None

Response

Supported Media Types: application/json

Table 12-10 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/users?
filename=<filename>",
 "data": {
 "jobType": "REMOVE_USERS",
 "filename": "<filename>"
 },
 "action": "DELETE"
 },
 {
 "rel": "Job Status",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": -1,

Chapter 12
Remove Users from an Identity Domain (v1)

12-13

 "items": null
}

Example 2: Job Completes with Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/",
 "data": null,
 "action": "GET"
 }
],
 "details": "Failed to remove users. Input file <filename> is not found.
Specify a valid file name.",
 "status": 1,
 "items": null
}

Example 3: Job Completes without Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/",
 "data": null,
 "action": "GET"
 }
],
 "details": "Processed - 3, Succeeded - 1, Failed - 2.",
 "status": 0,
 "items": [
 {
 "UserName":"<USERNAME>","Error_Details": "User <USERNAME> is not
found. Verify that the user exists."
 },
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java.

public void removeUsers(String fileName) {
 try {
 String url = this.serverUrl + "/interop/rest/security/
<api_version>/users";
 Map<String, String> reqHeaders = new HashMap<String, String>();
 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

Chapter 12
Remove Users from an Identity Domain (v1)

12-14

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", fileName);

 Map<String, String> restResult = CSSRESTHelper.callRestApi(new
HashMap(), url, reqHeaders, reqParams,
 "DELETE");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL.

funcRemoveUsers() {
 url="$SERVER_URL/interop/rest/security/<api_version>/users"
 params="filename=$1"
 header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
 cssRESTAPI="RemoveUsers"
 statusMessage=$(funcCSSRESTHelper "DELETE" "$url" "$header"
"$USERNAME" "$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}

Groovy Sample Code

CSS Common Helper Functions for Groovy.

def deleteUsers(fileName) {

 String scenario = "Deleting users in " + fileName;
 String params = null;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/<api_version>/users?
filename=" + fileName);
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "DELETE", null, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Chapter 12
Remove Users from an Identity Domain (v1)

12-15

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Sample cURL Command Basic Auth

curl -X DELETE -s -u '<USERNAME>:<PASSWORD>' -H
'Content-Type: application/x-www-form-urlencoded'
'https://<BASE-URL>/interop/rest/security/v1/users?filename=<CSV-FILE-NAME>'

Sample cURL Command OAuth 2.0

curl -X DELETE --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H
'Content-Type: application/x-www-form-urlencoded'
'https://<BASE-URL>/interop/rest/security/v1/users?filename=<CSV-FILE-NAME>'

Remove Users from an Identity Domain (v2)
The Remove Users from an Identity Domain (v2) REST API deletes the accounts indentified in
an identity domain that are provided in the request payload.

This API should be run only by a user who is assigned to the Identity Domain Administrator
role in the identity domain from which users are to be removed. In addition, this user should
also have a predefined role in the environment on which the API is run. The payload should not
include the account of the user who executes this command. Because user accounts are
common to all service environments that an identity domain supports, deleting an account for
one environment deletes it for all environments that share the identity domain. With this API,
you can see which records failed and the reason why they failed in addition to how many
records passed and failed.

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use.

The API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates failure of removing users.

This API is version v2.

Required Roles

Identity Domain Administrator and any predefined role (Service Administrator, Power User,
User, or Viewer)

REST Resource

POST /interop/rest/security/v2/users/remove

Chapter 12
Remove Users from an Identity Domain (v2)

12-16

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-11 Tasks for Remove Users from an Identity Domain

Task Request REST Resource

Remove users POST /interop/rest/security/v2/users/remove

Request

Supported Media Types: application/json
The following table summarizes the POST request parameters.

Table 12-12 Parameters

Name Description Type Required Default

users List of user login IDs of the users to remove Payload Yes None

Example URL and Payload

https://<BASE-URL>/interop/rest/security/v2/users/remove

{
 "users":
 [
 {
 "userlogin": "jdoe"
 },
 {
 "userlogin": "chris"
 }
]
}

Response

Supported Media Types: application/json

Table 12-13 Parameters

Name Description

links Detailed information about the link and HTTP call type

status Identifies the status of the operation
• 0: Operation succeeded
• 1: Operation failed

Chapter 12
Remove Users from an Identity Domain (v2)

12-17

Table 12-13 (Cont.) Parameters

Name Description

error Detailed information about the error

details Detailed status of the operation performed. Total number of records
processed, succeeded, and failed and reason for why it failed.

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job Completes without Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/users/
remove",
 "action": "POST"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 2,
 "succeeded": 2,
 "failed": 0,
 "faileditems": null
 }

Example 2: Job Completes with Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/users/
remove",
 "action": "POST"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21147",
 "errormessage": "Failed to remove users. Invalid or
insufficient parameters specified. Provide all required parameters for the
REST API."
 },
 "details": null
}

Example 3: Job Completes with Partial Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/users/
remove",
 "action": "POST"

Chapter 12
Remove Users from an Identity Domain (v2)

12-18

 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 5,
 "succeeded": 3,
 "failed": 2,
 "faileditems":
 [
 {
 "userlogin": "jdoe",
 "errorcode": "EPMCSS-21174",
 "errormessage": "Failed to remove user. User jdoe
does not exist. Provide a valid userlogin."
 },
 {
 "userlogin": "chris",
 "errorcode": "EPMCSS-21174",
 "errormessage": " Failed to remove user. User chris
does not exist. Provide a valid userlogin."
 }
]
 }
}

Sample cURL Command Basic Auth

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -H
'Content-Type: application/json' -d '{"users":[{"userlogin":"<USERLOGIN>"},
{"userlogin":"<USERLOGIN>"}]}'
'https://<BASE-URL>/interop/rest/security/v2/users/remove'

Sample cURL Command OAuth 2.0

curl -X POST --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H
'Content-Type: application/json' -d '{"users":[{"userlogin":"<USERLOGIN>"},
{"userlogin":"<USERLOGIN>"}]}'
'https://<BASE-URL>/interop/rest/security/v2/users/remove'

Assign Users to a Predefined Role or Application Role (v1)
This API assigns users included in an ANSI or UTF-8 encoded CSV file to a pre-defined or
application role. Use this API to assign users (including the user who invokes this API) to a
pre-defined role or to assign a user with application roles.

To assign a user to an application role, that user should already have a pre-defined role
assigned to them.

Use double quotation marks to enclose role names that contain space characters in the CSV
file. Before using this API, use the Upload REST API to upload files to the environment. The
file should be deleted after the API executes.

Chapter 12
Assign Users to a Predefined Role or Application Role (v1)

12-19

The file format is as follows:

User Login
jane.doe@example.com
jdoe

The API is asynchronous and returns the Job ID. The presence of status -1 in the response
indicates that assigning users is in progress. Use the job status URI to determine whether the
assignment of roles is complete. Any non-zero status except -1 indicates failure of assigning
users. With this API, you can see which records failed and the reason why they failed, in
addition to how many records passed and failed.

This API is version v1.

Required Roles

For predefined roles:

Classic environments: Identity Domain Administrator and any predefined role (Service
Administrator, Power User, User, or Viewer)

OCI environments: Service Administrator, or Identity Domain Administrator and any predefined
role (Power User, User, or Viewer)

For application roles:

Service Administrator or Access Control Manager

REST Resource

PUT /interop/rest/security/<api_version>/users

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-14 Tasks for Assign Users to Roles

Task Request REST Resource

Assign role PUT /interop/rest/security/<api_version>/users
Assign role status GET /interop/rest/security/<api_version>/jobs/<jobid>

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the PUT request parameters.

Chapter 12
Assign Users to a Predefined Role or Application Role (v1)

12-20

Table 12-15 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

jobtype ASSIGN_ROLE Form Yes None

filename The name of the ANSI or UTF-8 encoded CSV file containing
the login IDs of the users whose role assignment is to be
modified, such as assignRoles.csv.

Form Yes None

Chapter 12
Assign Users to a Predefined Role or Application Role (v1)

12-21

Table 12-15 (Cont.) Parameters

Name Description Type Required Default

rolename The name of a pre-defined or application role applicable to
the service. An incorrect role name will result in an error.

It identifies one of the following:
• If you are assigning users to a pre-defined identity

domain role, roleName should identify a pre-defined role
applicable to the service. See Understanding Predefined
Roles in Getting Started with Oracle Enterprise
Performance Management Cloud for Administrators.

• Acceptable values for services other than Oracle
Enterprise Data Management Cloud:
– Service Administrator
– Power User
– User (do not use Planner, which was used in earlier

versions of the service)
– Viewer

• Acceptable values for Oracle Enterprise Data
Management Cloud:
– Service Administrator
– User

• If you are assigning users to an application role,
roleName should identify an application role listed in the
assign roles tab of Access Control.
Acceptable values for FreeForm, Planning, Planning
Modules, Sales Planning, Strategic Workforce Planning,
Financial Consolidation and Close, and Tax Reporting
applications:

– Approvals Administrator
– Approvals Ownership Assigner
– Approvals Supervisor
– Approvals Proess Designer
– Ad Hoc Grid Creator
– Ad Hoc User
– Ad Hoc Read Only User
– Calculation Manager Administrator
– Create Integration
– Drill Through
– Run Integration
– Mass Allocation
– Task List Access Manager
Acceptable values for Account Reconciliation :

– Manage Alert Types
– Manage Announcements
– Manage Data Loads
– Manage Organizations
– Manage Periods
– Manage Profiles and Reconciliations
– Reconciliation Manage Currencies
– Reconciliation Manage Public Filters and Lists
– Reconciliation Manage Reports
– Reconciliation Manage Teams
– Reconciliation Manage Users
– Reconciliation Commentator

Form Yes None

Chapter 12
Assign Users to a Predefined Role or Application Role (v1)

12-22

Table 12-15 (Cont.) Parameters

Name Description Type Required Default

– Reconciliation Preparer
– Reconciliation Reviewer
– Reconciliation View Jobs
– Reconciliation View Profiles
– View Audit
– View Periods

• Acceptable values for Oracle Enterprise Data
Management Cloud applications:
– Application Creator
– Auditor
– View Creator

• Acceptable values for Oracle Enterprise Profitability and
Cost Management applications:
– Ad Hoc Grid Creator
– Ad Hoc Read Only User
– Ad Hoc User
– Clear POV Data
– Copy POV Data
– Create/Edit Rule
– Create Integration
– Create Model
– Create POV
– Create Profit Curve
– Delete Calculation History
– Delete Model
– Delete POV
– Delete Rule
– Drill Through
– Edit POV Status
– Edit Profit Curve
– Mass Edit of Rules
– Run Calculation
– Run Integration
– Run Profit Curve
– Run Rule Balancing
– Run Trace Allocation
– Run Validation
– View Calculation History
– View Model

• Acceptable values for Oracle Enterprise Profitability and
Cost Management applications:
– Ad Hoc Grid Creator
– Ad Hoc Read Only User
– Ad Hoc User
– Clear POV Data
– Copy POV Data
– Create/Edit Rule
– Create Integration
– Create Model
– Create POV
– Create Profit Curve

Chapter 12
Assign Users to a Predefined Role or Application Role (v1)

12-23

Table 12-15 (Cont.) Parameters

Name Description Type Required Default

– Delete Calculation History
– Delete Model
– Delete POV
– Delete Rule
– Drill Through
– Edit POV Status
– Edit Profit Curve
– Mass Edit of Rules
– Run Calculation
– Run Integration
– Run Profit Curve
– Run Rule Balancing
– Run Trace Allocation
– Run Validation
– View Calculation History
– View Model

For a description of these roles, see Managing Role
Assignments at the Application Level in Administering
Access Control for Oracle Enterprise Performance
Management Cloud.

Response

Supported Media Types: application/json

Table 12-16 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
 "links": [
 {
 "rel": "self",

Chapter 12
Assign Users to a Predefined Role or Application Role (v1)

12-24

 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/users",
 "data": {
 "jobType": "ASSIGN_ROLE",
 "filename": "<filename>",
 "rolename": "<rolename>"
 },
 "action": "PUT"
 },
 {
 "rel": "Job Status",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobid>",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": -1,
 "items": null
}

Example 2: Job Completes with Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobid>",
 "data": null,
 "action": "GET"
 }
],
 "details": " Failed to assign role for users. Input file <filename> is not
found. Specify a valid file name.",
 "status": 1,
 "items": null
}

Example 3: Job Completes without Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobid>",
 "data": null,
 "action": "GET"
 }
],
 "details": "Processed - 3, Succeeded - 2, Failed - 1.",
 "status": 0,
 "items": [
 {

Chapter 12
Assign Users to a Predefined Role or Application Role (v1)

12-25

 "UserName":"<USERNAME>","Error_Details": "User <USERNAME> is not
found. Verify that the user exists."
 }
]
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java.

public void assignRole(String fileName, String roleName) {
 try {
 String url = this.serverUrl + "/interop/rest/security/" +
apiVersion + "/users";
 Map<String, String> reqHeaders = new HashMap<String, String>();
 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", fileName);
 reqParams.put("jobtype", "ASSIGN_ROLE");
 reqParams.put("rolename", roleName);

 Map<String, String> restResult = CSSRESTHelper.callRestApi(new
HashMap(), url, reqHeaders, reqParams,
 "PUT");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL.

funcAssignRole() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
 params="filename=$1&jobtype=ASSIGN_ROLE&rolename=$2"
 header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
 cssRESTAPI="AssignRole"
 statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME"
"$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}

Chapter 12
Assign Users to a Predefined Role or Application Role (v1)

12-26

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy.

def assignUsersRoles(fileName, roleName) {

 String scenario = "Assigning users in " + fileName + " with role " +
roleName;
 String params = "jobtype=ASSIGN_ROLE&filename="+ fileName +"&rolename="+
roleName;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Sample cURL Command Basic Auth

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -H
'Content-Type: application/x-www-form-urlencoded' -d
'jobtype=ASSIGN_ROLE&filename=<CSV-FILE-NAME>&rolename=<ROLENAME>'
'https://<BASE-URL>/interop/rest/security/v1/users'

Sample cURL Command OAuth 2.0

curl -X PUT --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H
'Content-Type: application/x-www-form-urlencoded' -d
'jobtype=ASSIGN_ROLE&filename=<CSV-FILE-NAME>&rolename=<ROLENAME>'
'https://<BASE-URL>/interop/rest/security/v1/users'

Assign Users to a Predefined Role or Application Role (v2)
The Assign Users to a Predefined Role or Application Role (v2) REST API assigns a pre-
defined or an application role to users provided in the REST API payload. To assign a user to
an application role, that user should already have a pre-defined role assigned to them.

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use.

The API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates that assigning users to roles failed. With this API, you can see which

Chapter 12
Assign Users to a Predefined Role or Application Role (v2)

12-27

records failed and the reason why they failed, in addition to how many records passed and
failed.

This API is version v2.

Required Roles

For predefined roles:

Classic environments: Identity Domain Administrator and any predefined role (Service
Administrator, Power User, User, or Viewer)

OCI environments: Service Administrator, or Identity Domain Administrator and any predefined
role (Power User, User, or Viewer)

For application roles:

Service Administrator or Access Control Manager

REST Resource

PUT /interop/rest/security/v2/role/assign/user

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-17 Tasks for Assign Users to Roles

Task Request REST Resource

Assign role PUT /interop/rest/security/v2/role/assign/user

Request

Supported Media Types: application/json
The following table summarizes the PUT request parameters.

Chapter 12
Assign Users to a Predefined Role or Application Role (v2)

12-28

Table 12-18 Parameters

Name Description Type Required Default

rolename The name of a pre-defined or application role applicable
to the service. An incorrect role name will result in an
error.
It identifies one of the following:
• If you are assigning users to a pre-defined role,

roleName should identify a pre-defined role
applicable to the service. See "Understanding
Predefined Roles" in Getting Started with Oracle
Enterprise Performance Management Cloud for
Administrators.

• Acceptable values for services other than Oracle
Enterprise Data Management Cloud:
– Service Administrator
– Power User
– User (do not use Planner, which was used in

earlier versions of the service)
– Viewer

• Acceptable values for Oracle Enterprise Data
Management Cloud:
– Service Administrator
– User

• If you are assigning users to an application role,
roleName should identify an application role listed
in the tab of Access Control.
Acceptable values for FreeForm, Planning, Planning
Modules, Sales Planning, Strategic Workforce
Planning, Financial Consolidation and Close, and
Tax Reporting applications:
– Approvals Administrator
– Approvals Ownership Assigner
– Approvals Supervisor
– Approvals Process Designer
– Ad Hoc Grid Creator
– Ad Hoc User
– Ad Hoc Read Only User
– Calculation Manager Administrator
– Create Integration
– Drill Through
– Run Integration
– Mass Allocation
– Task List Access Manager
Acceptable values for Account Reconciliation:
– Manage Alert Types
– Manage Announcements
– Manage Data Loads
– Manage Organizations
– Manage Periods
– Manage Profiles and Reconciliations
– Reconciliation Manage Currencies
– Reconciliation Manage Public Filters and Lists
– Reconciliation Manage Reports
– Reconciliation Manage Teams

Payload Yes None

Chapter 12
Assign Users to a Predefined Role or Application Role (v2)

12-29

Table 12-18 (Cont.) Parameters

Name Description Type Required Default

– Reconciliation Manage Users
– Reconciliation Commentator
– Reconciliation Preparer
– Reconciliation Reviewer
– Reconciliation View Jobs
– Reconciliation View Profiles
– View Audit
– View Periods

• Acceptable values for Oracle Enterprise Data
Management Cloudapplications:
– Application Creator
– Auditor
– View Creator

• Acceptable values for Enterprise Profitability and
Cost Management applications:
– Ad Hoc Grid Creator
– Ad Hoc Read Only User
– Ad Hoc User
– Clear POV Data
– Copy POV Data
– Create/Edit Rule
– Create Integration
– Create Model
– Create POV
– Create Profit Curve
– Delete Calculation History
– Delete Model
– Delete POV
– Delete Rule
– Drill Through
– Edit POV Status
– Edit Profit Curve
– Mass Edit of Rules
– Run Calculation
– Run Integration
– Run Profit Curve
– Run Rule Balancing
– Run Trace Allocation
– Run Validation
– View Calculation History
– View Model

For a description of these roles, see "Managing Role
Assignments at the Application Level" in Administering
Access Control for Oracle Enterprise Performance
Management Cloud .

users List of user login IDs of the users whose role assignment
is to be modified.

Payload Yes None

Chapter 12
Assign Users to a Predefined Role or Application Role (v2)

12-30

Example URL and Payload

https://<BASE-URL>/interop/rest/security/v2/role/assign/user

{
 "rolename": "Service Administrator",
 "users": [
 {
 "userlogin": "jdoe"
 },
 {
 "userlogin": "chris"
 }
]
}

Response

Supported Media Types: application/json

Table 12-19 Parameters

Name Description

links Detailed information about the link and HTTP call type

status Identifies the status of the operation
• 0: Operation Success
• 1: Operation Failed

error Detailed information about the error

details Detailed status of the operation performed. Total number of records
processed, succeeded, and failed and reason for why it failed.

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job Completes without Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/role/assign/
user",
 "action": "PUT"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 3,
 "succeeded": 3,
 "failed": 0,
 "faileditems": null
 }
}

Chapter 12
Assign Users to a Predefined Role or Application Role (v2)

12-31

Example 2: Job Completes with Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/role/assign/
user",
 "action": "PUT"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21000",
 "errormessage": "Failed to assign role. Invalid role name <rolename>.
Please provide a valid role name."
 },
 "details": null
}

Example 3: Job Completes with Partial Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/role/assign/
user",
 "action": "PUT"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 5,
 "succeeded": 3,
 "failed": 2,
 "faileditems":
 [
 {
 "userlogin": "jdoe",
 "errorcode": "EPMCSS-21002",
 "errormessage": "Failed to assign role. User jdoe does not
exist. Provide a valid userlogin."
 },
 {
 "userlogin": "chris",
 "errorcode": "EPMCSS-21002",
 "errormessage": "Failed to assign role. User chris does not
exist. Provide a valid userlogin."
 }
]
 }
}

Sample cURL Command Basic Auth

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -H
'Content-Type: application/json' -d '{"rolename":"<ROLENAME>","users":

Chapter 12
Assign Users to a Predefined Role or Application Role (v2)

12-32

[{"userlogin":"<USERLOGIN>"},{"userlogin":"<USERLOGIN>"}]}'
'https://<BASE-URL>/interop/rest/security/v2/role/assign/user'

Sample cURL Command OAuth 2.0

curl -X PUT --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H
'Content-Type: application/json' -d '{"rolename":"<ROLENAME>","users":
[{"userlogin":"<USERLOGIN>"},{"userlogin":"<USERLOGIN>"}]}'
'https://<BASE-URL>/interop/rest/security/v2/role/assign/user'

Remove Users' Role Assignment (v1)
Removes one role currently assigned to the users (including the user who invokes this API)
whose login IDs are included in the ANSI or UTF-8 encoded CSV file that is used with this
command. Before running this API, upload the file to the environment using the Upload REST
API. The file should be deleted after the API executes. With this API, you can see which
records failed and the reason why they failed in addition to how many records passed and
failed.

Use double quotation marks to enclose role names that contain the space character.

The API is asynchronous and returns the Job ID. The presence of status -1 in the response
indicates that the removal of role assignments is in progress. Use the job status URI to
determine whether unassigning roles is complete. Any non-zero status except -1 indicates
failure of unassigning roles.

This API is version v1.

Required Roles

For predefined roles:

Classic environments: Identity Domain Administrator and any predefined role (Service
Administrator, Power User, User, or Viewer)

OCI environments: Service Administrator, or Identity Domain Administrator and any predefined
role (Power User, User, or Viewer)

For application roles:

Service Administrator or Access Control Manager

REST Resource

PUT /interop/rest/security/<api_version>/users

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 12
Remove Users' Role Assignment (v1)

12-33

Table 12-20 Tasks for Unassign Users to Roles

Task Request REST Resource

Unassign role PUT /interop/rest/security/<api_version>/users
Unassign role status GET /interop/rest/security/<api_version>/jobs/<jobid>

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the PUT request parameters.

Table 12-21 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

jobtype UNASSIGN_ROLE Form Yes None

filename The name of the ANSI or UTF-8 encoded CSV file containing
the users whose role assignment is to be revoked, such as
unssignRole.csv.

The CSV file must have been uploaded already using the
Upload REST API. The CSV file should not include the
account of the user who executes this command.

File format example:

User Login
<email>
<FirstName2.LastName2>

Form Yes None

Chapter 12
Remove Users' Role Assignment (v1)

12-34

Table 12-21 (Cont.) Parameters

Name Description Type Required Default

rolename The name of a pre-defined or application role applicable to
the service. An incorrect role name will result in an error.

It identifies one of the following:
• If you are removing users from a pre-defined role,

roleName should identify a pre-defined role applicable to
the service. See Understanding Predefined Roles in
Getting Started with Oracle Enterprise Performance
Management Cloud for Administrators.

• Acceptable values for services other than Oracle
Enterprise Data Management Cloud:
– Service Administrator
– Power User
– User (do not use Planner, which was used in earlier

versions of the service)
– Viewer

• Acceptable values for Oracle Enterprise Data
Management Cloud:
– Service Administrator
– User

• If you are removing users from an application role,
roleName should identify an application role listed in the
assign roles tab of Access Control. Acceptable values
for Oracle Planning, Oracle Planning Modules, Oracle
Financial Consolidation and Close, Sales Planning,
Strategic Workforce Planning, and Oracle Tax Reporting
applications:
– Approvals Administrator
– Approvals Ownership Assigner
– Approvals Process Desiger
– Approvals Supervisor
– Ad Hoc Grid Creator
– Ad Hoc User
– Ad Hoc Read Only User
– Calculation Manager Administrator
– Create Integration
– Drill Through
– Run Integration
– Mass Allocation
– Task List Access Manager

• Acceptable values for Account Reconciliation
applications:
– Manage Alert Types
– Manage Announcements
– Manage Data Loads
– Manage Organizations
– Manage Periods
– Manage Profiles and Reconciliations
– Reconciliation Manage Currencies
– Reconciliation Manage Public Filters and Lists
– Reconciliation Manage Reports
– Reconciliation Manage Teams
– Reconciliation Manage Users

Form Yes None

Chapter 12
Remove Users' Role Assignment (v1)

12-35

Table 12-21 (Cont.) Parameters

Name Description Type Required Default

– Reconciliation Commentator
– Reconciliation Preparer
– Reconciliation Reviewer
– Reconciliation View Jobs
– Reconciliation View Profiles
– View Audit
– View Periods

• Acceptable values for Oracle Enterprise Data
Management Cloud applications:
– Application Creator
– Auditor
– View Creator

• Acceptable values for Oracle Enterprise Profitability and
Cost Management applications:
– Ad Hoc Grid Creator
– Ad Hoc Read Only User
– Ad Hoc User
– Clear POV Data
– Copy POV Data
– Create/Edit Rule
– Create Integration
– Create Model
– Create POV
– Create Profit Curve
– Delete Calculation History
– Delete Model
– Delete POV
– Delete Rule
– Drill Through
– Edit POV Status
– Edit Profit Curve
– Mass Edit of Rules
– Run Calculation
– Run Integration
– Run Profit Curve
– Run Rule Balancing
– Run Trace Allocation
– Run Validation
– View Calculation History
– View Model

For a description of these roles, see Managing Role
Assignments at the Application Level in Administering
Access Control for Oracle Enterprise Performance
Management Cloud.

Response

Supported Media Types: application/json

Chapter 12
Remove Users' Role Assignment (v1)

12-36

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/pappm/index.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/pappm/index.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/pappm/index.html

Table 12-22 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is Job Details

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/users",
 "data": {
 "jobtype": "UNASSIGN_ROLE",
 "filename": "<fileName>",
 "rolename": "<roleName>"
 },
 "action": "PUT"
 },
 {
 "rel": "Job Status",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobid>",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": -1,
 "items": null
}

Example 2: Job Completes with Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/

Chapter 12
Remove Users' Role Assignment (v1)

12-37

<jobid>",
 "data": null,
 "action": "GET"
 }
],
 "details": "Failed to unassign role for users. Input file <filename> is not
found. Specify a valid file name.",
 "status": 1,
 "items": null
}

Example 3: Job Completes without Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobid>",
 "data": null,
 "action": "GET"
 }
],
 "details": "Processed - 3, Succeeded - 2, Failed - 1.",
 "status": 0,
 "items": [
 {
 "UserName":"<USERNAME>","Error_Details": "User <USERNAME> is not
found. Verify that the user exists."
 }
]
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java

public void unassignRole(String fileName, String roleName) {
 try {
 String url = this.serverUrl + "/interop/rest/security/" +
apiVersion + "/users";
 Map<String, String> reqHeaders = new HashMap<String, String>();
 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", fileName);
 reqParams.put("jobtype", "UNASSIGN_ROLE");
 reqParams.put("rolename", roleName);

 Map<String, String> restResult = CSSRESTHelper.callRestApi(new
HashMap(), url, reqHeaders, reqParams,

Chapter 12
Remove Users' Role Assignment (v1)

12-38

 "PUT");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL.

funcUnassignRole() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
 params="filename=$1&jobtype=UNASSIGN_ROLE&rolename=$2"
 header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
 cssRESTAPI="UnassignRole"
 statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME"
"$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy.

def unassignUsersRoles(fileName, roleName) {

 String scenario = "Un-assigning users in " + fileName + " with role " +
roleName;
 String params = "jobtype=UNASSIGN_ROLE&filename="+ fileName
+"&rolename="+ roleName;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Chapter 12
Remove Users' Role Assignment (v1)

12-39

Sample cURL Command Basic Auth

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -H'Content-Type: application/x-www-
form-urlencoded' -d
' jobtype=UNASSIGN_ROLE&filename=<CSV-FILE-NAME>&rolename=<ROLENAME>'
'https://<BASE-URL>/interop/rest/security/v1/users'

Sample cURL Command OAuth 2.0

curl -X PUT --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H 'Content-
Type: application/x-www-form-urlencoded' -d
'jobtype=UNASSIGN_ROLE&filename=<CSV-FILE-NAME>&rolename=<ROLENAME>'
'https://<BASE-URL>/interop/rest/security/v1/users'

Remove Users' Role Assignment (v2)
The Remover Users' Role Assignment (v2) REST API removes a pre-defined or application
role from users provided in the REST API payload. To unassign a user from an application role,
the user should exist in Oracle Enterprise Performance Management Cloud.

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use.

The API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates that removing users from roles failed. With this API, you can see which
records failed and the reason why they failed, in addition to how many records passed and
failed.

This API is version v2.

Required Roles

For predefined roles:

Classic environments: Identity Domain Administrator and any predefined role (Service
Administrator, Power User, User, or Viewer)

OCI environments: Service Administrator, or Identity Domain Administrator and any predefined
role (Power User, User, or Viewer)

For application roles:

Service Administrator or Access Control Manager

REST Resource

PUT /interop/rest/security/v2/role/unassign/user

Chapter 12
Remove Users' Role Assignment (v2)

12-40

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-23 Tasks for Unassign Users to Roles

Task Request REST Resource

Unassign role PUT /interop/rest/security/v2/role/unassign/user

Request

Supported Media Types: application/json
The following table summarizes the PUT request parameters.

Chapter 12
Remove Users' Role Assignment (v2)

12-41

Table 12-24 Parameters

Name Description Type Required Default

rolename The name of a pre-defined or application role applicable
to the service. An incorrect role name will result in an
error.
It identifies one of the following:
• If you are removing users from a pre-defined role,

roleName should identify a pre-defined role
applicable to the service. See "Understanding
Predefined Roles" in Getting Started with Oracle
Enterprise Performance Management Cloud for
Administrators.

• Acceptable values for services other than Oracle
Enterprise Data Management Cloud:
– Service Administrator
– Power User
– User (do not use Planner, which was used in

earlier versions of the service)
– Viewer

• Acceptable values for Oracle Enterprise Data
Management Cloud:
– Service Administrator
– User

• If you are removing users from an application role,
roleName should identify an application role listed
in the Manage Application Roles tab of Access
Control.
Acceptable values for FreeForm, Planning, Planning
Modules, Sales Planning, Strategic Workforce
Planning, Financial Consolidation and Close, and
Tax Reporting applications:
– Approvals Administrator
– Approvals Ownership Assigner
– Approvals Supervisor
– Approvals Process Designer
– Ad Hoc Grid Creator
– Ad Hoc User
– Ad Hoc Read Only User
– Calculation Manager Administrator
– Create Integration
– Drill Through
– Run Integration
– Mass Allocation
– Task List Access Manager
Acceptable values for Account Reconciliation:
– Manage Alert Types
– Manage Announcements
– Manage Data Loads
– Manage Organizations
– Manage Periods
– Manage Profiles and Reconciliations
– Reconciliation Manage Currencies
– Reconciliation Manage Public Filters and Lists
– Reconciliation Manage Reports

Payload Yes None

Chapter 12
Remove Users' Role Assignment (v2)

12-42

Table 12-24 (Cont.) Parameters

Name Description Type Required Default

– Reconciliation Manage Teams
– Reconciliation Manage Users
– Reconciliation Commentator
– Reconciliation Preparer
– Reconciliation Reviewer
– Reconciliation View Jobs
– Reconciliation View Profiles
– View Audit
– View Periods

• Acceptable values for Oracle Enterprise Data
Management Cloudapplications:
– Application Creator
– Auditor
– View Creator

• Acceptable values for Enterprise Profitability and
Cost Management applications:
– Ad Hoc Grid Creator
– Ad Hoc Read Only User
– Ad Hoc User
– Clear POV Data
– Copy POV Data
– Create/Edit Rule
– Create Integration
– Create Model
– Create POV
– Create Profit Curve
– Delete Calculation History
– Delete Model
– Delete POV
– Delete Rule
– Drill Through
– Edit POV Status
– Edit Profit Curve
– Mass Edit of Rules
– Run Calculation
– Run Integration
– Run Profit Curve
– Run Rule Balancing
– Run Trace Allocation
– Run Validation
– View Calculation History
– View Model

For a description of these roles, see "Managing Role
Assignments at the Application Level" in Administering
Access Control for Oracle Enterprise Performance
Management Cloud.

users List of user login IDs of the users whose role assignment
is to be removed.

Payload Yes None

Chapter 12
Remove Users' Role Assignment (v2)

12-43

Example URL and Payload

https://<BASE-URL>/interop/rest/security/v2/role/unassign/user

{
 "rolename": "Service Administrator",
 "users": [
 {
 "userlogin": "jdoe"
 },
 {
 "userlogin": "chris"
 }
]
}

Response

Supported Media Types: application/json

Table 12-25 Parameters

Name Description

links Detailed information about the link and HTTP call type

status Identifies the status of the operation
• 0 - Operation Success
• 1 - Operation Failed

error Detailed information about the error

details Detailed status of the operation performed. Total number of records
processed, succeeded, and failed and reason for why it failed.

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job Completes without Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/role/
unassign/user",
 "action": "PUT"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 3,
 "succeeded": 3,
 "failed": 0,
 "faileditems": null
 }
}

Chapter 12
Remove Users' Role Assignment (v2)

12-44

Example 2: Job Completes with Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/role/
unassign/user",
 "action": "PUT"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21008",
 "errormessage": "Failed to unassign role. Invalid role name
<rolename>. Please provide a valid role name."
 },
 "details": null
}

Example 3: Job Completes with Partial Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/role/
unassign/user",
 "action": "PUT"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 5,
 "succeeded": 3,
 "failed": 2,
 "faileditems":
 [
 {
 "userlogin": "jdoe",
 "errorcode": "EPMCSS-21010",
 "errormessage": "Failed to unassign role. User jdoe does not
exist. Provide a valid userlogin."
 },
 {
 "userlogin": "chris",
 "errorcode": "EPMCSS-21010",
 "errormessage": "Failed to unassign role. User chris does not
exist. Provide a valid userlogin."
 }
]
 }
}

Sample cURL Command Basic Auth

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -H 'Content-Type: application/json'
-d '{"rolename":"<ROLENAME>","users":

Chapter 12
Remove Users' Role Assignment (v2)

12-45

[{"userlogin":"<USERLOGIN>"},{"userlogin":"<USERLOGIN>"}]}' 'https://<BASE-
URL>/interop/rest/security/v2/role/unassign/user'

Sample cURL Command OAuth 2.0

curl -X PUT --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H 'Content-
Type: application/json' -d '{"rolename":"<ROLENAME>","users":
[{"userlogin":"<USERLOGIN>"},{"userlogin":"<USERLOGIN>"}]}' 'https://<BASE-
URL>/interop/rest/security/v2/role/unassign/user'

Add Users to a Group (v1)
Adds a batch of users to an existing group in Access Control using an ANSI or UTF-8 encoded
CSV file that was uploaded to the environment. Use the Upload REST API to upload the file.
The file should be deleted after the API executes. The file format is as follows:

User Login
<user name>
<email>

Note:

A user is added to the group only if both these conditions are met:

• User login IDs included in the file exist in the identity domain that services the
environment

• The user is assigned to a pre-defined role in the identity domain

This API should be run only by a service administrator in the identity domain where users are
to be added to the group.

The API is asynchronous and returns the Job ID. Use the job status URI to determine whether
the assignment of users to the group is complete. The presence of status -1 in the response
indicates that the addition of users to a group is in progress. Any non-zero status except -1
indicates failure of adding users. With this API, you can see which records failed and the
reason why they failed in addition to how many records passed and failed.

This API is version 1.

Required Roles

Service Administrator or Access Control Manager

REST Resource

PUT /interop/rest/security/<api_version>/groups

Chapter 12
Add Users to a Group (v1)

12-46

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-26 Tasks for Add Users to Group

Task Request REST Resource

Add users to group PUT /interop/rest/security/<api_version>/groups
Add users to group status GET /interop/rest/security/<api_version>/jobs/<jobId>

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-27 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

jobtype The string should have the value ADD_USERS_TO_GROUP.
This value denotes that the users are being added to the
group.

Form Yes None

filename The name of the uploaded ANSI or UTF-8 encoded CSV file
containing the users to add, such as
addUsersToGroup.csv.

The file must have been uploaded already using the Upload
REST API.

Form Yes None

groupname The name of group to which the users must be added. This
group must be a pre-existing group.

Form Yes None

Response

Supported Media Types: application/json

Table 12-28 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

Chapter 12
Add Users to a Group (v1)

12-47

Table 12-28 (Cont.) Parameters

Name Description

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/groups",
 "data": {
 "jobType": "ADD_USERS_TO_GROUP",
 "filename": "<fileName>",
 "groupName": "<groupName>",
 },
 "action": "GET"
 },
 {
 "rel": "Job Status",
 "href": "https://<EPM-CLOUD-BASE-URL>/interop/rest/security/
<api_version>/jobs/<jobId>",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": -1,
 "items": null
}

Example 2: Job Completes with Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobID>",
 "data": null,
 "action": "GET"
 }
],
 "details": "Failed to add users to group. Input file <fileName> is not
found. Specify a valid file name.",
 "status": 1,
 "items": null
}

Chapter 12
Add Users to a Group (v1)

12-48

Example 3: Job Completes without Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobId>",
 "data": null,
 "action": "GET"
 }
],
 "details": "Processed - 3, Succeeded - 2, Failed - 1.",
 "status": 0,
 "items": [
 {
 "UserName":"<USERNAME>","Error_Details": "User <USERNAME> is not
found. Verify that the user exists."
 }
]
}

Sample Code

Java Sample Code

Prerequisites: json.jar

Common Functions: See: CSS Common Helper Functions for Java

public void addUsersToGroup(String fileName, String groupName) {
 try {
 String url = this.serverUrl + "/interop/rest/security/" +
apiVersion + "/groups";
 Map<String, String> reqHeaders = new HashMap<String, String>();
 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", fileName);
 reqParams.put("jobtype", "ADD_USERS_TO_GROUP");
 reqParams.put("groupname", groupName);

 Map<String, String> restResult = CSSRESTHelper.callRestApi(new
HashMap(), url, reqHeaders, reqParams,
 "PUT");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Chapter 12
Add Users to a Group (v1)

12-49

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL

funcAddUsersToGroup() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
 params="filename=$1&jobtype=ADD_USERS_TO_GROUP&groupname=$2"
 header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
 cssRESTAPI="AddUsersToGroup"
 statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME"
"$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}
Example 8-15 Groovy Sample Code
Common Functions: See CSS Common Helper Functions for Groovy.

def addUsersToGroup(fileName, groupName) {

 String scenario = "Adding users in " + fileName + " to group " +
groupName;

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def addUsersToGroup(fileName, groupName) {

 String scenario = "Adding users in " + fileName + " to group " +
groupName;
 String params = "jobtype=ADD_USERS_TO_GROUP&filename="+ fileName
+"&groupname="+ groupName;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

Chapter 12
Add Users to a Group (v1)

12-50

• See CSS Common Helper Functions for Groovy

Add Users to a Group (v2)
The Add Users to a Group (v2) REST API adds a batch of users to an existing group provided
in the REST API payload.

Note:

A user is added to the group only if both these conditions are met:

• User login IDs provided in payload should exist in the identity domain that
services the environment

• The user is assigned to a pre-defined role in the identity domain

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use.

The API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates failure of adding users to group. With this API, you can see which records
failed and the reason why they failed, in addition to how many records passed and failed.

This API is version v2.

Required Roles

Service Administrator or Access Control Manager

REST Resource

PUT /interop/rest/security/v2/groups/adduserstogroup

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-29 Tasks for Add Users to Group

Task Request REST Resource

Add users to group PUT /interop/rest/security/v2/groups/adduserstogroup

Request

Supported Media Types: application/json
The following table summarizes the PUT request parameters.

Chapter 12
Add Users to a Group (v2)

12-51

Table 12-30 Parameters

Name Description Type Required Default

groupname The name of the group to which the users must be
added. This group must be a pre-existing group.

Payload Yes None

users List of user login IDs of the users to add to the group. Payload Yes None

Example URL and Payload

https://<BASE-URL>/interop/rest/security/v2/groups/adduserstogroup

{
 "groupname": "G1",
 "users": [
 {
 "userlogin": "jdoe"
 },
 {
 "userlogin": "chris"
 }
]
}

Response

Supported Media Types: application/json

Table 12-31 Parameters

Name Description

links Detailed information about the link and HTTP call type

status Identifies the status of the operation
• 0 - Operation Success
• 1 - Operation Failed

error Detailed information about the error

details Detailed status of the operation performed. Total number of records
processed, succeeded, and failed and reason for why it failed.

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job Completes without Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/
adduserstogroup",
 "action": "PUT"
 },
 "status": 0,

Chapter 12
Add Users to a Group (v2)

12-52

 "error": null,
 "details": {
 "processed": 3,
 "succeeded": 3,
 "failed": 0,
 "faileditems": null
 }
}

Example 2: Job Completes with Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/
adduserstogroup",
 "action": "PUT"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21021",
 "errormessage": "Failed to add users to group. Group <groupname> does
not exist. Provide a valid groupname."
 },
 "details": null
}

Example 3: Job Completes with Partial Errors

"links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/
adduserstogroup",
 "action": "PUT"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 5,
 "succeeded": 3,
 "failed": 2,
 "faileditems":
 [
 {
 "userlogin": "jdoe",
 "errorcode": "EPMCSS-21031",
 "errormessage": "Failed to add user to group. User jdoe does
not exist. Provide a valid userlogin."
 },
 {
 "userlogin": "chris",
 "errorcode": "EPMCSS-21031",
 "errormessage": "Failed to add user to group. User chris does
not exist. Provide a valid userlogin."
 }
]

Chapter 12
Add Users to a Group (v2)

12-53

 }
}

Sample cURL command

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"groupname":"G1","users":[{"userlogin":"jdoe"},{"userlogin":"chris"}]}'
'https://<BASE-URL>/interop/rest/security/v2/groups/adduserstogroup'

Remove Users from a Group (v1)
Removes users from a group listed in an ANSI or UTF-8 encoded CSV file from a group
maintained in Access Control. You can use the Upload REST API to upload the file to the
environment. The file format is as follows:

User Login
jdoe
john.doe@example.com

Note:

A user is removed from a group only if both of these conditions are met:

• User logins included in the file exist in the identity domain that services the
environment

• The user is assigned to a pre-defined role in the identity domain

This API can be run only by a service administrator in the identity domain from which users are
to be removed.

The presence of status -1 in the response indicates that the removal of users is in progress.
Use the job status URI to determine whether the removal of users is complete. Any non-zero
status except -1 indicates failure of removing users. With this API, you can see which records
failed and the reason why they failed in addition to how many records passed and failed.

This API is version v1.

Required Roles

Service Administrator or Access Control Manager

REST Resource

PUT /interop/rest/security/<api_version>/groups

Chapter 12
Remove Users from a Group (v1)

12-54

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-32 Tasks for Remove Users from Group

Task Request REST Resource

Remove users from
group

PUT /interop/rest/security/<api_version>/groups

Remove users from
group status

GET /interop/rest/security/<api_version>/jobs/<jobId>

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-33 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

jobtype The string should have the value
REMOVE_USERS_FROM_GROUP. This value denotes that the
users are being removed from the group.

Form Yes None

filename The name of the uploaded ANSI or UTF-8 encoded CSV file
containing information on the users to be removed, for
example, removeUsersFromGroup.csv.

The file must have been uploaded already using the Upload
REST API.

Form Yes None

groupname The name of group from which the users must be removed.
This group must be a pre-existing group.

Form Yes None

Response

Supported Media Types: application/json

Table 12-34 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

Chapter 12
Remove Users from a Group (v1)

12-55

Table 12-34 (Cont.) Parameters

Name Description

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/groups",
 "data": {
 "jobType": "REST_REMOVE_USERS_FROM_GROUP",
 "filename": "<filename>"
 "groupName": "<groupName>"
 },
 "action": "PUT"
 },
 {
 "rel": "Job Status",
 "href": "https://<EPM-CLOUD-BASE-URL>/interop/rest/security/
<api_version>/jobs/<jobID>",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": -1,
 "items": null
}

Example 2: Job Completes with Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobId>",
 "data": null,
 "action": "GET"
 }
],
 "details": "Failed to remove users. Input file <filename> is not found.
Specify a valid file name.",
 "status": 1,

Chapter 12
Remove Users from a Group (v1)

12-56

 "items": null
}

Example 3: Job Completes without Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobId>",
 "data": null,
 "action": "GET"
 }
],
 "details": "Processed - 3, Succeeded - 2, Failed - 1.",
 "status": 0,
 "items": [
 {
 "UserName":"<USERNAME>","Error_Details": "User <USERNAME> is not
found. Verify that the user exists."
 }
]
 }

Java Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java

public void removeUsersFromGroup(String roleName) {
 try {
 String url = this.serverUrl + "/interop/rest/
security/" + apiVersion + "/groups";
 Map<String, String> reqHeaders = new HashMap<String,
String>();
 reqHeaders.put("Authorization", "Basic " +
DatatypeConverter
 .printBase64Binary((th
is.userName + ":" + this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String,
String>();
 reqParams.put("filename",fileName);
 reqParams.put("jobtype","REMOVE_USERS_FROM_GROUP);
 reqParams.put("groupname","groupName);

 Map<String, String> restResult =
CSSRESTHelper.callRestApi(new HashMap(), url, reqHeaders, reqParams,
 "PUT");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult);
 System.out.println(jobStatus);

Chapter 12
Remove Users from a Group (v1)

12-57

 } catch (Exception e) {
 e.printStackTrace();
 }
}

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL.

funcRemoveUsersFromGroup() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
 params="filename=$1&jobtype=REMOVE_USERS_FROM_GROUP&groupname=$2"
 header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
 cssRESTAPI="RemoveUsersFromGroup"
 statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME"
"$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def removeUsersFromGroup(fileName, groupName) {

 String scenario = "Removing users in " + fileName + " from group " +
groupName;
 String params = "jobtype=REMOVE_USERS_FROM_GROUP&filename="+ fileName
+"&groupname="+ groupName;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Chapter 12
Remove Users from a Group (v1)

12-58

Remove Users from a Group (v2)
The Remove Users from a Group (v2) REST API removes a batch of users from an existing
group provided in the REST API payload.

Note:

A user is removed from a group only if both of these conditions are met:

• User login IDs included in the request payload should exist in the identity domain
that services the environment

• The user is assigned to a pre-defined role in the identity domain

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use.

The API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates failure of removing users from group. With this API, you can see which
records failed and the reason why they failed, in addition to how many records passed and
failed.

This API is version v2.

Required Roles

Service Administrator or Access Control Manager

REST Resource

PUT /interop/rest/security/v2/groups/removeusersfromgroup

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-35 Tasks for Remove Users from Group

Task Request REST Resource

Remove users from
group

PUT /interop/rest/security/v2/groups/removeusersfromgroup

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Chapter 12
Remove Users from a Group (v2)

12-59

Table 12-36 Parameters

Name Description Type Required Default

groupname The name of group from which the users must be
removed. This group must be a pre-existing group.

Payload Yes None

users List of userlogin IDs of the users to be removed from
group.

Payload Yes None

Example URL and Payload

https://<BASE-URL>/interop/rest/security/v2/groups/removeusersfromgroup

{
 "groupname": "G1",
 "users": [
 {
 "userlogin": "jdoe"
 },
 {
 "userlogin": "chris"
 }
]
}

Response

Supported Media Types: application/json

Table 12-37 Parameters

Name Description

links Detailed information about the link and HTTP call type

status Identifies the status of the operation
• 0: Operation Success
• 1: Operation Failed

error Detailed information about the error

details Detailed status of the operation performed. Total number of records
processed, succeeded, and failed and reason for why it failed.

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job Completes without Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/
removeusersfromgroup",
 "action": "PUT"
 },

Chapter 12
Remove Users from a Group (v2)

12-60

 "status": 0,
 "error": null,
 "details": {
 "processed": 3,
 "succeeded": 3,
 "failed": 0,
 "faileditems": null
 }
}

Example 2: Job Completes with Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/
removeusersfromgroup",
 "action": "PUT"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21022",
 "errormessage": "Failed to remove users from group. Group <groupname>
does not exist. Provide a valid groupname."
 },
 "details": null
}

Example 3: Job Completes with Partial Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/
removeusersfromgroup",
 "action": "PUT"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 5,
 "succeeded": 3,
 "failed": 2,
 "faileditems":
 [
 {
 "userlogin": "jdoe",
 "errorcode": "EPMCSS-21032",
 "errormessage": "Failed to remove user from group. User jdoe
does not exist. Provide a valid userlogin."
 },
 {
 "userlogin": "chris",
 "errorcode": "EPMCSS-21032",
 "errormessage": "Failed to remove user from group. User chris
does not exist. Provide a valid userlogin."
 }

Chapter 12
Remove Users from a Group (v2)

12-61

]
 }
}

Sample cURL command

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"groupname":"G1","users":[{"userlogin":"jdoe"},{"userlogin":"chris"}]}'
'https://<BASE-URL>/interop/rest/security/v2/groups/removeusersfromgroup'

Update Users
Modifies attributes such as email, first name, and last name of Oracle Enterprise Performance
Management Cloud users in an identity domain using the new values identified in an ANSI or
UTF-8 encoded comma-separated value (CSV) file that was uploaded to the environment.
Before using this API, use the Upload REST API to upload the file. Use double quotation
marks to enclose fields that contain space charaters in the CSV file. The file should be deleted
after the API executes. The file format is as follows:

Firt Name, Last Name,Email, User Login
Jane,Doe,<emailAddress>,jdoe
John,Doe,<emailAddress>,<emailAddress>

This API should be run only by Service Administrators who are also assigned to the Identity
Domain Administrator role in the identity domain in which users are to be updated. The CSV
file should not include the account of the user who executes this command. It updates all
properties of the user identified by User Login. Because user accounts are common to all
service environments that an Identity Domain Administrator supports, updating an account for
one environment updates it for all environments that share the Identity Domain.

With this API, you can see which records failed and the reason why they failed in addition to
how many records passed and failed.

The API is asynchronous and returns the Job ID. The presence of status -1 in the response
indicates that the updating of users is in progress. Use the job status URI to determine whether
the process is complete. Any non-zero status except -1 indicates failure.

This API is version v1.

Required Roles

Identity Domain Administrator and any predefined role (Service Administrator, Power User,
User, or Viewer)

REST Resource

PUT /interop/rest/security/<api_verion>/users

Chapter 12
Update Users

12-62

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-38 Tasks for Updating Users

Task Request REST Resource

Update users PUT /interop/rest/security/<api_verion>/users
Update users status GET /interop/rest/security/<api_version>/jobs/<jobId>

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-39 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

jobtype UPDATE_USERS Form Yes None

filename The name of the uploaded ANSI or UTF-8 encoded CSV file
containing the users to update, such as updateUsers.csv.

Form Yes None

Response

Supported Media Types: application/json

Table 12-40 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Chapter 12
Update Users

12-63

Example 1: Job is in Progress

{
 "links": [
 {
 "rel": "self",
 "href": " https://<BASE-URL>/interop/rest/security/<api_version>/
users",
 "data": {
 "jobType": "UPDATE_USERS",
 "filename": "<filename>"
 },
 "action": "UPDATE"
 },
 {
 "rel": "Job Status",
 "href": " https://<EPM-CLOUD-BASE-URL>/interop/rest/security/
<api_version>/jobs/<jobID>",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": -1,
 "items": null
}

Example 2: Job Completes with Errors

{
"links": [
{
"rel": "self",
"href": "https://<BASE-URL>/interop/rest/security/
<api_version>/jobs/",
"data": null,
"action": "GET"
}
],
"details": "Failed to update users. Input file <filename> not found. Specify
a valid file name.",
"status": 1,
"items": null
}

Example 3: Job Completes without Errors

{
"links": [
{
"rel": "self",
"href": "https://<BASE-URL>/interop/rest/security/
<api_version>/jobs/",
"data": null,
"action": "GET"

Chapter 12
Update Users

12-64

}
],
"details": "Processed - 3, Succeeded - 2, Failed - 1.",
"status": 0,
"items": [
 {
 "UserName": "<username>",
 "Error_Details": " User <USER_NAME> not found. Verify that the
user exists. "
 }
]}

Java Sample Code

Prerequisites: json.jar

Common Functions: See: CSS Common Helper Functions for Java

 public void updateUsers(String fileName) {
 try {
 String url = this.serverUrl + "/interop/rest/security/" +
apiVersion + "/users";
 Map<String, String> reqHeaders = new HashMap<String, String>();
 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", fileName);
 reqParams.put("jobtype", "UPDATE_USERS");

 Map<String, String> restResult = CSSRESTHelper.callRestApi(new
HashMap(), url, reqHeaders, reqParams,
 "PUT");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL

funcUpdateUsers() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
 params="filename=$1&jobtype=UPDATE_USERS"
 header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
 cssRESTAPI="UpdateUsers"
 statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME"
"$PASSWORD" "$params" "$cssRESTAPI")

Chapter 12
Update Users

12-65

 echo $statusMessage
}

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def updateUsers(fileName) {

 String scenario = "Updating users from " + fileName ;
 String params = "jobtype=UPDATE_USERS&filename="+ fileName;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Sample cURL Command Basic Auth

curl -X PUT -s -u '<USERNAME>:<PASSWORD>' -H 'Content-Type: application/x-www-
form-urlencoded' -d
'jobtype=UPDATE_USERS&filename=<CSV-FILE-NAME>' 'https://<BASE-URL>/interop/
rest/security/v1/users'

Sample cURL Command OAuth 2.0

curl -X PUT --header "Authorization: Bearer <OAUTH_ACCESS_TOKEN>" -H
'Content-Type: application/x-www-form-urlencoded' -d
'jobtype=UPDATE_USERS&filename=<CSV-FILE-NAME>'
'https://<BASE-URL>/interop/rest/security/v1/users'

Add a User to a Batch of Groups
Adds an existing user to a batch of groups in Access Control using an ANSI or UTF-8 encoded
CSV file that was uploaded to the environment. Use the Upload REST API to upload the file.
The file should be deleted after the API executes. With this API, you can see which records

Chapter 12
Add a User to a Batch of Groups

12-66

failed and the reason why they failed in addition to how many records passed and failed. The
file format is as follows:

Group Name
GroupA
GroupB

The user is added to the groups only if these conditions are met:

• The user must exist in the identity domain that services the environment

• The user must be assigned to a pre-defined role in the identity domain

• The groups provided must exist in Access Control and must not be pre-defined groups

Additionally, the user running this API must be authorized to perform this action. This API
should be run only by a service administrator in the environment where the user is to be added
to the groups.

The API is asynchronous and returns the Job ID. Use the job status URI to determine whether
the assignment of a user to the groups is complete. The presence of status -1 in the response
indicates that the addition of a user to groups is in progress. Any non-zero status except -1
indicates failure of adding a user.

This API is version v1.

Required Roles

Service Administrator or Access Control Manager

REST Resource

PUT /interop/rest/security/<api_version>/groups

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-41 Tasks for Adding a User to a Batch of Groups

Task Request REST Resource

Add a user to groups PUT /interop/rest/security/<api_version>/groups
Add a user to groups
status

GET /interop/rest/security/<api_version>/jobs/<jobId>

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Chapter 12
Add a User to a Batch of Groups

12-67

Table 12-42 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

jobtype The string should have the value ADD_USER_TO_GROUPS.
This value denotes that the user is being added to the
groups.

Form Yes None

filename The name of the uploaded ANSI or UTF-8 encoded CSV file
containing the groups to add the user to, such as
addUserToGroups.csv.

The file must have been uploaded already using the Upload
REST API.

File format example:

Group Name
GroupA
GroupB

Form Yes None

username The name of the user to add to the provided list of groups.
This user must already exist.

Form Yes None

Response

Supported Media Types: application/json

Table 12-43 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
 "links": [
 {
 "href": https://<BASE-URL>/interop/rest/security/<api_version>/
groups,
 "rel": "self",

Chapter 12
Add a User to a Batch of Groups

12-68

 "data": {
 "jobType": "ADD_USER_TO_GROUPS",
 "filename": "<filename>",
 "username": "<username>"
 },
 "action": "PUT"
 },
 {
 "href": https://<EPM-CLOUD-BASE-URL>/interop/rest/security/
<api_version>/jobs/<jobId>,
 "rel": "Job Status",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": -1,
 "items": null
}

Example 2: Job Completes with Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/v1/jobs/<jobID>",
 "data": null,
 "action": "GET"
 }
],
 "details": "Failed to add user to groups. Input file <fileName> is not
found. Specify a valid file name.",
 "status": 1,
 "items": null
}

Example 3: Job Completes without Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobId>",
 "data": null,
 "action": "GET"
 }
],
 "details": "Processed - 3, Succeeded - 2, Failed - 1.",
 "status": 0,
 "items": [
 {
 "GroupName":"<GROUPNAME>","Error_Details": "Group <GROUPNAME> is
not found. Verify that the group exists."

Chapter 12
Add a User to a Batch of Groups

12-69

 }
]
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See: CSS Common Helper Functions for Java

public void addUserToGroups(String fileName, String userName) {
 try {
 String url = this.serverUrl + "/interop/rest/security/" +
apiVersion + "/groups";
 Map<String, String> reqHeaders = new HashMap<String, String>();
 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", fileName);
 reqParams.put("jobtype", "ADD_USER_TO_GROUPS");
 reqParams.put("username", userName);

 Map<String, String> restResult = CSSRESTHelper.callRestApi(new
HashMap(), url, reqHeaders, reqParams,
 "PUT");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL

funcAddUserToGroups() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
 params="filename=$1&jobtype=ADD_USER_TO_GROUPS&username=$2"
 header="Content-Type: application/x-www-form-urlencoded"
 cssRESTAPI="AddUserToGroups"
 statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME"
"$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}

Chapter 12
Add a User to a Batch of Groups

12-70

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def addUserToGroups(fileName, userName) {

 String scenario = "Adding users in " + fileName + " to group " + userName;
 String params = "jobtype=ADD_USER_TO_GROUPS&filename="+ fileName
+"&username="+ userName;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Remove a User from a Batch of Groups
Removes a user from a batch of groups listed in an ANSI or UTF-8 encoded CSV file
maintained in Access Control. You can use the Upload REST API to upload the file to the
environment. The file format is as follows:

Group Name
GroupA
GroupB

A user is removed from groups only if these conditions are met:

• The user must exist in the identity domain that services the environment

• The user must be assigned to a pre-defined role in the identity domain

• The groups provided must exist in Access Control and must not be pre-defined groups

Additionally, the user running this API must be authorized to perform this action. This API
should be run only by a service administrator in the environment where a user is to be
removed from the groups. With this API, you can see which records failed and the reason why
they failed in addition to how many records passed and failed.

Chapter 12
Remove a User from a Batch of Groups

12-71

The presence of status -1 in the response indicates that the removal in progress. Use the job
status URI to determine whether the removal is complete. Any non-zero status except -1
indicates failure.

This API is version v1.

Required Roles

Service Administrator or Access Control Manager

REST Resource

PUT /interop/rest/security/<api_version>/groups

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-44 Tasks for Remove a User from a Batch of Groups

Task Request REST Resource

Remove a user from
groups

PUT /interop/rest/security/<api_version>/groups

Remove a user from
groups status

GET /interop/rest/security/<api_version>/jobs/<jobId>

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-45 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

jobtype The string should have the value
REMOVE_USER_FROM_GROUPS. This value denotes that the
user is being removed from the groups.

Form Yes None

filename The name of the uploaded ANSI or UTF-8 encoded CSV file
containing information on the groups from which the user is
to be removed, for example, removeUserFromGroups.csv.

The file must have been uploaded already using the Upload
REST API.

File format:

Group Name
GroupA
GroupB

Form Yes None

username The name of the user to remove from the provided list of
groups. This user must already exist.

Form Yes None

Chapter 12
Remove a User from a Batch of Groups

12-72

Response

Supported Media Types: application/json

Table 12-46 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
 "links": [
 {
 "href": https://<BASE-URL>/interop/rest/security/<api_version>/
groups,
 "rel": "self",
 "data": {
 "jobType": "REMOVE_USER_FROM_GROUPS",
 "filename": "<filename>",
 "username": "<username>"
 },
 "action": "PUT"
 },
 {
 "href": https://<EPM-CLOUD-BASE-URL>/interop/rest/security/
<api_version>/jobs/<jobId>,
 "rel": "Job Status",
 "data": null,
 "action": "GET"
 }
],
 "details": null,
 "status": -1,
 "items": null
}

Chapter 12
Remove a User from a Batch of Groups

12-73

Example 2: Job Completes with Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobId>",
 "data": null,
 "action": "GET"
 }
],
 "details": "Failed to remove user from groups. File <filename> is not
found. Specify a valid file name.",
 "status": 1,
 "items": null
}

Example 3: Job Completes without Errors

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/jobs/
<jobId>",
 "data": null,
 "action": "GET"
 }
],
 "details": "Processed - 3, Succeeded - 1, Failed - 2.",
 "status": 0,
 "items": [
 {
 "GroupName":"<GROUPNAME>","Error_Details": "Group <GROUPNAME> is not
found. Verify that the group exists."
 },

{ "GroupName":"<GROUPNAME>","Error_Details": "Group <GROUPNAME> is not
found. Verify that the group exists."
 }
]
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java

public void removeUserFromGroups(String fileName, String userName) {
 try {
 String url = this.serverUrl + "/interop/rest/security/" +
apiVersion + "/groups";
 Map<String, String> reqHeaders = new HashMap<String, String>();

Chapter 12
Remove a User from a Batch of Groups

12-74

 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", fileName);
 reqParams.put("jobtype", "REMOVE_USER_FROM_GROUPS");
 reqParams.put("username", userName);

 Map<String, String> restResult = CSSRESTHelper.callRestApi(new
HashMap(), url, reqHeaders, reqParams,
 "PUT");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL.

funcRemoveUserFromGroups() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
 params="filename=$1&jobtype=REMOVE_USER_FROM_GROUPS&username=$2"
 header="Content-Type: application/x-www-form-urlencoded"
 cssRESTAPI="RemoveUserFromGroups"
 statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME"
"$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def removeUserFromGroups(fileName, userName) {

 String scenario = "Removing users in " + fileName + " from group " +
userName;
 String params = "jobtype=REMOVE_USER_FROM_GROUPS&filename="+ fileName
+"&username="+ userName;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "PUT", params, "application/x-www-form-

Chapter 12
Remove a User from a Batch of Groups

12-75

urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Add Groups (v1)
Adds groups in Access Control using an ANSI or UTF-8 encoded CSV file that was uploaded
to the environment. Use the Upload REST API to upload the file. The file should be deleted
after the API executes. The file format is as follows:

Group Name,Description
GroupA,GroupADescription
GroupB,GroupBDescription

The user running this API must be authorized to perform this action. This API should be run
only by a service administrator in the environment where groups are to be added. With this
API, you can see which records failed and the reason why they failed in addition to how many
records passed and failed.

The API is asynchronous and returns the Job ID. Use the job status URI to determine whether
adding groups is complete. The presence of status -1 in the response indicates that the
addition is in progress. Any non-zero status except -1 indicates failure of adding a group.

This API is version v1.

Required Roles

Service Administrator or Access Control Manager

REST Resource

POST /interop/rest/security/<api_version>/groups

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 12
Add Groups (v1)

12-76

Table 12-47 Tasks for Adding a Batch of Groups

Task Request REST Resource

Create groups POST /interop/rest/security/<api_version>/groups
Create groups status GET /interop/rest/security/<api_version>/jobs/<jobId>

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-48 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

filename The name of the uploaded ANSI or UTF-8 encoded CSV file
containing the groups to add, such as addGroups.csv.

The file must have been uploaded already using the Upload
REST API.

File format example:

Group Name,Description
GroupA,GroupADescription
GroupB,GroupBDescription

Form Yes None

Response

Supported Media Types: application/json

Table 12-49 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you can
use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is "Job Details"

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Chapter 12
Add Groups (v1)

12-77

Example 1: Job is in Progress

{
 "links": [
 {
 "href": "http://<BASE-URL>/interop/rest/security/<api_version>/
groups",
 "rel": "self",
 "data": {
 "jobType": "ADD_GROUPS",
 "filename": "<filename>"
 },
 "action": "POST"
 },
 {
 "href": "http://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<jobId ",
 "rel": "Job Status",
 "data": null,
 "action": "GET"
 }
],
 "status": -1,
 "details": null,
 "items": null
}

Example 2: Job Completes with Errors

{
 "links": [
 {
 "href": "http://<BASE-URL>/interop/rest/security/<api_version>/
groups",
 "rel": "self",
 "data": {
 "jobType": "ADD_GROUPS",
 "filename": ""
 },
 "action": "POST"
 }
],
 "status": 1,
 "details": "EPMCSS-20671: Failed to create groups. Invalid or
insufficient parameters specified. Provide all required parameters for the
REST API. ",
 "items": null
}

Example 3: Job Completes without Errors

{
 "links": [
 {
 "data": null,

Chapter 12
Add Groups (v1)

12-78

 "action": "GET",
 "href": " http://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<jobId>",
 "rel": "self"
 }
],
 "status": 0,
 "details": "Processed - 4, Succeeded - 3, Failed - 1. ",
 "items": [
 {
 "GroupName":"<GROUPNAME>","Error_Details": "Failed to create a group
with the name <GROUPNAME>. This group already exists in the system. Provide a
different group name."
 }
]
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See: CSS Common Helper Functions for Java

public void addGroups(String fileName) {
 try {
 String url = this.serverUrl + "/interop/rest/security/" +
apiVersion + "/groups";
 Map<String, String> reqHeaders = new HashMap<String, String>();
 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", fileName);

 Map<String, String> restResult = CSSRESTHelper.callRestApi(new
HashMap(), url, reqHeaders, reqParams,
 "POST");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL

funcAddGroups() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
 params="filename=$1"
 header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"

Chapter 12
Add Groups (v1)

12-79

 cssRESTAPI="addGroups"
 statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME"
"$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def addGroups(fileName) {

 String scenario = "Creating Groups in " + fileName;
 String params = "filename="+ fileName;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Add Groups (v2)
The Add Groups (v2) REST API adds groups that are provided in the request payload. These
groups can be viewed in Access Control.

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use.

The user running this API must be authorized to perform this action. This API should be run
only by a Service Administrator in the environment where groups are to be added. With this
API, you can see which records failed and the reason why they failed in addition to how many
records passed and failed.

The API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates failure of adding groups.

This API is version v2.

Chapter 12
Add Groups (v2)

12-80

Required Roles

Service Administrator or Access Control Manager

REST Resource

POST /interop/rest/security/v2/groups/add

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-50 Tasks for Add Users to Group

Task Request REST Resource

Add groups POST /interop/rest/security/v2/groups/add

Request

Supported Media Types: application/json
The following table summarizes the POST request parameters.

Table 12-51 Parameters

Name Description Type Required Default

groups List of groups to add. Payload Yes None

Example URL and Payload

https://<BASE-URL>/interop/rest/security/v2/groups/add

{
 "groups":
 [
 {
 "groupname": "GroupA",
 "description": "GroupADescription"

 },
 {
 "groupname": "GroupB",
 "description": "GroupBDescription"
 }
]
}

Chapter 12
Add Groups (v2)

12-81

Response

Supported Media Types: application/json

Table 12-52 Parameters

Name Description

links Detailed information about the link and HTTP call type

status Identifies the status of the operation
• 0 - Operation succeeded
• 1 - Operation failed

error Detailed information about the error

details Detailed status of the operation performed. Total number of records
processed, succeeded, and failed, and the reason for why they failed.

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job Completes without Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/add",
 "action": "POST"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 2,
 "succeeded": 2,
 "failed": 0,
 "faileditems": null
 }
}

Example 2: Job Completes with Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/add",
 "action": "POST"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21119",
 "errormessage": "Failed to add groups. Invalid or insufficient
parameters specified. Provide all required parameters for the REST API."
 },
 "details": null
}

Chapter 12
Add Groups (v2)

12-82

Example 3: Job Completes with Partial Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/add",
 "action": "POST"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 5,
 "succeeded": 3,
 "failed": 2,
 "faileditems":
 [
 {
 "groupname": "GroupA",
 "errorcode": "EPMCSS-21140",
 "errormessage": "Failed to add group. Group already
exists in System. Provide different group name."
 },
 {
 "groupname": "GroupB",
 "errorcode": "EPMCSS-21140",
 "errormessage": "Failed to add group. Group already
exists in System. Provide different group name."
 }
]
 }
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"groups":[{"groupname":"GroupA","description":"GroupADescription"},
{"groupname":"GroupB","description":"GroupBDescription"}]}'
'https://<BASE-URL>/interop/rest/security/v2/groups/add'

Remove Groups (v1)
Removes groups listed in an ANSI or UTF-8 encoded CSV file maintained in Access Control.
You can use the Upload REST API to upload the file to the environment. The file format is as
follows:

Group Name
GroupA
GroupB

The user running this API must be authorized to perform this action. This API should be run
only by a service administrator in the environment where a group is to be removed.

The presence of status -1 in the response indicates that the removal in progress. Use the job
status URI to determine whether the removal is complete. Any non-zero status except -1

Chapter 12
Remove Groups (v1)

12-83

indicates failure. With this API, you can see which records failed and the reason why they
failed in addition to how many records passed and failed.

This API is version v1.

Required Roles

Service Administrator or Access Control Manager

REST Resource

DELETE /interop/rest/security/<api_version>/groups

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-53 Tasks for Remove Groups

Task Request REST Resource

Remove groups DELETE /interop/rest/security/<api_version>/groups
Remove groups status GET /interop/rest/security/<api_version>/jobs/<jobId>

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-54 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

filename The name of the uploaded ANSI or UTF-8
encoded CSV file containing information on the
groups to be removed, for example,
removeGroups.csv.

The file must have been uploaded already using
the Upload REST API.

Group Name
GroupA
GroupB

Query Yes None

Response

Supported Media Types: application/json

Chapter 12
Remove Groups (v1)

12-84

Table 12-55 Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job
Status, you can use the href to get the status

data Parameters as key value pairs passed in the request

items Details about the resource

links Details of the first URL to be requested to get the job details; rel is "Job
Details"

Examples of Resonse Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
 "status": -1,
 "items": null,
 "links": [
 {
 "href": " http://<BASE-URL>/interop/rest/security/<api_version>/
groups?filename=<filename>",
 "rel": "self",
 "data": {
 "jobType": "REMOVE_GROUPS",
 "filename": "<filename>"
 },
 "action": "DELETE"
 },
 {
 "href": " http://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<jobId>",
 "rel": "Job Status",
 "data": null,
 "action": "GET"
 }
],
 "details": null
}

Example 2: Job Completes with Errors

{
 "links": [
 {
 "href": "http://<BASE-URL>/interop/rest/security/<api_version>/

Chapter 12
Remove Groups (v1)

12-85

groups",
 "rel": "self",
 "data": {
 "jobType": "REMOVE_GROUPS",
 "filename": ""
 },
 "action": "DELETE"
 }
],
 "status": 1,
 "details": "EPMCSS-20673: Failed to delete groups. Invalid or
insufficient parameters specified. Provide all required parameters for the
REST API. ",
 "items": null
}

Example 3: Job Completes without Errors

{
 "links": [
 {
 "data": null,
 "action": "GET",
 "href": " http://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<jobId>",
 "rel": "self"
 }
],
 "status": 0,
 "details": "Processed - 3, Succeeded – 2, Failed - 1. ",
 "items": [
 {
 "GroupName":"<GROUPNAME>","Error_Details": "Group <GROUPNAME> is not
found. Verify that the group exists."
 }
]
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java

public void removeGroups(String fileName) {
 try {
 String url = this.serverUrl + "/interop/rest/security/" +
apiVersion + "/groups";
 Map<String, String> reqHeaders = new HashMap<String, String>();
 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", fileName);

Chapter 12
Remove Groups (v1)

12-86

 Map<String, String> restResult = CSSRESTHelper.callRestApi(new
HashMap(), url, reqHeaders, reqParams,
 "DELETE");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL.

FuncRemoveGroups() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
 params="filename=$1"
 header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
 cssRESTAPI="removeGroups"
 statusMessage=$(funcCSSRESTHelper "DELETE" "$url" "$header"
"$USERNAME" "$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def removeGroups(fileName) {

 String scenario = "Deleting Groups in " + fileName;
 String params = null;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups?filename=" + fileName);
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "DELETE", null, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Common Functions

• See Common Helper Functions for Java

Chapter 12
Remove Groups (v1)

12-87

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Remove Groups (v2)
The Remove Groups (v2) REST API remove groups that are provided into request payload.
These groups are maintained in Access Control.

This topic describes the simplified v2 version of this REST API. This version contains all
parameters in the payload and does not require URL encoding while calling the REST APIs.
This makes the v2 API easier to use.

The user running this API must be authorized to perform this action. This API should be run
only by a Service Administrator in the environment where groups are to be removed. With this
API, you can see which records failed and the reason why they failed in addition to how many
records passed and failed.

The API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates failure of adding groups.

This API is version v2.

Required Roles

Service Administrator or Access Control Manager

REST Resource

POST /interop/rest/security/v2/groups/remove

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-56 Tasks for Remove Groups

Task Request REST Resource

Remove groups POST /interop/rest/security/v2/groups/remove

Request

Supported Media Types: application/json
The following table summarizes the POST request parameters.

Table 12-57 Parameters

Name Description Type Required Default

groups List of groups to remove. Payload Yes None

Chapter 12
Remove Groups (v2)

12-88

Example URL and Payload

https://<BASE-URL>/interop/rest/security/v2/groups/remove

{
 "groups":
 [
 {
 "groupname": "GroupA"
 },
 {
 "groupname": "GroupB"
 }
]
}

Response

Supported Media Types: application/json

Table 12-58 Parameters

Name Description

links Detailed information about the link and HTTP call type

status Identifies the status of the operation
• 0 - Operation succeeded
• 1 - Operation failed

error Detailed information about the error

details Detailed status of the operation performed. Total number of records
processed, succeeded, and failed, and the reason for why they failed.

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job Completes without Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/
remove",
 "action": "POST"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 2,
 "succeeded": 2,
 "failed": 0,
 "faileditems": null
 }
}

Chapter 12
Remove Groups (v2)

12-89

Example 2: Job Completes with Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/
remove",
 "action": "POST"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21120",
 "errormessage": "Failed to remove groups. Invalid or
insufficient parameters specified. Provide all required parameters for the
REST API."
 },
 "details": null
}

Example 3: Job Completes with Partial Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/groups/
remove",
 "action": "POST"
 },
 "status": 0,
 "error": null,
 "details": {
 "processed": 5,
 "succeeded": 3,
 "failed": 2,
 "faileditems":
 [
 {
 "groupname": "GroupA",
 "errorcode": "EPMCSS-21125",
 "errormessage": "Failed to remove group. Group GroupA
does not exist. Provide a valid groupname."
 },
 {
 "groupname": "GroupB",
 "errorcode": "EPMCSS-21125",
 "errormessage": "Failed to remove group. Group GroupB
does not exist. Provide a valid groupname."
 }
]
 }
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d

Chapter 12
Remove Groups (v2)

12-90

'{"groups":[{"groupname":"GroupA"},{"groupname":"GroupB"}]}' 'https://<BASE-
URL>/interop/rest/security/v2/groups/remove'

User Group Report (v1)
Generates a User Group Report of users in the system and writes the report to the filename
provided. This report lists the direct or indirect membership of users assigned to the group. It
can be downloaded using the Download API.

The report indicates whether the user assignment to group is direct (as member of a group) or
indirect (as member of a group that is a child of a nested group). The report identifies the
user's login name, first name, last name, email address, assigned group, and type of
assignment in the following format. It is identical to the CSV version of the report created from
the User Group Report tab in Access Control.

For example, assume that user jdoe is a member of group Test1, which is a child of nested
group Test2. In this scenario, the report will display the following information for jdoe:

User, First Name, Last Name, Email, Direct, Group
jdoe, John, Doe, jdoe@example.com, Yes, test1
jdoe, John, Doe, jdoe@example.com, No, test2
This is an asynchronous job and returns the Job ID.

This API is version v1.

Required Roles

Service Administrator or Access Control Manager

REST Resource

POST /interop/rest/security/<api_version>/usergroupreport

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-59 Tasks for User Group Report

Task Request REST Resource

User Group Report POST
/interop/rest/security/<api_version>/usergroupreport

User Group Report
Status

GET
/interop/rest/security/<api_version>/jobs/<jobId>

Chapter 12
User Group Report (v1)

12-91

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-60 Parameters

Name Description Type Required Default

api_version The specific API version, v1 Path Yes None

filename The name of the file where the report is to be populated,
such as userGroupReport.csv.

Form Yes None

Response

Supported Media Types: application/json

Table 12-61 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data Parameters as key value pairs passed in the request

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
 "details": null,
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/
usergroupreport",
 "rel": "self",
 "data": {
 "jobType": "GENERATE_USER_GROUP_REPORT",
 "filename": "<filename>"
 },
 "action": "POST"
 },
 {
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<jobId>",
 "rel": "Job Status",
 "data": null,

Chapter 12
User Group Report (v1)

12-92

 "action": "GET"
 }
],
 "status": -1,
 "items": null
}

Example 2: Job Completes with Errors

{
 "details": "Failed to generate User Group Report. File <filename> already
exists. Please provide different file name. ",
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<jobId>",
 "rel": "self",
 "data": null,
 "action": "GET"
 }
],
 "status": 1,
 "items": null
}

Example 3: Job Completes without Errors

{
 "details": null,
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<jobid>",
 "rel": "self",
 "data": null,
 "action": "GET"
 }
],
 "status": 0,
 "items": null
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

//
// BEGIN
//
public void generateUserGroupReport(String fileName) {
 try {
 String url = this.serverUrl + "/interop/rest/security/" +
apiVersion + "/usergroupreport";

Chapter 12
User Group Report (v1)

12-93

 Map<String, String> reqHeaders = new HashMap<String, String>();
 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", fileName);

 Map<String, String> restResult = CSSRESTHelper.callRestApi(new
HashMap(), url, reqHeaders, reqParams,
 "POST");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
// END
//

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcGenerateUserGroupReport() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/usergroupreport"
 params="filename=$1"
 header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
 cssRESTAPI="generateUserGroupReport"
 statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME"
"$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}

Groovy Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

def generateUserGroupReport(fileName) {
 String scenario = "Generating User Group Report in " + fileName;
 String params = "jobtype=GENERATE_USER_GROUP_REPORT&filename="+ fileName;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
usergroupreport");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }

Chapter 12
User Group Report (v1)

12-94

 response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

User Group Report (v2)
Generates a User Group Report for users in the system.

This report lists the direct or indirect membership of users assigned to the group. You can
create a query for a specific user or a group or a combination of users and groups.

The report indicates whether the user assignment to an EPM group is direct (as member of a
group) or indirect (as member of a group that is a child of a nested group). The report identifies
the user's login name, first name, last name, email address, assigned group, and type of
assignment.

The API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates failure in generating a User Group Report.

This API is version v2.

Required Roles

Service Administrator or Access Control Manager

REST Resource

GET /interop/rest/security/v2/report/usergroupreport?
userlogin=<userlogin>&groupname=<groupname>

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-62 Tasks for User Group Report

Task Request REST Resource

User Group
Report

GET /interop/rest/security/v2/report/usergroupreport?
userlogin=< userlogin>&groupname=<groupname>

Chapter 12
User Group Report (v2)

12-95

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 12-63 Request Parameters

Name Description Type Required Default

userlogin Generate usergroupreport for the specified
user.

Query No The report is created
for all users.

groupname Generate usergroupreport for the users
belonging to the specified group name.

Query No The report is created
for all groups.

Response

Supported Media Types: application/json

Table 12-64 Response Parameters

Parameters Description

links Detailed information about the link

status Status of the operation
• 0: Operation succeeded
• 1: Operation failed

error Detailed information about the error

details Records matching the request

Examples of Response Body

The following show examples of the response body in JSON format.

Example 1: REST API Issued without userlogin and groupname Query Parameters
Completes without Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
usergroupreport",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "userlogin": "Jade",
 "firstname": "Jade",
 "lastname": "Clark",
 "email": "jade.clark@example.oracle.com",
 "groups": [
 {
 "direct": "Yes",
 "groupname": "Interactive User"

Chapter 12
User Group Report (v2)

12-96

 },
 {
 "direct": "No",
 "groupname": "Strategic Planner"
 }
]
 },
 {
 "userlogin": "Jeff",
 "firstname": "Jeff",
 "lastname": "Clark",
 "email": "jeff.clark@discard.oracle.com",
 "groups": [
 {
 "direct": "Yes",
 "groupname": "Analyst"
 },
 {
 "direct": "No",
 "groupname": "Strategic Planner"
 }
]
 }
]
}

Example 2: REST API Issued with userlogin and groupname Query Parameters
Completes without Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
usergroupreport? userlogin=’Jade’&groupname='Interactive User'",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "userlogin": "Jade",
 "firstname": "Jade",
 "lastname": "Clark",
 "email": "jade.clark@example.oracle.com",
 "groups": [
 {
 "direct": "Yes",
 "groupname": "Interactive User"
 }
]
 }
]
}

Chapter 12
User Group Report (v2)

12-97

Example 3: REST API Issued Only with a userlogin Query Parameter Completes without
Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
usergroupreport?userlogin='Jade'",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "userlogin": "Jade",
 "firstname": "Jade",
 "lastname": "Clark",
 "email": "jade.clark@example.oracle.com",
 "groups": [
 {
 "direct": "Yes",
 "groupname": "Interactive User"
 },
 {
 "direct": "No",
 "groupname": "Strategic Planner"
 }
]
 }
]
}

Example 4: REST API Issued Only with a groupname Query Parameter Completes without
Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
usergroupreport?groupname='Strategic Planner'",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "userlogin": "Jade",
 "firstname": "Jade",
 "lastname": "Clark",
 "email": "jade.clark@example.oracle.com",
 "groups": [
 {
 "direct": "No",
 "groupname": "Strategic Planner"
 }
]
 },

Chapter 12
User Group Report (v2)

12-98

 {
 "userlogin": "Jeff",
 "firstname": "Jeff",
 "lastname": "Clark",
 "email": "jeff.clark@example.oracle.com",
 "groups": [
 {
 "direct": "No",
 "groupname": "Strategic Planner"
 }
]
 }
]
}

Example 5: Job Completes with Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
usergroupreport",
 "action": "GET"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21192",
 "errormessage": "Failed to generate User Group Report. Authorization
failed. Please provide valid authorized user."
 },
 "details": null
}

Sample cURL Commands

Sample cURL command using Basic Auth

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -H 'Content-Type: application/json'
'https://<BASE-URL>/interop/rest/security/v2/report/usergroupreport'

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -H 'Content-Type: application/json'
'https://<BASE-URL>/interop/rest/security/v2/report/usergroupreport?
userlogin=< userlogin>&groupname=<groupname>

Sample cURL command using oAuth

curl --location --request GET 'https://<BASE-URL>/interop/rest/security/v2/
report
/usergroupreport' --header "Authorization: Bearer <OAUTH_TOKEN>"

curl --location --request GET 'https://<EPM-CLOUD-BASE-URL>/interop/rest/
security/v2/report

Chapter 12
User Group Report (v2)

12-99

/usergroupreport/?userlogin=< userlogin>&groupname=<groupname>' --header
"Authorization: Bearer <OAUTH_TOKEN>"

User Access Report (v1)
Generates an access report of users in the system and writes the report to the filename
provided. This report can then be downloaded using the download command.

This is an asynchronous job and uses the job status URI to determine if the operation is
complete.

This API is version v1.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/{api_version}/reports?
q={type:provisionreport,fileName:provreport.csv,format:simplified,usertype,servic
eusers}

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-65 Tasks for User Access Report

Task Request REST Resource

User Access
Report

POST /interop/rest/{api_version}/reports?
q={type:provisionreport,fileName:provreport.csv,format:s
implified,usertype:serviceusers}

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 12-66 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

fileName File where report is to be populated Query Yes None

type Type of report being generated: provisionreport Query Yes None

format The format of the csv file, classic or simplified Query No classic
usertype Wheter to generate the report only for Identity Domain

Administrators, IDAdmins or ServiceUsers
Query No ServiceU

sers

Chapter 12
User Access Report (v1)

12-100

Response

Supported Media Types: application/json

Table 12-67 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

Example 1: Job is in Progress

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/{api_version}/reports?
q={type=provisionreport,fileName=provreport.csv,format=simplified,usertype=ser
viceusers}",
 "data": null,
 "action": "POST"
 },
 {
 "rel": "Job Status",
 "href": "https://<BASE-URL>/interop/rest/v1/reports/
3180399797144693",
 "data": null,
 "action": "GET"
 }
],
 "status": -1,
 "details": null
}

Java Sample – ProvisionReport.java

Prerequisites: json.jar

Common Functions: See Common Helper Functions for Java

//
// BEGIN
//

Chapter 12
User Access Report (v1)

12-101

public void provisionReport (String fileName, String type) throws Exception {
 JSONObject params = new JSONObject();
 params.put("fileName",java.net.URLEncoder.encode(fileName));
 params.put("type",java.net.URLEncoder.encode(type));
 params.put("format","simplified");
 params.put("usertype","usertype","serviceusers"));

 String urlString = String.format("%s/interop/rest/%s/reports?q=%s",
serverUrl, lcmVersion, params.toString());
 String response = executeRequest(urlString, "POST", params.toString(),
"application/x-www-form-urlencoded");
 getJobStatus(fetchPingUrlFromResponse(response, "Job Status"),"GET");
}
//
// END
//

cURL Sample – provisionreport.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcProvisionReport () {
 url=$SERVER_URL/interop/rest/$LCM_VERSION/reports/

 param=$(echo
"q={type:$reporttype,fileName:$fileName,format:$mode,usertype:$usertype}" |
sed -f urlencode.sed)

 url=$url?$param

 funcExecuteRequest "POST" $url $param "application/json"

 output='cat response.txt'
 status='echo $output | jq '.status''

 if [$status == -1]; then
 echo "copying snapshot in progress"
 funcGetStatus "GET"
 else
 error='echo $output | jq '.details''
 echo "Error occured. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"

}

Groovy Sample – provisionreport.groovy

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

def provisionReport (fileName, type) {
 def url;

Chapter 12
User Access Report (v1)

12-102

 JSONObject param = new
JSONObject();
 try {

 param.put("fileName",fileName);
 param.put("type",type);
 param.put("format",mode);
 param.put("usertype",usertype);

 url = new URL(serverUrl + "/interop/rest/" + lcmVersion + "/
reports?q=" + param.toString());
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "POST", param.toString(),
"application/x-www-form-urlencoded");

 if (response != null) {
 getJobStatus(fetchPingUrlFromResponse(response, "Job
Status"),"GET");
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

User Access Report (v2)
The User Access Report (v2) REST API generates an access report of users provisioned in
the environment and writes the report to the filename provided. This report can then be
downloaded using the download command.
This is an asynchronous job and uses the job status URI to determine if the operation is
complete.

This API is version v2.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v2/reports/useraccess

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 12
User Access Report (v2)

12-103

Table 12-68 Tasks for User Access Report

Task Request REST Resource

User Access
Report

POST /interop/rest/v2/reports/useraccess

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 12-69 Parameters

Name Description Type Required Default

fileName File where report is to be populated Payload Yes None

format The format of the csv file, classic or simplified Payload No classic
usertype Wheter to generate the report only for Identity Domain

Administrators, IDAdmins or ServiceUsers
Payload No ServiceU

sers

Example URL and Payload

https://<BASE-URL>/interop/rest/v2/reports/useraccess

{
 "fileName": "provisionreport.csv",
 "parameters": {
 "format": "simplified",
 "usertype": "IDAdmins"
 }
}

Response

Supported Media Types: application/json

Table 12-70 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href
to get the status of the import operation

data null

Chapter 12
User Access Report (v2)

12-104

Example of Response Body

The following example show the contents of the response body in JSON format.

{
 "details": null,
 "status": -1,
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/reports/useraccess",
 "action": "POST",
 "rel": "self",
 "data": null
 },
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/jobs/
22747066997747363",
 "action": "GET",
 "rel": "Job Status",
 "data": null
 }
]
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type: application/json' -d
'{"fileName":"provisionreport.csv","parameters":
{"format":"simplified","usertype":"IDAdmins"}}
' 'https://<BASE-URL>/interop/rest/v2/reports/useraccess'

User Audit Report (v1)
Generates a user audit report in the system and writes the report to the filename provided. The
output CSV file contains the first character as a Byte Order Mark(BOM) character \ufeff. The
API writes an encrypted application identifier following the BOM character. This application
identifier is written between double quotes. Headers for the CSV file follow the application
identifier. The report contains the details regarding the users logged into the system in a given
time range.

The generated CSV file is compressed and the output is a ZIP file. The file can be downloaded
using the Download REST API.

This is an asynchronous command, so use the job status URI to determine whether the
operation is complete.

This API is version v1.

Required Roles

Service Administrator

Chapter 12
User Audit Report (v1)

12-105

REST Resource

POST /interop/rest/{api_version}/reports?
q={type:userauditreport,fileName:userauditreport.csv,since:2017-12-10,until:2018
-06-10}

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-71 Tasks for User Audit Report

Task Request REST Resource

User Audit
Report

POST /interop/rest/{api_version}/reports?
q={type:userauditreport,fileName:useraudit
report.csv,since:2017-12-10,until:2018-06-10}

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-72 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

fileName File where report is to be populated Query Yes None

since Report generation start date Query Yes None

until Report generation end date Query Yes None

type Type of report being generated, provisionreport or
userauditreport

Query Yes None

Response

Supported Media Types: application/json

Table 12-73 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

Chapter 12
User Audit Report (v1)

12-106

Table 12-73 (Cont.) Parameters

Parameters Description

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "links": [
 {
 "rel": "self",
 "href": "https://<BASE-URL>/interop/rest/{api_version}/reports?
q={type:userauditreport,fileName:useraudit
report.csv,since:2017-12-10,until:2018-06-10}",
 "data": null,
 "action": "POST"
 },
 {
 "rel": "Job Status",
 "href": "https://<BASE-URL>/interop/rest/v1/reports/
3180621025673301",
 "data": null,
 "action": "GET"
 }
],
 "status": -1,
 "details": null
}

User Audit Report Sample Code

Example 12-1 Java Sample – UserAuditReport.java

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java

//
// BEGIN
//
public void userAuditReport (String fileName, String type, String since,
String until) throws Exception {
 JSONObject params = new JSONObject();
 params.put("fileName",java.net.URLEncoder.encode(fileName));
 params.put("type",java.net.URLEncoder.encode(type));
 params.put("since",java.net.URLEncoder.encode(since));
 params.put("until",java.net.URLEncoder.encode(until));

 String urlString = String.format("%s/interop/rest/%s/reports?q=%s",
serverUrl, lcmVersion, params.toString());

Chapter 12
User Audit Report (v1)

12-107

 String response = executeRequest(urlString, "POST", params.toString(),
"application/x-www-form-urlencoded");
 waitForCompletion(fetchPingUrlFromResponse(response, "Job Status"));}
//
// END
//

Example 12-2 cURL Sample – userauditreport.sh

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See Common Helper Functions for cURL

funcUserAuditReport () {
 url=$SERVER_URL/interop/rest/$LCM_VERSION/reports/

 param=$(echo
"q={type:$reporttype,fileName:$fileName,since:$since,until:$until}" | sed -f
urlencode.sed)

 url=$url?$param

 funcExecuteRequest "POST" $url $param "application/json"

 output='cat response.txt'
 status='echo $output | jq '.status''
 if [$status == -1]; then
 echo "copying snapshot in progress"
 funcGetStatus "GET"
 else
 error='echo $output | jq '.details''
 echo "Error occured. " $error
 fi
 funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Example 12-3 Groovy Sample – userauditreport.groovy

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Groovy

def userAuditReport (fileName, type, since, until) {
 def url;
 JSONObject param = new JSONObject();
 try {

 param.put("fileName",fileName);
 param.put("type",type);
 param.put("since",since);
 param.put("until",until);

 url = new URL(serverUrl + "/interop/rest/" + lcmVersion + "/
reports?q=" + param.toString());
 } catch (MalformedURLException e) {
 println "Malformed URL. Please pass valid URL"

Chapter 12
User Audit Report (v1)

12-108

 System.exit(0);
 }
 response = executeRequest(url, "POST", param.toString(),
"application/x-www-form-urlencoded");

 if (response != null) {
 waitForCompletion(fetchPingUrlFromResponse(response, "Job
Status"));
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

User Audit Report (v2)
The User Audit Report (v2) REST API generates a user audit report in the environment and
writes the report to the filename provided. The output CSV file contains the first character as a
Byte Order Mark(BOM) character \ufeff. The API writes an encrypted application identifier
following the BOM character. This application identifier is written between double quotes.
Headers for the CSV file follow the application identifier. The report contains the details
regarding the users logged into the environment in a given time range.

The generated CSV file is compressed and the output is a ZIP file. The file can be downloaded
using the Download REST API.

This is an asynchronous command, so use the job status URI to determine whether the
operation is complete.

This API is version v2.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/v2/reports/useraudit

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-74 Task for User Audit Report

Task Request REST Resource

User Audit Report POST /interop/rest/v2/reports/useraudit

Chapter 12
User Audit Report (v2)

12-109

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 12-75 Parameters

Name Description Type Required Default

fileName File where report is to be populated Payload Yes None

since Report generation start date Payload Yes None

until Report generation end date Payload Yes None

Example URL and Payload

https://<BASE-URL>/interop/rest/v2/reports/useraudit

{
 "fileName": "userauditreport.csv",
 "since": "2022-10-01",
 "until":"2022-11-01"
}

Response

Supported Media Types: application/json

Table 12-76 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href
to get the status of the import operation

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "details": null,
 "status": -1,
 "links": [
 {
 "href": "https://<BASE-URL>/interop/rest/v2/reports/useraudit",
 "action": "POST",

Chapter 12
User Audit Report (v2)

12-110

 "rel": "self",
 "data": null
 },
 {
 "href": "https://<BASE-URL>/interop/rest/v2/status/jobs/
22747152577657842",
 "action": "GET",
 "rel": "Job Status",
 "data": null
 }
]
}

Sample cURL command

curl -X POST -s -u '<USERNAME>:<PASSWORD>' -o response.txt -D respHeader.txt -
H 'Content-Type:application/json' -d
'{"fileName":"userauditreport.csv","until":"2022-11-01",
"since":"2022-10-01"}''https://<BASE-URL>/interop/rest/v2/reports/useraudit'

Role Assignment Report (v1)
Generates a Role Assignment Report (.CSV). This report lists the predefined roles (for
example, Service Administrator) and application roles (for example, Approvals Ownership
Assigner, Approvals Supervisor, Approvals Administrator, and Approvals Process Designer,
which are Planning application roles) assigned to users. This report matches the CSV version
of the Role Assignment Report generated from Access Control. Additionally, it can generate
reports containing Identity Domain Administrator on the system by specifying the user type.
The API writes the report to the filename provided, and the report can then be downloaded
using the Download REST API.

This is an asynchronous job and uses the job status URI to determine if the operation is
complete.

The presence of status -1 in the response indicates that the generation of Role Assignment
Report is in progress. Use the job status URI to determine whether the generation of Role
Assignment Report is complete. Any non-zero status except -1 indicates failure of generating
Role Assignment Report.

This API is version v1.

Required Roles

Service Administrator or Access Control Manager

REST Resource

POST /interop/rest/security/{api_version}/roleassignmentreport

Chapter 12
Role Assignment Report (v1)

12-111

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/download.html

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-77 Tasks for User Assignment Report

Task Request REST Resource

Role Assignment
Report

POST /interop/rest/security/{api_version}/
roleassignmentreport/

Role Assignment
Report Status

GET /interop/rest/security/{api_version}/jobs/{jobId}

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-78 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

filename File name for the file where the report is to be populated,
such as roleAssignmentReport.csv

Form Yes None

usertype User type for which to generate the report. This paramenter
is optional. If provided values can be either ServiceUsers
or IDAdmins.

Form No ServiceUs
ers

Response

Supported Media Types: application/json

Table 12-79 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data Parameters as key value pairs passed in the request

Examples of Response Body

The following show examples of the response body in JSON format.

Chapter 12
Role Assignment Report (v1)

12-112

Example 1: Job is in Progress

{
 "links": [
 {
 "data": {
 "jobType": "GENERATE_ROLE_ASSIGNMENT_REPORT",
 "filename": "<filename>"
 "usertype": "<USER_TYPE>"
 },
 "action": "POST",
 "href": "https://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<jobId>",
 "rel": "Job Status"
 }
],
 "status": -1,
 "details": null,
 "items": null
}

Example 2: Job Completes with Errors

{
 "links": [
 {
 "data": {
 "jobType": "GENERATE_ROLE_ASSIGNMENT_REPORT",
 "filename": "<filename>"
 "usertype": "<USER_TYPE>"
 },
 "action": "POST",
 "href": "https://<BASE-URL>/interop/rest/security/{api_version}/
roleassignmentreport",
 "rel": "self"
 }
],
 "status": 1,
 "details": "EPMCSS-20665: Failed to generate Role Assignment Report.
Invalid or insufficient parameters are specified. Provide all required
parameters for the REST API. ",
 "items": null
}

Example 3: Job Completes without Errors

{
 "links": [
 {
 "data": null,
 "action": "GET",
 "href": " https://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<jobID>",
 "rel": "self"
 }

Chapter 12
Role Assignment Report (v1)

12-113

],
 "status": 0,
 "details": null,
 "items": null
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java

public void generateRoleAssignmentReport(String filename, String userType) {
 try {
 String url = this.serverUrl + "/interop/rest/security/" +
apiVersion + "/roleassignmentreport";
 Map<String, String> reqHeaders = new HashMap<String, String>();
 reqHeaders.put("Authorization", "Basic " + DatatypeConverter
 .printBase64Binary((this.userName + ":" +
this.password).getBytes(Charset.defaultCharset())));

 Map<String, String> reqParams = new HashMap<String, String>();
 reqParams.put("filename", filename);
 reqParams.put("usertype", userType);

 Map<String, String> restResult = CSSRESTHelper.callRestApi(new
HashMap(), url, reqHeaders, reqParams,
 "POST");
 String jobStatus =
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
 System.out.println(jobStatus);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL

funcGenerateRoleAssignmentReport() {
 url="$SERVER_URL/interop/rest/security/$API_VERSION/
roleassignmentreport"
 params="filename=$1&usertype=$2"
 header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
 cssRESTAPI="generateRoleAssignmentReport"
 statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME"
"$PASSWORD" "$params" "$cssRESTAPI")
 echo $statusMessage
}

Chapter 12
Role Assignment Report (v1)

12-114

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def generateRoleAssignmentReport(filename, userType) {

 String scenario = "Generating Role assignment report in " + filename + "
with usertype as " + userType;
 String params = "jobtype=GENERATE_ROLE_ASSIGNMENT_REPORT&filename="+
filename "&usertype=" + userType;
 def url = null;
 def response = null;
 try {
 url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
roleassignmentreport");
 } catch (MalformedURLException e) {
 println "Please enter a valid URL"
 System.exit(0);
 }
 response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
 if (response != null) {
 getJobStatus(getUrlFromResponse(scenario, response, "Job Status"),
"GET");
 }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Role Assignment Report for Users (v2)
Generates a Role Assignment Report of users in the environment. The report lists the roles
assigned to users. It identifies the user's login name, first name, last name, email address and
assigned roles. The report can be created for a specific user or a role or a combination of
users and roles.

The report includes:

• Predefined roles (such as Service Administrator)

• Application roles (such as Approvals - Assign Ownerships, Approvals - Supervise,
Approvals - Administer, and Approvals - Design Process).

The API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates failure of getting Role Assignment Report for users.

This API is version v2.

Required Roles

Service Administrator or Access Control Manager

Chapter 12
Role Assignment Report for Users (v2)

12-115

REST Resource

GET /interop/rest/security/v2/report/roleassignmentreport/user?
userlogin=<userlogin>&rolename=<rolename>

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-80 Tasks for Role Assignment Report for Users

Task Request REST Resource

Role Assignment
Report for Users

GET /interop/rest/security/v2/report/roleassignmentreport/
user?userlogin=<userlogin>&rolename=<rolename>

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 12-81 Parameters

Name Description Type Required Default

userlogin Generates roleassignmentreport for the specified user
only. If a user login is not specified, the report is
generated for all the users.

Query No All Users

rolename Generates roleassignmentreport for the specified role
only. If a role name is not specified, the report is
generated for all the roles.
The Role name can be either Predefined or Application
Role (for example, Power User or Manage – Access
Control).

Query No All Roles

Response

Supported Media Types: application/json

Table 12-82 Parameters

Parameters Description

links Detailed information about the link and HTTP call type

status See Migration Status Codes

error Detailed information about the error

details Lists records matching the request

Chapter 12
Role Assignment Report for Users (v2)

12-116

Example of Respose Body

The following show examples of the response body in JSON format.

Response 1: REST API Issued without userlogin or rolename Query Parameters
Completes without Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/report/
roleassignmentreport/user",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "userlogin": "Jade",
 "firstname": "Jade",
 "lastname": "Clark",
 "email": "jade.clark@example.com",
 "roles": [
 {
 "rolename": "Service Administrator",
 "roletype": "Predefined",
 "grantedthroughgroup": ""
 },
 {
 "rolename": "Ad Hoc - Creater",
 "roletype": "Application",
 "grantedthroughgroup": ""
 }
]
 },
 {
 "userlogin": "Jeff",
 "firstname": "Jeff",
 "lastname": "Clark",
 "email": "jeff.clark@example.com",
 "roles": [
 {
 "rolename": "Service Administrator",
 "roletype": "Predefined",
 "grantedthroughgroup": "idcsgroup"
 },
 {
 "rolename": "Ad Hoc - Read Only User",
 "roletype": "Application",
 "grantedthroughgroup": ""
 },
 {
 "rolename": "Application - Mass Allocate",
 "roletype": "Application",
 "grantedthroughgroup": "Analyst->idcsgroup"
 }
]

Chapter 12
Role Assignment Report for Users (v2)

12-117

 }
]
}

Response 2: REST API Issued with userlogin and rolename Query Parameters
Completes without Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/report/
roleassignmentreport/user?userlogin='Jade'&rolename='Service Administrator'",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "userlogin": "Jade",
 "firstname": "Jade",
 "lastname": "Clark",
 "email": "jade.clark@example.com",
 "roles": [
 {
 "rolename": "Service Administrator",
 "roletype": "Predefined",
 "grantedthroughgroup": ""
 }
]
 }
]
}

Response 3: REST API Issued with Only rolename Query Parameter Completes without
Errors

{
 "links": {
 "href": "https://<BASE-URL>/interop/rest/security/v2/report/
roleassignmentreport/user?rolename='Ad Hoc - Read Only User'",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "userlogin": "Jade",
 "firstname": "Jade",
 "lastname": "Clark",
 "email": "jade.clark@example.com",
 "roles": [
 {
 "rolename": "Ad Hoc - Read Only User",
 "roletype": "Application",
 "grantedthroughgroup": ""
 }

Chapter 12
Role Assignment Report for Users (v2)

12-118

]
 },
 {
 "userlogin": "Jeff",
 "firstname": "Jeff",
 "lastname": "Clark",
 "email": "jeff.clark@example.com",
 "roles": [
 {
 "rolename": "Ad Hoc - Read Only User",
 "roletype": "Application",
 "grantedthroughgroup": ""
 }
]
 }
]
}

Response 4: REST API Issued with Only userlogin Query Parameter Completes without
Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
roleassignmentreport/user?userlogin='Jade'",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "userlogin": "Jade",
 "firstname": "Jade",
 "lastname": "Clark",
 "email": "jade.clark@example.com",
 "roles": [
 {
 "rolename": "Service Administrator",
 "roletype": "Predefined",
 "grantedthroughgroup": ""
 },
 {
 "rolename": "Ad Hoc - Creater",
 "roletype": "Application",
 "grantedthroughgroup": ""
 }
]
 }
]
}

Response 5: Job Completes with Errors

{
 "links": {

Chapter 12
Role Assignment Report for Users (v2)

12-119

 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
roleassignmentreport/user",
 "action": "GET"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21206",
 "errormessage": "Failed to generate Role Assignment Report for Users.
Authorization failed. Please provide valid authorized user."
 },
 "details": null
}

Sample cURL Commands

Sample cURL command using Basic Auth

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -H 'Content-Type: application/json'
'https://<BASE-URL>/interop/rest/security/v2/report/roleassignmentreport/user'

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -H 'Content-Type: application/json'
'https://<BASE-URL>/interop/rest/security/v2/report/roleassignmentreport/user?
userlogin=<userlogin>&rolename=<rolename>'

Sample cURL command using oAuth

curl --location --request GET 'https://<BASE-URL>/interop/rest/security/v2/
report
/roleassignmentreport/user' --header "Authorization: Bearer <OAUTH_TOKEN>"

curl --location --request GET 'https://<BASE-URL>/interop/rest/security/v2/
report
/roleassignmentreport/user?userlogin=<userlogin>&rolename=<rolename>' --
header "Authorization: Bearer <OAUTH_TOKEN>"

Role Assignment Report for Groups (v2)
Generates a Role Assignment report of groups in the environment. The report lists the roles
assigned to groups. It identifies the group’s name, description, type and assigned roles. The
report can be created for a specific group or a role or a combination of groups and roles.

The report includes:

• Predefined roles (such as Service Administrator)

• Application roles (such as Approvals - Assign Ownerships, Approvals - Supervise,
Approvals - Administer, and Approvals - Design Process)

The API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates failure of getting Role Assignment Report for groups.

This API is version v2.

Chapter 12
Role Assignment Report for Groups (v2)

12-120

Required Roles

Service Administrator or Access Control Manager

REST Resource

GET /interop/rest/security/v2/report/roleassignmentreport/group?
groupname=<groupname>&rolename=<rolename>

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-83 Tasks for Role Assignment Report for Groups

Task Reque
st

REST Resource

Role
Assignment
Report for
Groups

GET /interop/rest/security/v2/report/
roleassignmentreport/group?
groupname=<groupname>&rolename=<rolename>

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 12-84 Parameters

Name Description Type Required Default

groupname Generates roleassignmentreport for the specified
group only. If a group name is not specified, the report is
generated for all the groups.
The group name can be either EPM or IDCS group.

Query No All
Groups

rolename Generates roleassignmentreport for the specified role
only. If a role name is not specified, the report is
generated for all the roles.
The Role name can be either Predefined or Application
Role (for example, Power User or Manage – Access
Control).

Query No All Roles

Response

Supported Media Types: application/json

Chapter 12
Role Assignment Report for Groups (v2)

12-121

Table 12-85 Parameters

Parameters Description

links Detailed information about the link and HTTP call type

status See Migration Status Codes

error Detailed information about the error

details Lists records matching the request

Example of Response Body

The following show examples of the response body in JSON format.

Response 1: REST API Issued without groupname or rolename Query Parameters
Completes without Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
roleassignmentreport/group",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "groupname": "idcsgroup",
 "description": "Sample IDCS Group",
 "type": "IDCS",
 "roles": [
 {
 "rolename": "Service Administrator",
 "roletype": "Predefined",
 "grantedthroughgroup": ""
 },
 {
 "rolename": "Application - Mass Allocate",
 "roletype": "Application",
 "grantedthroughgroup": ""
 },
 {
 "rolename": "Ad Hoc - Read Only User",
 "roletype": "Application",
 "grantedthroughgroup": "Analyst"
 }
]
 },
 {
 "groupname": "FinancialAnalyst",
 "description": "Sample EPM Group",
 "type": "EPM",
 "roles": [
 {
 "rolename": "Application - Mass Allocate",

Chapter 12
Role Assignment Report for Groups (v2)

12-122

 "roletype": "Application",
 "grantedthroughgroup": ""
 },
 {
 "rolename": "DataIntegration-Create",
 "roletype": "Application",
 "grantedthroughgroup": ""
 },
 {
 "rolename": "DataIntegration-Run",
 "roletype": "Application",
 "grantedthroughgroup": ""
 }
]
 },
 {
 "groupname": "GroupPU",
 "description": "Sample IDCS GroupPU",
 "type": "IDCS",
 "roles": [
 {
 "rolename": "PowerUser",
 "roletype": "Predefined",
 "grantedthroughgroup": ""
 },
 {
 "rolename": "Approval-Supervise",
 "roletype": "Application",
 "grantedthroughgroup": ""
 },
 {
 "rolename": "DataIntegration-Run",
 "roletype": "Application",
 "grantedthroughgroup": "Analyst->FinancialAnalyst"
 }
]
 }
]
}

Response 2: REST API Issued with groupname and rolename Query Parameters
Completes without Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
roleassignmentreport/group?groupname='idcsgroup'&rolename='Service
Administrator'",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "groupname": "idcsgroup",

Chapter 12
Role Assignment Report for Groups (v2)

12-123

 "description": "Sample IDCS Group",
 "type": "IDCS",
 "roles": [
 {
 "rolename": "Service Administrator",
 "roletype": "Predefined",
 "grantedthroughgroup": ""
 }
]
 }
]
}

Response 3: REST API Issued with Only rolename Query Parameter Completes without
Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
roleassignmentreport/group?rolename='Application - Mass Allocate'",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "groupname": "idcsgroup",
 "description": "Sample IDCS Group",
 "type": "IDCS",
 "roles": [
 {
 "rolename": "Application - Mass Allocate",
 "roletype": "Application",
 "grantedthroughgroup": ""
 }
]
 },
 {
 "groupname": "FinancialAnalyst",
 "description": "Sample EPM Group",
 "type": "EPM",
 "roles": [
 {
 "rolename": "Application - Mass Allocate",
 "roletype": "Application",
 "grantedthroughgroup": ""
 }
]
 }
]
}

Chapter 12
Role Assignment Report for Groups (v2)

12-124

Response 4: REST API Issued with Only groupname Query Parameter Completes without
Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
roleassignmentreport/group?groupname='idcsgroup'",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "groupname": "idcsgroup",
 "description": "Sample IDCS Group",
 "type": "IDCS",
 "roles": [
 {
 "rolename": "Service Administrator",
 "roletype": "Predefined",
 "grantedthroughgroup": ""
 },
 {
 "rolename": "Application - Mass Allocate",
 "roletype": "Application",
 "grantedthroughgroup": ""
 },
 {
 "rolename": "Ad Hoc - Read Only User",
 "roletype": "Application",
 "grantedthroughgroup": "Analyst"
 }
]
 }
]
}

Response 5: Job Completes with Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/report/
roleassignmentreport/group",
 "action": "GET"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21203",
 "errormessage": "Failed to generate Role Assignment Report for Groups.
Authorization failed. Please provide valid authorized user."
 },
 "details": null
}

Chapter 12
Role Assignment Report for Groups (v2)

12-125

Sample cURL Commands

Sample cURL command using Basic Auth

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -H 'Content-Type: application/json'
'https://<BASE-URL>/interop/rest/security/v2/report/roleassignmentreport/group

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -H 'Content-Type: application/json'
'https://<BASE-URL>/interop/rest/security/v2/report/roleassignmentreport/
group?groupname=<groupname>&rolename=<rolename>'

Sample cURL command using oAuth

curl --location --request GET 'https://<BASE-URL>/interop/rest/security/v2/
report
/roleassignmentreport/group' --header "Authorization: Bearer <OAUTH_TOKEN>"

curl --location --request GET 'https://<BASE-URL>/interop/rest/security/v2/
report
/roleassignmentreport/group?groupname=<groupname>&rolename=<rolename>' --
header "Authorization: Bearer <OAUTH_TOKEN>"

Get Available Roles
Returns all the application roles that are visible along with predefined roles that are available
for an Oracle Enterprise Performance Management Cloud service.

This API is synchronous and returns the outcome of the operation in the response. Any non-
zero status indicates failure of getting available roles.

This REST API is version v2.

Required Roles

Service Administrator or Access Control Manager

REST Resource

GET /interop/rest/security/v2/role/getavailableroles

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 12
Get Available Roles

12-126

Table 12-86 Tasks for Getting Available Roles

Task Request REST Resource

Get Available
Roles

GET /interop/rest/security/v2/role/getavailableroles

Request

Supported Media Types: application/json

Response

Supported Media Types: application/json

Table 12-87 Parameters

Parameters Description

links Detailed information about the link

status Status of the operation
• 0: Operation succeeded
• 1: Operation failed

error Detailed information about the error

details Records matching the request

Examples of Response Body

The following show examples of the response body in JSON format.

Example 1: Job Completes without Errors

{
 "links": {
 "href": " https://<BASE URL>/interop/rest/security/v2/role/
getavailableroles",
 "action": "GET"
 },
 "status": 0,
 "error": null,
 "details": [
 {
 "name": "Ad Hoc - Create",
 "id": "HP:0016"
 },
 {
 "name": "Ad Hoc - Read Only User",
 "id": "HP:0017"
 },
 {
 "name": "Ad Hoc - User",
 "id": "HP:0015"
 },
 {
 "name": "Announcements - Manage",

Chapter 12
Get Available Roles

12-127

 "id": "HP:0021"
 },
 {
 "name": "User",
 "id": "HUB:003"
 },
 {
 "name": "Viewer",
 "id": "HUB:004"
 },
 ...
]
}

Example 2: Job Completes with Errors

{
 "links": {
 "href": " https://<BASE-URL>/interop/rest/security/v2/role/
getavailableroles",
 "action": "GET"
 },
 "status": 1,
 "error": {
 "errorcode": "EPMCSS-21192",
 "errormessage": "Failed to get available roles. Authorization failed.
Please provide valid authorized user."
 },
 "details": null
}

Sample cURL Commands

Sample cURL command using Basic Auth

curl -X GET -s -u '<USERNAME>:<PASSWORD>' -H 'Content-Type: application/json'
'https://<BASE-URL>/interop/rest/security/v2/role/getavailableroles'

Sample cURL command using oAuth

curl --location --request GET 'https://<BASE-URL>/interop/rest/security/v2/
role/getavailableroles'
--header "Authorization: Bearer <OAUTH_TOKEN>"

Role Assignment Audit Report for OCI (Gen 2) Environments
Users with a Service Administrator role can use this API to generate a Role Assignment Audit
Report of users with their pre-defined and application roles on OCI (Gen 2) Environments. This
allows you to automate reporting on users role and application role assignments. The report
shows all the changes made to the predefined role and application role assignments within the
provided time frame. This report can be generated for the previous 90 days from the current
date. You can download the report using the Download REST API. The report shows the
timestamp (UTC) in the Date and Time column in 24-hour format.

Chapter 12
Role Assignment Audit Report for OCI (Gen 2) Environments

12-128

This is an asynchronous job and uses the job status URI to determine if the operation is
complete.

The presence of status -1 in the response indicates that the generation of the report is in
progress. Use the job status URI to determine whether the generation of the report is
complete. Any non-zero status except -1 indicates failure of generating the report.

The default retention period for audit data is 30 days; however, you can extend the retention
period up to a maximum of 90 days from the Identity Console. If you want a longer duration of
audit data, download a Role Assignment Audit Report and archive it.

Note:

This command is applicable to OCI environments only.

This API is version v1.

Required Roles

Service Administrator or any EPM Cloud user assigned to the Identity Domain Administrator
role

REST Resource

POST /interop/rest/security/{api_version}/roleassignmentauditreport

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-88 Tasks for Role Assignment Audit Report for OCI (Gen 2) Environments

Task Request REST Resource

Role Assignment
Audit Report

POST /interop/rest/security/{api_version}/
roleassignmentauditreport/

Role Assignment
Audit Report Status

GET /interop/rest/security/{api_version}/jobs/{jobId}

Request

Supported Media Types: application/x-www-form-urlencoded

Table 12-89 Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

from_date The start date for the report (in YYYY-MM-DD format) Form Yes None

to_date The end date for the report (in YYYY-MM-DD format) Form Yes None

Chapter 12
Role Assignment Audit Report for OCI (Gen 2) Environments

12-129

Table 12-89 (Cont.) Parameters

Name Description Type Required Default

filename CSV file where the report is to be populated, such as
roleAssignmentAuditReport.csv

Form Yes None

Response

Supported Media Types: application/json

Table 12-90 Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status

data Parameters as key value pairs passed in the request

Sample Role Assignment Audit Report

Information on deleted users who were previously assigned to predefined roles in the
environment is listed with the display name (first and last name) of the user in the User Name
column. In such cases, the Role column indicates the predefined role that the user had before
the user's account was deleted. This change does not apply to application roles, if any, that
were assigned to the deleted user; such assignments are shown with the User Login Name of
the user. For an example, see the information in the red box in the following illustration.

````-
 

 

Examples of Response Body

The following show examples of the response body in JSON format.

Chapter 12
Role Assignment Audit Report for OCI (Gen 2) Environments

12-130



Response 1: Job is in Progress

{
    "links": [
        {
            "rel": "self",
            "href": "https://<BASE-URL>/interop/rest/security/<api_version>/
roleassignmentauditreport",
            "data": {
                "jobType": "GENERATE_ROLE_ASSIGNMENT_AUDIT_REPORT",
                "to_date": "<toDate>",
                "filename": "<filename>",
                "from_date": "<fromDate>"
            },
            "action": "POST"
        },
        {
            "rel": "Job Status",
            "href": "https://<BASE-URL>/interop/rest/security/<api_version>/
jobs/3023387588778806",
            "data": null,
            "action": "GET"
        }
    ],
    "details": null,
    "status": -1,
    "items": null
}

Response 2: Job Completes with Errors

{
    "links": [
        {
            "data": {
                "jobType": "GENERATE_ROLE_ASSIGNMENT_AUDIT_REPORT",
            "from_date": " ",
            "to_date": " ",
                "filename": " "
            },
            "action": "POST",
            "href": "https://<BASE-URL>/interop/rest/security/{api_version}/
roleassignmentauditreport",
            "rel": "self"
        }
    ],
    "status": 1,
    "details": "EPMCSS-20678: Failed to generate Role Assignment Audit 
Report. Invalid or insufficient parameters specified. Provide all required 
parameters for the REST API. ",
    "items": null
}

Chapter 12
Role Assignment Audit Report for OCI (Gen 2) Environments

12-131



Response 3: Job Completes without Errors

{
    "links": [
        {
            "data": null,
            "action": "GET",
            "href": " https://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<jobID>",
            "rel": "self"
        }
    ],
    "status": 0,
    "details": null,
    "items": null
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java

public void generateRoleAssignmentAuditReport(String fromDate, String 
toDate,String fileName) {
     try {
        String url = this.serverUrl + "/interop/rest/security/" + apiVersion 
+ "/roleassignmentauditreport";
        Map<String, String> reqHeaders = new HashMap<String, String>();
        reqHeaders.put("Authorization", "Basic " + DatatypeConverter
            .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

        Map<String, String> reqParams = new HashMap<String, String>();
        reqParams.put("from_date", fromDate);
        reqParams.put("to_date", toDate);
        reqParams.put("filename", fileName);
                             
        Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                                                                        
"POST");
        String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
        System.out.println(jobStatus);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Chapter 12
Role Assignment Audit Report for OCI (Gen 2) Environments

12-132



Common Functions: See CSS Common Helper Functions for cURL

funcGenerateRoleAssignmentAuditReport() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/
roleassignmentauditreport"
      params="from_date=$1&to_date=$2&filename=$3"     
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="generateRoleAssignmentAuditReport"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def generateRoleAssignmentAuditReport(from_date,to_date,fileName) {

    String scenario = "Generating Role assignment audit report in " + 
fileName;
    String params = 
"jobtype=GENERATE_ROLE_ASSIGNMENT_AUDIT_REPORT&from_date="+from_date+"&to_date
="+to_date+"&filename="+ fileName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
roleassignmentauditreport");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

Invalid Login Report for OCI (Gen 2) Environments
Users who have both a Service Administrator role and an Identity Domain Administrator role
can use this API to generate an Invalid Login Report on OCI (Gen 2) environments. This allows
you to automate reporting on unsuccessful login attempts. This report shows unsuccessful
login attempts for users within the provided time frame. This report can be generated for the
previous 90 days from the current date. You can download the report using the Download
REST API. This report shows all the unsuccessful login attempts to the corresponding Identity
Cloud Service. These may not all be to this particular EPM Cloud instance.

This is an asynchronous job and uses the job status URI to determine if the operation is
complete.

Chapter 12
Invalid Login Report for OCI (Gen 2) Environments

12-133



The presence of status -1 in the response indicates that the generation of the report is in
progress. Use the job status URI to determine whether the generation of the report is
complete. Any non-zero status except -1 indicates failure of generating the report.

The default retention period for audit data is 30 days; however, you can extend the retention
period up to a maximum of 90 days from the Identity Console. If you want a longer duration of
audit data, download an Invalid Login Report and archive it.

This API is version v1.

Required Roles

Identity Domain Administrator and any predefined role (Service Administrator, Power User,
User, or Viewer)

REST Resource

POST /interop/rest/security/{api_version}/invalidloginreport

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Table 12-91    Tasks for Invalid Login Report for OCI (Gen 2) Environments

Task Request REST Resource

Invalid Login
Report

POST /interop/rest/security/{api_version}/invalidloginreport/

Invalid Login
Report Status

GET /interop/rest/security/{api_version}/jobs/{jobId}

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-92    Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

from_date The start date for the report (in YYYY-MM-DD format) Form Yes None

to_date The end date for the report (in YYYY-MM-DD format) Form Yes None

filename CSV file where the report is to be populated, such as
InvalidLoginReport.csv

Form Yes None

Response

Supported Media Types: application/json

Chapter 12
Invalid Login Report for OCI (Gen 2) Environments

12-134



Table 12-93    Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status

data Parameters as key value pairs passed in the request

Sample Invalid Login Report

 

 

Examples of Response Body

The following show examples of the response body in JSON format.

Response 1: Job is in Progress

{
    "links": [
        {
            "rel": "self",
            "href": "https://<BASE-URL>/interop/rest/security/<api_version>/
invalidloginreport",
            "data": {
                "jobType": "GENERATE_INVALID_LOGIN_REPORT",
                "to_date": "<toDate>",
                "filename": "<filename>",
                "from_date": "<fromDate>"
            },
            "action": "POST"
        },
        {
            "rel": "Job Status",
            "href": "https://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<job_id>",
            "data": null,
            "action": "GET"
        }
    ],
    "details": null,
    "status": -1,

Chapter 12
Invalid Login Report for OCI (Gen 2) Environments

12-135



    "items": null
}

Response 2: Job Completes with Errors

{
    "links": [
        {
            "data": {
                "jobType": "GENERATE_INVALID_LOGIN_REPORT",
            "from_date": " ",
            "to_date": " ",
                "filename": " "
            },
            "action": "POST",
            "href": "https://<BASE-URL>/interop/rest/security/{api_version}/
invalidloginreport",
            "rel": "self"
        }
    ],
    "status": 1,
    "details": "EPMCSS-20679: Failed to generate Invalid Login Report. 
Invalid or insufficient parameters specified. Provide all required parameters 
for the REST API. ",
    "items": null
}

Response 3: Job Completes without Errors

{
    "links": [
        {
            "data": null,
            "action": "GET",
            "href": " https://<BASE-URL>/interop/rest/security/<api_version>/
jobs/<jobID>",
            "rel": "self"
        }
    ],
    "status": 0,
    "details": null,
    "items": null
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java

public void generateInvalidLoginReport(String fromDate, String toDate, String 
fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/invalidloginreport";

Chapter 12
Invalid Login Report for OCI (Gen 2) Environments

12-136



            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("from_date", fromDate);
            reqParams.put("to_date", toDate);
            reqParams.put("filename", fileName);
        
            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Common Functions: See CSS Common Helper Functions for cURL

funcGenerateInvalidLoginReport() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/
invalidloginreport"
     params="from_date=$1&to_date=$2&filename=$3"     
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="generateInvalidLoginReport"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def generateInvalidLoginReport(from_date,to_date,fileName) {

    String scenario = "Generating Invalid Login report in" + fileName;
    String params = 
"jobtype=GENERATE_INVALID_LOGIN_REPORT&from_date="+from_date+"&to_date="+to_da
te+"&filename="+ fileName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
invalidloginreport");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"

Chapter 12
Invalid Login Report for OCI (Gen 2) Environments

12-137



        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Group Assignment Audit Report
Generates a group assignment audit report. The report contains details on the users and
groups that were added to or removed from Access Control groups in a given date range. This
report is in CSV format. Each row of the report provides the user or group that was added or
removed, the group to which the user or group was added or removed from, the Service
Administrator who performed the action, and the date and time when the action was
completed. The API writes the report to the filename provided, and the report can then be
downloaded using the Download REST API.

This is an asynchronous job and uses the job status URI to determine if the operation is
complete.

The presence of status -1 in the response indicates that the generation of Group Assignment
Audit Report is in progress. Use the job status URI to determine whether the generation of the
report is complete. Any non-zero status except -1 indicates failure of generating the report.

This API is version v2.

Required Roles

Service Administrator

REST Resource

POST /interop/rest/{api_version}/reports/groupaudit

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 12
Group Assignment Audit Report

12-138

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/download.html


Table 12-94    Tasks for Group Assignment Audit Report

Task Request REST Resource

Group Assignment
Audit Report

POST /interop/rest/{api_version}/reports/groupaudit

Group Assignment
Audit Report Status

GET /interop/rest/{api_version}/jobs/{jobId}

Request

Supported Media Type: application/json
The following table summarizes the request parameters.

Table 12-95    Parameters

Name Description Type Required Default

api_version Specific API version Path Yes None

filename The CSV file where the report is to be populated, such as

groupAssignmentAuditReport.csv

Payload Yes None

from_date The start date for the report (in YYYY-MM-DD format) Payload Yes None

to_date The end date for the report (in YYYY-MM-DD format) Payload Yes None

Example Payload

{
fileName":"groupauditreport_test.csv",
"from_date":"2022-03-26",
"to_date":"2022-05-30"
}

Response

Supported Media Types: application/json

Table 12-96    Parameters

Parameters Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use the href to
get the status of the import operation

data Parameters as key value pairs passed in the request

Chapter 12
Group Assignment Audit Report

12-139



Example of Response Body

The following shows an example of the response body in JSON format.

{
   "links": [
      {
         "rel": "self",
         "href": "https://<BASE-URL>/interop/rest/{api_version}/reports/
groupaudit",
         "data": null,
         "action": "POST"
      },
      {
         "rel": "Job Status",
         "href": "https://<BASE-URL>/interop/rest/v2/jobs/3180621025673301",
         "data": null,
         "action": "GET"
      }
   ],
   "status": -1,
   "details": null
}

Java Sample Code

Prerequisites: json.jar

Common Functions: See CSS Common Helper Functions for Java

    // 
    //BEGIN
    //
    public void groupAssignmentAuditReport(String fileName, String from_date, 
String to_date)
            throws Exception {
        JSONObject params = new JSONObject();
        params.put("fileName", fileName);
        params.put("from_date", from_date);
        params.put("to_date", to_date);

        String urlString = String.format("%s/interop/rest/%s/reports/
groupaudit", serverUrl, apiVersion);
        String response = executeRequest(urlString, "POST", 
params.toString(), "application/json");
        getJobStatus(fetchPingUrlFromResponse(response, "Job Status"), "GET");
    }
    //
    // END
    // 

Shell Script Sample Code

Prerequisites: jq (http://stedolan.github.io/jq/download/linux64/jq)

Chapter 12
Group Assignment Audit Report

12-140



Common Functions: See CSS Common Helper Functions for cURL

funcgroupAssignmentAuditReport () {
    url=$SERVER_URL/interop/rest/v2/reports/groupaudit
    fileName="groupAssignmentAuditReport.csv"
    from_date="2022-03-01"
    to_date="2022-05-30"
    
param="{\"fileName\":\"$fileName\",\"from_date\":\"$from_date\",\"to_date\":\"
$to_date\"}"
    funcExecuteRequest "POST" $url "$param" "application/json"
    output=$(cat response.txt)
    status=$(echo $output | jq '.status')
    echo "Status :$status"
    if [ $status == -1 ]; then
        echo "group assignment audit report generation in progress"
        funcGetStatus "GET"
    else
        error='echo $output | jq '.details''
        echo "Error occured. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample Code

Common Functions: See CSS Common Helper Functions for Groovy

def groupAssignmentAuditReport (fileName, from_date, to_date) {
        String scenario = "Group Assignment Audit Report";
        def url;       
        def payload = new JsonBuilder()
      payload fileName:fileName,
            from_date:from_date,
            to_date:to_date                                  
     url = new URL(serverUrl + "/interop/rest/v2/reports/groupaudit");
     params=payload.toString();
     response = executeRequest(url, "POST", params, "application/
json");        
     if (response != null) {
       getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
     } 
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Chapter 12
Group Assignment Audit Report

12-141



Adding Users to a Team for Account Reconciliation
Adds Oracle Enterprise Performance Management Cloud users listed in a UTF8 formatted
CSV file to an existing team in Access Control for Account Reconciliation. The file must be
uploaded to the environment before using this API, and the file should be deleted after the API
executes. Use the Upload REST API to upload the file.

A primary user is, by default, designated to perform the tasks that are assigned to the team.
The file format is as follows:

User Login, primary_user
jdoe, yes
jane.doe@example.com,no

The users are added only if both these conditions are met:

• User login IDs included in the file exist in the identity domain that services the environment

• The user is assigned to a pre-defined role in the identity domain

The API is asynchronous and returns the Job ID. Use the job status URI to determine whether
the process is complete. The presence of status -1 in the response indicates that the update is
in progress. Any non-zero status except -1 indicates failure for the update.

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles

REST Resource

POST /armARCS/rest/{version}/jobs

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-97    Parameters

Name Data
Type

Description

version String The version of the API you are developing with. For the current release,
the version is v1.

Chapter 12
Adding Users to a Team for Account Reconciliation

12-142



Table 12-97    (Cont.) Parameters

Name Data
Type

Description

jobName String The name of the job, ADD_USERS_TO_TEAM.

fileName String The name of the uploaded ANSI or UTF-8 encoded CSV file containing
information on the users to be added, for example,
addUsersToTeam.csv.

The file must have been uploaded already using the Upload REST API.
The CSV file should not include the account of the user who executes
this command.

A primary user is, by default, designated to perform the tasks that are
assigned to the team. The file format is as follows:

User Login, primary_user
jdoe, yes
jane.doe@example.com,no

teamName String The name of an existing team in Access Control, such as Team1

Example URL and Payload

https://<BASE-URL>/armARCS/rest/v1/jobs/ 

{
   "jobName":"ADD_USERS_TO_TEAM",
      "parameters":{
      "fileName":"users.csv",
      "teamName":"Team1"
   }
}

Response

Supported Media Types: application/json

Table 12-98    Parameters

Name Description

status -1 - In Progress

0 - Success

1 - Failure

details In case of errors, details are published with the error string

descriptiveStat
us

The status of the job, such as Completed or Error.

items Collection of notification categories

links Detailed information about the link

href Links to the API call

action The HTTP call type

Chapter 12
Adding Users to a Team for Account Reconciliation

12-143



Table 12-98    (Cont.) Parameters

Name Description

rel Possible value: self
data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
  "details": "In Process",
  "links": [
    {
      "rel": "self",
      "href": "https://<BASE-URL>/armARCS/rest/v1/jobs/100000000053010",
      "action": "GET"
    }
  ],
  "status": -1,
  "type": "ARCS",
  "link": null,
  "items": null,
  "error": null
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Adding Users to a Team for Financial Consolidation and Close
and Tax Reporting

Adds Oracle Enterprise Performance Management Cloud users listed in a UTF8 formatted
CSV file to an existing team in Access Control. The file must be uploaded to the environment
before using this API, and the file should be deleted after the API executes. Use the Upload
REST API to upload the file.

A primary user is, by default, designated to perform the tasks that are assigned to the team.
The file format is as follows:

User Login, primary_user
jdoe, yes
jane.doe@example.com,no

The users are added only if both these conditions are met:

• User login IDs included in the file exist in the identity domain that services the environment

• The user is assigned to a pre-defined role in the identity domain

Chapter 12
Adding Users to a Team for Financial Consolidation and Close and Tax Reporting

12-144



The API is asynchronous and returns the Job ID. Use the job status URI to determine whether
the process is complete. The presence of status -1 in the response indicates that the update is
in progress. Any non-zero status except -1 indicates failure for the update.

Note:

This feature uses a Planning REST API to run a job. Details about Planning REST
APIs are described here: Planning REST APIs.

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/fcmjobs

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Table 12-99    Parameters

Name Description Type Require
d

Default

api_version The version of the API you are developing with; for
the current release, it is v3

Path Yes None

application The name of the application, for example, FCCS or
TRCS

Path Yes None

Example of Request Body

The following table summarizes the parameters of the JSON request.

Table 12-100    Parameters

Name Description

jobName The name of the job, ADD_USERS_TO_TEAM

Chapter 12
Adding Users to a Team for Financial Consolidation and Close and Tax Reporting

12-145



Table 12-100    (Cont.) Parameters

Name Description

fileName The name of the uploaded ANSI or UTF-8 encoded CSV file containing information
on the users to be added, for example, addUsersToTeam.csv.

The file must have been uploaded already using the Upload REST API. The CSV
file should not include the account of the user who executes this command.

A primary user is, by default, designated to perform the tasks that are assigned to
the team. The file format is as follows:

User Login, primary_user
jdoe, yes
jane.doe@example.com,no

teamName The name of an existing team in Access Control, for example, Team1

Example URL and Payload

https://<BASE-URL>/HyperionPlanning/rest/v3/applications/FCCS/fcmjobs

{
   "jobName":"ADD_USERS_TO_TEAM",
      "parameters":{
      "fileName":"users.csv",
      "teamName":"Team1"
   }
}

Response

Supported Media Types: application/json

Table 12-101    Parameters

Name Description

jobName ADD_USERS_TO_TEAM
jobID The ID of the job, such as 100000000114040

status -1 - In Progress

0 - Success

1 - Failure

details In case of errors, details are published with the error string

descriptiveStat
us

The status of the job, such as Completed or Error

items Collection of notification categories

links Detailed information about the link

href Links to the API call

action The HTTP call type

rel Possible value: self

Chapter 12
Adding Users to a Team for Financial Consolidation and Close and Tax Reporting

12-146



Table 12-101    (Cont.) Parameters

Name Description

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
   "jobName":"ADD_USERS_TO_TEAM",
   "jobId":100000000114040,
   "descriptiveStatus":",
   "detail":"In Progress",
   "status":-1,
   "items":null,
   "links":[
      {
         "rel":"self",
         "href":"https://<BASE-URL>/HyperionPlanning/rest/v3/applications/
FCCS/fcmjobs/100000000114040",
         "action":"GET"
      }
   ]
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Removing Users from a Team for Account Reconciliation
Removes Oracle Enterprise Performance Management Cloud users listed in a UTF8 formatted
CSV file from an existing team in Access Control for Account Reconciliation. The file must be
uploaded to the environment before using this API, and the file should be deleted after the API
executes. Use the Upload REST API to upload the file.

A primary user is, by default, designated to perform the tasks that are assigned to the team.
The file format is as follows:

User Login, primary_user
jdoe, yes
jane.doe@example.com,no

The users are removed only if both these conditions are met:

• User login IDs included in the file exist in the identity domain that services the environment

• The user is assigned to a pre-defined role in the identity domain

Chapter 12
Removing Users from a Team for Account Reconciliation

12-147



The API is asynchronous and returns the Job ID. Use the job status URI to determine whether
the process is complete. The presence of status -1 in the response indicates that the update is
in progress. Any non-zero status except -1 indicates failure for the update.

Required Roles

Service Administrator

REST Resource

POST /armARCS/rest/{version}/jobs

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the parameters of the JSON request.

Table 12-102    Parameters

Name Data
type

Description

version String The version of the API you are developing with. For the current release,
the version is v1.

jobName String The name of the job, REMOVE_USERS_FROM_TEAM.

fileName String The name of the uploaded ANSI or UTF-8 encoded CSV file containing
information on the users to be remved, for example,
removeUsersFromTeam.csv.

The file must have been uploaded already using the Upload REST API.
The CSV file should not include the account of the user who executes
this command.

A primary user is, by default, designated to perform the tasks that are
assigned to the team. The file format is as follows:

User Login, primary_user
jdoe, yes
jane.doe@example.com,no

teamName String The name of an existing team in Access Control, such as Team1

Example URL and Payload

https://<<BASE-URL>/armARCS/rest/v1/jobs

{
   "jobName":"REMOVE_USERS_FROM_TEAM",

Chapter 12
Removing Users from a Team for Account Reconciliation

12-148



   "parameters":{
      "fileName":"users.csv",
      "teamName":"Team1"
   }
}

Response

Supported Media Types: application/json

Table 12-103    Parameters

Name Description

type Application type

status -1 - In Progress

0 - Success

1 - Failure

details In case of errors, details are published with the error string

descriptiveStat
us

The status of the job, such as Completed or Error.

items Collection of notification categories

links Detailed information about the link

href Links to the API call

action The HTTP call type

rel Possible value: self
data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
  "details": "In Process",
  "links": [
    {
      "rel": "self",
      "href": "https://<BASE-URL>/armARCS/rest/v1/jobs/100000000053010",
      "action": "GET"
    }
  ],
  "status": -1,
  "type": "ARCS",
  "link": null,
  "items": null,
  "error": null
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

Chapter 12
Removing Users from a Team for Account Reconciliation

12-149



• See CSS Common Helper Functions for Groovy

Removing Users from a Team for Financial Consolidation and
Close and Tax Reporting

Removes Oracle Enterprise Performance Management Cloud users listed in a UTF8 formatted
CSV file from an existing team in Access Control. The file must be uploaded to the
environment before using this API, and the file should be deleted after the API executes. Use
the Upload REST API to upload the file.

A primary user is, by default, designated to perform the tasks that are assigned to the team.
The file format is as follows:

User Login, primary_user
jdoe, yes
jane.doe@example.com,no

The users are removed only if both these conditions are met:

• User login IDs included in the file exist in the identity domain that services the environment

• The user is assigned to a pre-defined role in the identity domain

The API is asynchronous and returns the Job ID. Use the job status URI to determine whether
the process is complete. The presence of status -1 in the response indicates that the update is
in progress. Any non-zero status except -1 indicates failure for the update.

Note:

This feature uses a Planning REST API to run a job. Details about Planning REST
APIs are described here: Planning REST APIs.

Required Roles

Service Administrators

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/fcmjobs

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/x-www-form-urlencoded
The following table summarizes the request parameters.

Chapter 12
Removing Users from a Team for Financial Consolidation and Close and Tax Reporting

12-150



Table 12-104    Parameters

Name Description Type Require
d

Default

api_version The version of the API you are developing with; for
the current release, it is v3

Path Yes None

application The name of the application, FCCS Path Yes None

Example of Request Body

The following table summarizes the parameters of the JSON request.

Table 12-105    Parameters

Name Description

jobName The name of the job, REMOVE_USERS_FROM_TEAM

fileName The name of the uploaded ANSI or UTF-8 encoded CSV file containing information
on the users to be removed, for example, removeUsersFromTeam.csv.

The file must have been uploaded already using the Upload REST API. The CSV
file should not include the account of the user who executes this command.

A primary user is, by default, designated to perform the tasks that are assigned to
the team. The file format is as follows:

User Login, primary_user
jdoe, yes
jane.doe@example.com,no

teamName The name of an existing team in Access Control, such as Team1.

Example URL and Payload

https://<BASE-URL>/HyperionPlanning/rest/v3/applications/FCCS/fcmjobs

{
   "jobName":"REMOVE_USERS_FROM_TEAM",
      "parameters":{
      "fileName":"users.csv",
      "teamName":"Team1"
   }
}

Response

Supported Media Types: application/json

Table 12-106    Parameters

Name Description

jobName REMOVE_USERS_FROM_TEAM
jobID The ID of the job, such as 100000000114040

Chapter 12
Removing Users from a Team for Financial Consolidation and Close and Tax Reporting

12-151



Table 12-106    (Cont.) Parameters

Name Description

status -1 - In Progress

0 - Success

1 - Failure

details In case of errors, details are published with the error string

descriptiveStat
us

The status of the job, such as Completed or Error

items Collection of notification categories

links Detailed information about the link

href Links to the API call

action The HTTP call type

rel Possible value: self
data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
   "jobName":"REMOVE_USERS_FROM_TEAM",
   "jobId":100000000114040,
   "descriptiveStatus":",
   "detail":"In Progress",
   "status":-1,
   "items":null,
   "links":[
      {
         "rel":"self",
         "href":"https://<EPM-CLOUD-BASE-URL>/HyperionPlanning/rest/v3/
applications/FCCS/fcmjobs/100000000114040",
         "action":"GET"
      }
   ]
}

Common Functions

• See Common Helper Functions for Java

• See Common Helper Functions for cURL

• See CSS Common Helper Functions for Groovy

Chapter 12
Removing Users from a Team for Financial Consolidation and Close and Tax Reporting

12-152



13
Usage Simulation REST APIs

This section describes the REST APIs for simulating user activities for testing purposes.

Table 13-1    Usage Simulation

Task Request REST Resource

Simulate Concurrent Usage POST /interop/rest/v1/concurrentusage/run

Simulate Concurrent Usage
The Simulate Concurrent Usage REST API executes different concurrent operations on an
environment by simulating users. It can be used to validate the performance of the
environment to verify that the response time is acceptable when the service is under the load
during specific operations run by a specific number of users. For example, it can be used to
measure performance when 50 users simultaneously open a form using different POVs. It
allows the self-service load testing of environments.

This REST API performs the simulation by executing the specified operations for a given
number of users and iterations. It runs multiple iterations to calculate the minimum time, the
maximum time and the average time for a particular operation. It supports these operations to
perform concurrent usage load testing:

• Open forms

• Save forms

• Run business rules

• Run data rules

• Open ad hoc grids

• Execute report

• Execute book

Note:

This API executes the specified operations on the current environment and may,
depending on the operation, update the data in the environment. Run this API on test
environments. Running this API on production environments is not advised.

This REST API accepts a ZIP file, that must already have been uploaded to the environment,
as input. The ZIP file contains one requirement.csv file, and the input files that support the
use cases included in requirement.csv. It can also optionally contain a
userVarMemberMapping.csv file to provide user variable member mapping and an options.xml
file to provide Smart View options for some use cases. The REST API then simulates the use
cases and creates a report that may be emailed to one or more recipients.

13-1



This REST API is version v1.

Required Roles

Service Administrator (Identity Domain Administrator is also required to use testModes 0, 1,
and 2.)

REST Resource

POST /interop/rest/v1/concurrentusage/run
Supported Media Types: application/json

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

The following table summarizes the request parameters.

Table 13-2    Parameters

Name Description Type Data Type Required Default

inputFile The name of the zip file that contains
concurrent usage test cases. The zip file
should contain a file named
requirement.csv, which contains the
details of all the operations to execute
for this simulation test, and the input
files that contain the details of each
operation. It can also optionally
contain a userVarMemberMapping.csv
file to provide user variable member
mapping and an options.xml file to
provide Smart View options for some
use cases.
For information on how to create these
files, see Preparing to Run the
simulateConcurrentUsage Command in
Working with EPM Automate for Oracle
Enterprise Performance Management
Cloud.
Use the Upload REST API to upload the
zip file to the environment prior to
calling this REST API.

Payload String Yes None

numberOfIterations Number of iterations each use case
identified in requirement.csv has to
run to measure the response time.

Payload Integer No 1

Chapter 13
Simulate Concurrent Usage

13-2



Table 13-2    (Cont.) Parameters

Name Description Type Data Type Required Default

notificationEmails Email addresses of the recipients to
whom the result will be sent at the end
of the concurrent usage simulation.
The emails must be separated by semi-
colons and enclosed in double quotes.
For example:
"jdoe@example.com;jane.doe@examp
le.com".

Payload String No Email of
the user
who
executed
the API

lagTime Number of seconds (5 seconds or more)
between the execution of each use case
in requirement.csv.

Payload Integer No 5

testMode Mode in which concurrent usages
simulation has to run. Possible values
are 0, 1, 2 and 3.
• 0 – Default mode: Adds simulated

users to the environment and
assigns them the Service
Administrator role, runs the
simulation, and then deletes the
simulated users. This mode is
useful if you want to run the test
only one time. The simulated users
have these properties:
– First Name: testuser1,

testuser2, and so on
– Last Name: testuser1,

testuser2, and so on
– Email Address:

testuser1@example.oracle.com
,
testuser2@example.oracle.com
, and so on

– Username: testuser1,
testuser2, and so on

• 1 – Add Users Only: Adds
simulated users to the
environment and assigns them the
Service Administrator role, but
does not run the simulation or
delete the simulated users.

• 2 – Delete Users Only: Deletes
simulated users created in a
previous concurrent usage
simulation run. Does not create
users or run the simulation.

• 3 – Simulation Only: Runs the
simulation using already existing
simulated users without adding or
deleting users.

• 4 – Use Existing Users: Includes
users defined in the users.csv file
included in the input ZIP file. In
this mode, the simulated users are
not created.

Payload Integer No 0

Chapter 13
Simulate Concurrent Usage

13-3



Example URL and Payload

https://<BASE URL>/interop/rest/v1/concurrentusage/run

{
    "inputFile": "<ZIP_FILE_NAME>",
    "numberOfIterations": 1,
    "testMode": 0,
    "notificationEmails": "<EMAIL_ADDRESS>",
    "lagTime": 5
}

Sample Request

{
    "inputFile" : "InputFiles2.zip",
    "numberOfIterations" : 1,
    "testMode" : 0,
    "notificationEmails" : "abc@example.oracle.com",
    "lagTime" : 10
}

Response

Supported Media Types: application/json

Table 13-3    Parameters

Name Description

details In the case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Possible values: self or Job Status. If the value is set to Job Status, you
can use the href to get the status

data null

Example of Response Body

Example 1: Error Case

{
    "details": "InputFile is missing in request body",
    "status": 1,
    "items": null,
    "links": [{
        "href": "https://<BASE URL>/interop/rest/v1/concurrentusage/run",
        "action": "POST",
        "rel": "self",
        "data": {

Chapter 13
Simulate Concurrent Usage

13-4



            "jobType": "RUN_CONCURRENTUSAGE",
            "numberOfIterations": 2,
            "testMode": 0,
            "lagTime": 5,
            "inputfile": "",
            "notificationEmails": "abc@example.oracle.com"
        }
    }]
}

Example 2: Success Case

{
    "details": null,
    "status": -1,
    "items": null,
    "links": [{
        "href": "https://<BASE URL>/interop/rest/v1/concurrentusage/run",
        "action": "POST",
        "rel": "self",
        "data": {
            "jobType": "RUN_CONCURRENTUSAGE",
            "numberOfIterations": 2,
            "testMode": 0,
            "lagTime": 5,
            "inputfile": "InputFiles2.zip",
            "notificationEmails": "abc@example.oracle.com"
            }
            },
        {
            "href": "https://<BASE URL>/interop/rest/v1/concurrentusage/jobs/
437838742934700",
            "action": "GET",
            "rel": "Job Status",
            "data": null
        }
    ]
}

Chapter 13
Simulate Concurrent Usage

13-5



14
Reporting REST APIs

Use the topics in this chapter to run reports with REST APIs for Account Reconciliation,
Financial Consolidation and Close, Tax Reporting, and Data Management.

For reports on users with REST APIs, see User Access Report (v1) and User Access Report
(v2).

Generate Report for Account Reconciliation
Generates either a single predefined Reconciliation Compliance report, predefined Transaction
Matching report or a custom report.

This API is version v1.

Note:

All parameters must be specified for a report.

REST Resource

POST       /arm/rest/fcmapi/{api_version}/report

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 14-1    REPORT

Name Description Path Required

api_version Version of the API you are
working with. This release is v1

Yes Yes

groupName The name of the group the
report is associated with.

No Yes

reportName The name of the report to be
generated.

No Yes

14-1



Table 14-1    (Cont.) REPORT

Name Description Path Required

generatedReportF
ileName

The name specified by the user
of the report to be generated. If
this parameter is not provided,
then the report will get
generated with the data for
reportName parameter in this
table.

No No

parameters Each report may have different
parameters. Types of
parameters:
• Numerical - should be in

BigDecimal format.
• Text - standard string
• Date - can be in format

yyyy-MM-dd for example
2020-10-01. To use the
current date, use the value
"CURRENT_DATE".

• Date/Time - can be in
format yyyy-MM-dd
HH:mm:ss or yyyy-MM-
dd'T'HH:mm:ss for
example 2020-10-01
13:01:00,
2020-10-01T13:01:00. To
use the current date and
time, use the value
"CURRENT_DATE_TIME".

• Boolean
• Users - user login ID
• List of choices - case

insensitive values

No No

format The format of the report (HTML,
PDF, XLSX, CSV or CSV2).

No No (default is PDF)

module The module within Account
Reconciliation: RC
(Reconciliation Compliance) or
TM (Transaction Matching.

No No (default is RC)

emails Comma separated list of email
addresses that will receive the
report once it's generated.

No No

runAsync Generation of report runs
asynchronously (true) or
synchronously (false).
Oracle recommends setting this
value to true (async) for larger
reports. An example of request
body and output is shown.

No No (default is false)

Chapter 14
Generate Report for Account Reconciliation

14-2



Note:

If the required parameters, groupName or reportName are not specified, you receive
an error.

For details about reportName or parameters, see Working with Predefined Reports in
Reconciliation Compliance or Working with Predefined Reports in Transaction
Matching in Administering Account Reconciliation.

For details about Output Format, see Generating the Report in Administering
Account Reconciliation.

For details about retrieving job status while running reports, see Retrieve Job Status
for a Report.

.
Example of request body (to be run synchronously)

{
"groupName":"Reconciliation Manager",
"reportName":"Balance by Account Type",
"generatedReportFileName":"myReport.pdf",
 "parameters":{"Period":"June 2018","Currency Bucket": "Entered", "Rate 
Type": "Accounting"},
"format":"PDF",
"module":"RC",
"emails":"user1@oracle.com,user2@oracle.com",
"runAsync":false
}

Example of request body (to be run asynchronously for larger reports)

{
"groupName":"Reconciliation Manager",
"reportName":"Balance by Account Type",
"generatedReportFileName":"myReport.pdf",
 "parameters":{"Period":"June 2018","Currency Bucket": "Entered", "Rate 
Type": "Accounting"},
"format":"PDF",
"module":"RC",
"emails":"user1@oracle.com,user2@oracle.com",
"runAsync":true
}

Response

Supported Media Types: application/json
Parameters:

Chapter 14
Generate Report for Account Reconciliation

14-3

https://docs.oracle.com/en/cloud/saas/account-reconcile-cloud/adarc/admin_reports_work_with_100xeea26d31.html
https://docs.oracle.com/en/cloud/saas/account-reconcile-cloud/adarc/admin_reports_work_with_100xeea26d31.html
https://docs.oracle.com/en/cloud/saas/account-reconcile-cloud/adarc/admin_trans_matchreports_work_with_100xeea26d31.html
https://docs.oracle.com/en/cloud/saas/account-reconcile-cloud/adarc/admin_trans_matchreports_work_with_100xeea26d31.html
https://docs.oracle.com/en/cloud/saas/account-reconcile-cloud/adarc/admin_reports_generate_report_110x21b5f933.html


Table 14-2    Parameters

Name Description

type The module within Account Reconciliation: RC (Reconciliation Compliance)
or TM (Transaction Matching.

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to the API call

action The HTTP call type

rel Relationship type (self, Job Status). if set to Job Status, you can use
the href to get the status of the operation

data Parameters as key value pairs passed in the request

Examples of Response Body

The following is an example of the response body in JSON format for a Reconciliation
Compliance successfully completed report called My Report in pdf format generated
synchronously (runAsync=false):

{
"type":"RC",
"status":0,
 "details": "myReport.pdf",
 "links" [{
 "action": "POST",
  "href":  "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/fcm/rest/fcmapi/v1/report",
  "rel":  "self"
  },
       {
            "rel": "report-content",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/v1/
applicationsnapshots/myReport.pdf",
            "action": "GET"
}
]
}

The following is an example of the response body in JSON format for a Reconciliation
Compliance report generated asynchronously (runAsync=true) where the report is "In Process"
and you can use the Job ID generated to retrieve the job status. See Retrieve Job Status for a
Report:

{
 "links":[
{
 "rel":"self",
 "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/report",
"action": "POST"

Chapter 14
Generate Report for Account Reconciliation

14-4



},
{
"rel":"Job Status",
 "href":  "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/
report/job/TM/100000001001009",
 "action": "GET"
}
],
"details":"In Process",
"status":-1,
}

Generate Report for Financial Consolidation and Close and Tax
Reporting

Generates a report for Financial Consolidation and Close (Task Manager, Supplemental Data,
and Enterprise Journal) and Tax Reporting (Task Manager and Supplemental Data).

This API is version v1.

Note:

All parameters must be specified for a report.

REST Resource

POST       /HyperionPlanning/rest/fcmapi/{api_version}/report

Required Roles

Service Administrator, Power User, User, Viewer

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 14-3    Report Parameters

Name Description Path Required

api_version Version of the API you are
working with. This release is v1

Yes Yes

groupName The name of the group the
report is associated with.

No Yes

reportName The name of the report to be
generated.

No Yes

Chapter 14
Generate Report for Financial Consolidation and Close and Tax Reporting

14-5



Table 14-3    (Cont.) Report Parameters

Name Description Path Required

generatedReportF
ileName

The user-specified name of the
report to be generated. If this
parameter is not provided, then
the report will get generated with
the data for reportName
parameter in this table.

No No

parameters Each report may have different
parameters. Types of
parameters:
• Numerical - should be in

BigDecimal format.
• Text - standard string
• Date - can be in format

yyyy-MM-dd for example
2020-10-01

• Date/Time: can be in format
yyyy-MM-dd HH:mm:ss or
yyyy-MM-dd'T'HH:mm:ss
for example 2020-10-01
13:01:00,
2020-10-01T13:01:00

• Boolean
• Users - user login ID
• List of choices - case

insensitive values

No No

format The format of the report (HTML,
PDF, XLSX, or CSV).

No No (Default is PDF)

module Module for which the report is
created. For Financial
Consolidation and Close, use
SDM (Supplemental Data
Manager) or Task Manager. For
Tax Reporting, use SDM
(Supplemental Data Manager)
or Task Manager.

No No

emails Comma separated list of email
addresses that will receive the
report.

No No

runAsync Generation of report runs
asynchronously (true) or
synchronously (false).
Oracle recommends setting this
value to true (async) for larger
reports. An example of request
body and output is shown.

No No (Default is false)

For details about reportName or parameters see Using Task Manager and Supplemental Data
Manager Reports.

For details about Output Format, see Generating the Report.

For details about retrieving job status while running reports, see Retrieve Job Status for a
Report.

Chapter 14
Generate Report for Financial Consolidation and Close and Tax Reporting

14-6

https://docs.oracle.com/en/cloud/saas/financial-consolidation-cloud/agfcc/cm_reports_using.html
https://docs.oracle.com/en/cloud/saas/financial-consolidation-cloud/agfcc/cm_reports_using.html
https://docs.oracle.com/en/cloud/saas/financial-consolidation-cloud/agfcc/cm_reports_generating_report.html


Example of request body (to be run synchronously)

{
"groupName":"Task Manager",
"reportName":"Late Tasks",
"generatedReportFileName":"myReport.pdf",
 "parameters":{"Schedule" : "Qtr 2 Close", "Period":"Jun" },
"format":"PDF",
"module":"Task Manager",
"emails":"user1@oracle.com,user2@oracle.com",
"runAsync":false
}

Example of request body (to be run asynchronously for larger reports)

{
"groupName":"Task Manager",
"reportName":"Late Tasks",
"generatedReportFileName":"myReport.pdf",
 "parameters":{"Schedule" : "Qtr 2 Close", "Period":"Jun" },
"format":"PDF",
"module":"Task Manager",
"emails":"user1@oracle.com,user2@oracle.com",
"runAsync":true
}

Response

Supported Media Types: application/json
Parameters:

Table 14-4    Parameters

Name Description

type Type of report: SDM (Supplemental Data Management) or FCCS {Task
Manager).

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to the API call

action The HTTP call type

rel Relationship type (self, Job Status). If set to Job Status, you can use
the href to get the status of the operation.

data Parameters as key value pairs passed in the request

Examples of Response Body

Chapter 14
Generate Report for Financial Consolidation and Close and Tax Reporting

14-7



The following is an example of the response body in JSON format for a Financial Consolidation
and Close report called MyReport in pdf format that was run successfully synchronously
(runAsync=false):

{
     "links": [
         {
             "rel": "self",
             "href": 
"https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/fcmapi/v1/myReport.pdf",
             "action": "POST"
         },
         {
             "rel": "report-content",
             "href": 
"https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/fcmapi/v1/myReport.pdf",
             "action": "POST"
 "GET"
         }
     ],
     "details": "MyReport.pdf",
     "type": "FCCS",
     "status": 0,
     "link": null,
     "error": null,
     "items": null
}

The following is an example of the response body in JSON format for a Financial Consolidate
and Close report generated asynchronously (runAsync=true) where the report is "In Process"
and you can use the Job ID generated to retrieve the job status. See Retrieve Job Status for a
Report:

{
 "links":[
{
 "rel":"self",
 "href": "https://<SERVICE_NAME>-<TENANT_NAME>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/fcmapi/v1/report",
"action": "POST"
},
{
"rel":"Job Status",
 "href":  "https://<SERVICE_NAME>-<TENANT_NAME>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/fcmapi/v1/report/job/FCCS/100000001001009",
 "action": "GET"
}
],
"details":"In Process",
"status":-1,
"type":"FCCS",
"link":null,
"error":null

Chapter 14
Generate Report for Financial Consolidation and Close and Tax Reporting

14-8



"items":null
}

Generate User Details Report for Account Reconciliation
Generates a User Details report for Account Reconciliation. The User Details report
contains information on the users who have predefined roles in the environment and lists
attributes of each user (such as name and email), their status, teams, predefined roles,
workflow roles, organizations, groups, and last login timestamps.

You can use the Download REST API to download the report after generating it.

REST Resource

POST   /arm/rest/fcmapi/{api_version}/rc/export/users

A sample Account Reconciliation Access Control report:

 

 

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 14-5    REPORT

Name Description Path Required

api_version Version of the API you are
working with. This release is v1

Yes Yes

fileName The name of the report to be
generated.

No Yes

format The format of the report (CSV or
XLS).

No No (default = CSV)

Note:

For details about retrieving job status while running reports, see Retrieve Job Status
for a Report.

Examples of request body

Chapter 14
Generate User Details Report for Account Reconciliation

14-9



Example 1

{
    "fileName":"UserDetails.csv",
    "format":"CSV"
}

Example 2

{
    "fileName":"UserDetails.csv"
}

Example 3

{
    "fileName":"UserDetails.xls",
    "format":"xls"
}

Response

Supported Media Types: application/json
Parameters:

Table 14-6    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to the API call

action The HTTP call type

rel Relationship type can be (self, or Job Status). If set to Job Status, you
can use the href to get the status of the operation

Examples of Response Body

The following is an example of the response body in JSON format for an Account
Reconciliation User Details report completed successfully:

Job Response

{
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/rc/
export/users",
            "action": "POST"
        },

Chapter 14
Generate User Details Report for Account Reconciliation

14-10



        {
            "rel": "Job Status",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/rc/job/
42233",
            "action": "GET"
        }
    ],
    "details": "In Process",
    "status": -1,
    "type": "rc",
    "link": {},
    "error": null,
    "items": []
}

Job Status Response

{
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/rc/job/
42233",
            "action": "GET"
        },
        {
            "rel": "report-content",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600/
applicationsnapshots/UserDetails.csv/contents",
            "action": "GET"
        }
    ],
    "details": "File UserDetails.csv generated successfully.",
    "status": 0,
    "type": "rc",
    "link": null,
    "error": null,
    "items": null
}

Generate User Details Report for Financial Consolidation and
Close and Tax Reporting

Generates a User Details report (for Task Manager, Supplemental Data, and Enterprise
Journal user assignments) in Financial Consolidation and Close and (for Task Manager and
Supplemental Data user assignments) in Tax Reporting. The User Details report contains
information on the users who have predefined roles in the environment and lists attributes of
each user (such as name and email) as well as their status, teams, predefined roles, workflow
roles, organizations, groups, and last login timestamps.

Chapter 14
Generate User Details Report for Financial Consolidation and Close and Tax Reporting

14-11



You can use the Download REST API to download the report after generating it.

This API version is v1.

REST Resource

POST   /HyperionPlanning/rest/fcmapi/{api_version}/fcm/export/users

A sample User Details Report:

 

 

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 14-7    REPORT

Name Description Path Required

api_version Version of the API you are
working with. This release is v1

Yes Yes

fileName The name of the report to be
generated.

No Yes

format The format of the report (CSV or
XLS).

No No (default = CSV)

Note:

For details about retrieving job status while running reports, see Retrieve Job Status
for a Report.

Examples of request body

Example 1

{
    "fileName":"UserDetails.csv",
    "format":"CSV"
}

Chapter 14
Generate User Details Report for Financial Consolidation and Close and Tax Reporting

14-12



Example 2

{
    "fileName":"UserDetails.csv"
}

Example 3

{
    "fileName":"UserDetails.xls",
    "format":"xls"
}

Response

Supported Media Types: application/json
Parameters:

Table 14-8    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to the API call

action The HTTP call type

rel Relationship type can be (self, or Job Status). If set to Job Status, you
can use the href to get the status of the operation

Example of Response Body

The following is an example of the response body in JSON format for User Details report
completed successfully:

Job Response

{
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/
fcmapi/v1/fcm/export/users",
            "action": "POST"
        },
        {
            "rel": "Job Status",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/
fcmapi/v1/fcm/job/39068",
            "action": "GET"
        }
    ],

Chapter 14
Generate User Details Report for Financial Consolidation and Close and Tax Reporting

14-13



    "details": "In Process",
    "status": -1,
    "type": "fcm",
    "link": {},
    "error": null,
    "items": []
}

Job Status Response

{
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/
fcmapi/v1/fcm/job/39068",
            "action": "GET"
        },
        {
            "rel": "report-content",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600/
applicationsnapshots/userDetail.xls/contents",
            "action": "GET"
        }
    ],
    "details": "File userDetail.xls generated successfully.",
    "status": 0,
    "type": "fcm",
    "link": null,
    "error": null,
    "items": null
}

Retrieve Job Status for a Report
Use this REST API to get the processing state for a report job with a specified ID. Using this
REST API requires prerequisites, such as understanding how to use jobs. See Prerequisites.
Be sure that you understand how to use jobs as described in Managing Jobs.

Required Roles

Service Administrator, Power User, User, Viewer

GET /arm/rest/fcmapi/{api_version}/job/{module}/{jobIdentifier}
REST Resource

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Chapter 14
Retrieve Job Status for a Report

14-14

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html


Table 14-9    Parameters

Name Description Type Required Default

api_version Version of the API you are developing
with

Path Yes None

module Module for Account Reconciliation
Report (valid values are RC or TM)
Valid values for Financial Close &
Consolidation or Tax Reporting are SDM
or FCCS (Task Manager)

Path Yes Yes

jobIdentifier The ID of the job Path Yes None

Parameters

Parameters

The following table summarizes the response parameters.

Table 14-10    Parameters

Name Description

status Status of the job: -1 = in process; 0 = completed (success); 1 = error

details Details about the job status, such as "Big Report 10.csv" for
generation of a report in csv format named Big Report 10

jobID The ID of the job, such as 224

type The type of report: RC (Reconciliation Compliance); TM
(Transaction Matching); FCCS (Task Manager) or SDM
(Supplemental Data Manager)

Supported Media Types: application/json

Examples of Response Body

The following shows an example of the response body for a completed (successful) report:

{
"links": [
{
        "rel": "self",
        "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/report",
        "action": "POST"
    }, 
}
            "rel": "report-content",
        "href": "https://<SERVICE_NAME>-<TENANT_NAME>.<dcX>.oraclecloud.com/
interop/rest/11.1.2.3.600/applicationsnapshots/Big+Report+10.csv/contents",
        "action": "GET"
}
],
    "details": "Big Report 10.csv".
    "status": 0,
     "type": "RC",

Chapter 14
Retrieve Job Status for a Report

14-15



    "link": null,
    "error": null,
    "items": null
    }

The following shows an example of the response body for an error occurring during report
generation:

{
"links": [
{
        "rel": "self",
        "href": "http://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/
report/job/TM/1145",
        "action": "GET"
    }, 
]
    "details": "Invalid query attached to the report".
    "status": 1,
     "type": "RC",
    "link": null,
    "error": null,
    "items": null
    }

The following shows an example of the response body for a report generation that is in
process:

{
"links": [
{
        "rel": "self",
        "href": "http://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/
report/job/TM/1124",
        "action": "GET"
    }, 
]
    "details": "In Process".
    "status": -1,
     "type": "RC",
    "link": null,
    "error": null,
    "items": null
    }

Execute Reports for Data Management
The Data Management reporting framework represents a unified solution that incorporates
source and target data, templates, and user-defined SQL queries. Templates, created in
Oracle Business Intelligence Publisher, consume data in XML format and generate reports
dynamically. You can add SQL queries to extract data from tables, or couple them with the

Chapter 14
Execute Reports for Data Management

14-16



report parameters to extend the definition of a standard report. Data Management reports can
be generated as PDF, Excel, Word, or HTML output.

Required Roles

Service Administrator, Power User

REST Resource

POST /aif/rest/{api_version}/jobs
Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 14-11    Parameters

Name Description Type Required Default

api_version Version of the API you are working
with, such as V1

Path Yes None

jobType The job type, REPORT Path Yes None

jobName The name of the report to be
executed, such as Dimension Map
For POV (Dimension, Cat, Per)

Path Yes None

reportFormatType The file format of the report, pdf,
xlsx, html, or excel

Path Yes pdf

parameters Can vary in count and values based
on the report

Path Yes None

Location The location of the report, such as
Comma_Vision

Path Yes None

Example of Request Body

The following shows an example of the request body in JSON format.

{
"jobType":"REPORT",  
"jobName":"Dimension Map For POV (Dimension, Cat, Per)",
"reportFormatType":"PDF",
"parameters":{
       "Dimension Name":"ENTITY",
       "Category":"Actual",
        "Period":"Jan15",
       "Location":"Comma_Vision"
    }
}

For sample code, see the code samples included in Running Data Rules in Data Management.

Response

The following table summarizes the response parameters.

Chapter 14
Execute Reports for Data Management

14-17



Table 14-12    Parameters

Name Description

jobId The process ID generated in Data Management for the job, such as
1885

status The job status, such as RUNNING
logFileName Log file containing entries for this execution, such as

outbox\logs\BESSAPP-DB_1885.log
outputFileName Name of the output file generated; you can use this name to download

the report

processType Type of process executed, EXECUTE_REPORT
executedBy Login name of the user used to execute the rule, such as admin
details Returns the exception stack trace in case of an application error, or

null

Supported Media Types: application/json
Parameters

Example of Response Body

The following shows an example of the response body in JSON format.

{
"links": 
[
0]
"status":"-1",
"details":"null",
"jobId":"1885",
"jobStatus":"RUNNING",
"logFileName":"outbox/logs/1885.log",
"outputFileName":"outbox/reports",
"processType":"EXECUTE_REPORT",
"executedBy":"admin"
}

For sample code, see the code samples included in Running Data Rules in Data Management.

Chapter 14
Execute Reports for Data Management

14-18



15
Data Integration REST APIs

Use the Data Integration REST APIs to run integrations, import and export data mapping,
import and export Data Integration APIs, and to execute reports.

Note:

All REST APIs used for Data Integration can be used as REST APIs for Data
Management.

URL Structure for Data Integration
URL Structure

Use the following URL structure to access the Data Integration REST resources:

https://<BASE-URL>/aif/rest/{api_version}/{path}

Where:

• <BASE-URL>: The first part of your service URL, before the context.

For example, if your service URL is https://epm-acme.epm.us-
phoenix-1.ocs.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm-
acme.epm.us-phoenix-1.ocs.oraclecloud.com. Similarly, if your service URL is https://
epm2-acme.epm.us6.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm2-
acme.epm.us6.oraclecloud.com.

• api_version: API version you are developing with. The current REST API version for Data
Integration is V1.

• path: Identifies the resource.

Note:

Oracle does not authorize or support the use of REST APIs with the path token "/
internal/" in the URL.

Getting API Versions for Data Integration APIs
You can manage versions using the set of REST resources summarized in the following table.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

15-1



Table 15-1    Manage Versions of Data Integration APIs

Task Request REST Resource

Get API Versions for Data
Integration APIs

GET /aif/rest/

Get Information about a Specific
API Version for Data Integration
APIs

GET /aif/rest/{apiVersion}

Get API Versions for Data Integration APIs
Returns information about which versions are available and supported. Multiple versions might
be supported simultaneously.

Note:

An API version is always supported even when deprecated.

REST Resource

GET /aif/rest/

Required Roles

Service Administrator, Power User, User, Viewer

Request

Supported Media Types: application/json

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 15-2    Parameters

Name Description

items Detailed information about the API

version The version, such as V1

lifecycle Possible values: active, deprecated

isLatest Whether this resource is the latest, true or false

Chapter 15
Getting API Versions for Data Integration APIs

15-2



Example of Response Body

The following shows an example of the response body in JSON format.

{
"items": [1]
{
"version": "V1"
"isLatest": "true"
"lifecycle": "active"
"links": [3]
{
   "rel": "self"
   "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/"
   "action": "GET"
   },{
   "rel": "canonical"
   "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/"
   "action": "GET"
   },{
   "rel": "current"
   "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/V1"
   "action": "GET"
   }
}
}

Get Information about a Specific API Version for Data Integration APIs
Returns details for a specific REST API version for Data Integration.

REST Resource

GET /aif/rest/{api_version}

Required Roles

Service Administrator, Power User, User, Viewer

Request

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 15-3    Parameters

Name Description

api_version Version of the API you are developing with, such as
V1

Chapter 15
Getting API Versions for Data Integration APIs

15-3



Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 15-4    Parameters

Name Description

version The version, such as V1

lifecycle Lifecycle of the resource, active or deprecated

isLatest Whether this resource is the latest, true or false

Example of Response Body

The following shows an example of the response body in JSON format.

{
"version": "V1"
"lifecycle": "active"
"isLatest": "true"
"links": [1]{
            "rel": "canonical"
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/V1"
            "action": "GET"
            }
}

Lock and Unlock POV
The lock REST API prevents data from being loaded to a selected POV by location or
application associated with a current period and category.

When a location or application has been locked, you cannot import, validate, export, or rerun a
validation.

You can also get the status of a single location or the status of all locactions for a period and
category or a single application.

An unlock RESP API is available so that you can unlock a locked location or application.

Prerequisites:

You must have Service Administrator privileges to execute the lock and unlock REST APIs.

REST Resource

/aif/rest/V1/POV
Required Roles

Service Administrator, Power User

Method:

Chapter 15
Lock and Unlock POV

15-4



POST

Lock/Unlock by Location RESP API Request Parameters

The following table summarizes the request parameters for locking by location:

Table 15-5    Parameters

Name Description Type Required Default

api_version V1 Path Yes None

category Specify the predefined Scenario value
based on the POV Category from the
integration (data rule) definition.
The categories available are those that
are created in the Data Integration set-
up, such as "Actual."

JSON payload Yes None

period Specify the period of the POV from the
integration or data load rule defined in
Data Integration.

JSON payload Yes None

location Specify the name of the location to lock
so that data cannot be loaded to it.

JSON payload Yes None

locktype Specify location for the location lock
type.

JSON payload Yes None

operation For a lock operation, specify lock.
For an unlock operation, specify
unlock.

JSON payload Yes None

JSON Request Payload to Lock Location Example:

{
"category": "Actual",
"period": "Jan-17",
"location": "FCCSAPP1_LOC1A",
"locktype":"location",
"operation": "lock"
}

Response to Locking a Location Example:

{
"details":",
"status": 0,
"response": "Location:FCCSAPP1_LOC1A has been locked successfully."
}

JSON Request Payload to Unlock Location Example:

{
"category": "Actual",
"period": "Jan-17",
"location": "FCCSAPP1_LOC1A",
"locktype":"location",

Chapter 15
Lock and Unlock POV

15-5



"operation":"unlock"
}

Response to Unlocking a Location Example:

The following is an example of unlocking a location REST API response.

{
"details":",
"status": 0,
"response":"Location:FCCSAPP1_LOC1A has been unlocked successfully."
}

Lock/Unlock by Application REST API Request Parameters

Name Description Type Required Default

api_version V1 Path Yes None

category Specify the predefined "Scenario" value
based on the POV Category from the
integration (data rule) definition.
The categories available are those that
were created in the Data Integration
set-up, such as"Actual".

JSON payload Yes None

period Specify the period of the POV from the
integration or data load rule defined in
Data Integration.

JSON payload Yes None

application Specify the name of the application to
lock so that data cannot be loaded to it.

JSON payload Yes None

locktype Specify application for the application
lock type.

JSON payload Yes None

unlockbylocation true/false—Boolean option for whether
to unlock by location when an
application is locked.
If the "unlockbylocation" flag is set to
"true" when locking the target
application, then the system locks all
rules present in the location under
target application and not the
application level lock.
If the "unlockbylocation" flag is set to
"false" when locking the target
application, then the system locks all
rules present in the location under the
target application and the application
level lock.
Rules present for locations in the
application cannot be executed when
the location is unlocked until the
application level lock is removed.
Furthermore, when you create a new
location under the locked target
application, rules can’t be executed in
the new location until the application
level lock is removed.

JSON payload No false

Chapter 15
Lock and Unlock POV

15-6



Name Description Type Required Default

operation For a lock operation, specify lock.
For an unlock operation, specify
unlock.

JSON payload Yes None

JSON Request Payload to Lock an Application Example:

{
"category": "Actual",
"period": "Jan-17",
"application": "FCCSAPP1",
"locktype":"application",
"operation": "lock"
}

Response to Locking an Application Example:

The following is an example of locking an application REST API response.

{
"details":null,
"status": 0,
"response":"Application: FCCSAPP1 has been locked successfully."
}

JSON Request Payload to Unlock a Location for a Locked Application Example:

{
"category": "Actual",
"period": "Jan-17",
"application": "FCCSAPP1",
"locktype":"application",
"unlockbylocation":"true",
"operation": "lock"
}

Response to Unlocking a Location for a Locked Application Example:

The following is an example of unlocking a location when locking an application REST API
response.

{
"details":null,
"status": 0,
"response":"Application: FCCSAPP1 has been locked successfully."
}

Get Lock Status REST API Request

Get the status of a single location or the status of all locations for a period and category or a
single application.

Method:

Chapter 15
Lock and Unlock POV

15-7



GET

REST Resource

/aif/rest/V1/POV?
location=<locationname>&period=<periodname>&category=<catname>&application=<ap
plicationname>

REST Resource Example

/aif/rest/V1/POV?application=FCCSAPP1&period=Jan-17&category=Actual

Response

Supported Media Types: application/json
Example of Response Body

{
"details": null,
"status": 0,
"response": [
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "FCCSAPP1"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "FCCSAPP1_LOC11"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "AD_ASO_PBCS_To_FCCS"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "AD_ASO_EPBCS_To_FCCS"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",

Chapter 15
Lock and Unlock POV

15-8



"location": "ORCL_To_FCCS"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "SQL_To_FCCS"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "FCCSAPP1_LOC31"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "FCCSAPP1_LOC23"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "FCCSAPP1_LOC22"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "FCCSAPP1_LOC27"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "FCCSAPP1_LOC26"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "FCCSAPP1_LOC25"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",

Chapter 15
Lock and Unlock POV

15-9



"location": "FCCSAPP1_LOC24"
},
{
"period": "Jan-17",
"category": "Actual",
"status": "Locked",
"application": "FCCSAPP1",
"location": "FCCSAPP1_LOC21"

}
}
]
}

Running Integrations
Running an integration entails using the INTEGRATION job type for the jobs REST API to
execute an integration or data load rule based on how periods are processed and source
filters.

The INTEGRATION job type is an enhanced version of DATARULE job type (see Running
Data Rules in Data Management). It is recommended that you use the INTEGRATION job type
for future integration jobs.

The INTEGRATION jobtype supports running integrations/data load rules based on:

• period names provided to Planning

• Global POVs

• Planning substitution variables

• source filters selected as runtime parameters

• target options selected as runtime parameters

• existing period ranges

It also supports overriding the source filters and target options at runtime without modifying the
integration definition.

Prerequisites:

You must have the required privileges to execute a specific data rule/integration.

REST Resource

/aif/rest/{api_version}/jobs
Required Roles

Service Administrator, Power User

Request

Supported Media Types: application/json
Method:

POST

Chapter 15
Running Integrations

15-10



Payload:

{
             "jobType":"INTEGRATION",
             "jobName":"GLDATA",
             "periodName":"{Mar-20}",
             "importMode":"Replace",
             "exportMode":"Merge",
             "fileName":"inbox/GLBALANCE.txt"
}

REST Payload Description

The following table summarizes the REST payload.

Table 15-6    Parameters

Name Description Type Required Default

api_version V1 Path Yes None

jobType INTEGRATION JSON payload Yes None

jobName The name of the integration defined in
Data Integration. You should enclose the
rule or name in quotation marks if it
contains a space.

JSON payload Yes None

Chapter 15
Running Integrations

15-11



Table 15-6    (Cont.) Parameters

Name Description Type Required Default

periodname Name of the period(s)p enclosed in curly
brackets ({}).

periodname includes:

• Single Period—Refers to the Data
Integration period name for a single
period. The parameter is whatever the
period name is defined in Period
mapping.

• Multi-Period—Refers to a multi-period
load. The parameter is {Month-Year}
{Month-Year}. For example, {Jan-20}
{Mar-20} refers to a multi-period load
from Jan-20 to Mar-20.

• Planning Period Name—Refers to a
Planning period name. The parameter
is {Month#Year}, for example,
{Jan#FY20}{Mar#FY20}. Using this
convention, the client executing the
API does not need to know the Data
Integration period names. Instead you
specify the Planning member names
for the Year and Scenario dimensions.

This parameter is supported in the
Planning,Tax Reporting, and Financial
Consolidation and Close business
processes. It is functional for both
your service applications and cloud
deployments derived from on-
premises data sources.

This parameter is useful if triggered
from an Oracle Enterprise
Performance Management Cloud
Groovy script by capturing the Year
and Period member names. The
application period mapping or global
period mapping must exist with the
Year and Month in the target values of
the period mapping.

• Planning Substitution Variable—This
is an extension of the previous
Planning period name parameter
whereby a substitution variable can be
specified instead of the actual Year/
Month member names.

The convention is {Month#&CurYr}
{&FcstMonth#&CurYr}; for example,
{Jan#&CurYr}{&FcstMonth#&CurYr}.

A combination of both actual member
names as well as substitution
variables is supported.

This parameter is supported in the
Planning,Tax Reporting, and Financial
Consolidation and Close business
processes. It is functional for both

JSON payload Yes None

Chapter 15
Running Integrations

15-12



Table 15-6    (Cont.) Parameters

Name Description Type Required Default

your service applications and cloud
deployments derived from on-
premises data sources.

The application period mapping or
global period mapping must exist in
the Data Integration of the instance
where the API is executed, with the
Year and Month in the target values of
the period mapping. In this case, Year
and Month refer to the current value of
the substitution variable during
execution.

• GLOBAL POV–—Executes the data
load for the Global POV period. Use
the format {GLOBAL_POV}.

Note:

If you use
any other
period
naming
parameter
other than
the
parameters
described
above, you
get an
"Invalid Input
– HTTP 400
" error
message.

Chapter 15
Running Integrations

15-13



Table 15-6    (Cont.) Parameters

Name Description Type Required Default

importMode Determines how the data is imported into
Data Integration.
Acceptable values are:

• Append—Add to the existing POV
data in Data Integration.

• Replace—Delete the POV data and
replace it with the data from the file.

• Map and Validate—Skip importing the
data, but re-process the data with
updated Mappings and Logic
Accounts.

• No Import—Skip data import into Data
Integration staging table.

• Direct—To use the direct load method
to extract data from your on-premises
data sources and then load the data
directly to the EPM Cloud using the
EPM Integration Agent, you need to
pass an importMode of "Direct." Other
modes are not applicable for the direct
load.

JSON payload Yes None

Chapter 15
Running Integrations

15-14



Table 15-6    (Cont.) Parameters

Name Description Type Required Default

exportMode Determines how the data is exported into
Data Integration.
Acceptable values for Planning business
processes are:

• Merge—Merge the data in the Data
Integration staging table with the
existing Planning data.

• Replace—Clear the POV data and
replace it with data in the Data
Integration staging table. The data is
cleared for Scenario, Version, Year,
Period, and Entity dimensions.

• Accumulate—Add the data in the
Data Integration staging table to
Planning.

• Subtract—Subtract the data in the
Data Integration staging table from
existing Data Integration data.

• No Export—Skip data export from
Data Integration to Planning.

Acceptable values for Financial
Consolidation and Close and Tax
Reporting are:

• Merge—Merge the data in the staging
table with the data in the Financial
Consolidation and Close and Tax
Reporting application.

If data already exists in the
application, the system overwrites the
existing data with the new data from
the load file. If data does not exist, the
new data is created.

• Replace—Delete the POV data and
replace it with the data from the file.

• No Export—Skip the data export from
Data Integration to Financial
Consolidation and Close or Tax
Reporting

If you use a regular data load for the
Numeric Data Only and Numeric Data and
All Data Type load methods, note the
export mode requirements based on the
load method:

• For a Numeric Data Only load
method, Accumulate and Subtract are
the applicable export modes.

• For a Numeric Data and All Data Type
load method, Merge, Replace, and No
Export are the applicable export
modes.

If you use the direct data load to extract
data from your on-premises data sources
and then load the data directly to the EPM
Cloud using the EPM Integration Agent,

JSON payload Yes None

Chapter 15
Running Integrations

15-15



Table 15-6    (Cont.) Parameters

Name Description Type Required Default

note the export mode requirements based
on the load method:

• For a Numeric Data Only load
method, Merge, Accumulate, and
Subtract are the applicable export
modes.

• For a Numeric Data and All Data Type
load method, only Replace is the
applicable export mode.

• The No Export mode is not applicable
for the Numeric Data Only and
Numeric Data and All Data Type load
methods.

When running a Quick Mode load, valid
export modes are:

• Replace
• Merge
• Accumulate

fileName The fileName parameter is applicable
only for native file-based data loads and
ignored if specified for other loads.

The file name is optional. If you do not
specify a file name, this API imports the
data contained in the file name specified in
the load data rule. The data file must
already reside in the Inbox prior to
executing the data load rule, for example, .
inbox/GLBALANCES.txt.

You can also upload file to folders
accessible from the Applications-
Inbox/Outbox Explorer using a file
name. Reference the files in this folder
using this format:: #epminbox/
<filename>.

JSON payload No None

Chapter 15
Running Integrations

15-16



Table 15-6    (Cont.) Parameters

Name Description Type Required Default

sourceFilters A parameter used to update the source
filters defined for the data load rule or
integration.

File-based applications—You cannot use
the sourceFilters parameter for file-based
applications. If you use this parameter with
a file-based application, you get the HTTP
400 error message: "EPMFDM-ERROR:
Data Load Rule does not support
sourceFilters for File based loads."

Data Source based applications—
Replaces the pre-defined source filter
parameters at the rule level for a data load
rule/integration or specifies them at
runtime (if not pre-defined at application
level when the data source is the type of
source application.

Each filter name and its value should be
sent as a key/value pair in the nested
JSON object. The parameter name and
value should be the English display names
as seen in the user interface. Do not
specify internal codes for parameter
names and values using LOV validation.
LOV validation is done for parameters
having a restricted list of parameter
values.

All filter names are not mandatory. Only
filter names specified in the nested JSON
object are replaced or set at runtime. The
remaining filters are picked from the
application/rule definition.

Oracle Essbase/Planning/Oracle General
Ledger-based applications—Replaces the
already defined dimension source filters
for a data load rule/integration at runtime
when Essbase/Planning/Oracle General
Ledger balance type are the source
applications.

Each dimension name and its value
should be sent as a key/value pair in the
nested JSON object.

Replacing or setting the dimension filters
at run time is only supported for
dimensions already having a filter defined
in the data load rule/integration definition.

All filter names are not mandatory. Only
dimension names specified in the nested
JSON object will be replaced or set in
runtime. The remaining filters are picked
from data rule/integration definition.

Dimension filters are supported for all
dimensions including the "Scenario"
dimension. The "Year" and "Period"
dimensions are not supported as filters

JSON payload No None

Chapter 15
Running Integrations

15-17



Table 15-6    (Cont.) Parameters

Name Description Type Required Default

because they are driven by the POV
range.

All other source applications are not
supported.

targetOptions A parameter used to update the target
options defined for the data load rule or
integration.

Data Export based applications—
Replaces the pre-defined target option
parameters at the rule level for a data load
rule/integration or specifies them at
runtime (if not pre-defined at the rule level)
when the Data Export is the type of target
application.

Each option name and its value should be
sent as a key/value pair in the nested
JSON object. The parameter name and
value should be the English display names
as seen in the user interface. Do not
specify internal codes for parameter
names and values using the LOV
validation. LOV validation is done for
parameters having a restricted list of
parameter values.

All option names are not required. Only
option names specified in the nested
JSON object are replaced or set at
runtime. The remaining options are picked
from the application/rule definition.

Planning target application—Replaces the
following options at runtime.

• Refresh Database—Yes/No
• Dimension Name—Specify a

dimension name for a custom
dimension load rule. In this way the
same rule can be used to build
multiple dimensions in runtime.

• Purge Data File–Yes/No
Other target applications are not
supported.

JSON payload No None

Chapter 15
Running Integrations

15-18



Table 15-6    (Cont.) Parameters

Name Description Type Required Default

executionMode The executionMode parameter is
applicable only for Quick Mode
integrations.

Available options:

• SYNC—When executionMode is
SYNC, then the REST API call
submits and waits until the integration
has completed (that is, reached either
a successful, failed, or warning state)
before returning a response.

• ASYNC—When executionMode is
ASYNC, then the REST API call
returns a response immediately
without waiting for the integration to
complete. Usually the integration is in
a running state when the REST API
response is received.

executionMode is a mandatory
parameter and cannot be blank.

JSON payload Yes None

Sample REST Payloads

Below are sample payloads based on the source application type.

File Based Loads

In this example, the source is a text file running an integration through a native File adapter:

{
"jobType":"INTEGRATION",
"jobName":"ERPDATA",
"periodName":"{Jan-20}",
"importMode":"REPLACE",
"exportMode":"NONE",
"fileName":"inbox/TestData.txt"
}

Planning Applications

In these examples, the source is an Essbase/Planning based application. The supported
applications include:

• Planning modules

• Reporting cubes (plan types) of Planning

• Financial Consolidation and Close

• Tax Reporting

• Profitability and Cost Management

• Oracle ERP Cloud - Oracle General Ledger Balances Cube

Chapter 15
Running Integrations

15-19



Example of Planning to Financial Consolidation and Close Data Synchronization

{
"jobType":"INTEGRATION",
"jobName":"PBCStoFCCS",
"periodName":"{Jan-20}",
"importMode":"REPLACE",
"exportMode":"NONE",
"sourceFilters":{
    "Account":"@RELATIVE(Acc1,0)",
    "Entity":" @CHILDREN(Europe)",
    "Scenario":"Actual"
}
}

Example of Planning to a Data Export to File

{
"jobType":"INTEGRATION",
"jobName":"PBCStoFCCS",
"periodName":"{Jan-20}",
"importMode":"REPLACE",
"exportMode":"NONE",
"sourceFilters":{
    "Account":"@RELATIVE(Acc1,0)",
    "Entity":" @CHILDREN(Europe)",
    "Scenario":"Actual"
},
"targetOptions":{
    "Download File Name":"PlanningToFile.csv",
    "Column Delimiter":",",
    "Include Header":"Yes"
}
}

Data Source Applications

Example of Incremental File adapter:

{
"jobType":"INTEGRATION",
"jobName":"MyIncrementalFileLoad",
"periodName":"{Jan-20}{Mar-20}",
"importMode":"REPLACE",
"exportMode":"NONE",
"sourceFilters":{"Source File":"File1.txt"}
}

Example of Netsuite adapter:

{
"jobType":"INTEGRATION",
"jobName":"NetsuiteLoad",
"periodName":"{Jan-20}{Mar-20}",

Chapter 15
Running Integrations

15-20



"importMode":"REPLACE",
"exportMode":"NONE",
"sourceFilters":{
     "Postingperiod":"This Fiscal Quarter",
     "Mainline":"True"
}
}

Example of exporting Oracle NetSuite adapter toPlanning dimensions (metadata rule):

{
"jobType":"INTEGRATION",
"jobName":"NetsuiteMetadataLoad",
"periodName":"{Jan-20}{Mar-20}",
"importMode":"REPLACE",
"exportMode":"NONE",
"targetOptions":{
     "Refresh Database":"Yes",
     "Dimension Name":"Product"
}
}

Example of Oracle ERP Cloud (Payables Transactions):

{
"jobType":"INTEGRATION",
"jobName":"Payables1Load",
"periodName":"{Jan-20}",
"importMode":"REPLACE",
"exportMode":"NONE",
"sourceFilters":{
        "Invoice Type":"Credit Memo",
    "Cancelled Invoices Only ":"Yes"
}
}

Example of Quick Mode integration:

{
{
    "jobType":"INTEGRATION",
    "jobName":"QuickMode_LOC1_DL1",
    "periodName":"{Jan-17}",
    "importMode":"Direct",
    "exportMode":"Merge",
    "executionMode":"ASYNC"
}

Response

Supported Media Types: application/json

Chapter 15
Running Integrations

15-21



Running a Pipeline
Executes a Pipeline based on job parameters and variables that you select.

The Pipeline jobtype supports running a Pipeline based on the variable list (depends on how
many variables have been defined for the Pipeline in the Data Integration user interface.)

Prerequisites:

• You must have predefined the Pipeline to run it.

• You must have the required privileges to execute a Pipeline.

REST Resource

/aif/rest/{api_version}/jobs
Required Roles

Service Administrator

Request

Supported Media Types: application/json
Method:

POST

Payload:

{
    "jobName": "DAILYLOAD",
    "jobType": "pipeline",
    "variables": {
                    "STARTPERIOD": "Jan-23",
                    "ENDPERIOD": "Jan-23",
                    "IMPORTMODE": "Replace",
                    "EXPORTMODE": "Merge",
                    "ATTACH_LOGS": "N",
                    "SEND_MAIL": "ALWAYS",
                    "SEND_TO": "user@company.com"
                }
}

REST Payload Description

The following table summarizes the REST payload.

Table 15-7    Parameters

Name Description Type Required Default

api_version V1 Path Yes

jobType PIPELINE JSON payload Yes

Chapter 15
Running a Pipeline

15-22



Table 15-7    (Cont.) Parameters

Name Description Type Required Default

jobName The Pipeline code defined for the Pipeline in Data
Integration.
The code can contain up to 30 alphanumeric characters
with a minimum of 3 characters and a maximum of 30
characters. This code cannot be updated after a Pipeline
is created.

JSON payload Yes

variables Name of the variable(s) used in the Pipeline.
The list depends on how many variables have been
defined in the Pipeline.
The default out-of-box variables include:
• STARTPERIOD
• ENDPERIOD
• IMPORTMODE
• EXPORTMODE
• ATTACH_LOGS
• SEND_MAIL
• SEND_TO

JSON payload No

STARTPERIOD The first period for which data is to be loaded. This
period name must be defined in Data Integration Period
mapping.
You can also specify a Planning substitution variable
whereby a substitution variable can be specified instead
of the actual Year/Month member names for the start
period.
The convention is {Month#&CurYr}
{&FcstMonth#&CurYr}; for example, {Jan#&CurYr}
{&FcstMonth#&CurYr}.
A combination of both actual member names as well as
substitution variables is supported.
This parameter is supported in the Planning, Tax
Reporting, and Financial Consolidation and Close
business processes. It is functional for both your service
applications and cloud deployments derived from on-
premises data sources.

Yes

ENDPERIOD The last period for which data is to be loaded. This
period name must be defined in Data Integration period
mapping.
You can also specify a Planning substitution variable
whereby a substitution variable can be specified instead
of the actual Year/Month member names for the start
period.
The convention is {Month#&CurYr}
{&FcstMonth#&CurYr}; for example, {Jan#&CurYr}
{&FcstMonth#&CurYr}.
A combination of both actual member names as well as
substitution variables is supported.
This parameter is supported in the Planning, Tax
Reporting, and Financial Consolidation and Close
business processes. It is functional for both your service
applications and cloud deployments derived from on-
premises data sources.

JSON payload Yes

Chapter 15
Running a Pipeline

15-23



Table 15-7    (Cont.) Parameters

Name Description Type Required Default

IMPORTMODE Determines how the data is imported into Data
Integration.
Acceptable values are:
• Append—Add to the existing POV data in Data

Integration.
• Replace—Delete the POV data and replace it with the

data from the file.
• Map and Validate—Skip importing the data, but re-

process the data with updated Mappings and Logic
Accounts.

• No Import—Skip data import into Data Integration
staging table.

Yes

exportMode Determines how the data is exported into Data
Integration.
Acceptable values for Planning business processes are:
• Merge—Merge the data in the Data Integration

staging table with the existing Planning data.
• Replace—Clear the POV data and replace it with

data in the Data Integration staging table. The data is
cleared for Scenario, Version, Year, Period, and
Entity dimensions.

• Accumulate—Add the data in the Data Integration
staging table to Planning.

• No Export—Skip data export from Data Integration
to Planning.

Acceptable values for Financial Consolidation and Close
and Tax Reporting are:
• Merge—Merge the data in the staging table with the

data in the Financial Consolidation and Close and
Tax Reporting application.
If data already exists in the application, the system
overwrites the existing data with the new data from
the load file. If data does not exist, the new data is
created.

• Replace—Delete the POV data and replace it with the
data from the file.

• No Export—Skip the data export from Data
Integration to Financial Consolidation and Close or
Tax Reporting

Yes

ATTACH_LOGS • Yes—Logs are zipped and included as an attachment
to an email, which can then be download

• No—Logs are not included as an attachment to an
email.

No

Chapter 15
Running a Pipeline

15-24



Table 15-7    (Cont.) Parameters

Name Description Type Required Default

SEND_MAIL Determines when an email is sent when a Pipeline is
run. Options include:
• Always
• No—Default value
• On Failure
• On Success
For variables, the default value is set in the Pipeline
definition. Overriding individual variables is done by
passing it in the JSON payload, for example,
STARTPERIOD.

SEND_TO Determines the recipient email ID for the email
notification.
Email IDs are comma separated.

No

Import Data Mapping
Member mappings are used to derive the target members for each dimension based on source
value. Member mappings are referenced during the data load, enabling Data Integration to
determine how to dimensionalize the data that is loaded to the target application. Member
mappings define relationships between source members and target dimension members within
a single dimension. You must create a member mapping for each target dimension.

You can import member mappings from a selected Excel, .CSV or .TXT file. You can also
create new mappings in a text file and import them. Import member mappings support merge
or replace modes, along with validate or no validate options for target members.

REST Resource

POST /aif/rest/{api_version}/jobs
Required Roles

Service Administrator, Power User

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 15-8    Parameters

Name Description Type Required Default

api_version Version of the API you are working
with, such as V1

Path Yes None

jobType The job type, MAPPINGIMPORT Path Yes None

jobName The dimension name for a specific
dimension to import, such as
ACCOUNT, or ALL to import all
dimensions

Path Yes None

Chapter 15
Import Data Mapping

15-25



Table 15-8    (Cont.) Parameters

Name Description Type Required Default

fileName The file and path from which to
import mappings. The file format
can be .CSV, .TXT, .XLS, or .XLSX.
The file must be uploaded prior to
importing, either to the inbox or to a
sub-directory of the inbox. Include
the inbox in the file path, for
example,inbox/
BESSAPPJan-06.csv

Path Yes None

importMode The import mode: MERGE to add
new rules or replace existing rules,
or REPLACE to clear prior mapping
rules before import

Path No MERGE

validationMode Whether to use validation mode,
true or false An entry of true
validates the target members
against the target application;
false loads the mapping file
without any validations. Note that
the validation process is resource
intensive and takes longer than the
validation mode of false; the
option selected by most customers
is false

Path No false

locationName The Data Integration location where
the mapping rules should be
loaded; mapping rules are specific
to a location in Data Integration.

Path No None

Example of Request Body

The following shows an example of the request body in JSON format.

{
"jobType":"MAPPINGIMPORT",
"jobName":"ACCOUNT"
"fileName":"inbox/BESSAPPJan-06.csv",
"importMode":"MERGE",
"validationMode":"false",
"locationName":"BESSAPP"
}

For sample code, see the code samples included in Running Data Rules in Data Management.

Response

The following table summarizes the response parameters.

Chapter 15
Import Data Mapping

15-26



Table 15-9    Parameters

Name Description

jobId The process ID generated in Data Management for the job, such as
1880

jobStatus The job status, such as RUNNING
logFileName Log file containing entries for this execution, such as outbox/logs/

BESSAPP-DB_1880.log
outputFileName Name of the output file generated, if any, or else null
processType Type of process executed, IMPORT_MAPPING
executedBy Login name of the user used to execute the rule, such as admin
details Returns the exception stack trace in case of an application error, or

null

Supported Media Types: application/json
Parameters

Example of Response Body

The following shows an example of the response body in JSON format.

{
"links": 
[
0]
"status":"-1"
"details":"null"
"jobId":"1880"
"jobStatus":"RUNNING",
"logFileName":"outbox/logs/BESSAPP-DB_1880.log",
"outputFileName":"null",
"processType":"IMPORT_MAPPING",
"executedBy":"admin"
}

For sample code, see the code samples included in Running Data Rules in Data Management.

Export Data Mapping
Member mappings are used to derive the target members for each dimension based on source
value. Member mappings are referenced during the data load, enabling Data Integration to
determine how to dimensionalize the data that is loaded to the target application. Member
mappings define relationships between source members and target dimension members within
a single dimension. You must create a member mapping for each target dimension.

You can export member mappings to a selected file of format .csv, .txt, .xls, or .xlsx.

REST Resource

POST /aif/rest/{api_version}/jobs

Chapter 15
Export Data Mapping

15-27



Required Roles

Service Administrator, Power User

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 15-10    Parameters

Name Description Type Required Default

api_version Version of the API you are working with,
such as V1

Path Yes None

jobType The job type, MAPPINGEXPORT Path Yes None

jobName The dimension name for a specific
dimension to import, such as ACCOUNT,
or ALL to import all dimensions

Path Yes None

fileName The file and path from which to export
mappings. The file format can
be .CSV, .TXT, .XLS, or .XLSX. Include
the outbox in the file path, for example,
outbox/BESSAPPJan-06.csv

Path Yes None

locationName The name of the location, such as
BESSAPP

Path Yes None

Example of Request Body

The following shows an example of the request body in JSON format.

{
"jobType":"MAPPINGEXPORT",
"jobName":"ACCOUNT",
"fileName":"outbox/BESSAPPJan-06.csv",
"locationName":"BESSAPP"
}

For sample code, see the code samples included in Running Data Rules in Data Management.

Response

The following table summarizes the response parameters.

Table 15-11    Parameters

Name Description

jobId The process ID generated in Data Integration for the job, such as 1881

jobStatus The job status, such as SUCCESS
logFileName Log file containing entries for this execution, such as outbox/logs/

BESSAPP-DB_1881.log
outputFileName Name of the output file generated, such asoutbox/

BESSAPPJan-06.csv
processType The type of process executed, EXPORT_MAPPING

Chapter 15
Export Data Mapping

15-28



Table 15-11    (Cont.) Parameters

Name Description

executedBy Login name of the user used to execute the rule, such as admin
details Returns the exception stack trace in case of an application error, or

else null

Supported Media Types: application/json

Example of Response Body

The following shows an example of the response body in JSON format.

{
"links": 
[
0]
"status":"0",
"details":"null",
"jobId":"1881",
"jobStatus":"SUCCESS",
"logFileName":"outbox/logs/BESSAPP-DB_1881.log",
"outputFileName":"outbox/BESSAPPJan-06.csv",
"processType":"EXPORT_MAPPING",
"executedBy":"admin"
}

For sample code, see the code samples included in Running Data Rules in Data Management.

Export Data Integration
The Export Data Integration API enables you to back up setup and staging data in Data
Integration as a snapshot.

REST Resource

/aif/rest/V1/snapshots
Required Roles

Service Administrator, Power User

Method

POST
Request

Supported Media Types: application/json
Sample REST API Payload for Export Data Integration

{
    "action":"EXPORT",
    "snapshotType":"ALL",

Chapter 15
Export Data Integration

15-29



    "fileName":"MyBackup.zip",
    "overwriteFile":true
}
 

The following table summarizes the client request.

Table 15-12    Parameters

Name Description Type Required Default

api_version Version of the API you are working
with, such as V1.

Path Yes None

action EXPORT Payload Yes None

snapshottype Snapshot type: ALL,
ALL_INCREMENTAL,
INCREMENTAL, SETUP

• ALL—Include all setup and
staging data.

• ALL_INCREMENTAL—Include
only new or changed staging
data based on the POV since
the last snapshot was exported
and include SETUP and all
POVs (old and new) in the
output file.

• INCREMENTAL—Include only
new or changed staging data
based on the POV since the
last snapshot was exported
and include only SETUP and
new POVs in the output file.

• SETUP—Include only setup
data.

Payload Yes None

fileName Name of the output file in ZIP
format. This file is generated in the
outbox as: outbox/
<filename>.zip.

If the file doesn't end with a ZIP
extension, Data Management
appends the ZIP file extension at
the end of the file name.

Payload Yes None

overwriteFile true/false—Boolean option to
specify whether or not to replace
the output file specified in the
filename parameter. This parameter
prevents a user from accidentally
overwriting the output file if it
already exists by throwing a HTTP
400 error.

Payload No false

Response

The following table summarizes the response parameters.

Chapter 15
Export Data Integration

15-30



Table 15-13    Parameters

Name Description

action Always EXPORT

snapshotType Name of the snapshot type

jobId The process ID generated in Data Integration for the job, such as 1880

links Describes links to other resources and actions applicable on the current
resource.

status Status of the job: -1 = in progress; 0 = success; 1 = error; 2 =cancel
pending; 3 = cancelled; 4 = invalid parameter;Integer.MAX_VALUE =
unknown

Supported Media Types: application/json
The following shows an example of the response in JSON format.

{
    "action": "EXPORT",
    "snapshotType": "SETUP",
    "jobId": 423,
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/v1/jobs/jobID",
            "action": "GET"
        }
    ],
    "status": -1
}

Import Data Integration
The Import Data Integration API enables you to restore setup and staging data from one
environment to another. The system clears the existing data in the target environment and then
imports the data from the backup files without merging any operations.

REST Resource

/aif/rest/V1/snapshots
Required Roles

Service Administrator, Power User

Method

POST
Request

Supported Media Types: application/json

Chapter 15
Import Data Integration

15-31



Sample REST API Payload for Import Data Integration

{

    "action":"IMPORT",
    "fileName":"inbox/MyBackup.zip"
}
 

The following table summarizes the client request.

Table 15-14    Parameters

Name Description Type Required Default

action IMPORT Payload Yes None

filename File name of the import snapshot
(for example: inbox/
<filename>.zip, or inbox/
mybackup/<filename>.zip).

If no path is specified, it is assumed
that the file is in the Data Integration
root folder. (Files to the Data
Integration root folder can only be
uploaded from the Data Integration
user interface.)

Payload Yes None

Response

The following table summarizes the response parameters.

Table 15-15    Parameters

Name Description

action Always IMPORT

jobId The process ID generated in Data Integration for an import Data
Integration job is "0."

links Describes links to other resources and actions applicable on the current
resource.

status Status of the job: -1 = in progress; 0 = success; 1 = error; 2 =cancel
pending; 3 = cancelled; 4 = invalid parameter;Integer.MAX_VALUE =
unknown

Supported Media Types: application/json
The following shows an example of the response in JSON format.

{

    "action": "IMPORT",
    "jobId": 0,
    "links": [
        {
            "rel": "self",

Chapter 15
Import Data Integration

15-32



            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/v1/jobs/jobID",
            "action": "GET"

        }

    ],

    "status": -1

}

Retrieve Job Status
Polls the environment to get the processing state for a job with a specified ID.

Using this REST API requires prerequisites, such as understanding how to use jobs. See 
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.
Required Roles

Service Administrator, Power User

Rest Resource

GET /application/rest/{api_version}/applications/{application}/jobs/
{jobIdentifier}

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 15-16    Parameters

Name Description

status Status of the job: -1 = in progress; 0 = success; 1 = error; 2 = cancel
pending; 3 = cancelled; 4 = invalid parameter; Integer.MAX_VALUE
= unknown

details Details about the job status, such as "SUCCESS" when member
mappings have been processed successfully.

jobID The ID of the job, such as 228

jobName The name of the job, such as BESSAPP

descriptiveStatus The status of the job, such as Completed or Error

Supported Media Types: application/json
Example of Response Body

Chapter 15
Retrieve Job Status

15-33

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html


The following is an example of the response body in JSON format that shows the job status
when member mappings are exported.

{
"links": 
[
0]
"status":"0",
"details":"null",
"jobId":"1881",
"jobStatus":"SUCCESS",
"logFileName":"outbox/logs/BESSAPP-DB_1881.log",
"outputFileName":"outbox/BESSAPPJan-06.csv",
"processType":"EXPORT_MAPPING",
"executedBy":"admin"
}

Chapter 15
Retrieve Job Status

15-34



16
Data Management REST APIs

Use the Data Management REST APIs to run data rules and batch rules.

Note:

All REST APIs used for Data Integration can be used as REST APIs for Data
Management.

URL Structure for Data Management
URL Structure

Use the following URL structure to access the Data Management REST resources:

https://<BASE-URL>/aif/rest/{api_version}/{path}

Where:

• <BASE-URL>: The first part of your service URL, before the context.

For example, if your service URL is https://epm-acme.epm.us-
phoenix-1.ocs.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm-
acme.epm.us-phoenix-1.ocs.oraclecloud.com. Similarly, if your service URL is https://
epm2-acme.epm.us6.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm2-
acme.epm.us6.oraclecloud.com.

• api_version: API version you are developing with. The current REST API version for Data
Management is V1.

• path: Identifies the resource.

Note:

Oracle does not authorize or support the use of REST APIs with the path token "/
internal/" in the URL.

Getting API Versions for Data Management APIs
You can manage versions using the set of REST resources summarized in the following table.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

16-1



Table 16-1    Manage Versions of Data Management APIs

Task Request REST Resource

Getting API Versions for Data
Management APIs

GET /aif/rest/

Get Information about a Specific
API Version for Data
Management APIs

GET /aif/rest/{apiVersion}

Get API Versions for Data Management APIs
Returns information about which versions are available and supported. Multiple versions might
be supported simultaneously.

Note:

An API version is always supported even when deprecated.

REST Resource

GET /aif/rest/

Required Roles

Service Administrator, Power User, User, Viewer

Request

Supported Media Types: application/json

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 16-2    Parameters

Name Description

items Detailed information about the API

version The version, such as V1

lifecycle Possible values: active, deprecated

isLatest Whether this resource is the latest, true or false

Chapter 16
Getting API Versions for Data Management APIs

16-2



Example of Response Body

The following shows an example of the response body in JSON format.

{
"items": [1]
{
"version": "V1"
"isLatest": "true"
"lifecycle": "active"
"links": [3]
{
   "rel": "self"
   "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/"
   "action": "GET"
   },{
   "rel": "canonical"
   "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/"
   "action": "GET"
   },{
   "rel": "current"
   "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/V1"
   "action": "GET"
   }
}
}

Get Information about a Specific API Version for Data Management APIs
Returns details for a specific REST API version for Data Management.

REST Resource

GET /aif/rest/{api_version}

Required Roles

Service Administrator, Power User, User, Viewer

Request

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 16-3    Parameters

Name Description

api_version Version of the API you are developing with, such as
V1

Chapter 16
Getting API Versions for Data Management APIs

16-3



Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 16-4    Parameters

Name Description

version The version, such as V1

lifecycle Lifecycle of the resource, active or deprecated

isLatest Whether this resource is the latest, true or false

Example of Response Body

The following shows an example of the response body in JSON format.

{
"version": "V1"
"lifecycle": "active"
"isLatest": "true"
"links": [1]{
            "rel": "canonical"
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/V1"
            "action": "GET"
            }
}

Running Data Rules in Data Management
Executes a Data Management data load rule based on the start period and end period, and
import or export options that you specify.

Prerequisites

• Data Rules: Data load rules define how Integrations load data from a file. You must have
predefined data load rules to load data.

• You must have the required privileges to execute a specific data rule.

REST Resource

POST /aif/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User

Request

Supported Media Types: application/json
Parameters

Chapter 16
Running Data Rules in Data Management

16-4



The following table summarizes the client request.

Table 16-5    Parameters

Name Description Type Required Default

api_version Version of the API you are working with,
such as V1

Path Yes None

jobType should be set to "DATARULE" Yes None

jobName The name of a data load rule defined in
Data Management. You should enclose the
rule name in quotation marks if it contains
a space.

Yes None

startPeriod The first period for which data is to be
loaded. This period name must be defined
in Data Management period mapping.

Yes None

endPeriod The last period for which data is to be
loaded. This period name must be defined
in Data Management period mapping.

Yes None

importMode Determines how the data is imported into
Data Management.
Acceptable values are:

• APPEND to add to the existing POV
data in Data Management

• REPLACE to delete the POV data and
replace it with the data from the file.

• RECALCULATE to skip importing the
data, but re-process the data with
updated Mappings and Logic
Accounts.

• NONE to skip data import into Data
Management staging table

Yes None

Chapter 16
Running Data Rules in Data Management

16-5



Table 16-5    (Cont.) Parameters

Name Description Type Required Default

exportMode Determines how the data is exported into
Data Management.
Acceptable values for Planning Modules
and Planning are:

• STORE_DATA to merge the data in the
Data Management staging table with
the existing Planning data

• ADD_DATA to add the data in the Data
Management staging table to Planning

• SUBTRACT_DATA to subtract the data
in the Data Management staging table
from existing Planning data

• REPLACE_DATA to clear the POV
data and replace it with data in the
Data Management staging table. The
data is cleared for Scenario, Version,
Year, Period, and Entity

• NONE to skip data export from Data
Management to Planning

Acceptable values for Financial
Consolidation and Close and Tax
Reporting are:

• REPLACE to delete the POV data and
replace it with the data from the file

• MERGE: By default, all data load is
processed in the Merge mode. If data
already existed in the application, the
system overwrites the existing data
with the new data from the load file. If
data does not exist, the new data will
be created.

• NONE to skip the data export

Yes None

fileName An optional file name. If you do not specify
a file name, this API imports the data
contained in the file name specified in the
load data rule. The data file must already
reside in the Inbox prior to data rule
execution.

Import data files from the EPM INBOX
accessible from the Applications-Inbox/
Outbox Explorer using a file name.
Reference the files in this folder using
#epminbox/<filename>.

Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/
rest/V1/jobs
Example of Request Body

{"jobType":"DATARULE",
"jobName":"aso to bso dr",
"startPeriod":"Dec-18",

Chapter 16
Running Data Rules in Data Management

16-6



"endPeriod":"Dec-18",
"importMode":"REPLACE",
"exportMode":"NONE",
"fileName":"#epminbox/TestData.txt"
}

Response

Supported Media Types: application/json

Table 16-6    Parameters

Name Description

status Status of the job: -1 = in progress; 0 = success; 1 = error; 2 = cancel
pending; 3 = cancelled; 4 = invalid parameter

jobStatus A text representation of the job status, with one of the following values"
RUNNING," "SUCCESS," and"FAILED".

jobId The process ID generated in Data Management for the job

logFileName Log File containing entries for this execution.

outputFileName Name of the output file generated, if any.

processType Type of the process executed. Will contain "COMM_LOAD_BALANCES" for
all Data Rule executions

executedBy Login name of the user used to execute the rule.

details Returns the exception stack trace in case of an application error

Example of Response Body

The following shows an example of the response body in JSON format.

{
    "jobStatus": "RUNNING",
"jobId": 2019,
"logFileName": "\outbox\logs\Account Reconciliation Manager_2019.log",
"outputFileName": null,
"processType": "COMM_LOAD_BALANCES",
"executedBy": "admin",
"status": -1,
"links": [1],
    0:  {
    "rel": "self",
    "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/V1/jobs/2019",
    "action": "GET",
}
"details": null

}

Running Batch Rules
Executes a batch of jobs that have been defined in Data Management .

Chapter 16
Running Batch Rules

16-7



Prerequisites

• The batch must be defined in Data Management before it can be executed using the REST
API.

• You must have the required privileges to execute a specific batch.

REST Resource

POST /aif/rest/{api_version}/jobs
Required Roles

Service Administrator, Power User

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 16-7    Parameters

Name Description Type Required Default

api_version Version of the API you are
working with, such as V1

Path Yes None

jobType should be set to "BATCH" Yes None

jobName The name of a batch defined in
Data Management.

Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/
rest/V1/jobs
Example of Request Body

{"jobType":"BATCH",
"jobName":"BatchDataLoad"
}

Response

The following table summarizes the response parameters.

Table 16-8    Parameters

Name Description

status Status of the job: -1 = in progress; 0 = success; 1 = error; 2 = cancel pending;
3 = cancelled; 4 = invalid parameter

jobStatus A text representation of the job status, with one of the following values
"RUNNING", "SUCCESS". "FAILED"

jobId The process Id generated in Data Management for the job

logFileName Log File containing entries for this execution.

outputFileName Name of the output file generated, if any.

processType Type of the process executed. Will contain "COMM_BATCH" for all Data Rule
executions

Chapter 16
Running Batch Rules

16-8



Table 16-8    (Cont.) Parameters

Name Description

executedBy Login name of the user used to execute the rule.

details Returns the exception stack trace in case of an application error

Supported Media Types: application/json

Example of Response Body

The following shows an example of the response body in JSON format.

{
    "jobStatus": "SUCCESS",
"jobId": 2024,
"logFileName": "\outbox\logs\BATCH1_7595.log",
"outputFileName": null,
"processType": "COMM_BATCH",
"executedBy": "admin",
"status": -1,
"links": [1],
    0:  {
    "rel": "self",
    "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/V1/jobs/2016",
    "action": "GET",
}
"details": null
}

For sample code, see the code samples included in Running Data Rules in Data Management.

Retrieve Job Status
Polls the environment to get the processing state for a job with a specified ID.

Using this REST API requires prerequisites, such as understanding how to use jobs. See 
Prerequisites. Be sure that you understand how to use jobs as described in Managing Jobs.
Required Roles

Service Administrator, Power User

REST Resource

GET /application/rest/{api_version}/applications/{application}/jobs/
{jobIdentifier}

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Chapter 16
Retrieve Job Status

16-9

https://docs.oracle.com/en/cloud/saas/planning-budgeting-cloud/pfusa/managing_jobs.html


Table 16-9    Parameters

Name Description Type Required Default

api_version Version of the API you are developing
with

Path Yes None

applicationName The name of the application Path Yes None

jobIdentifier The ID of the job Path Yes None

Response

Parameters

The following table summarizes the response parameters.

Table 16-10    Parameters

Name Description

status Status of the job: -1 = in progress; 0 = success; 1 = error; 2 = cancel
pending; 3 = cancelled; 4 = invalid parameter; Integer.MAX_VALUE
= unknown

details Details about the job status, such as "SUCCESS" when a batch has
processed successfully.

jobID The ID of the job, such as 226

jobName The name of the job, such as BATCH1

descriptiveStatus The status of the job, such as Completed or Error

Supported Media Types: application/json
Example of Response Body

The following shows an example of the response body in JSON format when a batch is run.

{
"jobStatus": "SUCCESS",
"jobId": 2024,
"logFileName": "\outbox\logs\BATCH1_7595.log",
"outputFileName": null,
"processType": "COMM_BATCH",
"executedBy": "admin",
"status": -1,
"links": [1],
    0:  {
    "rel": "self",
    "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/aif/rest/V1/jobs/2024,
    "action": "GET"
}
"details": null
}

Chapter 16
Retrieve Job Status

16-10



17
Account Reconciliation APIs

Use the Account Reconciliation REST APIs to get the REST API version, create
reconciliations, change period status, import pre-mapped transactions, import profiles, import
currency rates, import balances, import pre-mapped balances, monitor reconciliations, and
retrieve job status. In Transaction Matching, you can use REST APIs to import pre-mapped
transactions, or run auto match.

URL Structure for Account Reconciliation
This topic shows the general URL structure for Account Reconciliation REST APIs..

Use the following URL structure to access the Account Reconciliation REST resources:

https://<BASE-URL>/armARCS/rest/{api_version}/{path}

Where:

• <BASE-URL>: The first part of your service URL, before the context.

For example, if your service URL is https://epm-acme.epm.us-
phoenix-1.ocs.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm-
acme.epm.us-phoenix-1.ocs.oraclecloud.com. Similarly, if your service URL is https://
epm2-acme.epm.us6.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm2-
acme.epm.us6.oraclecloud.com.

• api_version: API version you are developing with. The current REST API version for
Account Reconciliation is V1.

• path: Identifies the resource.

Note:

Oracle does not authorize or support the use of REST APIs with the path token "/
internal/" in the URL.

Getting API Versions for Account Reconciliation REST APIs
You can manage versions using the set of REST resources summarized in the following table.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using this REST API requires prerequisites. See Prerequisites.

17-1



Table 17-1    Manage Versions of Account Reconciliation APIs

Task Request REST Resource

Get API Versions for Account
Reconciliation REST APIs

GET /armARCS/rest/

Get Information about a Specific
API Version for Account
Reconciliation REST APIs

GET /armARCS/rest/{apiVersion}

Get API Versions for Account Reconciliation REST APIs
Returns information about which versions are available and supported. Multiple versions might
be supported simultaneously.

Note:

An API version is always supported even when deprecated.

Required Roles

Service Administrator, Power User, User, Viewer

REST Resource

GET /armARCS/rest/

Request

Supported Media Types: application/json

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 17-2    Parameters

Name Description

details In case of errors, details are published with the
error string

status See Migration Status Codes

items Version of the API you are developing with

version The version, such as v1

lifecycle Possible values: active, deprecated

isLatest Whether this resource is the latest, true or false

links Detailed information about the link

href Links to API call

Chapter 17
Getting API Versions for Account Reconciliation REST APIs

17-2



Table 17-2    (Cont.) Parameters

Name Description

action The HTTP call type

rel Can be self or Job Status. If set to Job Status, you
can use the href to get the status of the import
operation

data The parameters as key value pairs passed in the
request

Example of Response Body

The following shows an example of the response body in JSON format.

{
    "items": [{
        "isLatest": false,
        "lifecycle": "deprecated",
        "version": "v1",
        "links": [{
             "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1",
            "rel": "canonical"
        }, {
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1",
            "rel": "successor-version"
        }]
    }, {
        "isLatest": true,
        "lifecycle": "active",
        "version": "v1",
        "links": [{
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1",
            "rel": "canonical"
        }, {
            "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1",
            "rel": "predecessor-version"
        }]
    }],
    "links": [{
        "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1",
        "rel": "canonical"
    }, {
        "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1",
        "rel": "current"
    }]
}

Chapter 17
Getting API Versions for Account Reconciliation REST APIs

17-3



Get Information about a Specific API Version for Account Reconciliation
REST APIs

Returns details for a specific REST API version for Account Reconciliation.

REST Resource

GET /armARCS/rest/{api_version}

Required Roles

Service Administrator, Power User, User, Viewer

Request

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 17-3    Parameters

Name Description Type Required Default

api_version Version of the API
you are developing
with, such as V1

Path Yes None

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 17-4    Parameters

Name Description

version The version, such as v1

lifecycle Possible values: active, deprecated

isLatest Whether this resource is the latest, true or false

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data The parameters as key value pairs passed in the
request

Chapter 17
Getting API Versions for Account Reconciliation REST APIs

17-4



Example of Response Body

The following shows an example of the response body in JSON format.

{  
"version": "v1",
"lifecycle": "active",
"isLatest": true,
"links": [{
"rel": "canonical",
"href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1",
}, {
"rel": "predecessor-version",
"href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1",
}]  
}

Execute a Job in Account Reconciliation
Use this resource to execute a job by providing the job name and type.

The job is expected to be defined in Account Reconciliation with all the required parameters
saved with the job definition. For some job types, the parameters can be either provided or
overwritten at runtime.

Reconciliation Compliance Supported Job Types:

• CREATE_RECONCILIATIONS

• SET_PERIOD_STATUS

• IMPORT_PREMAPPED_TRANSACTIONS

• IMPORT_PREMAPPED_PROFILES

• IMPORT_RATES

• IMPORT_BALANCES

• MONITOR_RECONCILIATIONS

• IMPORT_PREMAPPED_BALANCES

Transaction Matching Supported Job Types:

• IMPORTTMPREMAPPEDTRANSACTIONS

• RUNAUTOMATCH

This topic describes general information for executing a job. Details for each job type are
described in separate topics for individual jobs.

REST Resource

POST /armARCS/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User, User, Viewer

Chapter 17
Execute a Job in Account Reconciliation

17-5



Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

This table summarizes the request parameters that are generic to all jobs. The following tables
describe parameters specific to individual rules.

Table 17-5    Parameters

Name Description Type Required Default

api_version Version of the API you
are developing with

Path Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
armARCS/rest/v1/jobs

Response

Supported Media Types: application/json
Parameters

This table summarizes the response parameters that are generic to all jobs. The following
tables describe parameters specific to individual rules.

Table 17-6    Parameters

Name Description

jobName The name of the job, such as Create
Reconciliations

period

Note:

For
monitor_reconciliation
s, the parameter is
periodName.

The name of period, such as July2016

Chapter 17
Execute a Job in Account Reconciliation

17-6



Table 17-6    (Cont.) Parameters

Name Description

filter

Note:

For
monitor_reconciliation
s, the parameter is
filterName.

The name of filter, such as MyFilter

Retrieve Periods with a Specific Status
Retrieves a list of periods based on the specified status.

REST Resource

GET       /armARCS/rest/periods?status={status}

Required Roles

Service Administrator, Power User, User, Viewer

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this API.

Table 17-7    GET PERIODS

Name Description Required Type

status Status of the periods to be
retrieved. The value can be one of
the following:
• OPEN - All open periods
• CLOSED - All closed periods
• LOCKED - All locked periods
• PENDING - All pending

periods
• OPEN_PENDING - All open

or pending periods
• ALL - All periods

Yes Query

Chapter 17
Retrieve Periods with a Specific Status

17-7



Example URLs

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
armARCS/rest/periods?status=ALL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
armARCS/rest/periods?status=OPEN_PENDING

Response

Supported Media Types: application/json
Parameters:

Table 17-8    Parameters

Name Description

details In case of errors, details are published with the error string

status Status of the request. See Migration Status Codes.

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

items List of periods with the specified status. The format is:

{
      "Status": <status code>,
      "Id": <internal period ID>,
      "Name": <name of the period>
    }

The status code can be one of the following:

• 51 - PENDING
• 52 - OPEN
• 53 - CLOSED
• 54 - LOCKED

Example of Response Body

The following is an example of the response body, in JSON format.

{
  "type": "ARCS",
  "items": [
    {
      "Status": "53",
      "Id": "100000000135004",
      "Name": "January 2022"
    },
    {
      "Status": "53",
      "Id": "100000000135007",
      "Name": "February 2022"

Chapter 17
Retrieve Periods with a Specific Status

17-8



    },
    {
      "Status": "53",
      "Id": "100000000135009",
      "Name": "March 2022"
    },
    {
      "Status": "53",
      "Id": "100000000135011",
      "Name": "April 2022"
    }
  ],
  "status": 0,
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/periods",
      "action": "GET"
    }
  ]
}

Change Period Status (Reconciliation Compliance)
Changes the status of a period (open, closed, pending, locked) and returns the success or
failure status.

When a period's status is changed to Open, the returned job corresponds to the opening of
reconciliations for the specified period. The job's success or failure does not impact the
period's status because this change is made immediately. Even if there are failures while
reopening reconciliations, the period status still remains Open.

If a period's status is set to Closed or Locked, no job is returned.

REST Resource

POST       /armARCS/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Chapter 17
Change Period Status (Reconciliation Compliance)

17-9



Table 17-9    SET PERIOD STATUS

Name Description Required

api_version Version of the API you are working with, such
as v1

Yes

jobName The name of a job, SET_PERIOD_STATUS Yes

period The name of the period, such as July2016 Yes

status Status to be changed; supported values:
pending, open, closed, locked

Yes

Example of request body

{
 "jobName" : "SET_PERIOD_STATUS",
 "parameters": {
                              "period":"July2016",
                              "status":"closed"
                              }
}

Response

Supported Media Types: application/json
Parameters:

Table 17-10    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes. When the period's status is changed to Open,
the status of the job that opens reconciliations for the specified period is
sent as additional information. Use this additional information to check the
status of the open reconciliations job.

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
  "type": "ARCS",
  "status": -1,
  "details": "In Process",
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME>-

Chapter 17
Change Period Status (Reconciliation Compliance)

17-10



<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/2141",
      "action": "GET"
    }
  ]
}

Create Reconciliation (Reconciliation Compliance)
Copies all selected profiles to a period and returns success or failure status.

REST Resource

POST       /armARCS/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job. For additional
parameters that are common to all jobs, see Execute a Job.

Table 17-11    RULES

Name Description Required Default

api_version Version of the API you are working
with, such as v1.

Yes None

jobName The name of a job,
CREATE_RECONCILIATIONS.

Yes None

period The name of the period, such as
July2016

Yes None

filter The name of filter, such as MyFilter No None

Example of request body

{
 "jobName" : "CREATE_RECONCILIATIONS",
 "parameters": {
                             "period":"July2016",
                              "filter":"MyFilter"
                              }
}

Response

Parameters:

Chapter 17
Create Reconciliation (Reconciliation Compliance)

17-11



Table 17-12    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
  "type": "ARCS",
  "status": -1,
  "details": "In Process",
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/2141",
      "action": "GET"
    }
  ]
}

Import Pre-Mapped Balances (Reconciliation Compliance)
Imports pre-mapped balances and returns the success or failure status.

REST Resource

POST       /armARCS/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Chapter 17
Import Pre-Mapped Balances (Reconciliation Compliance)

17-12



Table 17-13    IMPORT_PREMAPPED_BALANCES

Name Description Required

api_version Version of the API you are working with, such
as v1

Yes

jobName The name of a job,
IMPORT_PREMAPPED_BALANCES

Yes

period The name of the period, such as July2016 Yes

balanceType Supported balance types are SRC for source
system balance, and SUB for subsystem
balance

Yes

currencyBucket Currency bucket such as Functional Yes

file Name of the import file, such as
balances.csv

Yes

Example of request body

{
 "jobName" : "IMPORT_PREMAPPED_BALANCES",
 "parameters": {
                             "period":"July2016",
                             "balanceType":"SRC",
                             "file":"balances.csv",
                             "currencyBucket":"Functional"
                              }
}

Response

Supported Media Types: application/json
Parameters:

Table 17-14    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
  "type": "ARCS",
  "status": -1,

Chapter 17
Import Pre-Mapped Balances (Reconciliation Compliance)

17-13



  "details": "In Process",
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/2141",
      "action":"GET"
    }
  ]
}

Import Pre-Mapped Transactions (Reconciliation Compliance)
Imports pre-mapped transactions for a particular period and returns the success or failure
status.

REST Resource

POST       /armARCS/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-15    IMPORT_PREMAPPED_TRANSACTIONS

Name Description Required

api_version Version of the API you are working with, such
as v1

Yes

jobName The name of a job,
IMPORT_PREMAPPED_TRANSACTIONS

Yes

transactionType Transaction Type is one of the following:
• BEX for loading Balance Explanations

• SRC for loading Source System
Adjustments

• SUB for loading Subsystem Adjustments

• VEX for loading Variance Explanations

Yes

file The file name, such as transactions.csv

dateFormat Date Format, such as DD/MM/YYYY, MMM
d, yyyy, or All

Yes

Chapter 17
Import Pre-Mapped Transactions (Reconciliation Compliance)

17-14



Example of request body

{
 "jobName" : "IMPORT_PREMAPPED_TRANSACTIONS",
 "parameters": {
                              "period":"July2016",
                              "transactionType":"SRC",
                              "file":"transactions.csv",
                              "dateFormat": "MMM d,yyyy"
                              }
}

Response

Supported Media Types: application/json
Parameters:

Table 17-16    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

TESTINGINGING:

{ "type": "ARCS", "status": -1, "details": "In Process", "links": [ { "rel":
"self", "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/2141",
"action": "GET" } ], "error": null, "items": null, "link": null }
The following is an example of the response body in JSON format.

{
  "type": "ARCS",
  "status": -1,
  "details": "In Process",
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/2141",
      "action": "GET"
    }
  ]
}

Chapter 17
Import Pre-Mapped Transactions (Reconciliation Compliance)

17-15



Import Balances (Reconciliation Compliance)
Imports balances data using Data Management from a previously created Data Load definition,
and returns success or failure status.

When using Data Management, if a data load rule fails, the Account Reconciliation log file
includes a message such as the following:

Dataload process failed for process {JOB_ID}. Check the Data Management log 
for more details.
Data Management log file name: {LOG_FILE_NAME}
Detailed error from Data Management process: {DETAILS}

Refer to the Data Management log file to understand the reason for the job failure. If multiple
data load rules fail, a separate log is created for each data load rule.

REST Resource

POST       /armARCS/rest/{api_version}/jobs/

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 17-17    IMPORT_BALANCES

Name Description Path Required

api_version Version of the API you are
working with, such as v1

Yes Yes

jobName The name of the job,
IMPORT_BALANCES

No Yes

period The name of the period, such as
April 2016

No Yes

dl_Definition The name of a previously saved
data load using the format
DL_name.

No Yes

Example of request body

{
  "jobName" : "IMPORT_BALANCES",
               "parameters": {
                              "period":"April 2016",

Chapter 17
Import Balances (Reconciliation Compliance)

17-16



                              "dl_Definition":"DL_test"
                               }
}

Response

Supported Media Types: application/json
Parameters:

Table 17-18    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to the API call

action The HTTP call type

rel Relationship type (self, Job Status). if set to Job Status, you can use
the href to get the status of the operation

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
"type": "ARCS",
"status": -1,
"details": "In Process",
"links": [
{
"rel": "self",
"href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/2141
"action": "GET"
}
]
}

Import Profiles (Reconciliation Compliance)
Imports profiles and returns the success or failure status.

REST Resource

POST       /armARCS/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User, User, Viewer

Chapter 17
Import Profiles (Reconciliation Compliance)

17-17



Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-19    IMPORT_PROFILES

Name Description Required

api_version Version of the API you are working with, such
as v1

Yes

jobName The name of a job, IMPORT_PROFILES Yes

importType The import type; supported values are
Replace and ReplaceAll

Yes

period The period for which to import, such as
July2016

profileType The profile type; supported values are
Profiles and Children

Yes

fileLocation The file name, such as profiles.csv Yes

dateFormat Date Format, such as DD/MM/YYYY, MMM d,
yyyy, or All

Yes

Example of request body

{
"jobName" : "IMPORT_PROFILES",
             "parameters": {
                             "period":"July2016",
                                   "importType":"Replace",
                                   "fileLocation":"profiles.csv",
                                   "dateFormat": "MMM d,yyyy"
                                    }
}

Response

Supported Media Types: application/json
Parameters:

Table 17-20    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

Chapter 17
Import Profiles (Reconciliation Compliance)

17-18



Table 17-20    (Cont.) Parameters

Name Description

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
  "type": "ARCS",
  "status": -1,
  "details": "In Process",
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/2141",
      "action": "GET"
    }
  ]
}

Import Rates (Reconciliation Compliance)
Imports rates for a particular period and rate type, and returns the success or failure status.

REST Resource

POST       /armARCS/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-21    IMPORT_RATES

Name Description Required

api_version Version of the API you are working with, such
as v1

Yes

Chapter 17
Import Rates (Reconciliation Compliance)

17-19



Table 17-21    (Cont.) IMPORT_RATES

Name Description Required

jobName The name of a job, IMPORT_RATES Yes

period The name of the period, such as July2016 Yes

rateType The rate type, such as Accounting Yes

file Name of the import file, such as rates.csv Yes

importType Supported import types are Replace and
ReplaceAll

Yes

Example of request body

{
 "jobName" : "IMPORT_RATES",
 "parameters": {
                             "period":"July2016",
                              "rateType":"Accounting",
                               "file":"rates.csv",
                               "importType":"ReplaceAll"
                              }
}

Response

Supported Media Types: application/json
Parameters:

Table 17-22    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
  "type": "ARCS",
  "status": -1,
  "details": "In Process",
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME>-

Chapter 17
Import Rates (Reconciliation Compliance)

17-20



<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/2141",
      "action": "GET"
    }
  ]
}

Import Pre-Mapped Transactions (Transaction Matching)
Imports a file of pre-mapped transactions into Transaction Matching, and returns the success
or failure status.

REST Resource

POST       /arm/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-23    IMPORTTMPREMAPPEDTRANSACTIONS

Name Description Required

api_version Version of the API you are working with, such
as v1

Yes

jobName The name of a job,
IMPORT_PREMAPPED_TRANSACTIONS

Yes

dataSource Text ID of the data source where the
transaction will be imported to

file The file name, such as transactions.csv
reconciliationType Text ID of the reconciliation type where the

transaction file will be imported to
Yes

dateFormat Date Format is a parameter that includes the
format of the date fields in the transactions
import file. The default is DD/MM/YYYY. Other
supported date formats are MM/dd/yyyy,
dd/MM/yyyy, MM-dd-yyyy, d-M-yyyy,
and MMM d.yyyy.

Yes

Example of request body

{
 "jobName" : "importtmpremappedtransactions",
 "parameters": {

Chapter 17
Import Pre-Mapped Transactions (Transaction Matching)

17-21



                              "dataSource":"CLEARING",
                              "reconciliationType":"CLEARING",
                              "file":"clearingTransaction.csv",
                              "dateFormat": "MM-DD-YYYY"
                              }
}

Response

Supported Media Types: application/json
Parameters:

Table 17-24    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
  "type": "TM",
  "status": -1,
  "details": "In Process",
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/2141",
      "action": "GET"
    }
  ]
}

Import Attribute Values
Imports attribute values into an existing list attribute or group attribute. In Transaction
Matching, you can only import group attributes.

REST Resource

POST /armARCS/rest/{api_version}/jobs

Chapter 17
Import Attribute Values

17-22



Required Roles

Service Administrator, Power User

Users with Power User predefined role may require additional application roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 17-25    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with:
v1

Path Yes None

jobname The name of the job,
IMPORT_ATTRIBUTE_VALUES

Payload Yes None

importType The import type. Supported values are
Replace, Replace All, and Update.

Payload No Replace

fileLocation The file name containing the values to be
imported; example: StoreData.csv

Payload Yes None

dateFormat Format of date fields in the import file.
Supported date formats are as follows:
• d MMM, yyyy
• MMM d, yyyy
• MM/dd/yyyy
• dd/MM/yyyy
• MM-dd-yyyy
• d-M-yyyy
• dd-MMM-yy
• dd-MMM-yyyy

Payload No dd-MMM-yyyy

attribute The name of the list attribute or group
attribute into which values must be imported.

Payload Yes None

module The name of the module. Supported values
are: RC for Reconciliation Compliance and
TM for Transaction Matching.

Payload Yes None

Example of Request Body

{
"jobName" : "IMPORT_ATTRIBUTE_VALUES",
"parameters": {
"attribute":"Store",
"importType":"Replace",
"fileLocation":"StoreData.csv",
"dateFormat": "MMM d,yyyy",
"module": "RC"}
}

Chapter 17
Import Attribute Values

17-23



Response

Parameters

The following table summarizes the response parameters.

Table 17-26    Parameters

Name Description

type The application type

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type

Supported Media Types: application/json
Example of Response Body

{
"type": "ARCS",
"status": -1,
"details": "In Process",
"links": [
{
"rel": "self",
"href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/oraclecloud.com/arm/rest/
fcmapi/v1/RC/job/2141",
"action": "GET"
}
]
}

Monitor Reconciliations (Reconciliation Compliance)
Returns the list of reconciliations for a given period name and filter name.

Note:

• If the Reconciliation status for all the Reconciliations in the given Period Name
and Filter Name were closed, then the output status would be ‘0’.

• If the Reconciliations status for any one of the Reconciliations in the given Period
Name and Filter Name is open, then the output status would be ‘-1’.

Chapter 17
Monitor Reconciliations (Reconciliation Compliance)

17-24



REST Resource

POST       /armARCS/rest/{api_version}/jobs/

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 17-27    MONITOR_RECONCILIATIONS

Name Description Path Required

api_version Version of the API you are
working with, such as v1

Yes Yes

jobName The name of the job,
MONITOR_RECONCILIATIONS

No Yes

periodName The name of the period, such as
September 2017

No Yes

filterName The name of the filter. For
example, Recon status
filter.

No Yes

Example of request body

{
 "parameters":
{"periodName":"September 2017","filterName":"DemoFilter"},
"jobName":"MONITOR_RECONCILIATIONS"
}

Response

Supported Media Types: application/json
Parameters:

Table 17-28    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

Chapter 17
Monitor Reconciliations (Reconciliation Compliance)

17-25



Table 17-28    (Cont.) Parameters

Name Description

links Detailed information about the link

href Links to the API call

action The HTTP call type

rel Relationship type (self, Job Status). if set to Job Status, you can use
the href to get the status of the operation

data Parameters as key value pairs passed in the request

Examples of Response Body

The following is an example of the response body in JSON format when all reconciliations are
closed:

{
"error":null,
"details":"Account ID : 100-1210, Name : Accounts Receivable, Status : 
Closed",
"items":null,
"status":0,
"link":null,
"links":[{"action":"GET","rel":"self","href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/
monitorReconciliations/September%202017/DemoFilter"}],
"type":"ARCS"
}

The following is an example of the response body in JSON format when any reconciliation
status is open:

{
"error":null,
"details":"Account ID : 100-1210, Name : Accounts Receivable, Status : Open",
"items":null,
"status":-1,
"link":null,
"links":[{"action":"GET","rel":"self","href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/
monitorReconciliations/September%202017/DemoFilter"}],
"type":"ARCS"
}

Import Reconciliation Attributes (Reconciliation Compliance)
Performs flat file loads of attribute values into existing reconciliations.

REST Resource

POST       /armARCS/rest/{api_version}/jobs

Chapter 17
Import Reconciliation Attributes (Reconciliation Compliance)

17-26



Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-29    Import Reconciliation Attributes

Name Description Required

api_version Version of the API you are working with, such
as v1

Yes

jobName The name of a job,
IMPORT_RECONCILIATION_ATTRIBUTES

Yes

fileName The name of the upload import file Yes

period The name of the period, such as July2020 Yes

rules The rules to run upon completion. Allowed
values are:
• ALL
• SET_ATTR_VAL(Set Attribute Value)

• CRT_ALT (Create Alert)

• AUTO_APP(Auto Approve Reconciliation)

• AUTO_SUB(Auto Submit Reconciliation)

You can send multiple values separated by
comma. Default is None.

No

reopen Indicates whether to reopen changed
reconciliations upon completion. Values is
either true or false (default).

No

dateFormat List of valid date formats, such asDD/MM/
YYYY. You can send multiple values
separated by semi-colon.

No

Here are some examples of the request body:

Example 1

{
    "jobName" : "IMPORT_RECONCILIATION_ATTRIBUTES",
    "parameters": 
        {
         "fileName":"import_recon.csv",
         "period":"January 2010",        
         "rules":"AUTO_APP,AUTO_SUB",
         "reopen":"true",
         "dateformat":"MM-dd-yyyy;MMM d, yyyy"

Chapter 17
Import Reconciliation Attributes (Reconciliation Compliance)

17-27



        }
}

Example 2

{
    "jobName" : "IMPORT_RECONCILIATION_ATTRIBUTES",
    "parameters": 
        {
         "fileName":"Reconciliations.csv",
         "period":"June 2019",        
         "rules":"AUTO_APP,AUTO_SUB",
         "reopen":"true"
        }
}

Example 3

{
    "jobName" : "IMPORT_RECONCILIATION_ATTRIBUTES",
    "parameters": 
        {
         "fileName":"import_recon.csv",
         "period":"January 2010",        
         "rules":"ALL",
         "reopen":"true"
        }
}

Example 4

{
    "jobName" : "IMPORT_RECONCILIATION_ATTRIBUTES",
    "parameters": 
        {
         "fileName":"Reconciliations.csv",
         "period":"June 2019"
        }
}

Response

Supported Media Types: application/json
Parameters:

Table 17-30    Parameters

Name Description

details In case of errors, details are published with the error string

status • -1 = In Progress
• 0 = Success
• 1 = Fail

Chapter 17
Import Reconciliation Attributes (Reconciliation Compliance)

17-28



Table 17-30    (Cont.) Parameters

Name Description

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type. Can be self and/or Job Status. If set to Job Status, you
can use the href to get the status of the import operation.

Example of Response Body

The following is an example of the response body in JSON format.

{
    "type": "ARCS",
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/
100000001155018",
            "action": "GET"
        }
    ],
    "details": "In Process",
    "status": -1
}

Run Auto Match (Transaction Matching)
Runs the auto match process in Transaction Matching.

REST Resource

POST       /arm/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Chapter 17
Run Auto Match (Transaction Matching)

17-29



Table 17-31    runautomatch

Name Description Required

api_version Version of the API you are working with, such
as v1

Yes

jobName The name of a job, runautomatch Yes

ReconTypeId The Text ID of the Reconciliation type to be
auto matched

Yes

Example of request body

{"jobName":"runautomatch",
"parameters":{"reconTypeId":"INTERCO"}}

Response

Supported Media Types: application/json
Parameters:

Table 17-32    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
  "type": "TM",
  "status": -1,
  "details": "In Process",
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/v1/jobs/2141",
      "action": "GET"
    }
  ],
  "error": null,
  "items": null,
  "link": null
}

Chapter 17
Run Auto Match (Transaction Matching)

17-30



Purge Transactions (Transaction Matching)
Removes matched transactions for Account Reconciliation using the provided parameters.

You can specify filterOperator and filterValue to further filter the matched transactions.
Otherwise, all matched transactions older than or equal to the age from all accounts for the
specified matchType are purged.

REST Resource

POST       /arm/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-33    Parameters

Name Description Type Required Values

api_version Version of the API you
are working with, such as
v1

Path Yes v1

jobName The name of a job Payload Yes purgetransactions
ReconTypeId The identifier (TextID) of

the match type from
which matched
transactions should be
deleted

Payload Yes Example: CLEARING

matchedStatu
s

The status of the
transactions to be
deleted. The only value
currently supported is
matched.

Payload No Default value: matched

age Identifies the number of
days since the
transaction was matched.
Matched transactions
older than or equal to this
value will be deleted.

Payload Yes Example: 180

Chapter 17
Purge Transactions (Transaction Matching)

17-31



Table 17-33    (Cont.) Parameters

Name Description Type Required Values

filterOperat
or

Optionally, use one of the
following filter conditions
to identify the accounts
containing matched
transactions for deletion.
This value is combined
with the filterValue to
identify the accounts
from which matched
transactions should be
purged:
• EQUALS
• NOT_EQUALS
• STARTS_WITH
• ENDS_WITH
• CONTAINS
• NOT_CONTAINS

Payload No Examples:
EQUALS
Starts_With

filterValue Optionally use one or
more filter values to
identify the transactions
to purge. Use a space-
separated list to specify
multiple values as shown
in the examples. If
multiple values are
specified, transactions
from accounts matching
any filter operator and
filter value combination
are selected for purging.

EQUALS and
NOT_EQUALS support
multiple values.

STARTS_WITH,
ENDS_WITH, CONTAINS,
and NOT_CONTAINS only
support a single value.

Payload No Examples:
["101-1234","102-12
34"]
["102"]

logFileName Optionally, enter the
name of a log file to
record information about
the API activity.

Payload No If a file name is not
specified, a log file
named
PurgeTransactions_J
ob_ID is automatically
generated.
The file is located in the
Outbox.

Example of request body

Example of purging matched transactions 120 days or older for CLEARING match type and
accounts equal to 101-1234 and 102-1234:

{
    "jobName" : "purgetransactions",

Chapter 17
Purge Transactions (Transaction Matching)

17-32



    "parameters": 
                {
                   "reconTypeId" : "CLEARING", 
                   "age" : 120,
                      "filterOperator":"EQUALS",        
                              "filterValue" : ["101-1234","102-1234"],
                              "logFileName" : "purge-clearing"
                }
}

Example of purging matched transactions 120 days or older for CLEARING match type and
accounts start with 101:

{
    "jobName" : "purgetransactions",
    "parameters": 
                {
                   "reconTypeId" : "CLEARING", 
                   "age" : 120,
                      "filterOperator":"STARTS_WITH",        
                              "filterValue" : ["101"],
                              "logFileName" : "purge-clearing"
                }
}

Response

Supported Media Types: application/json
Parameters:

Table 17-34    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following is an example of the response body in JSON format.

{
  "type": "TM",
  "status": -1,
  "details": "In Process",
  "links": [
    {
      "rel": "self",                                                    

Chapter 17
Purge Transactions (Transaction Matching)

17-33



"href":"https://
<SERVICE_NAME><TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/v1/
jobs/2141",
      "action": "GET"
    }
  ],
  "error": null,
  "items": null,
  "link": null
}

Retrieve Job Status (Reconciliation Compliance)
Returns the status of a job for Reconciliation Compliance, indicating if the job is in process, or
if it is successfully executed or completed with errors.

REST Resource

GET /armARCS/rest/{api_version}/jobs/{job_id}

Required Roles

Service Administrator, Power User, User, Viewer

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 17-35    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with:
v1

Path Yes None

jobIdentifier The ID of the job Path Yes None

Response

Parameters

The following table summarizes the response parameters.

Table 17-36    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type

Chapter 17
Retrieve Job Status (Reconciliation Compliance)

17-34



Table 17-36    (Cont.) Parameters

Name Description

data Parameters as key value pairs passed in the request

Supported Media Types: application/json
Example of Response Body

{
  "type": "ARCS",
  "status": 0,
  "details": "Total to copy : 3\nSuccessfully copied : 2\nUnsuccessfully 
copied : 1\n",
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/jobs/91",
      "action": "GET"
    }
  ],
  "error": null,
  "items": null,
  "link": null
}

Retrieve Job Status (Transaction Matching)
Returns the status of a job for Transaction Matching, indicating if the job is in process, or if it is
successfully executed or completed with errors.

REST Resource

GET /arm/rest/{api_version}/jobs/{job_id}

Required Roles

Service Administrator, Power User, User, Viewer

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 17-37    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with:
v1

Path Yes None

Chapter 17
Retrieve Job Status (Transaction Matching)

17-35



Table 17-37    (Cont.) Parameters

Name Description Type Required Default

jobIdentifier The ID of the job Path Yes None

Response

Parameters

The following table summarizes the response parameters.

Table 17-38    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

log-content Link to the log file location. This is applicable to Archive Matched
Transactions, Purge Archived Transactions, Purge Transactions
(Transaction Matching), Import Pre-Mapped Transactions (Transaction
Matching), and Unmatch Matched Transaction (Transaction Matching)
jobs.

file-content Link to the location of the archive file, for Archive Matched Transactions
jobs.

Supported Media Types: application/json
Example of Response Body

Example 1: Retrieve job status for an Auto Match job

{
    "type": "TM",
    "items": [
        0
    ],
    "error": null,
    "link": null,
    "status": 0,
    "details": "Job Completed. Job ID: 100000003918002",
    "links": [
        {
            "rel": "self",
            "href": https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest//v1/jobs/
100000003918002,
            "action": "GET",
            "data": null
        }

Chapter 17
Retrieve Job Status (Transaction Matching)

17-36



    ]
}

Example 2: Retrieve job status for Archive Matched Transactions (Transaction Matching) job

{
    "type": "TM",
    "items": [
        0
    ],
    "error": null,
    "link": null,
    "status": 0,
    "details": "Job Completed. Job ID: 100000003846005 Log file: 
Archive_Transactions_Pos2Processor.log\nRe Archive for the Archive Job ID :: 
100000003810002\r\nArchive Transactions for Match Type :: 
Pos2Processor\nArchive Transactions on or before :: 2022-02-18 23:59:59 
UTC\nArchive Transactions age :: 330\nAccount ID : Equals  'XX-XX-
YYYY'\nAccounts considered for Archive : XX-XX-YYYY\n\n Total Number of 
Matches present in this archive :: 1479730\nTotal Number of Transactions 
Present in this Archive for DataSource - Delivery Partner :: 1490233\nTotal 
Number of Transactions Present in this Archive for DataSource - POS :: 
1515718\nTotal Number of Adjustments Present in this Archive :: 
104709\n\nTotal Number of Transactions Present in this Archive :: 
3110660\nTime taken 22 Minute(s) and 02 Second(s) to Archive 
Transactions.\r\n",
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/v1/jobs/
100000003846005",
            "action": "GET",
            "data": null
        },
        {
            "rel": "log-content",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/rest/applicationsnapshots/
Archive_Transactions_Pos2Processor.log/contents",
            "action": "GET",
            "data": null
        },
        {
            "rel": "file-content",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/rest/applicationsnapshots/
Archived_Transactions_Pos2Processor_100000003846005.zip/contents",
            "action": "GET",
            "data": null
        }
    ]
}

Chapter 17
Retrieve Job Status (Transaction Matching)

17-37



Example 3: Retrieve job status for Purge Archived Transactions (Transaction Matching) job

{
    "type": "TM",
    "items": [
        0
    ],
    "error": null,
    "link": null,
    "status": 0,
    "details": "Job Completed. Job ID: 100000003801002 Log file: 
PurgeTransactions_100000003801002.log\nMatch Type: Pos2Processor, Purge for 
Archive Job ID: 100000003798009\n\n\nTotal adjustments purged: 0\nTotal 
transactions purged from all sources: 0\nTotal matches purged: 0\n\nStatus: 
No transactions found for the Archive Transactions job ID. Purge Transactions 
might be already run for this Archive job ID.\n\nTotal time taken: 00 
Minute(s) and 00 Second(s)\n",
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest//v1/jobs/
100000003801002",
            "action": "GET",
            "data": null
        },
        {
            "rel": "log-content",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/rest/applicationsnapshots/
PurgeTransactions_100000003801002.log/contents",
            "action": "GET",
            "data": null
        }
    ]
}

Export Application Properties
Exports Account Reconciliation application settings (related to Redwood Experience, theme,
email notification, and business process name), background image, and logo image to a JSON
file so that you can import them into the same or another environment.

This command is useful when you import an application from prod to test environments. If your
application settings are different in prod and test environments, you can export them from the
test environment before importing the application from the prod environment, and then import
the settings in to the test environment to maintain the original settings.

You can download the export file using the Download REST API. This is a synchronous API.

REST Resource

POST       /arm/rest/fcmapi/{api_version}/rc/export/applicationproperties

Chapter 17
Export Application Properties

17-38



Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-39    EXPORT APPLICATION PROPERTIES

Name Description Required Default

fileName The name of the JSON file that
stores the exported property
values.

Use the Upload API to upload the
file to the target environment and
then restore these settings in the
target environment, as described
in Import Application Properties.

Yes None

properties The comma-separated list of
properties to be exported.

Valid values include the following:

• Theme exports the display
theme used in the
environment

• EmailNotification exports
the email notification settings
defined in the environment

• DisplayBusinessProcessN
ame exports whether to
display the business process
name on the page in the
environment

• RedwoodExperience exports
the Redwood Experience
setting of the environment

• BackgroundImage exports
the backgound image used in
the environment

• LogoImage exports the logo
image used in the
environment

No All valid properties are
exported.

Examples of request body

Example 1: Exporting all exportable application properties

{
 "fileName": "ApplicationProperties.json"
}

Chapter 17
Export Application Properties

17-39



Example 2: Exporting specific application properties

{
 "fileName": "ApplicationProperties.json",
 "properties":["Theme", "EmailNotification", "DisplayBusinessProcessName", 
"RedwoodExperience"]
}

Response

Supported Media Types: application/json
Parameters:

Table 17-40    Parameters

Name Description

details In case of errors, details are published with the error string.

status Status of the job:

• -1 = In Progress
• 0 = Success
• 1 = Fail

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type. It can be self or export-content. If the export
succeeds, you can use the href to download the exported file.

Example of Response Body

The following is an example of the response body in JSON format.

{
    "details": "Application properties exported successfully",
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/rc/
export/applicationproperties",
            "action": "POST"
        },       
        {
            "rel": "export-content",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/
ApplicationProperties.json/contents",
            "action": "GET"
        }
    ],
    "status": 0,
    "type": "RC",
    "link": {},
    "error": null,

Chapter 17
Export Application Properties

17-40



    "items": []
}

Import Application Properties
Imports Account Reconciliation application settings (related to Redwood Experience, theme,
email notification, and business process name), background image, and logo image from an
export file into an Account Reconciliation environment.

The export file is available for import after the file is uploaded using the Upload REST API. This
a synchronous API.

REST Resource

POST       /arm/rest/fcmapi/{api_version}/rc/import/applicationproperties

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-41    IMPORT APPLICATION PROPERTIES

Name Description Required Default

api_version The REST API version for the API.
This release is v1.

Yes v1

fileName The name of the JSON file that
contains exported property values
from another environment.

This file, exported from another
environment as described in 
Export Application Properties,
must be available in the
environment where you are
restoring application settings.

Yes None

Example of request body

{
    "fileName":"applicationProperties.json"
}

Response

Supported Media Types: application/json
Parameters:

Chapter 17
Import Application Properties

17-41



Table 17-42    Parameters

Name Description

details In case of errors, details are published with the error string

status Status of the job:

• -1 = In Progress
• 0 = Success
• 1 = Fail

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type. Possible values: self.

Example of Response Body

The following is an example of the response body in JSON format.

{
    "details": "Application properties imported successfully",
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/rc/
import/applicationproperties",
            "action": "POST"
    ],
    "status": 0,
    "type": "RC",
    "link": {},
    "error": null,
    "items": []
}

Export Background Image
Exports the background image used in an Account Reconciliation environment to a JPG file so
that you can import it into another environment.

You can download the image file using the Download REST API. This is a synchronous API.

REST Resource

POST       /arm/rest/fcmapi/{api_version}/rc/export/backgroundImage

Required Roles

Service Administrator

Request

Supported Media Types: application/json

Chapter 17
Export Background Image

17-42



Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-43    EXPORT BACKGROUND IMAGE

Name Description Required Default

api_version The current REST API version for
the API. For example, v1 for this
API.

Yes v1

fileName The name for the background
image file in JPG, JPEG, GIF, or
PNG format.

Use the Upload API to upload the
background image file to the target
environment and then import it into
the target environment, as
described in Import Background
Image.

Yes None

Example of request body

{
    "fileName":"backgroundImage.jpg"
}

Response

Supported Media Types: application/json
Parameters:

Table 17-44    Parameters

Name Description

details In case of errors, details are published with the error string

status Status of the job:

• -1 = In Progress
• 0 = Success
• 1 = Fail

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type. It can be self or export-content. If the export
succeeds, you can use the href to download the exported file.

Example of Response Body

The following is an example of the response body in JSON format.

{
    "details": "Background Image exported successfully",
    "links": [
        {

Chapter 17
Export Background Image

17-43



            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/rc/
export/backgroundImage",
            "action": "POST"
        },
        {
            "rel": "export-content",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600/
applicationsnapshots/bgImage.jpg/contents",
            "action": "GET"
        }
    ],
    "status": 0,
    "type": "RC",
    "link": {},
    "error": null,
    "items": []
}

Import Background Image
Imports the background image from an export file into an Account Reconciliation environment
and then sets it as the current background image.

The image will be available for import after you upload the file using the Upload REST API.
This is a synchronous API.

REST Resource

POST       /arm/rest/fcmapi/{api_version}/rc/import/backgroundImage

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-45    IMPORT BACKGROUND IMAGE

Name Description Required Default

api_version The current REST API version for
the API. For example, v1 for this
API.

Yes v1

Chapter 17
Import Background Image

17-44



Table 17-45    (Cont.) IMPORT BACKGROUND IMAGE

Name Description Required Default

fileName The name of the background
image file that was exported from
another environment. Supported
formats include JPG, JPEG, GIF,
and PNG.

Yes None

Example of request body

{
    "fileName":"backgroundImage.jpg"
}

Response

Supported Media Types: application/json
Parameters:

Table 17-46    Parameters

Name Description

details In case of errors, details are published with the error string

status Status of the job:

• -1 = In Progress
• 0 = Success
• 1 = Fail

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type. Possible values: self.

Example of Response Body

The following is an example of the response body in JSON format.

{
    "details": "Background image imported successfully.",
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/rc/
import/backgroundImage",
            "action": "POST"
        }
    ],
    "status": 0,
    "type": "RC",
    "link": {},

Chapter 17
Import Background Image

17-45



    "error": null,
    "items": []
}

Export Logo Image
Exports the corporate logo used in an Account Reconciliation business process to a JPG file
so that you can import it into another environment.

The exported file can be download using the Download REST API. This is an asynchronous
API.

REST Resource

POST       /arm/rest/fcmapi/{api_version}/rc/export/logo

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-47    EXPORT LOGO IMAGE

Name Description Required Default

api_version The current REST API version for
the API. For example, v1 for this
API.

Yes v1

fileName The name of the logo image file in
JPG, JPEG, GIF, or PNG format.

Use the Upload API to upload the
background image file to the target
environment and then import it into
the target environment, as
described in Import Logo Image.

Yes None

Example of request body

{
    "fileName":"logo.jpg"
}

Response

Supported Media Types: application/json
Parameters:

Chapter 17
Export Logo Image

17-46



Table 17-48    Parameters

Name Description

details In case of errors, details are published with the error string.

status Status of the job:

• -1 = In Progress
• 0 = Success
• 1 = Fail

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type. It can be self or export-content. If the export
succeeds, you can use the href to get the status of the import operation.

Example of Response Body

The following is an example of the response body in JSON format.

{
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/RC/
export/logo",
            "action": "POST"
        },
        {
            "rel": "export-content",
            "href": "<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600/
applicationsnapshots/logo.jpg/contents",
            "action": "GET"
        }
    ],
    "details": "Logo image exported successfully.",
    "type": "RC",
    "status": 0,
    "link": {},
    "error": null,
    "items": []
}

Import Logo Image
Imports the corporate logo used in an Account Reconciliation environment from an export file
into another environment.

The logo is available for import after you upload the image file using the Upload REST API.
This is an asynchronous API.

Chapter 17
Import Logo Image

17-47



REST Resource

POST       /arm/rest/fcmapi/{api_version}/rc/import/logo

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 17-49    IMPORT LOG IMAGE

Name Description Required Default

api_version The current REST API version for
the API. For example, v1 for this
API.

Yes v1

fileName The name of the logo image file
that contains the image to be
imported. Supported formats
include JPG, JPEG, GIF, and
PNG.

Yes None

Example of request body

{
    "fileName":"logo.jpg"
}

Response

Supported Media Types: application/json
Parameters:

Table 17-50    Parameters

Name Description

details In case of errors, details are published with the error string.

status Status of the job:

• -1 = In Progress
• 0 = Success
• 1 = Fail

links Detailed information about the link

href Links to API call or status API

action The HTTP call type

rel Relationship type. Possible values: self.

Chapter 17
Import Logo Image

17-48



Example of Response Body

The following is an example of the response body in JSON format.

{
    "links": [
        {
            "rel": "self",
            "href": "<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/RC/
import/logo",
            "action": "POST"
        }
    ],
    "details": "Logo image imported successfully.",
    "type": "RC",
    "status": 0,
    "link": {},
    "error": null,
    "items": []
}

Working with Connections in Account Reconciliation
Use these REST APIs to work with connections.

With multiple environments, using REST APIs saves you time and effort by automating the
process of logging in and configuring connections. For information about accessing
environments, see Accessing EPM Cloud.

Table 17-51    Working with Connections in Account Reconciliation

Task Request REST Resource

Create a Connection POST /arm/rest/fcmapi/{api_version}/{module}/
connections

View All Connections GET /arm/rest/fcmapi/{api_version}/{module}/
connections

Update a Connection PUT /arm/rest/fcmapi/{api_version}/{module}/
connections/{id}

Delete a Connection DELETE /arm/rest/fcmapi/{api_version}/{module}/
connections/{id}

Create a Connection
Use this REST API to create a connection that will be saved in an application.

REST Resource

POST /arm/rest/fcmapi/{api_version}/{module}/connections
Required Roles

Service Administrator

Chapter 17
Working with Connections in Account Reconciliation

17-49

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsad/1_epm_cloud_accessing_intro.html


Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request parameters specific to this job.

Table 17-52    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with (must
be v1)

Path Yes None

module The name of the module for which to create a
connection. For Account Reconciliation, set this
value to RC.

Path Yes None

url The URL of the connection, such as https://
<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.or
aclecloud.com

Payload Yes None

username A username with the Service Administrator
predefined role

Payload Yes None

password The encrypted password for the user

For security reasons, only an encrypted password
is allowed. Use the EPM Automate encrypt
command to generate the encrypted password.
See encrypt .

Payload Yes None

type The type of connection. Valid values include the
following:
• ENTERPRISE_JOURNALS - for Enterprise

Journals connections
• OBJECT_STORAGE - for Object Storage

connections

Payload Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/
rest/fcmapi/v1/rc/connections
Example of Request Body

{
    "url": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com",
    "username": "<NEW_USERNAME>",
    "password": "<NEW_PASSWORD>",
    "type" : "ENTERPRISE_JOURNALS"
}

Response

Supported Media Type: application/json

Chapter 17
Working with Connections in Account Reconciliation

17-50

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_auto_encrypt.html


Table 17-53    Parameters

Parameters Description

details In case of errors, details are published with the error string.

Example of Response Body

{
  "details": "Connection created successfully."
}

View All Connections
Use this REST API to view details for all of the connections saved in an application.

Required Roles

Service Administrator

REST Resource

GET /arm/rest/fcmapi/{api_version}/{module}/connections

Request

Parameters:

The following table summarizes the client request.

Table 17-54    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with (must
be v1)

Path Yes None

module The name of the module for which to view
connections. For Account Reconciliation, set this
value to RC.

Path Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/
rest/fcmapi/v1/rc/connections

Response

Supported Media Types: application/json
The following table summarizes the parameters.

Table 17-55    Parameters

Parameters Description

items Collection of information about the resource

Chapter 17
Working with Connections in Account Reconciliation

17-51



Table 17-55    (Cont.) Parameters

Parameters Description

id Unique identifier for the connection, such as 1c89922d-92ba-46c1-850f-
e2a8a416ddf2

type The type of connection

url The URL of the connection, such as https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com

links Detailed information about the link

details In case of errors, details are published with the error string

Example Response

{
    "links": [
        {
            "rel": "self",
            "href": "http://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/rc/
connections",
            "action": "GET"
        }
    ],
    "details": null,
    "items": [
        {
            "username": "ats_admin2",
            "password": null,
            "url": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com",
            "id": 100000000558005,
            "type": "ENTERPRISE_JOURNALS"
        }
    ]
}

Update a Connection
Use this REST API to update a specific connection that is saved in an application.

REST Resource

PUT /arm/rest/fcmapi/{api_version}/{module}/connections/{id}

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters:

Chapter 17
Working with Connections in Account Reconciliation

17-52



The following table summarizes the client request.

Table 17-56    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with (must
be v1)

Path Yes None

module The name of the module for which to update a
connection. For Account Reconciliation, set this
parameter to RC.

Path Yes None

id The identifier of the connection that must be
updated

Path Yes None

url The URL of the connection, such as https://
<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.or
aclecloud.com

Payload Yes None

username A username with Service Administrator
predefined role

Payload Yes None

password The encrypted password for the user

For security reasons, only an encrypted password
is allowed. Use the EPM Automate encrypt
command to generate the encrypted password.
See encrypt .

Payload Yes None

type The type of connection. Valid values include the
following:
• ENTERPRISE_JOURNALS - for Enterprise

Journals connections
• OBJECT_STORAGE - for Object Storage

connections

Payload Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/
rest/fcmapi/v1/rc/connections/100000000658005
Example of Request Body

{
    "url": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com",
    "username": "<NEW_USERNAME>",
    "password": "<NEW_PASSWORD>"
}

Response

Supported Media Type: application/json

Table 17-57    Parameters

Parameters Description

details In case of errors, details are published with the error string.

Example of Response Body

Chapter 17
Working with Connections in Account Reconciliation

17-53

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_auto_encrypt.html


Example 1:

{
  "details": "Connection updated successfully."
}

Example 2:

{
  "details": "Invalid parameters. Test Connection is failed"
}

Delete a Connection
Use this REST API to delete a specific connection that is saved in an application.

Required Roles

Service Administrator

REST Resource

DELETE /arm/rest/fcmapi/{api_version}/{module}/connections/{id}

Request

Parameters:

The following table summarizes the client request.

Table 17-58    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with (must
be v1)

Path Yes None

module The name of the module for which to delete a
connection. For Account Reconciliation, set this
parameter to RC.

Path Yes None

id The identifier of the connection that must be
deleted

Path Yes None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/
rest/fcmapi/v1/rc/connections/100000000552006

Response

Supported Media Type: application/json

Table 17-59    Parameters

Parameters Description

details In case of errors, details are published with the error string.

Chapter 17
Working with Connections in Account Reconciliation

17-54



Example of Response Body

{
  "details": "Connection deleted successfully."
}

Set Application Access Level
Sets the access level for an Account Reconciliation application. You can specify that the
application can be accessed only by Service Administrators or by all users.

REST Resource

POST /armARCS/rest/{api_version}/appaccess
Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request parameters.

Table 17-60    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with (must
be v1)

Path Yes None

access Specify the access level for users. Valid values
include the following:
• ALL_USERS - all users can access the

application
• ADMINISTRATORS - only Service

Administrators can access the application

Payload Yes None

Examples of Request Body

Example 1

{
    "access": "ALL_USERS"
}

Example 2

{
    "access": "ADMINISTRATORS"
}

Chapter 17
Set Application Access Level

17-55



Response

Supported Media Type: application/json

Table 17-61    Parameters

Parameters Description

details In case of errors, details are published with the error string.

status See Migration Status Codes

links Detailed information about the link

Example of Response Body

{
    "status": 0,
    "details": "Application access updated successfully",
    "links": [
        {
            "rel": "self",
            "href": "http://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/appaccess",
            "action": "GET",
            "data": null
        }
    ]
}

Retrieve Application Access Level
Returns the access level for an Account Reconciliation application, indicating if all users can
access the application or only Service Administrators can access the application.

REST Resource

GET /armARCS/rest/{api_version}/appaccess
Required Roles

Service Administrator

Request

Parameters:

The following table summarizes the client request parameters.

Table 17-62    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with (must
be v1)

Path Yes None

Example URL

Chapter 17
Retrieve Application Access Level

17-56



https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
armARCS/rest/v1/appacess

Response

Supported Media Type: application/json

Table 17-63    Parameters

Parameters Description

links Detailed information about the link

access Indicates the access level for users.
• ALL_USERS - all users can access the application
• ADMINISTRATORS - only Service Administrators can access the

application

Example of Response Body

{
    "items": [
        {
            "access": "ALL_USERS"
        }
    ],
    "links": [
        {
            "rel": "self",
            "href": "http://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/armARCS/rest/v1/appaccess",
            "action": "GET",
            "data": null
        }
    ]
}

View Reconciliation Comments
Returns all the comments, including attachments, for the specified reconciliation.

REST Resource

GET       /armARCS/rest/{api_version}/period/{period}/reconciliation/
{accountId}/comments

Required Roles

Service Administrator, Power User, User, Viewer

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request specific to this job.

Chapter 17
View Reconciliation Comments

17-57



Table 17-64    VIEW RECONCILIATION COMMENTS

Name Description Type Required Default

api_version Version of the API you are
working with: v1

Path Yes None

period The name of the
reconciliation's period

Path Yes None

accountId The Account ID of the
reconciliation for which
comments must be
retrieved

Path Yes None

Example URL

https:// <SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
armARCS/rest/v1/period/Jan 2022/reconciliation/101-BC2-Premapped/comments

Response

Supported Media Types: application/json
Example of Response Body

The following is an example of a reconciliation with one comment and two attachments.

[
    {
        "commentId": 100000002580008,
        "parentObjectId": 100000001956143,
        "commentText": "Please investigate the alert on the account. The Risk 
Rating has been increased.",
        "postedBy": "admin1",
        "postedDate": "Oct 6, 2022 4:03 PM",
        "carryForward": null,
        "references": [
            {
                "referenceId": 100000002580012,
                "type": "FILE",
                "url": null,
                "name": "adjustment1.pdf",
                "fileDownloadLink": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/fcmapi/v1/rc/
references/100000002580012/file"
            },
            {
                "referenceId": 100000002580010,
                "type": "URL",
                "url": "https://www.my-example.com",
                "name": "my-example",
                "fileDownloadLink": null
            }
        ]
    }
]

Chapter 17
View Reconciliation Comments

17-58



Archive Matched Transactions (Transaction Matching)
Archives matched transactions, including support and adjustment details, that are equal to or
older than a specified age. The matched transactions are stored in an archive file.

REST Resource

POST       /arm/rest/{api_version}/jobs

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request specific to this job.

Table 17-65    ARCHIVE MATCHED TRANSACTIONS

Name Description Type Required

api_version Version of the API you are working
with: v1

Path Yes

jobName The name of a job,
archivetransactions

Payload Yes

reconTypeId The TextID of the match type from
which matched transactions must
be archived

Payload Yes

age Matched transactions older than or
equal to this value will be archived

Payload Yes

filterOperator Filter to identify the accounts

Valid values are EQUALS,
NOT_EQUALS, STARTS_WITH,
ENDS_WITH, CONTAINS,
NOT_CONTAINS

Payload No

filterValue The Account IDs for the filter
operation

Payload No

logFileName The name of the log file
If a file name is not provided, the
log file is named
Archive_Transactions_<recon
TypeId>_<Job_id>.log.

Payload No

fileName The name of the archive zip file
If a file name is not provided, the
archive file is named
Archive_Transactions_<recon
TypeId>_<Job_id>.zip.

Payload No

Chapter 17
Archive Matched Transactions (Transaction Matching)

17-59



Example of request body

{
 "jobName": "archivetransactions",
 "parameters": {
   "reconTypeId": "Pos2Processor",
   "age": 120,
   "logFileName" : "Archive_Transactions_IC120XXXX.log",
   "fileName" : "Archived_Transactions_IC120XXXX.zip",
   "filterOperator": "EQUALS",
   "filterValue": [
     "201-1234",
     "202-1234"
     ]
  }
}

Response

Supported Media Types: application/json
Example of Response Body

The following is an example of the response body in JSON format.

{
    "type": "TM",
    "items": null,
    "error": null,
    "link": null,
    "status": -1,
    "details": null,
    "links": [
        {
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/v1/jobs/
100000003846005",
            "action": "GET",
            "rel": "self",
            "data": null
        }
    ]
}

To get the status of the archive matched transactions job and view its details, see Retrieve Job
Status (Transaction Matching).

Purge Archived Transactions (Transaction Matching)
Purges matched transactions that are already archived in Transaction Matching.

REST Resource

POST       /arm/rest/{api_version}/jobs

Chapter 17
Purge Archived Transactions (Transaction Matching)

17-60



Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request specific to this job.

Table 17-66    PURGE ARCHIVED TRANSACTIONS

Name Description Type Required

api_version Version of the API you are working
with: v1

Path Yes

jobName The name of a job,
purgearchivetransactions

Payload Yes

jobId Job Id of the Archive job which
needs to be purged

Payload Yes

logFileName The name of the log file
If a file name is not provided, the
log file is named
Purge_Transactions_<reconTy
peId>_<Job_id>.log.

Payload No

Example of request body

{
 "jobName": "purgearchivetransactions",
 "parameters": {
     "jobId": "100000003801002"
     "logFileName" : "Purge_Archive_Transactions_IC120XXXX.log"
}
}

Response

Supported Media Types: application/json
Example of Response Body

The following is an example of the response body in JSON format.

{
    "type": "TM",
    "items": null,
    "error": null,
    "link": null,
    "status": -1,
    "details": null,
    "links": [
        {
            "href": "https://<SERVICE_NAME>-

Chapter 17
Purge Archived Transactions (Transaction Matching)

17-61



<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/v1/jobs/
100000003801002",
            "action": "GET",
            "rel": "self",
            "data": null
        }
    ]
}

To get the status of the purge archived transactions job and view its details, see Retrieve Job
Status (Transaction Matching).

Unmatch Matched Transactions (Transaction Matching)
Unmatches matched transactions in Transaction Matching. Users must specify the match type
and one or more match Ids associated with this match type for which transactions must be
unmatched.

For Transaction Matching profiles that are integrated with Reconciliation Compliance, the
unmatch operation is skipped if the Accounting Date of one or more transactions that are being
unmatched is lower than the Purge Through Date of the reconciliation.

REST Resource

POST       /arm/rest/{api_version}/jobs

Required Roles

Service Administrator, Power User, Preparer

The user who created a profile can also unmatch transactions associated with that profile.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request specific to this job.

Table 17-67    UNMATCH MATCHED TRANSACTIONS

Name Description Type Required

api_version Version of the API you are
working with: v1

Path Yes

jobName The name of a job, such as
unmatchtransactions

Payload Yes

matchTypeTextId The ID of the match type to
which the matched transactions
belong

Payload Yes

Chapter 17
Unmatch Matched Transactions (Transaction Matching)

17-62



Table 17-67    (Cont.) UNMATCH MATCHED TRANSACTIONS

Name Description Type Required

matchIds The Match Ids, in a comma
separated array
Transactions with the following
status are considered for
unmatching: Confirmed Match,
Confirmed Adjust, Suggested
Match, Suggested Adjust.

Payload Yes

forceReopen Valid values are:
• True - Reconciliations will

be reopened if the
Adjustment Accounting
Date is less than the Closed
Through Date.

• False - Matched transactions
whose Adjustment
Accounting Date is less than
the Closed Through Date are
skipped. This is the default
setting.

Payload No

Example of request body

{
 "jobName": "unmatchtransactions",
 "parameters": {
   "matchTypeTextId": "IC120",
   "matchIds":[9195754,9219755],
   "forceReopen": false
  }
}

Response

Supported Media Types: application/json
Example of Response Body

The following is an example of the response body in JSON format.

{
    "type": "TM",
    "items": null,
    "error": null,
    "link": null,
    "status": -1,
    "details": null

  "links": [
     {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/v1/jobs/

Chapter 17
Unmatch Matched Transactions (Transaction Matching)

17-63



100000002574034",
            "action": "GET"
        }    ]
}

To get the status of the unmatch transactions job and view its details, see Retrieve Job Status
(Transaction Matching).

Update Unmatched Transactions (Transaction Matching)
Updates one or more editable attributes in an unmatched transaction.

REST Resource

POST       /arm/rest/{api_version}/dataSources/{dataSource}/transactions/
{transaction}

Required Roles

Service Administrator, Power User, Preparer

The user who created a profile can also update transactions associated with that profile.

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request specific to this job.

Table 17-68    UPDATE UNMATCHED TRANSACTIONS

Name Description Type Required

api_version Version of the API you are
working with: v1

Path Yes

dataSource Text ID of the data source
associated with the unmatched
transaction whose attributes
must be updated

Path Yes

transaction Transaction ID of the
unmatched transaction whose
attributes must be updated

Path Yes

reconId Text Id of the reconciliation
associated with the unmatched
transaction that must be
updated

Payload Yes

attributeId Text Id of the attribute within
the unmatched transaction that
must be updated

Payload Yes

Chapter 17
Update Unmatched Transactions (Transaction Matching)

17-64



Table 17-68    (Cont.) UPDATE UNMATCHED TRANSACTIONS

Name Description Type Required

calculate Set to one of the following
values:
• True - Values of calculated

attributes are recalculated
• False - Values of calculated

attributes are left
unchanged.

The default setting is False.

Payload No

forceReopen Valid values are:
• True - Reconciliations will

be reopened if the
Adjustment Accounting
Date is less than the Closed
Through Date.

• False - Matched transactions
whose Adjustment
Accounting Date is less than
the Closed Through Date are
skipped. This is the default
setting.

Payload No

Example URL

https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/v1/
dataSources/POS/transactions/1012

Example of request body

{
   "reconId": "INTERCO133",
   "attributeId": "POS_AMOUNT",
   "value": "210015.05",
   "calculate": false,
   "forceReopen": false
}

Response

Supported Media Types: application/json
Example of Response Body

The following is an example of the response body in JSON format.

{
    "type": "TM",
    "items": null,
    "error": null,
    "link": null,
    "status": 0,

Chapter 17
Update Unmatched Transactions (Transaction Matching)

17-65



    "details": "Success : Update transaction - 1012",
    "links": [
        {
            "rel": "self",
            "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/arm/rest/dataSources/POS/
transactions/1012",
            "action": "GET",
            "data": null
        }
    ]
}

Chapter 17
Update Unmatched Transactions (Transaction Matching)

17-66



18
Financial Consolidation and Close REST APIs

Use the Financial Consolidation and Close REST APIs to get the REST API version, retrieve
journals and journal details, submit, approve, post, unpost, and reject journals, and update
journal periods. You can also import supplementation data, copy data, clear data, and deploy
form templates.

Getting API Versions for Financial Consolidation and Close APIs
You can get information on REST API versions using REST resources. See Getting API
Versions for Planning. Financial Consolidation and Close APIs use the same version numbers
as Planning.

Get Information about a Specific API Version for Financial Consolidation
and Close APIs

Returns details for a specific REST API version for Financial Consolidation and Close.

REST Resource

GET /HyperionPlanning/rest/{api_version}

Required Roles

Service Administrator, Power User, User, Viewer

Request

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 18-1    Parameters

Name Description

api_version Version of the API you are developing with, such as V1

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

18-1



Table 18-2    Parameters

Name Description

version The version, such as V1

Example of Response Body

The following shows an example of the response body in JSON format.

{  
"version": "v1",
"lifecycle": "active",
"isLatest": true,
"links": [{
"rel": "canonical",
"href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v2"
}, {
"rel": "predecessor-version",
"href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v1"
}]  
}

Perform Journal Actions for Financial Consolidation and Close
Performs journal action for the specified journal. Changes the journal status to the new state
specified.

Journal actions supported: SUBMIT,APPROVE,POST,UNPOST,REJECT

This API works only for Financial Consolidation and Close.

REST Resource

POST      /HyperionPlanning/rest/{api_version}/applications/{application}/
journals/{journalLabel}/actions

Required Roles

Role Available Actions

Service Administrator All

Power User Submit/Post/Unpost: Need Write access to all the
members in the journal

Approve/Reject. Need Read access to all the
members in the journal

User Approve/Reject. Need Read access to all the
members in the journal and Journal option must
have been enabled

Chapter 18
Perform Journal Actions for Financial Consolidation and Close

18-2



Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 18-3    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

journalLabel Label for the journal Path Yes None

parameters Parameters for journals, for example:

{"parameters" :{
              "scenario": 
"Actual",
              "year": "FY17",
              "period": "Jan",
              "consolidation": 
"FCCS_Entity Input",
              "action": "POST"
   }

}

These parameter fields are described in
rows below.

JSON Yes None

scenario The scenario for which you are performing
the journal action

Query Yes None

year The year for which you are performing the
journal action

Query Yes None

period The period for which you are performing the
journal action

Query Yes None

consolidation The consolidation for which you are
performing the journal action

Query No Entity Input

action The journal action. Supported valid Action
values:
SUBMIT,REJECT,APPROVE,POST,UNPOS
T

Query Yes None

Response

Parameters

The following table summarizes the response parameters.

Table 18-4    Parameters

Name Description

actionDetail Journal action, such as Posted

Chapter 18
Perform Journal Actions for Financial Consolidation and Close

18-3



Table 18-4    (Cont.) Parameters

Name Description

actionStatus Action status, such as 0

Supported Media Types: application/json

Sample JSON Input

{
       "scenario": "Actual",
       "year": "FY17",
       "period": "Jan",
       "action": "POST"
     }

Example of Response Body

The following shows an example of the response body.

{
       "actionDetail": "Posted",
       "actionStatus": 0
       }

Perform Journal Period Updates for Financial Consolidation and
Close

Performs journal period update action for the specified period.

Journal period actions supported: OPEN,CLOSE

This API works only for Financial Consolidation and Close.

REST Resource

POST      /HyperionPlanning/rest/{api_version}/applications/{application}/
journalPeriods/{period}/actions

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Chapter 18
Perform Journal Period Updates for Financial Consolidation and Close

18-4



Table 18-5    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

period The period for which you are performing the
journal action

Path Yes None

parameters Parameters for the journal period, for
example:

{
         "parameters": {
          "scenario": "Actual",
          "year": "FY17",
          "action": "OPEN" 
         }
}

These parameters are described in rows
below.

JSON Yes None

scenario The scenario for which you are performing
the journal action

JSON Yes None

year The year for which you are performing the
journal action

JSON Yes None

action The journal period action. Supported valid
Action values: OPEN, CLOSE

JSON Yes None

Response

Parameters

The following table summarizes the response parameters.

Table 18-6    Parameters

Name Description

scenario Journal scenario, such as Actual

year Journal year, such as FY18

period Journal period, such as Jan

action Journal period action, such as Open

Supported Media Types: application/json

Sample JSON Input

{
       "scenario": "Actual",
       "year": "FY17",
       "period": "Jan",
       "action": "OPEN"

Chapter 18
Perform Journal Period Updates for Financial Consolidation and Close

18-5



        }
     }

Example of Response Body

The following shows an example of the response body.

{
       "actionDetail": "Open",
       "actionStatus": 0
         }

Retrieve Journals for Financial Consolidation and Close
Returns the list of journals for the given scenario, year, period, journal status and other
specified filters.

Paging is supported if the optional offset and limit parameters are provided.

This API works only for Financial Consolidation and Close.

REST Resource

GET       /HyperionPlanning/rest/{api_version}/applications/{application}/
journals?
q={"scenario":"Actual","year":"FY16","period":"Jan","consolidation":"FCCS_Enti
ty Input","status": 
"WORKING","group":"group1" ,"label":"J1" ,"description":"JournalDesc","entity"
:"FCCS_Total Geography"}&offset=0&limit=5

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Table 18-7    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application The name of the application Path Yes None

Chapter 18
Retrieve Journals for Financial Consolidation and Close

18-6



Table 18-7    (Cont.) Parameters

Name Description Type Required Default

q Filters for retrieving the journals, for
example:

{"scenario":"Actual","year":"FY1
6","period":"Jan","consolidation
":"FCCS_Entity Input","status": 
"WORKING","group":"group1" ,"lab
el":"J1" ,"description":"Journal
Desc","entity":"FCCS_Total 
Geography"}

Possible values are described in the
following rows.

Query No 5 journals are
returned.

scenario Scenario for the journal, for example:
"scenario":"Actual"

Query Yes None

year Year for the journal, for example:
"year":"FY16"

Query Yes None

period Period for the journal, for example:
"period":"Jan"

Query Yes None

consolidation Consolidation for the journal, for example:
"consolidation":"FCCS_Entity Input"

Query No Entity Input

status Status for the journal, for example:
"status":"WORKING"

Valid values are "WORKING" ,
"SUBMITTED", "POSTED", "APPROVED"

Query Yes None

group Group for the journal, for example:
"group":"group1"

Query No None

label Label for the journal, for example: "label":"j1" Query No None

description Description for the journal, for example:
"description":"adjustment for salary"

Query No None

entity Entity for the journal, for example:
"entity":"FCCS_Total Geography"

Query No None

offset Used for pagination of the records. Indicates
the actual index from which the records are
returned. It is 0 based.

Query No 0

limit Used for pagination of the records. Controls
how many items to return. Defaults to 5 if not
specified.

Query No 5

Response

The following table summarizes the response parameters.

Table 18-8    Parameters

Name Description

totalResults Total number of journals matching the filter criteria

hasMore True/False, if there are more pages of records

Chapter 18
Retrieve Journals for Financial Consolidation and Close

18-7



Table 18-8    (Cont.) Parameters

Name Description

count Number of journals in this page

limit Current page size

offset Current page number

items List of journals, followed by attributes of journals, such as below:

[{
         "scenario": "Actual",
         "currency": "Entity Currency",
         "createdOn": "2018-07-30 06:22:47.516",
         "modifiedBy": "epm_default_cloud_admin",
         "journalType": "Regular",
         "createdBy": "epm_default_cloud_admin",
         "balanceType": "Balanced",
         "postedBy": null,
         "year": "FY17",
         "description": "JournalDesc1",
         "group": "grp1",
         "status": "Working",
         "label": "J4",
         "period": "Jan"]
}]

Supported Media Types: application/json

Example of Response Body

The following shows an example of the response body.

{
       "totalResults": 10
       "hasMore": false,
       "count": 5,
       "limit": 5,
       "offset": 0,
       "items": [{
       "scenario": "Actual",
       "createdOn": "2018-07-30 06:22:47.516",
       "modifiedBy": "epm_default_cloud_admin",
       "journalType": "Regular",
       "createdBy": "epm_default_cloud_admin",
       "balanceType": "Balanced",
       "postedBy": null,
       "year": "FY17",
       "description": "JournalDesc1",
       "group": "grp1",
       "status": "Working",
       "label": "J4",
       "period": "Jan",

Chapter 18
Retrieve Journals for Financial Consolidation and Close

18-8



       "journalUrl": {,
       "rel": "Journal Item",
       "href": "https://<SERVICE_NAME-
<TENANT_NAME.<SERVICE_TYPE.<dcX>.oraclecloud.com/HyperionPlanning/faces/LogOn?
SO_jumpToEfsStructureHome=Y&SO_efsJumpToCardId=EPM_CA_6",",
       "data": null,
       "action": "GET",
             }
      },
        {
       "scenario": "Actual",
       "currency": "Entity Currency",
       "createdOn": "2018-07-26 10:21:35.634",
       "modifiedBy": "epm_default_cloud_admin",
       "journalType": "Regular",
       "createdBy": "epm_default_cloud_admin",
       "balanceType": "Balanced",
       "postedBy": null,
       "year": "FY17",
       "description": "JournalDesc1",
       "group": "grp1",
       "status": "Working",
       "label": "J2",
       "period": "Jan",
       "journalUrl": {,
       "rel": "Journal Item",
       "href": "https://<SERVICE_NAME-
<TENANT_NAME.<SERVICE_TYPE.<dcX>.oraclecloud.com/HyperionPlanning/faces/LogOn?
SO_jumpToEfsStructureHome=Y&SO_efsJumpToCardId=EPM_CA_6",",
       "data": null,
       "action": "GET",
      },
      }
      ],
      "links": [
      {
      "rel": "Get Journals",
      "href": "https://<SERVICE_NAME-
<TENANT_NAME.<SERVICE_TYPE.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/BotApp/journals",
      "action": "GET
      }
       ],
       }

Retrieve Journal Details for Financial Consolidation and Close
Returns the journal details for the given scenario, year, period, consolidation, and the journal
name.

This API works only for Financial Consolidation and Close.

Chapter 18
Retrieve Journal Details for Financial Consolidation and Close

18-9



REST Resource

GET       /HyperionPlanning/rest/{api_version}/applications/{application}/
journals/{journal label}?
q={"scenario":"Actual","year":"FY16","period":"Jan","consolidation":"Entity 
Input"}&"lineItems"="true"

Required Roles

Service Administrator

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 18-9    Parameters

Name Description Type Required Default

api_version Version of the API you
are developing with

Path Yes None

application The name of the
application

Path Yes None

journal label The label of the journal
for which to retrieve
journal details

Path Yes None

q Filters to retrieve the
journal, for example:

q={"scenario":"A
ctual","year":"F
Y16","period":"J
an","consolidati
on":"Entity 
Input"}

Query Yes None

scenario Scenario for the
journal, for example:
"scenario":"Actual"

Query Yes None

year Year for the journal, for
example: "Year":"FY16

Query Yes None

period Period for the journal,
for example:
"period":"Jan"

Query Yes None

consolidation Consolidation for the
journal, for example:
"consolidation": "Entity
Input"

Query No Entity Input

lineItems Line items for the
journal. Valid values
are true or false.

Query No True

Chapter 18
Retrieve Journal Details for Financial Consolidation and Close

18-10



Response

Parameters

The following table summarizes the response parameters.

Table 18-10    Parameters

Name Description

totalResults Total number of journals matching the filter criteria

hasMore True/False, if there are more pages of records

count Number of journals in this page

limit Current page size

offset Current page number

items List of journals, followed by attributes of journals, such as below:

[{
         "scenario": "Actual",
         "currency": "Entity Currency",
         "createdOn": "2018-07-30 06:22:47.516",
         "modifiedBy": "epm_default_cloud_admin",
         "journalType": "Regular",
         "createdBy": "epm_default_cloud_admin",
         "balanceType": "Balanced",
         "postedBy": null,
         "year": "FY17",
         "description": "JournalDesc1",
         "group": "grp1",
         "status": "Working",
         "label": "J4",
         "period": "Jan"]
}]

Supported Media Types: application/json

Example of Response Body

The following shows an example of the response body.

{
[
"scenario": "Actual",
"year": "FY18",
"period": "Feb",
"label": "JETest11",
"journalType": "Regular",
"balanceType": "Balanced",
"status": "Posted",
"description": "Journal description",
"group": "IMPORT_Group",
"createdBy": "epm_default_cloud_admin",

Chapter 18
Retrieve Journal Details for Financial Consolidation and Close

18-11



"modifiedBy": "epm_default_cloud_admin",
"postedBy": "epm_default_cloud_admin",
"createdOn": "2023-12-06 18:48:33.503",
"currency": "Entity Currency",
"consolidation": "FCCS_Entity Input",
"totCredit": 1300,
"totDebit": 1300,
"journalLineItems":[
{"amountType": "Debit", "amount": 800, "description": "line description", 
"entity": "YY_E1",…},
{"amountType": "Credit", "amount": 500, "description": "line description", 
"entity": "YY_E1",…},
{"amountType": "Debit", "amount": 500, "description": "line description", 
"entity": "YY_E1",…},
{"amountType": "Credit", "amount": 800, "description": "line description", 
"entity": "YY_E1",…}
]
}

Export Consolidation Journals
This REST API is used to execute an Export Consolidation Journals job using the job name.
Before executing this job, you should create an Export Consolidation Journals job in Financial
Consolidation and Close.

For details on this task, see "Exporting Consolidation Journals" in Working with Financial
Consolidation and Close.

This REST API returns the job ID after starting the Export Consolidation Journals job.

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/jobs

Required Roles

Service Administrator

Request

Supported Media Types: application/json

Table 18-11    Parameters

Name Description Type Required Default

api_version Version of the API
you are working
with: v3

Path Yes None

Chapter 18
Export Consolidation Journals

18-12



Table 18-11    (Cont.) Parameters

Name Description Type Required Default

application The name of the
application
Get the
application name
by using the Get
Applications API.
See Get
Applications.

Path Yes None

jobName Name of the job
should be: Export
Journal

String Yes None

jobType Type of Job.
Supported value:
EXPORT_JOURNAL

String Yes None

fileName Name of the file
into which the
journal entries
are to be
exported

String Yes None

Example of Request Body

{
"jobType": "EXPORT_JOURNAL,
"jobName": "Export Journal",
"parameters": {
   "fileName": "JExport1"
 }
}

Response Body

Supported Media Types: application/json

Table 18-12    Parameters

Name Description

status Status of the job: -1 =In progress; 0 = Success; 1
= Fail

details In case of errors, details are published with the
error string.

descriptiveStatus The status of the job, such as Completed or
Error

items Collection of Notification categories

links Detailed information about the link

href Links to API call

action The HTTP call type

Chapter 18
Export Consolidation Journals

18-13

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36


Table 18-12    (Cont.) Parameters

Name Description

rel Relationship type. Possible values: self

Example of Response Body:

The following shows an example of the response body in JSON format.

{
    "links": [
        {
            "rel": "self",
            "href": "http://slc10xth:9000/HyperionPlanning/rest/v3/
applications/FccsRef3/jobs/184",
            "action": "GET"
        },
        {
            "rel": "job-details",
            "href": "http://slc10xth:9000/HyperionPlanning/rest/v3/
applications/FccsRef3/jobs/184/details",
            "action": "GET"
        }
    ],
    "descriptiveStatus": "Processing",
    "status": -1,
    "jobId": 184,
    "jobName": "JExport1",
    "details": null
}

Import Consolidation Journals
This REST API is used to execute an Import Consolidation Journals job using the job name.
Before executing this job, you should create an Import Consolidation Journals job in Financial
Consolidation and Close.

For details on this task, see "Importing Consolidation Journals" in Working with Financial
Consolidation and Close.

This REST API returns the job ID, job status and job details after starting the Import
Consolidation Journals job.

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/jobs

Required Roles

Service Administrator

Request

Supported Media Types: application/json

Chapter 18
Import Consolidation Journals

18-14



Table 18-13    Parameters

Name Description Type Required Default

api_version Version of the API
you are working
with: v3

Path Yes None

application The name of the
application
Get the
application name
by using the Get
Applications API.
See Get
Applications.

Path Yes None

jobName Name of the job
should be an
existing journal
import job: <job
name>

String Yes None

jobType Type of Job.
Supported value:
IMPORT_JOURNAL

String Yes None

fileName Name of the file
from which the
journal entries
are to be
imported

String No File specified in
the Job

errorFileName Name of the log
file in which
messages
generated during
the import
process are to be
recorded

String No None

Example of Request Body

{
    "jobType": "IMPORT_JOURNAL",
    "jobName": "IMPORT1",
    "parameters": {
       "fileName": "TestImport1.jlf",
       "errorFileName": "DHQA_TestImport1_error.log"
    }
}

Response Body

Supported Media Types: application/json

Chapter 18
Import Consolidation Journals

18-15

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36


Table 18-14    Parameters

Name Description

type Application type, for example, FCCS

status Status of the job: -1 =In progress; 0 = Success; 1
= Fail

details In case of errors, details are published with the
error string.in the job error file and Job
Console.

descriptiveStatus The status of the job, such as Completed or
Error

items Collection of Notification categories

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type. Possible values: self

Example of Response Body:

The following shows an example of the response body in JSON format.

{
"links":[
{
"rel": "self",
"href": " https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/FccsRef3/jobs/13",
"action": "GET"
},
{
"rel": "job-details",
"href": " https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
/applications/FccsRef3/jobs/13/details",
"action": "GET"
}
],
"descriptiveStatus": "Processing",
"status": -1,
"jobId": 13,
"jobName": "JIMPORT1",
"details": null
}

Copy Data
This REST API is used to execute a Copy Data job using the profile name. Before executing
this job, you should create a Copy Data profile in Financial Consolidation and Close.

For details on this task, see Using Copy Data Profiles.

Chapter 18
Copy Data

18-16

https://docs.oracle.com/en/cloud/saas/financial-consolidation-cloud/agfcc/copy_data_profiles.html


This REST API returns the job id after starting the Copy Data job.

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/jobs

Required Roles

Service Administrator

Request

Supported Media Types: application/json

Table 18-15    Parameters

Name Description Type Required Default

api_version Version of the API you are working with: v3 Path Yes None

application The name of the application

Get the application name by using the Get
Applications API, for example, FCCS or TRCS. See 
Get Applications.

Path Yes None

jobName Name of the job should be: EXECUTE PROFILE String Yes None

jobType Type of Job. Supported value: COPY_DATA String Yes None

ProfileName Name of the profile to use to copy data String Yes None

Example of Request Body

{
    "jobType": "Copy_Data",
    "jobName": "Execute Profile",
    "parameters": {
        "ProfileName": "<ProfileName>",
    }
}

Response Body

Supported Media Types: application/json

Table 18-16    Parameters

Name Description

type Financial Consolidation and Close Application type,
for example, FCCS

status Status of the job: -1 =In progress; 0 = Success; 1 =
Fail

details In case of errors, details are published with the
error string.

descriptiveStatus The status of the job, such as Completed or Error

items Collection of Notification categories

links Detailed information about the link

href Links to API call

Chapter 18
Copy Data

18-17

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36


Table 18-16    (Cont.) Parameters

Name Description

action The HTTP call type

rel Relationship type. Possible values: self

Example of Response Body:

The following shows an example of the response body in JSON format.

{
  "jobId": 8,
  "descriptiveStatus": "Processing",
  "details": null,
  "jobName": "Copy Data",
  "status": -1,
  "links": [
    {
      "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/<applicationName>/jobs/<JobId>","rel":"self","action":"GET"},
      "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/,
      "rel":"job-details","action":"GET"},
    }
  ]
}

Clear Data
This REST API is used to execute a Clear Data job using the profile name. Before executing
this job, you should create a Clear Data profile in Financial Consolidation and Close.

For details on this task, see Using Clear Data Profiles.

This REST API returns the job id after starting the job.

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/jobs

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Chapter 18
Clear Data

18-18

https://docs.oracle.com/en/cloud/saas/financial-consolidation-cloud/agfcc/clear_data_profiles.html


Table 18-17    Clear Data

Name Description Type Required Default

api_version Version of the API
you are working
with: v3

Path Yes None

application The name of the
application

Get the application
name by using the
Get Applications
API, for example,
FCCS or TRCS.
See Get
Applications.

Path Yes None

jobName Name of the job
should be:
EXECUTE PROFILE

jobType Type of Job.
Supported value:

Clear_Data

String Yes None

ProfileName The name of the
profile to use to
clear data

String Yes None

Example of request body

Example:

{
    "jobType": "Clear_Data",
    "jobName": "Execute Profile",
    "parameters": {
        "ProfileName": "<ClearData_01>",
    }
}

Response

Table 18-18    Parameters

Name Description

type Financial Consolidation and Close Application type, for example, FCCS

status Status of the job: -1 =In progress; 0 = Success; 1 = Fail

details In case of errors, details are published with the error string.

descriptiveStatus The status of the job, such as Completed or Error

items Collection of Notification categories

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type. Possible values: self

Chapter 18
Clear Data

18-19

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36


Supported Media Types: application/json
Example of Response Body

The following is an example of the response body in JSON format.

{
  "jobId": 8,
  "descriptiveStatus": "Processing",
  "details": null,
  "jobName": "Clear Data",
  "status": -1,
  "links": [
    {
      "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/<applicationName>/jobs/<JobId>","rel":"self","action":"GET"},
      "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/,
      "rel":"job-details","action":"GET"},
    }
  ]
}

Sample

{
  "jobId": 8,
  "descriptiveStatus": "Processing",
  "details": null,
  "jobName": "Clear Data",
  "status": -1,
  "links": [
    {
      "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/ Testapp /jobs/8",
      "rel":"self","action":"GET"},
      "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/Testapp/jobs/8/details",
      "rel":"job-details","action":"GET"}    }
  ]
}

Validate Metadata
This REST API is used to automatically run the Validate Metadata process to ensure an error-
free database refresh and consolidation.

For details on this task, see "Validating Metadata" in Administering Financial Consolidation and
Close.

Required Roles

Chapter 18
Validate Metadata

18-20



Service Administrator

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application_name}/
application/validatemetadata?logFileName={logfile_name}

Request

Supported Media Types: application/json

Table 18-19    Parameters

Name Description Type Required Default

api_version Version of the API you are working with: v3 Path Yes None

application_name The name of the application
Get the application name by using the Get
Applications API. See Get Applications.

Path Yes None

logFileName Name of the log file of exported results Payload No None

Response

Supported Media Types: application/json

Table 18-20    Parameters

Name Description

numWarnings Number of metadata warnings

numInfo Number of metadata information messages

outPutFileName Ouput file name with the extension of .csv

numErrors Number of metadata error messages

status The status of the job, such as Completed or
Error

Example of Response Body:

The following shows an example of the response body in JSON format.

{ 
"numWarnings": 0,
"numInfo": 0,
"outPutFileName": "ValidateMetadata.csv,
"numErrors": 20,
"status": "Validate Metadata Completed"
}

Generate an Intercompany Matching Report
This REST API is used to execute an Intercompany Matching Report job.

For details on this task, see Managing Intercompany Matching Reports.

Chapter 18
Generate an Intercompany Matching Report

18-21

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36
https://docs.oracle.com/en/cloud/saas/financial-consolidation-cloud/usfcc/managing_intercompany_matching_reports.html


This REST API returns the job ID after starting the Intercompany Matching Report job.

Required Roles

Service Administrator, Power User or User

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/jobs

Request

Supported Media Types: application/json

Table 18-21    Parameters

Name Description Type Required Default

api_version Version of the API you are working with: v3 Path Yes None

application_name The name of the application

Get the application name by using the Get
Applications API. See Get Applications.

Path Yes None

jobName The name of the saved Intercompany report
definition, for example: IC_Job_01

Payload Yes None

jobType Type of Job. Supported value:
GENERATE_INTERCOMPANY_REPORT

Payload Yes None

parameters Pass optional parameters to set the report POV Payload No None

Table 18-22    Optional Parameters

Name Description

scenario The member of the Scenario dimension for the report, for example, Actual

years The member of the Year dimension for the report, for example, FY22

period The member of the Period dimension for the report, for example, December

reportFormat The format for the report, for example, HTML

fileName (optional) A filename for the report, for example, intercompany_receivables_report

Example of Request Body

{
"jobType": "GENERATE_INTERCOMPANY_REPORT",
"jobName": "icp1",
"parameters": {
"scenario":"actual",
"years": "FY22",
"period":"Dec",
"reportFormat":"HTML"
"fileName":"intercompany_receivables_report"
}
}

Response Body

Supported Media Types: application/json

Chapter 18
Generate an Intercompany Matching Report

18-22

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36


Table 18-23    Parameters

Name Description

type Financial Consolidation and Close Application type,
for example, FCCS

status Status of the job:
• -1 =In progress
• 0 = Success;
• 1 = Fail
• 2 = Cancel Pending
• 3 = Cancelled
• 4 = Invalid Parameter
• >4 = Unknown

details In case of errors, details are published with the
error string.

descriptiveStatus The status of the job, such as Completed or Error

items Collection of Notification categories

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type. Possible values: self

Example of Response Body:

The following shows an example of the response body in JSON format.

{
    "descriptiveStatus": "Processing",
    "jobId": 33,
    "jobName": "icp1",
    "details": null,
    "status": -1,
    "links": [
        {
            "rel": "self",
            "href": "http://slcar262.usdv1.oraclecloud.com:12055/
HyperionPlanning/rest/v3/applications/tst/jobs/33",
            "action": "GET"
        },
        {
            "rel": "job-details",
            "href": "http://slcar262.usdv1.oraclecloud.com:12055/
HyperionPlanning/rest/v3/applications/tst/jobs/33/details",
            "action": "GET"
        }
    ]
}

Chapter 18
Generate an Intercompany Matching Report

18-23



19
Task Manager REST APIs

Use the Task Manager REST APIs to deploy task manager templates, update the task status
for event monitoring, and manage Oracle Integration Cloud connections.

Getting API Versions for Task Manager APIs
You can get information on REST API versions using REST resources. See Getting API
Versions for Planning. Task Manager REST APIs use the same version numbers as Planning.

Table 19-1    Task Manager REST APIs

API Name Versions

Deploy Task Manager Templates v1

Update Task Status for Event Monitoring v1

Deploy Task Manager Templates
Deploys a Task Manager template to provided year and period to create a new schedule.

This API executes the job based on the job type (TM_DEPLOY_TEMPLATE) provided as a
JSON parameter. This is an asynchronous API and responds with a callback API to get the job
status.

Parameters

The following table summarizes the client request:

Table 19-2    TM_DEPLOY_TEMPLATES Parameters

Name Description Type Required Default

jobType Type of the Job,
value for this Job is
TM_DEPLOY_TEM
PLATE

String Yes None

templateName The name of the
task manager
template to be
deployed

String Yes None

scheduleName The name of the
new schedule that
will be created from
the template

String Yes None

year The member of the
Year dimension
where the template
will be deployed

String Yes None

19-1



Table 19-2    (Cont.) TM_DEPLOY_TEMPLATES Parameters

Name Description Type Required Default

period The member of the
Period dimension
where the template
will be deployed

String Yes None

dayZeroDate The Day Zero date
used in creating
the Schedule in a
valid format

String Yes None

dateFormat The date format for
the Day Zero Date

String No YYY-MM-DD

orgUnit The Organization
Unit name

String No None

REST Resource

POST/HyperionPlanning/rest/cmapi/{api_version}/jobs

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 19-3    Parameters

Name Description Type Required Default

api_version It is a path
parameter. Version
of the API you are
developing with for
example, v1

String Yes None

Examples of Request Body

Example for Job Type: TM_DEPLOY_TEMPLATE

Example 1:

{

    "jobType":"TM_DEPLOY_TEMPLATE",

    "parameters":{

        "templateName":"Template1",

        "scheduleName": "scheduleA",

Chapter 19
Deploy Task Manager Templates

19-2



        "year":"2021",

        "period":"Jan",

        "dayZeroDate":"2021-01-01"

    }

}
    

Example 2:

{

    "jobType":"TM_DEPLOY_TEMPLATE",

    "parameters":{

        "templateName":"Template1",

        "scheduleName": "scheduleA",

        "year":"2021",

        "period":"Jan",

        "dayZeroDate":"2021-01-01",

         "orgUnit":"JPAC"

    }

}
    

Response

Supported Media Types: application/json

Table 19-4    Parameters

Name Description

jobId Job ID

descriptiveStatus Any additional details

details Message to the end user. In case of errors, details are published.

status -1 – In Progress; 0 – Success; 1 – Fail

items Not applicable for this job type

links Detailed information about the link

rel Possible values: self

href Links to API call

Chapter 19
Deploy Task Manager Templates

19-3



Table 19-4    (Cont.) Parameters

Name Description

action The HTTP call type

JSON Output

The following is an example of the response body in JSON format.

{

    "links": [

        {

            "rel": "self",

            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/
cmapi/v1/jobs",

            "action": "POST"

        },

        {

            "rel": "Job Status",

            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/
cmapi/v1/jobs/14008",

            "action": "GET"

        }

    ],

    "details": "In Process",

    "status": -1,

    "type": "TM",

    "link": {},

    "error": null,

    "items": []

}
    

Chapter 19
Deploy Task Manager Templates

19-4



Update Task Status for Event Monitoring
This API is used to update the task status to "completed" based on an event monitoring
integration type. For information on setting up integration type for Event Monitoring, see 
Creating Custom Event Monitoring Integrations in Administering Financial Consolidation and
Close.

REST Resource

POST /HyperionPlanning/rest/cmapi/{api_version}/updateTasksForEventMonitoring

Required Roles

Service Administrator

Request

Supported Media Types: application/json

Parameters

The following table summarizes the client request.

Table 19-5    Parameters

Name Description Type Require
d

Default
Value

api_version Version of the API you are
developing with

Path Yes v1

eventName Event name as specified in the
custom event monitoring
integration type.

JSON
(String)

Yes None

integrationName Integration Code of the custom
event monitoring integration
type.

JSON
(String)

Yes None

integrationConnectionName Connection name which the
event monitoring integration
belongs to.

JSON
(String)

Yes None

parameters Parameter values as per the
custom event monitoring
integration type.
The format is:
[ {"name" :"param1",
"value":"value1" ,
{"name" :"param2",
"value":"value2" }]

JSON Yes None

message A message needs to be added
while closing the task. This
information is displayed on the
task dialog.

JSON
(String)

No None

logLocation Any location which needs to be
added which refers to a log. This
information is displayed on the
task dialog.

JSON
(String)

No None

Chapter 19
Update Task Status for Event Monitoring

19-5

https://docs.oracle.com/en/cloud/saas/financial-consolidation-cloud/agfcc/cm_integration_types_custom_event_monitoring.html


Table 19-5    (Cont.) Parameters

Name Description Type Require
d

Default
Value

reportLocations One or more URLs to add while
closing the task. The format is:
["Example_URL1",
"Example_URL2"]
This information will be
displayed on the Task dialog
box.

JSON
(List of
Strings)

No None

Example URL

https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/
HyperionPlanning/rest/cmapi/v1/updateTasksForEventMonitoring

Payload

Example 1

If the custom event monitoring integration has the following properties:

• Integration Connection Name: customAppConn

• Integration Code: customPeriodClose

• Event Name: custom.CloseProcess.period.close

• Parameter Code: periodName and ledgerID

And the task is set up with following parameters:

• periodName: FY18

• ledgerID: 123

The following payload should be sent to close the task:

{
       "eventName" : "custom.CloseProcess.period.close",
       "integrationName" : "customPeriodClose",
       "integrationConnectionName" : "customAppConn",
    "parameters": [{
        "name": "periodName",
        "value": "FY18"
    }, {
        "name": "ledgerID",
        "value": "123"
    }]
}

Note:

The API expects integration code to be passed for the parameter integrationName.

Chapter 19
Update Task Status for Event Monitoring

19-6



Example 2

{
    "eventName": "custom.CloseProcess.period.close",
    "integrationName": "customPeriodClose",
    "integrationConnectionName": "customAppConn",
    "parameters": [
        {
            "name": "periodName",
            "value": "FY18"
        },
        {
            "name": "ledgerID",
            "value": "123"
        }
    ],
    "message": "Close period",
    "logLocation": "/logs/closeperiod.txt",
    "reportLocations": [
        "http://oracle.com/reportLocation.html"
    ]
}

Response

Supported Media Types: application/json
Example of a Successful Response

Http status code: 200

{
    "type": "RC",
    "items": null,
    "error": null,
    "link": null,
    "status": null,
    "details": "2 task(s) updated.",
    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/
cmapi/v1/updateTasksForEventMonitoring",
            "action": "POST"
        }
    ]
}

Example of an Error Response

Http status: 500

Chapter 19
Update Task Status for Event Monitoring

19-7



Working with Connections in Task Manager
Use these REST APIs to work with Oracle Integration Cloud connection in Task Manager.

Oracle Integration Cloud is used by custom Process Automation and Event Monitoring
Integration tasks.

With multiple environments, using REST APIs saves you time and effort by automating the
process of logging in and configuring connections. For information about accessing
environments, see Accessing EPM Cloud.

Table 19-6    Working with Connections in Task Manager

Task Request REST Resource

Create a Connection POST /HyperionPlanning/rest/fcmapi/{api_version}/
{module}/connections

View All Connections GET /HyperionPlanning/rest/fcmapi/{api_version}/
{module}/connections

Update a Connection PUT /HyperionPlanning/rest/fcmapi/{api_version}/
{module}/connections/{id}

Delete a Connection DELETE /HyperionPlanning/rest/fcmapi/{api_version}/
{module}/connections/{id}

Create a Connection
Use this REST API to create a connection to Oracle Integration Cloud using Task Manager.

REST Resource

POST /HyperionPlanning/rest/fcmapi/{api_version}/{module}/connections
Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request parameters for Basic authentication and
OAuth 2.0 authentication.

Table 19-7    Parameters

Name Description Type Required Default

api_version Version of the API you're developing with (must be
v1)

Path Yes None

module The name of the module for which to create a
connection. Set this value to FCM.

Path Yes None

Chapter 19
Working with Connections in Task Manager

19-8

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cgsad/1_epm_cloud_accessing_intro.html


Table 19-7    (Cont.) Parameters

Name Description Type Required Default

url The URL of the Integration Cloud environment.

Note:

The URL must be
provided only till the
server name, which
is oraclecloud.com.

Payload Yes None

authType Type of authentication:
• Basic
• OAuth

Note:

The parameter is
applicable only for
OAuth 2.0
authentication type.

Payload Yes None

oauthProperties Specify the access token, client ID, and scope of
the URL for OAuth 2.0 authentication.

Note:

The parameter is
applicable only for
OAuth 2.0
authentication type.

Payload Payload None

username A username with the Service Administrator
predefined role.

Note:

This parameter is
applicable only for
basic authentication
type.

Payload Yes None

Chapter 19
Working with Connections in Task Manager

19-9



Table 19-7    (Cont.) Parameters

Name Description Type Required Default

password The encrypted password for the user.

For security reasons, only an encrypted password
is allowed. Use the EPM Automate encrypt
command to generate the encrypted password.
See encrypt .

Note:

This parameter is
applicable only for
basic authentication
type.

Payload Yes None

type The type of connection. For Oracle Integration
Cloud, set this value to ICS.

Payload Yes None

Example of Request Body- Basic Authentication

{
    "url": "<URL of Oracle Integration Cloud>",
    "username": "<NEW_USERNAME>",
    "password": "<NEW_PASSWORD>",
    "type" : "ICS"
    "authType": "BASIC"
}

Example of Request Body- OAuth 2.0 Authentication

{
     "url": "<URL of Oracle Integration Cloud>",
      "type": "ICS",
      "authType": "OAUTH2",
      "oauthProperties": {
                "accessTokenUrl": "<Access token URL>",
                "clientId": "<Client ID>",
                "scope": "<Scope URL>",
                "clientSecret": "<EPMAUTOMATE Encrypted password>"
            }
}

Response

Supported Media Type: application/json

Chapter 19
Working with Connections in Task Manager

19-10

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_auto_encrypt.html


Table 19-8    Parameters

Parameters Description

details In case of errors, details are published with the error string.

Example of Response Body

{
  "details": "Connection created successfully."
}

View All Connections
Use this REST API to view all the connections to Oracle Integration Cloud using Task
Manager.

Required Roles

Service Administrator

REST Resource

GET /HyperionPlanning/rest/fcmapi/{api_version}/{module}/connections

Request

Parameters:

The following table summarizes the client request.

Table 19-9    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with (must
be v1)

Path Yes None

module The name of the module for which you want to
view the connections. Set this value to FCM.

Path Yes None

Response

Supported Media Types: application/json
The following table summarizes the parameters.

Table 19-10    Parameters

Parameters Description

items Collection of information about the resource

id Unique identifier for the connection

type The type of connection. For Oracle Integration Cloud, set this value to ICS.

Chapter 19
Working with Connections in Task Manager

19-11



Table 19-10    (Cont.) Parameters

Parameters Description

url The URL of the Integration Cloud environment.

Note:

The URL must be provided only till the server
name, which is oraclecloud.com.

authType Type of authentication:
• Basic
• OAuth

oauthProperties Provides the access token, client ID, and scope of the URL for OAuth 2.0
authentication.

details In case of errors, details are published with the error string

Example Response - Basic Authentication

{
    "links": [
        {
            "rel": "self",
            "href": "<URL of Oracle Integration Cloud>",
            "action": "GET"
        }
    ],
    "details": null,
    "items": [
        {
            "username": "ats_admin2",
            "password": null,
            "url": "<URL of Oracle Integration Cloud>",
            "id": 100000000558008,
            "type": "ICS"
            "authType": "BASIC"
        }
    ]
}

Example Response - OAuth 2.0 Authentication

{
    "details": null,
    "items": [
        {
            "id": 100000000037009,
            "url": "<URL of Oracle Integration Cloud>",
            "type": "ICS",
            "authType": "OAUTH2",
            "oauthProperties": {

Chapter 19
Working with Connections in Task Manager

19-12



                "accessTokenUrl": "<Access token URL>",
                "clientId": "<Client ID>",
                "scope": "<Scope URL>"
            }
        }
    ],
    "links": [
        {
            "rel": "self",
            "href": "<URL of Oracle Integration Cloud>",
            "action": "GET"
        }
    ]
}

Update a Connection
Use this REST API to update a specific connection to Oracle Integration Cloud using Task
Manager.

REST Resource

PUT /HyperionPlanning/rest/fcmapi/{api_version}/{module}/connections/{id}

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters:

The following table summarizes the client request.

Table 19-11    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with (must
be v1)

Path Yes None

module The name of the module for which to update a
connection. Set this value to FCM.

Path Yes None

id The identifier of the connection that must be
updated

Path Yes None

url The URL of the Integration Cloud environment.

Note:

The URL must be
provided only till the
server name, which
is oraclecloud.com.

Payload Yes None

Chapter 19
Working with Connections in Task Manager

19-13



Table 19-11    (Cont.) Parameters

Name Description Type Required Default

authType Type of authentication:
• Basic
• OAuth

Note:

The parameter is
applicable only for
OAuth 2.0
authentication type.

oauthProperties Specify the access token, client ID, and scope of
the URL for OAuth 2.0 authentication.

Note:

The parameter is
applicable only for
OAuth 2.0
authentication type.

username A username with Service Administrator
predefined role.

Note:

This parameter is
applicable only for
basic authentication
type.

Payload Yes None

password The encrypted password for the user.

For security reasons, only an encrypted password
is allowed. Use the EPM Automate encrypt
command to generate the encrypted password.
See encrypt .

Note:

This parameter is
applicable only for
basic authentication
type.

Payload Yes None

Chapter 19
Working with Connections in Task Manager

19-14

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/epm_auto_encrypt.html


Table 19-11    (Cont.) Parameters

Name Description Type Required Default

type The type of connection. For Oracle Integration
Cloud, set this value to ICS.

Payload Yes None

Example of Request Body - Basic Authentication

{
    "url": "<URL of Oracle Integration Cloud>",
    "username": "<NEW_USERNAME>",
    "password": "<NEW_PASSWORD>"
    "authType": "BASIC"
}

Example of Request Body – OAuth 2.0 Authentication

  {
     "url": "<URL of Oracle Integration Cloud>",
      "type": "ICS",
      "authType": "OAUTH2",
      "oauthProperties": {
                "accessTokenUrl": "<Access token URL>",
                "clientId": "<Client ID>",
                "scope": "<Scope URL>",
                "clientSecret": "<EPMAUTOMATE Encrypted password>"
            }
}

Response

Supported Media Type: application/json

Table 19-12    Parameters

Parameters Description

details In case of errors, details are published with the error string.

Example of Response Body

Example 1:

{
  "details": "Connection updated successfully."
}

Example 2:

{
  "details": "Invalid parameters. Test Connection is failed"
}

Chapter 19
Working with Connections in Task Manager

19-15



Delete a Connection
Use this REST API to delete a specific connection to Oracle Integration Cloud using Task
Manager.

Required Roles

Service Administrator

REST Resource

DELETE /HyperionPlanning/rest/fcmapi/{api_version}/{module}/connections/{id}

Request

Parameters:

The following table summarizes the client request.

Table 19-13    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with (must
be v1)

Path Yes None

module The name of the module for which to delete a
connection. Set this value to FCM.

Path Yes None

id The identifier of the connection that must be
deleted

Path Yes None

Response

Supported Media Type: application/json

Table 19-14    Parameters

Parameters Description

details In case of errors, details are published with the error string.

Example of Response Body

{
  "details": "Connection deleted successfully."
}

Chapter 19
Working with Connections in Task Manager

19-16



20
Supplemental Data Manager REST APIs

Use the Supplemental Data Manager REST APIs to import supplemental collection data for
Financial Consolidation and Close and deploy form templates.

Getting API Versions for Supplemental Data Manager APIs
You can get information on REST API versions using REST resources. See Getting API
Versions for Planning. Supplemental Data Manager REST APIs use the same version numbers
as Planning.

Table 20-1    Supplemental Data Manager REST APIs

API Name Versions

Import Supplemental Collection Data for Financial
Consolidation and Close

v3

Deploy Form Templates v3

Import Supplemental Collection Data for Financial Consolidation
and Close

Imports supplemental data to a collection for the frequency dimensions defined in the collection
interval of the collection. Returns the success or failure status.

REST Resource

POST      /HyperionPlanning/rest/{api_version}/applications/{application}/
fcmjobs

Required Roles

Service Administrator

Request

Supported Media Types: application/json
Parameters

Table 20-2    IMPORT_SUPPLEMENTAL_COLLECTION_DATA

Name Description Type Required Default

api_version Version of the API you
are working with: v3

Path Yes None

20-1



Table 20-2    (Cont.) IMPORT_SUPPLEMENTAL_COLLECTION_DATA

Name Description Type Required Default

application The name of the
application
Get the application name
by using the Get
Applications API, for
example, FCCS or
TRCS. See Get
Applications.

Path Yes None

jobName Name of the job String No None

jobType Type of the Job.
Supported value for this
Job
IMPORT_SUPPLEMENT
AL_COLLECTION_DATA

String Yes None

fileName File name to be
imported, for example,
dataset.csv

String Yes None

collection Collection or sub-
collection name

String Yes None

year The year for which the
collection is deployed

String Yes None

period Period name for which
the collection is deployed

String Yes None

parameter Runtime parameter. This
is the frequency
dimension used for the
Collection.

String No None

value Runtime parameter
value. This is the
member value for the
dimension specified in
the parameter.

String No None

Table 20-3    Examples of runtime parameters

Parameter Value

Product Oracle EPM

Consolidation Entity Input

Movement Actual

Examples of request body

Example 1

{
 "jobType" : "IMPORT_SUPPLEMENTAL_COLLECTION_DATA",
 "parameters": {
                             "fileName":"import_sdm_data.csv",
                             "collection":"Investment Detail Collection",
                             "year":"2019",
                             "period":"Dec",

Chapter 20
Import Supplemental Collection Data for Financial Consolidation and Close

20-2



                             "product:"Oracle EPM",
                             "consolidation":"Entity Input",
                              }
}

Example 2

{
 "jobType" : "IMPORT_SUPPLEMENTAL_COLLECTION_DATA",
 "parameters": {
                             "fileName":"import_sdm_data.csv",
                             "collection":"Investment Detail Collection",
                             "year":"2020",
                             "period":"January",
                             "category":"Oracle EPM",
                             "movement":"Actual",
                              }
}

Example 3

{
 "jobType" : "IMPORT_SUPPLEMENTAL_COLLECTION_DATA",
 "parameters": {
                             "fileName":"import_sdm_data.csv",
                             "collection":"Investment Detail Collection",
                             "year":"2019",
                             "period":"December",
                             "scenario":"Actual",
                              }
}

Response

Supported Media Types: application/json
Parameters:

Table 20-4    Parameters

Name Description

type FCCS Application type, for example, FCCS

status -1 - In Progress; 0 - Success; 1 - Fail

details In case of errors, details are published with the error string

descriptiveStatus The status of the job, such as Completed or Error

items Collection of Notification categories

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type. Possible values: self

Example of Response Body

Chapter 20
Import Supplemental Collection Data for Financial Consolidation and Close

20-3



The following is an example of the response body in JSON format.

{
  "jobId":100000000114040,
  "descriptiveStatus":"In Progress",
  "details": "In Progress",
  "status": -1,
  "items": [],
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME-
<TENANT_NAME.<SERVICE_TYPE.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/FCCS/fcmjobs/100000000114040"
    }, {",
      "action":"GET"
    }
  ],
}

Deploy Form Templates
Enables you to deploy form templates that have been created in Financial Consolidation and
Close.

For details on Using Deploying a Form Template to a Data Collection Period.

This REST API returns the job id after starting the job.

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/fcmjobs

Required Roles

Service Administrator, Power User

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 20-5    Deploy Form Template

Name Description Type Required Default

api_version Version of the API
you are working
with: v3

Path Yes None

Chapter 20
Deploy Form Templates

20-4

https://docs.oracle.com/en/cloud/saas/financial-consolidation-cloud/agfcc/sdm_form_tmplts_deploying.html


Table 20-5    (Cont.) Deploy Form Template

Name Description Type Required Default

application The name of the
application

Get the application
name by using the
Get Applications
API, for example,
FCCS. See Get
Applications.

Path Yes None

jobName Name of the job
that has been
defined in Financial
Consolidation and
Close or no value
for the job

String No None

jobType Type of Job.
Supported value:

DEPLOY_FORM_TEM
PLATES

String Yes None

CollectionInter
valName

The name of the
collection interval to
which the template
should be deployed

String Yes None

Parameter for
frequency
dimension 1

Dimension and
member name of
interval frequency
dimension, to which
the template should
be deployed.

This optional key
value parameter
depends on the
number of
frequency
dimensions in the
interval. The key
should be
dimension name
and the value
should be member
name.

String No None

Chapter 20
Deploy Form Templates

20-5

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36


Table 20-5    (Cont.) Deploy Form Template

Name Description Type Required Default

Parameter for
frequency
dimension 2

Dimension and
member name of
interval frequency
dimension, to which
the template should
be deployed.

This optional key
value parameter
depends on the
number of
frequency
dimensions in the
interval. The key
should be
dimension name
and the value
should be member
name.

String No None

Parameter for
frequency
dimension 3

Dimension and
member name of
interval frequency
dimension, to which
the template should
be deployed.

This optional key
value parameter
depends on the
number of
frequency
dimensions in the
interval. The key
should be
dimension name
and the value
should be member
name.

String No None

Parameter for
frequency
dimension 4

Dimension and
member name of
interval frequency
dimension, to which
the template should
be deployed.

This optional key
value parameter
depends on the
number of
frequency
dimensions in the
interval. The key
should be
dimension name
and the value
should be member
name.

String No None

Chapter 20
Deploy Form Templates

20-6



Table 20-5    (Cont.) Deploy Form Template

Name Description Type Required Default

Template Names of the form
templates to
deploy. You can
provide multiple
parameters with the
same key as
"TEMPLATE" and
this will be
converted to a
JSON array and
passed as a single
parameter in the
JSON string.

This is an optional
parameter.
However, if nothing
is specified for the
TEMPLATE key,
this parameter is
still present as an
empty JSON Array
in the JSON string,
and all templates
for the given
interval will be
deployed.

Even if you give
only one template
name, this should
still be passed as a
JSON array.

JSON Array No None

ResetWorkflows Either true or false.
Optional parameter
indicating whether
all forms should be
reset back to the
first stage after
redeploying.

This parameter is
also derived by the
system based on
changes to the
template and
collection, so the
system-derived
value can override
the user specified
value.

Boolean No false

Examples of request body

Example 1:

{
    "jobType" : "DEPLOY_FORM_TEMPLATES",

Chapter 20
Deploy Form Templates

20-7



    "parameters": 
                {
                    "CollectionIntervalName" : "Journal Collection Interval",
                    "Year" : "2020",
                    "Period" : "July",
                    "Product" : "Oracle EPM",
                    "Consolidation" : "Entity Input",
                    "Template" : [ "Template,1","Template 2" ],
                     "ResetWorkflows" : "true"
                }
}

Example 2:

{ 
    "jobType" : "DEPLOY_FORM_TEMPLATES",
    "parameters": 
                {
                    "CollectionIntervalName" : "Loan Collection Interval",
                    "Year" : "2020",
                    "Period" : "July",
                    "Category" : "Oracle EPM",
                    "Movement" : "Actual",
                    "Template" : ["Template 3"]
                }
}

Example 3:

{ 
    "jobType" : "DEPLOY_FORM_TEMPLATES",
    "parameters": 
                {
                    "CollectionIntervalName" : "Default",
                    "Year" : "2020",
                    "Period" : "July",
                    "Scenario" : "Actual",
                    "Template" : ["Template 5","Template 6"],
                     "ResetWorkflows" : "false",
                }
}

Example 4:

{ 
    "jobType" : "DEPLOY_FORM_TEMPLATES",
    "parameters": 
                {
                    "CollectionIntervalName" : "Custom Interval",
                    "Year" : "2020",
                    "Period" : "July",
                    "Template" : ["Template 5","Template 6","Template 
7","Template 8"]

Chapter 20
Deploy Form Templates

20-8



                }
}

Response

Table 20-6    Parameters

Name Description

jobId Financial Consolidation and Close job ID

descriptiveStatus
details Any additional details

Status -1 = In progress; 0 = Success; 1 = Fail

items Not applicable for this job type

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Possible values: self

Supported Media Types: application/json
JSON Output

The following is an example of the response body in JSON format.

{
   "jobId":100000000114040,
   "descriptiveStatus":",
   "detail":"In Progress",
   "status":-1,
   "items":null,
   "links":[
      {
         "rel":"self",
         "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/FCCS/fcmjobs/100000000114040",
         "action":"GET"
      }
   ]
}

Chapter 20
Deploy Form Templates

20-9



21
Enterprise Journal REST APIs

Use the Enterprise Journal REST APIs to:

• Monitor Enterprise Journals for Financial Consolidation and Close

• Execute an Enterprise Journal job

• Retrieve Enterprise Journals for Financial Consolidation and Close

• Retrieve Enterprise Journal Content for Financial Consolidation and Close

• Retrieve Enterprise Journal Content by Year and Period for Financial Consolidation and
Close

• Update Enterprise Journal Posting Status for Financial Consolidation and Close

Getting API Versions for Enterprise Journal APIs
You can get information on REST API versions using REST resources. See Getting API
Versions for Planning. The Enterprise Journal REST APIs use the same version numbers as
Planning.

Table 21-1    Enterprise Journal REST APIs

API Name Versions

Execute an Enterprise Journals Job v1

Monitor Enterprise Journals for Financial
Consolidation and Close

v1

Retrieve Enterprise Journals for Financial
Consolidation and Close

v1

Retrieve Enterprise Journal Content for Financial
Consolidation and Close

v1

Retrieve Enterprise Journal Content by Year and
Period for Financial Consolidation and Close

v1

Update Enterprise Journal Posting Status for
Financial Consolidation and Close

v1

Update Validation Status of Enterprise Journals for
Financial Consolidation and Close

v1

Monitor Enterprise Journals for Financial Consolidation and
Close

Returns the status of Journals for the given parameters.

21-1



Note:

• If all journals for given parameters are closed, then the output status would be '0'
and detail text specifies that all journals are closed.

• If any journal for the given parameters is in Open status (Pending, Open with
Preparer, Open with Approver etc.), then the output status would be '-1'.

• In case of error, a positive number will be returned in status.

REST Resource

POST      /rest/ej/{api_version}/jobs/

Required Roles

Service Administrator and Power User

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 21-2    Parameters

Name Description Path Required

api_version Version of the API you are working with, such
as v1.

Yes Yes

jobType The name of the job EJ_MONITOR_JOURNALS. No Yes

year The name of the year, such as 2021, 2022 etc. No No

period The name of the period, such as Jan, Feb etc. No No

filterName The name of the filter. For example, Journal
status filter.

No Yes

Note:

Either the combination of Year and Period or the Filter Name must be passed. If Year
and Period can be part of filter, then Filter Name is sufficient in the parameters.

Example of request body

{

    "jobType": "EJ_MONITOR_JOURNALS",

    "parameters": {

        "year": "2022",

Chapter 21
Monitor Enterprise Journals for Financial Consolidation and Close

21-2



        "period": "Jan",

        "filterName": "Jan22_ERPDirectJournals"

    }

}            

Response

Supported Media Types: application/json
Parameters:

Table 21-3    Parameters

Name Description

details Journal Name and Status. First 100 journals only. Shows Open journals
first. In case of errors, details are published with the error string.

status See Migration Status Codes

links Detailed information about the link

href Links to the API call

action The HTTP call type

rel Relationship type (self, Job Status). if set to Job Status, you can
use the href to get the status of the operation

Examples of Response Body

The following is an example of the response body in JSON format when all journals are closed:

{
    "status": 0,
    "details": "All journals for the given filter are closed.",
    "links": [
        {
            "rel": "self",
     "href": "https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>/
HyperionPlanning/rest/ej/{api_version}/jobs/rest/ej/v1/jobs/monitorJournals?
year=2022&period=Jan&filterName=ERP_Direct",
     "action": "GET"
        }
    ],
    "type": "EPM",
}           

The following is an example of the response body in JSON format when any journal status is
open:

{
    "status": -1,
    "details": "Journal_NonDirect1|2022|Jan|1000000001, Status:Open with 
Preparer; \n
  Journal_NonDirect1|2022|Jan|1000000002, Status:Closed",

Chapter 21
Monitor Enterprise Journals for Financial Consolidation and Close

21-3



    "links": [
        {
            "rel": "self",
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com
HyperionPlanning/rest/ej/{api_version}/jobs/monitorJournals?
year=2022&period=Jan&filterName=EJ_NonDirect ",
            "action": "GET"
        }
    ],
    "type": "EPM",
}            

Execute an Enterprise Journals Job
This API will execute the job based on the job type provided as a JSON parameter. It is an
asynchronous API. This API will respond with a callback API to get the Job status.

Table 21-4    Enterprise Journals Supported Job Types

Job Type Description

exportEJJournals This job exports the data of "Ready To Validate" or
"Ready to Post" journals based on the operation
defined. It creates one CSV file per journal based
on the target definition and mappings defined in
Enterprise Journals and copies it to an EPM
Automate-designated directory. The resulting file
follows the naming pattern:
<Year>_<Period>_<Journal_ID>.csv. After
creating the export file, it updates the journal Post
status to "Post in Progress" if operation is "posting"
or updated the validation status to "Validation In
Progress" if operation is "validation".

setEJJournalStatus This job updates the Post status or Validation
status of a journal after importing the journal to the
ERP system.

If operation = posting:
A CSV file containing the results of the journal
posting is provided. The file contains these
columns: Year, Period, Journal ID, Posting Status
(Posted/Failed), Message, Error Code, Error
Message. The Message, Error Code and Error
Message columns are optional. Posting status of
the journals is updated based on the status
provided in the file. Only journals with a Posting
status of "Post in Progress" will be updated.

If operation = validation:
A CSV file containing the results of the journal
validation is provided. The file contains these
columns: Year, Period, Journal ID, Validation Status
(Valid/Failed), Message, Error Code, Error
Message. The Message, Error Code and Error
Message columns are optional. Validation status of
the journals is updated based on the status
provided in the file. Only journals with a Validation
status of "Validation In Progress" will be updated.

Chapter 21
Execute an Enterprise Journals Job

21-4



Table 21-4    (Cont.) Enterprise Journals Supported Job Types

Job Type Description

deployEJTemplates This job is used to deploy finalized journal
templates to new journal periods to create journals
for year-period combinations, ensuring a consistent
and repeatable journal collection process.

REST Resource

POST /HyperionPlanning/rest/ej/{api_version}/jobs

Required Roles

Job Type Role

exportEJJournals Service Administrator

setEJJournalStatus Service Administrator

deployEJTemplates Service Administrator, Power User

Request

Supported Media Types: application/json
Parameters

This table summarizes the request parameters that are generic to all jobs. The following tables
describe parameters specific to individual rules.

Table 21-5    Parameters

Name Description Type Required Default

api_version Version of the API you
are developing with

Path Yes None

Table 21-6    exportEJJournals Parameters

Name Description Type Required Default

jobType Type of the Job.
Value for this job is
exportEJJournal
s.

String Yes None

filename The name of the
zip file to which
each individual
journal file is added

String Yes None

year The year for which
the journal is used
for data collection

String No None

Chapter 21
Execute an Enterprise Journals Job

21-5



Table 21-6    (Cont.) exportEJJournals Parameters

Name Description Type Required Default

period The period for
which the journal is
used for data
collection

String No None

operation Specifies the
operation - posting
or validation

String No posting

Table 21-7    setEJJournalStatus Parameters

Name Description Type Required Default

jobType Type of the Job. Value for this job
is setEJJournalStatus.

String Yes None

filename Filename is the file in CSV format
that contains the following
information regarding the posting
process:

• Year: Year of the Journal
posted

• Period: Period of the Journal
posted

• JournalID: Journal Identifier
of Journal posted

• Posting Status: Valid values
are Posted or Failed. (if
operation = posting)

• Validation Status: Valid
values are Valid or Failed. (if
operation = validation)

Failed status has a message
and attached error list
returned from ERP

• Message: Optional. Can be
used for error messages
from ERP in case there is a
posting failure

Note: Multiple Journal Posting
statuses may be included as
records in the CSV file.

String Yes None

operation Specifies the operation. posting
or validation

String No posting

Table 21-8    deployEJTemplates Parameters

Name Description Type Required Default

jobType Type of the Job.
Value for this job is
deployEJTemplat
es.

String Yes None

Chapter 21
Execute an Enterprise Journals Job

21-6



Table 21-8    (Cont.) deployEJTemplates Parameters

Name Description Type Required Default

year The year used for
the journal

String Yes None

period The period for the
journal

String Yes None

Template Names of journal
templates that need
to be deployed.

You can specify
multiple parameters
with the same key
as "TEMPLATE" in
the command, and
it will be converted
into JSON array
and passed as a
single parameter in
JSON string. If you
only specify one
template name, it is
still passed as
JSON array.

This parameter is
optional. If no value
is specified in the
command for the
TEMPLATE key,
then this parameter
would still be
present as an
empty JSON array
in JSON string, and
all templates for the
specified year and
period will be
deployed.

JSON Array No None

ResetJournals Value values: True
or False.

Optional. Indicates
whether or not all
journals need to be
reset to the first
stage after re-
deployment.

This parameter is
also derived by the
system based on
changes to the
template. The
system-derived
value can override
the user-specified
value.

Boolean No False

Examples of Request Body

Chapter 21
Execute an Enterprise Journals Job

21-7



Example for Job Type: exportEJJournals

Example 1:

{
 "jobType" : "exportEJJournals",
 "parameters": {
                              "Filename":"export.zip",
                              "Year":"2020"
                              "Period":"Jan"
                              "Operation":"validation"
                              }
}

Example 2:

{
 "jobType" : "exportEJJournals",
 "parameters": {
                              "Filename":"export.zip",
                              }
}

Example for Job Type: setEJJournalStatus

{
 "jobType" : "setEJJournalStatus",
 "parameters": {
                              "Filename":"JournalsStatus.csv",
                              "Operation":"validation"
                              }
}

Examples for Job Type: deployEJTemplates

Example 1:

{
 "jobType" : "deployEJTemplates",
 "parameters": {
                              "Year":"2020"
                              "Period":"July"
                              "Template": ["Template 1","Template 2"],
                              "ResetJournals":"true"
                              }
}

Example 2:

{
 "jobType" : "deployEJTemplates",
 "parameters": {
                              "Year":"2020"
                              "Period":"July"

Chapter 21
Execute an Enterprise Journals Job

21-8



                              "Template": ["Template 3"],
                              }
}

Example 3:

{
 "jobType" : "deployEJTemplates",
 "parameters": {
                              "Year":"2020"
                              "Period":"July"
                              "Template": ["Template 5","Template 6", 
"Template 7", "Template 8"],
                              }
}

Example 4:

{
 "jobType" : "deployEJTemplates",
 "parameters": {
                              "Year":"2020"
                              "Period":"July"
                              "Template": [ ]
                              }
}

Response

Supported Media Types: application/json

Table 21-9    Parameters

Name Description

jobId Enterprise Journals job identifier

descriptiveStatus Additional details about the status

details Message to the user. In cases where there are
errors, the error details are published.

status • -1: In Progress
• 0: Success
• 1: Failed

items Not applicable for this job type

links Detailed information about the link

rel Valid value: self

href Links to API call

action The HTTP call type

Chapter 21
Execute an Enterprise Journals Job

21-9



Example of Response Body

The following is an example of the response body in JSON format.

{
  "jobId":14013,
  "details": "In Process",
  "status": -1,
  "links": [
    {
      "rel": "self",
      "href": "https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>. 
oraclecloud.com/HyperionPlanning/rest/ej/v1/jobs/14013",
     "action": "GET"
    }
  "error": null,
  "items": [ ],
  "type": EPM
}

Retrieve Enterprise Journals for Financial Consolidation and
Close

Returns the list of journals ready to validate or ready to post based on the parameter sent.

This API works only for Financial Consolidation and Close.

REST Resource

GET       /HyperionPlanning/rest/ej/{api_version}/ejjournals

Required Roles

Service Administrator

Request URL with Optional Parameters

GET       /HyperionPlanning/rest/ej/{api_version}/ejjournals?
Year=2018&Period=Jan&PostingStatus=ReadyToPost&ValidationStatus=ReadyToValidat
e

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

"Year", "Period", "PostStatus" and "ValidationStatus" are optional. If "Year" and "Period" are not
passed, journals from all year and period are listed.

By default, only ReadyToPost journals are listed, however you can provide any valid value for
the PostingStatus parameter to get corresponding journals.
If a valid value is provided for "ValidationStatus", journals are listed based on the provided
value.

Chapter 21
Retrieve Enterprise Journals for Financial Consolidation and Close

21-10



Table 21-10    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with:
v1

Path Yes None

Year Year for which to list journals, for example,
Year=2018. If you do not specify a Year and
Period, journals from all Years and Periods
are listed.

Query No All Years

Period Period for the journal, for example:
Period=Jan. If you do not specify a Year and
Period, journals from all Years and Periods
are listed. If you specify only Year or only
Period, journals from all Years and Periods
are listed.

Query No All Periods

Postingstatus Posting status for the journal, for example:

PostingStatus=ReadyToPost

Valid values are NotPosted, ReadyToPost,
PostInProgress, Failed, Posted

Query No ReadyToPost

ValidationStatus Validation status for the journal.
Valid Values are NotValidated,
ReadyToValidate,
ValidationInProgress, Failed, Valid

Query No None

Response

Supported Media Types: application/json

Example of Response Body

The following shows an example of the response body.

{
  "items": [
    {
  "year": 2020
  "period": "Jan",
  "journalId": "100000001",
  "instanceId": "100000000008821",
  "link": {
      "rel": "content",
      ""https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/ej/v1/ejjournals/100000000008821",
      "action": "GET"
  }
  }
{
  "year": 2020
  "period": "Jan",
  "journalId": "100000002",
  "instanceId": "100000000008822",

Chapter 21
Retrieve Enterprise Journals for Financial Consolidation and Close

21-11



  "link": {
      "rel": "content",
      "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/ej/v1/ejjournals/100000000008822",
      "action": "GET"
  }
  }
],
  "link": {
      "rel": "self",
      "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/ej/v1/ejjournals",
      "action": "GET"
}
"error": null,{
"type": "EPM"
}

Retrieve Enterprise Journal Content for Financial Consolidation
and Close

Returns journal content for the instance identifier provided as Path parameter. Each item in the
items list represents a line item of the journal.

This API works only for Financial Consolidation and Close.

REST Resource

GET       /HyperionPlanning/rest/ej/{api_version}/ejjournals/{instanceId}

Required Roles

Service Administrator

Example of Request URL

GET       /HyperionPlanning/rest/ej/v1/ejjournals/100000000008821

Supported Media Types: application/json

Table 21-11    Parameters

Name Description Type Required Default

api_version Version of the API you
are developing with

Path Yes None

instanceId Identifier for the journal
for which you want to
retrieve journal content

Path Yes None

Chapter 21
Retrieve Enterprise Journal Content for Financial Consolidation and Close

21-12



Example of Response Body

The following shows an example of the response body.

{
  "year": 2018
  "period": "Jan",
  "journalId": "100000001",
  "instanceId": "100000000008821",
  "items": [
{
      "Status Code": "NEW",
      "Ledger ID": "LNR 12000",
      "Journal Source": "EPM_EJ",
      "Journal Category": "Adjustment",
      "Currency Code": "EUR",
      "Segment 1": "100091",
      "Entered Debit Amount": "19800.00",
      "Entered Credit Amount": "0.00"
},
{
      "Status Code": "NEW",
      "Ledger ID": "LNR 12000",
      "Journal Source": "EPM_EJ",
      "Journal Category": "Adjustment",
      "Currency Code": "EUR",
      "Segment 1": "100092",
      "Entered Debit Amount": "0.00",
      "Entered Credit Amount": "19800.00"
},
{
      "Status Code": "NEW",
      "Ledger ID": "LNR 12000",
      "Journal Source": "EPM_EJ",
      "Journal Category": "Adjustment",
      "Currency Code": "EUR",
      "Segment 1": "100093",
      "Entered Debit Amount": "34900.00",
      "Entered Credit Amount": "0.00"
},
{
      "Status Code": "NEW",
      "Ledger ID": "LNR 12000",
      "Journal Source": "EPM_EJ",
      "Journal Category": "Adjustment",
      "Currency Code": "EUR",
      "Segment 1": "1000943",
      "Entered Debit Amount": "0.00",
      "Entered Credit Amount": "34900.00"
  }
],
  "links": [
{
      "rel": "self",
      "href": "https://<SERVICE_NAME>-

Chapter 21
Retrieve Enterprise Journal Content for Financial Consolidation and Close

21-13



<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/ej/v1/ejjournals/100000000008821",
      "action": "GET"
},
{
      "rel": "update_posting_status",
      "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/ej/v1/ejjournals/100000000008821
/poststatus",
      "action": "POST"
}
{
    "rel": "update_validation_status",
    "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/ej/v1/ejjournals/100000000008821/validationstatus",
    "action": "POST"
}

],
"error": null,
"type": "EPM"
}

Retrieve Enterprise Journal Content by Year and Period for
Financial Consolidation and Close

Returns Enterprise journal content for the provided Year, Period, and Journal ID. This API can
be used if a user wants to query an Enterprise Journal without knowing the journal identifier.

This API works only for Financial Consolidation and Close.

REST Resource

GET       /HyperionPlanning/rest/ej/{api_version}/ejjournalcontent?
Year={year}&Period={period}&JournalId={journalId}

Required Roles

Service Administrator

Example of Request URL

GET       /HyperionPlanning/rest/ej/v1/ejjournalcontent?
Year=2018&Period=Jan&JournalId=100000001

Supported Media Types: application/json

Chapter 21
Retrieve Enterprise Journal Content by Year and Period for Financial Consolidation and Close

21-14



Table 21-12    Parameters

Name Description Type Required Default

api_version Version of the API you
are developing with

Path Yes None

Year Year for which to list
journal, for example,
Year=2018

Query Yes None

Period Period for the journal,
for example:
Period=Jan

Query Yes None

JournalId Identifier for the journal
for which you want to
retrieve journal content

Query Yes None

Example of Response Body

The following shows an example of the response body.

{
  "year": 2018
  "period": "Jan",
  "journalId": "100000001",
  "instanceId": "100000000008821",
  "items": [
{
      "Status Code": "NEW",
      "Ledger ID": "LNR 12000",
      "Journal Source": "EPM_EJ",
      "Journal Category": "Adjustment",
      "Currency Code": "EUR",
      "Segment 1": "100091",
      "Entered Debit Amount": "19800.00",
      "Entered Credit Amount": "0.00"
},
{
      "Status Code": "NEW",
      "Ledger ID": "LNR 12000",
      "Journal Source": "EPM_EJ",
      "Journal Category": "Adjustment",
      "Currency Code": "EUR",
      "Segment 1": "100092",
      "Entered Debit Amount": "0.00",
      "Entered Credit Amount": "19800.00"
},
{
      "Status Code": "NEW",
      "Ledger ID": "LNR 12000",
      "Journal Source": "EPM_EJ",
      "Journal Category": "Adjustment",
      "Currency Code": "EUR",
      "Segment 1": "100093",
      "Entered Debit Amount": "34900.00",
      "Entered Credit Amount": "0.00"

Chapter 21
Retrieve Enterprise Journal Content by Year and Period for Financial Consolidation and Close

21-15



},
{
      "Status Code": "NEW",
      "Ledger ID": "LNR 12000",
      "Journal Source": "EPM_EJ",
      "Journal Category": "Adjustment",
      "Currency Code": "EUR",
      "Segment 1": "1000943",
      "Entered Debit Amount": "0.00",
      "Entered Credit Amount": "34900.00"
  }
],
  "links": [
{
      "rel": "self",
      "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/ej/v1/ejjournals/100000000008821",
      "action": "GET"
},
{
      "rel": "update_posting_status",
      ""https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/ej/v1/ejjournals/100000000008821
/poststatus",
      "action": "POST"
}
],
"error": null,
"type": "EPM"
}

Update Enterprise Journal Posting Status for Financial
Consolidation and Close

Updates the Enterprise Journal Posting status. After journal content has been read and the
import to ERP begins, this API must be invoked to update the status to PostInProgress, and
after completion of posting, the status should be updated with either Posted or Failed. Error
items are read-only if the Posting status is Failed.

This API works only for Financial Consolidation and Close.

REST Resource

POST       /HyperionPlanning/rest/ej/{api_version}/ejjournals/{instanceId}/
poststatus

Required Roles

Service Administrator

Chapter 21
Update Enterprise Journal Posting Status for Financial Consolidation and Close

21-16



Example of Request URL

POST       /HyperionPlanning/rest/ej/v1/ejjournals/100000000008821/Posted

Supported Media Types: application/json

Table 21-13    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with:
v1

Path Yes None

instanceId The ID of the journal for which you want to
update Posting status.

Path Yes None

year Year value of journal period String No None

period Period of journal String No None

journalId Journal ID value String No None

status Journal Post Status

Note:

Only
"PostInProgres
s", "Failed" and
"Posted" are
supported for
status value.

String Yes None

message Posting message to be set to the journal String No None

journalBatch Journal Batch represents the identifier from
target ERP system for the current batch of
posting.

String No None

errorItems List of errors if any Array No None

errorCode Identifier for the individual error String No None

errorMessage Detailed message of the error String No None

entryId Journal entry identifier, for which error has
occurred

String No None

Example of Post In Progress:

{
"year": "2019",
"period": "Jan",
"journalId": "10000000012",
"status": "PostInProgress"
}

Example of an Error:

{
"year": "2019",

Chapter 21
Update Enterprise Journal Posting Status for Financial Consolidation and Close

21-17



"period": "Jan",
"journalId": "100000001",
"status": "Failed",
"errorItems": [
{
     "errorCode": "EF04",
     "errorMessage": "The account combination is invalid.",
     "entryId": "Journal Ent 1"
},
{
     "errorCode": "EU07",
     "errorMessage": "Accounting period is not open for the ledger.",
     "entryId": "Journal Ent 2"
}
]
}

Example When Posted:

{
"year": "2021",
"period": "Jan",
"journalId": "10000000003",
"status": "Posted",
"journalBatch": "111720201001-LNR11432"
}

Response

{
"detail": "Journal 2021 Jan 10000000001 is not in 'Post In Progress' or 
'Ready to Post' status.", 
"status": 400,
"message": "oracle.apps.epm.sdm.model.common.SDMModelException: Journal 2021 
Jan 10000000001 is not in 'Post In Progress' or 'Ready to Post' status.",
"localizedMessage": "oracle.apps.epm.sdm.model.common.SDMModelException: 
Journal 2021 Jan 10000000001 is not in 'Post In Progress' or 'Ready to Post' 
status.",
"suppressed": []
}

Note:

The maximum character limit of the following fields are:

• journalBatch – 255 characters

• errorMessage – 255 characters

• errorCode – 20 characters

• entryId – 500 characters

Chapter 21
Update Enterprise Journal Posting Status for Financial Consolidation and Close

21-18



Update Validation Status of Enterprise Journals for Financial
Consolidation and Close

Updates the journal validation status. Once journal content has been read, you can invoke this
API to update the status to "ValidationInProgress". After completion of validation, the status
must be updated as either "Valid" or "Failed". Error items are read only if validation status is
"Failed".

REST Resource

POST  /HyperionPlanning/rest/ej/{api_version}/ejjournals/{identifier}/
validationstatus

Required Roles

Service Administrator

Example of Request URL

POST https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/ej/v1/ejjournals/100000000008821/validationstatus

Supported Media Types: application/json

Table 21-14    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with,
for example, v1

Path Yes None

instanceId Identifier for the journal for which you want
to update the validation status.

Path Yes None

status Validation status to be updated for the journal

Note:

Only
"ValidationInProgr
ess", "Failed" and
"Valid" are
supported for
status value.

String Yes None

message Validation message to be set to the journal String No None

Chapter 21
Update Validation Status of Enterprise Journals for Financial Consolidation and Close

21-19



Table 21-14    (Cont.) Parameters

Name Description Type Required Default

errorItems List of errors if any

Note:

Errors are updated
only if status is
"Failed".

Array No None

errorCode Identifier for the individual error String No None

errorMessage Detailed message of the error String No None

entryId Journal entry identifier, for which error has
occurred

String No None

Example of Validation in Progress:

{
    "status": "ValidationInProgress",
    "message":"Validation initiated"
}

Example of an Error:

{
    "status": "Failed",
    "message":"Validation failed"
    "errorItems": [
        {
            "errorCode": "EF04",
            "errorMessage": "The account combination is invalid.",
            "entryId": "Journal Ent 1"
        },
        {
            "errorCode ": "EU07",
            "errorMessage ": "Accounting period is not open for the ledger.",
            "entryId ": "Journal Ent 2"
        }
    ]
}

Example of Response Body:

{
      "items": [
                       "Journal validation status updated successfully."
                ],
      "links": [
                       {

Chapter 21
Update Validation Status of Enterprise Journals for Financial Consolidation and Close

21-20



                            "rel": "self",
                            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/
rest/ej/v1/ejjournals/100000000006929/validationstatus",
                            "action": "POST"
                        }
                ]
} 

Chapter 21
Update Validation Status of Enterprise Journals for Financial Consolidation and Close

21-21



22
Tax Reporting REST APIs

Use the Tax Reporting REST APIs to get the REST API version, to import supplementation
data, copy data, clear data, and deploy form templates.

URL Structure for Tax Reporting
Use the following URL structure to access the Tax Reporting REST resources:

https://<BASE-URL>/HyperionPlanning/rest/{api_version}/{path}

Where:

• <BASE-URL>: The first part of your service URL, before the context.

For example, if your service URL is https://epm-acme.epm.us-
phoenix-1.ocs.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm-
acme.epm.us-phoenix-1.ocs.oraclecloud.com. Similarly, if your service URL is https://
epm2-acme.epm.us6.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm2-
acme.epm.us6.oraclecloud.com.

• api_version: API version you are developing with. The current REST API version for Tax
Reporting is v3.

• path: Identifies the resource.

Note:

Oracle does not authorize or support the use of REST APIs with the path token "/
internal/" in the URL.

Getting API Versions for Tax Reporting APIs
You can get information on REST API versions using REST resources. See Getting API
Versions for Planning. Tax Reporting APIs use the same version numbers as Planning.

Get Information about a Specific API Version for Tax Reporting
Returns details for a specific REST API version for Tax Reporting.

REST Resource

GET /HyperionPlanning/rest/{api_version}

Required Roles

Service Administrator, Power User, User, Viewer

22-1



Request

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 22-1    Parameters

Name Description

api_version Version of the API you are developing with,
such as V1

Response

Supported Media Types: application/json
Parameters

The following table summarizes the parameters.

Table 22-2    Parameters

Name Description

version The version, such as V3

Example of Response Body

The following shows an example of the response body in JSON format.

{  
"version": "v1",
"lifecycle": "active",
"isLatest": true,
"links": [{
"rel": "canonical",
"href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v2"
}, {
"rel": "predecessor-version",
"href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v1"
}]  
}

Copy Data
This REST API is used to execute a Copy Data job using the job name. Before executing this
job, you should create a Copy Data job in Tax Reporting.

For details on this task, see "Using Copy Data Job" in Administering Tax Reporting

This REST API returns the job ID after starting the Copy Data job.

Chapter 22
Copy Data

22-2



REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/jobs

Required Roles

Service Administrator

Request

Supported Media Types: application/json

Table 22-3    Parameters

Name Description Type Required Default

api_version Version of the API you are working with: v3 Path Yes None

application The name of the application
Get the application name by using the Get
Applications API, for example, FCCS or TRCS.
See Get Applications.

Path Yes None

jobName Name of the job should be: Execute Profile Payload Yes None

jobType Type of Job. Supported value: COPY_DATA Payload Yes None

ProfileName Name of the saved copy data job Payload Yes None

Example of Request Body

{
"jobType": "COPY_DATA",
"jobName": "Execute Profile",
"parameters": {
   "ProfileName": "CopyJobTesting"
 }
}

Response Body

Supported Media Types: application/json

Table 22-4    Parameters

Name Description

type Tax Reporting Application type, for example,
TRCS

status Status of the job: -1 =In progress; 0 = Success; 1
= Fail

details In case of errors, details are published with the
error string.

descriptiveStatus The status of the job, such as Completed or
Error

items Collection of Notification categories

links Detailed information about the link

Chapter 22
Copy Data

22-3

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36


Table 22-4    (Cont.) Parameters

Name Description

href Links to API call

action The HTTP call type

rel Relationship type. Possible values: self

Example of Response Body:

The following shows an example of the response body in JSON format.

{
    "jobId": 45,
    "jobName": "Copy Data",
    "descriptiveStatus": "Processing",
    "details": null,
    "status": -1,
    "links": [
        {
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/<applicationName>/jobs/<JobId>",
            "rel": "self",
            "action": "GET"
        },
        {
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/<applicationName>/jobs/<JobId>/details",
            "rel": "job-details",
            "action": "GET"
        }
    ]
}

Clear Data
This REST API is used to execute a Clear Data job using the profile name. Before executing
this job, you should create a Clear Data job in Tax Reporting.

For details on this task, see "Using Clear Data Jobs" in Administering Tax Reporting

This REST API returns the job ID after starting the job.

REST Resource

POST /HyperionPlanning/rest/{api_version}/applications/{application}/jobs

Required Roles

Service Administrator

Chapter 22
Clear Data

22-4



Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request parameters specific to this job.

Table 22-5    Clear Data

Name Description Type Required Default

api_version Version of the API
you are working
with: v3

Path Yes None

application The name of the
application
Get the
application name
by using the Get
Applications API,
for example, FCCS
or TRCS. See Get
Applications.

Path Yes None

jobName Name of the job
should be:
Execute Profile

Payload Yes None

jobType Type of Job.
Supported value:
CLEAR_DATA

Payload Yes None

ProfileName Name of the
saved clear data
job

Payload Yes None

Example of Request Body

{
  "jobType": "CLEAR_DATA",
  "jobName": "Execute Profile",
     "parameters": {
             "ProfileName": "ClearJobTesting"
      }
}

Response Body

Supported Media Types: application/json

Table 22-6    Parameters

Name Description

type Tax Reporting Application type, for example, TRCS

status Status of the job: -1 =In progress; 0 = Success; 1 = Fail

details In case of errors, details are published with the error string.

Chapter 22
Clear Data

22-5

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/prest/get_applications.html#planning_rest_apis_36


Table 22-6    (Cont.) Parameters

Name Description

descriptiveStatus The status of the job, such as Completed or Error

items Collection of Notification categories

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type. Possible values: self

Example of Response Body

The following is an example of the response body in JSON format.

{
  "jobId": 46,
  "jobName": "Clear Data",
    "descriptiveStatus": "Processing",
    "details": null,
    "status": -1,
    "links": [
        {
            "href": "https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/<applicationName>/jobs/<JobId>",
            "rel": "self",
            "action": "GET"
        },
        {
            "href":"https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/HyperionPlanning/rest/v3/
applications/<applicationName>/jobs/<JobId>/details",
            "rel": "job-details",
            "action": "GET"
        }
    ]
}

Chapter 22
Clear Data

22-6



23
Enterprise Profitability and Cost Management
REST APIs

Related Topics

• URL Structure for Enterprise Profitability and Cost Management

• Getting API Versions for Enterprise Profitability and Cost Management

• Getting Information About a Specific REST API Version for Enterprise Profitability and Cost
Management

Table 23-1    REST APIs

Task Request REST Resource

Calculate Model POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/
Clear Data By Point
of View

POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/

Copy Data by Point
of View

POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/

Delete Point of
View

POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/

Generate Model
Documentation
Report

POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/

Validate Model POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/

URL Structure for Enterprise Profitability and Cost Management
Use the following URL structure to access the Enterprise Profitability and Cost Management
REST resources:

https://<BASE-URL>/HyperionPlanning/rest/{api_version}/{path}

Where:

• <BASE-URL>: The first part of your service URL, before the context.

For example, if your service URL is https://epm-acme.epm.us-
phoenix-1.ocs.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm-
acme.epm.us-phoenix-1.ocs.oraclecloud.com. Similarly, if your service URL is https://
epm2-acme.epm.us6.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm2-
acme.epm.us6.oraclecloud.com.

• api_version: API version you are developing with. The current REST API version for
Enterprise Profitability and Cost Management is v3.

• path: Identifies the resource.

23-1



Note:

Oracle does not authorize or support the use of REST APIs with the path token "/
internal/" in the URL.

Getting API Versions for Enterprise Profitability and Cost
Management

You can get information on REST API versions using REST resources.

Important: The version number is case-sensitive. For example, if the version number is listed
as v3 with a lowercase v, you cannot enter the version number with a capital V as in this
incorrect example, V3, which would result in an error. Instead, you must enter the version
number with a lowercase v as in this correct example: v3.

Before using the REST resources, you must understand how to access the REST resources
and other important concepts. See Implementation Best Practices for EPM Cloud REST APIs.
Using REST APIs requires prerequisites. See Prerequisites.

There are two sets of REST APIs relevant for Enterprise Profitability and Cost Management.

• Planning REST APIs (See Getting API Versions for Planning).

• Enterprise Profitability and Cost Management-specific REST APIs. (See Getting
Information About a Specific REST API Version for Enterprise Profitability and Cost
Management).

Getting Information About a Specific REST API Version for
Enterprise Profitability and Cost Management

Returns information about a specific REST API version for Enterprise Profitability and Cost
Management.

Required Roles

Service Administrator, Power User, User, Viewer

REST Resource

GET /HyperionPlanning/rest/{api_version}

Request

Supported Media Types: application/json
Parameters

The following table summarizes the client request.

Chapter 23
Getting API Versions for Enterprise Profitability and Cost Management

23-2



Table 23-2    Parameters

Name Description Type Required Default

api_version Version of the API
you are working
with, such as V3

Path Yes None

Response Body

Supported Media Types: application/json
The following table summarizes the response parameters.

Table 23-3    Parameters

Attribute Description

version v3

lifecycle Lifecycle of the resource, active or deprecated

isLatest Whether this resource is the latest, true or false

Example of Response Body

The following shows an example of the response body in JSON format.

{
    "version": "v3",
    "lifecycle": "active",
    "isLatest": true,
    "links": [{
        "rel": "canonical",
        "href": "https://<BASE-URL>/HyperionPlanning/rest/v3"
    }, {
        "rel": "predecessor-version",
        "href": "https://<BASE-URL>/HyperionPlanning/rest/v2"
    }]
}

Calculate Model
Runs the calculation on a given point of view in a selected cube. This API supports batch
calculation with multiple POVs.

This is an asynchronous call, so use the job status URI to determine whether the operation is
complete.

This API is version v3.

Required Roles

Service Administrators

Chapter 23
Calculate Model

23-3



REST Resource

POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request parameters specific to this job.

Table 23-4    Parameters

Name Description Type Required Default

jobType Calculation Payload Yes None

jobName Name of the job
Example: "Calculation"

Payload Yes None

povDelimiter Delimiter used in POV values. The default delimiter is _
(under score). The delimiter must be enclosed in double
quotation marks. Only these delimiters are supported:
• _ (under score)
• # (hash)
• & (ampersand)
• ~ (tilde)
• % (percentage)
• ; (semicolon)
• : (colon)
• - (dash)
Example: "povDelimiter":":"
Note: When submitting multiple POVs for calculation, do
not use a comma as the delimiter to separate POV
members. Comma is reserved for separating POV groups
as shown in this example:
FY21:Jan:Actual:Working,FY21:Feb:Actual:Working
,FY21:Mar:Actual:Working

Payload Yes :: (Double
Colon)

povName Name of the POV to calculate. You can pass one or more
POVs separated by a comma (,).
Example:
"sourcePOVName":"FY16:May:Actual:Working"

Payload Yes None

modelName Name of the model to calculate
Example: "modelName":"10 Actuals Allocation
Process"

Payload Yes None

Chapter 23
Calculate Model

23-4



Table 23-4    (Cont.) Parameters

Name Description Type Required Default

executionType (ALL_RULES | RULESET_SUBSET | SINGLE_RULE |
RUN_FROM_RULE | STOP_AFTER_RULE) Identifies the
rule execution type
• If executionType=ALL_RULES, rule related

parameters are not required.
• If executionType=SINGLE_RULE |RUN_FROM_RULE|

STOP_AFTER_RULE, then provide ruleName only.
• If executionType=RULESET_SUBSET, then provide

values for rulesetSeqNumStart and
rulesetSeqNumEnd.

Example: "executionType":"ALL_RULES"

Payload Yes None

ruleName Name of the single rule to run
Example: "ruleName":"Utlities Expense
Adjustment"

Payload No None

rulesetSeqNumStart Sequence number of the first rule in the rule set to run
Example: "rulesetSeqNumStart:1"

Payload No None

rulesetSeqNumEnd Sequence number of the last rule in the rule set to run
Example: "rulesetSeqNumStart:10"

Payload No None

clearCalculatedDat
a

(True | False) Specifies whether to clear existing
calculations
Example: "clearCalculatedData":"true",

Payload No False

executeCalculation
s

(True | False) Specifies whether to run calculations
Example: "executeCalculations":"true"

Payload No False

optimizeForReporti
ng

(True | False) Specifies whether to optimize the
calculation process for reporting
When running multiple concurrent calculation jobs, set
optimizeReporting=true for all jobs. Only the last job
to complete will perform the aggregation, which avoids
redundant processing and prevents running jobs from
slowing down.
Set optimizeReporting=false only when necessary to
save processing time; for example, when running a
single rule or a sequential series of several POVs.
Example: "optimizeForReporting":"false",

Payload No False

captureDebugScript
s

(True | False) Specifies whether to generate debug
scripts
Example: "captureDebugScripts":"false"

Payload No False

comment Comment to describe the job Payload No None

Sample Payload

{
    "jobType":"Calculation",
    "jobName":"Calculation",
    "parameters":{
        "povDelimiter":":",

Chapter 23
Calculate Model

23-5



        "povName":"FY21:Jan:Actual:Working",,
        "modelName":"10 Actuals Allocation Process",
        "executionType":"ALL_RULES",
        "rulesetSeqNumStart":"1",
        "rulesetSeqNumEnd":"1",
        "clearCalculatedData":"true",
        "executeCalculations":"true",
        "optimizeForReporting":"true",
        "captureDebugScripts":"false"
    }
}

Response

Supported Media Types: application/json

Table 23-5    Parameters

Name Description

jobId ID of the job that is created

jobName Name of the job

details In case of errors, details are published with the error string

status See Migration Status Codes.

links Detailed information about the link

href Links to the API call

action HTTP call type

rel Can be self and/or Job-details. If set to Job Status, you can use the href
to get the status of the job.

data Parameters as key value pairs passed in the request

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
    "jobId": 26,
    "jobName": "Calculation",
    "status": -1,
    "descriptiveStatus": "Processing",
    "details": null,
    "links": [
        {
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/26",
            "action": "GET",
            "rel": "self",
        },
        {
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/26/details",
",

Chapter 23
Calculate Model

23-6



            "action": "GET",
            "rel": "job-details "
        }
    ]
}

Example 2: Job Status with No Errors

{
    "jobId": 26,
    "jobName": "Calculation",
    "status": 0,
    "descriptiveStatus": "Success",
    "details": null
    "links": [
        {
            "rel": "self"
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
jobs/26",
            "action": "GET",
        },
 {
            "rel": "job-details"
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
jobs/26/details",
            "action": "GET",
        }

    ]
}

Clear Data By Point of View
Clears the data for a given point of view in a selected cube.

This is an asynchronous call, so use the job status URI to determine whether the operation is
complete.

This API is version v3.

Required Roles

Service Administrators

REST Resource

POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Chapter 23
Clear Data By Point of View

23-7



Request

Supported Media Types: application/json
The following table summarizes the client request parameters specific to this job.

Table 23-6    Parameters

Name Description Type Required Default

jobType Clear POV Payload Yes None

jobName Name of the job
Example: "Clear POV"

Payload Yes None

povDelimiter Delimiter used in POV values. The delimiter must be
enclosed in double quotation marks. Other than a
comma, only these delimiters are supported:
• _ (under score)
• # (hash)
• & (ampersand)
• ~ (tilde)
• % (percentage)
• ; (semicolon)
• : (colon)
• - (dash)
Example: "povDelimiter":":"
Note: When submitting multiple POVs for calculation, do
not use a comma as the delimiter to separate POV
members. Comma is reserved for separating POV groups
as shown in this example:
FY21:Jan:Actual:Working,FY21:Feb:Actual:Working
,FY21:Mar:Actual:Working

Payload Yes :: (Double
Colon)

povName Name of the POV to clear
Example: "povName":"to FY21:Jan:Actual:Working"

Payload Yes None

cubeName Name of the cube on which clear operation is to be
executed
Example: "cubeName":"PCM_CLC"

Payload Yes PCM_CLC

clearInput (True|False) Specifies whether to clear input data
Example: "clearInput":"true"

Payload Yes None

clearAllocatedValu
es

(True|False) Specifies whether to clear allocated data
Example: "clearAllocatedValues":"true"

Payload Yes None

clearAdjustmentVal
ues

(True|False) Specifies whether to clear adjustment data
Example: "clearAdjustmentValues":"true"

Payload Yes None

Sample Payload

{
   "jobType":"Clear POV",
   "jobName":"Clear POV",
   "parameters":{
        "povDelimiter":":",
        "povName":"FY21:Jan:Actual:Working",

Chapter 23
Clear Data By Point of View

23-8



        "cubeName":"PCM_CLC",
        "clearInput":"true",
        "clearAllocatedValues":"true",
        "clearAdjustmentValues":"true"
   }
}

Response

Supported Media Types: application/json

Table 23-7    Parameters

Name Description

jobId ID of the job that is created

jobName Name of the job

details In case of errors, details are published with the error string

status See Migration Status Codes.

links Detailed information about the link

href Links to the API call

action HTTP call type

rel Can be self and/or Job-details. If set to Job Status, you can use the href
to get the status of the job.

data Parameters as key value pairs passed in the request

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
    "jobId": 26,
    "jobName": "Clear POV",
    "status": -1,
    "descriptiveStatus": "Processing",
    "details": null,
    "links": [
        {
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/26",
            "action": "GET",
            "rel": "self",
        },
        {
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/26/details",
",
            "action": "GET",
            "rel": "job-details "
        }

Chapter 23
Clear Data By Point of View

23-9



    ]
}

Example 2: Job Status with No Errors

{
    "jobId": 26,
    "jobName": " Copy POV",
    "status": 0,
    "descriptiveStatus": "Success",
    "details": null
    "links": [
        {
            "rel": "self"
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
jobs/26",
            "action": "GET",
        },
 {
            "rel": "job-details"
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
jobs/26/details",
            "action": "GET",
        }

Copy Data by Point of View
Copies data from a source to a destination point of view in a selected cube.

This is an asynchronous call, so use the job status URI to determine whether the operation is
complete.

This API is version v3.

Required Roles

Service Administrators

REST Resource

POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request parameters specific to this job.

Chapter 23
Copy Data by Point of View

23-10



Table 23-8    Parameters

Name Description Type Required Default

jobType Copy POV Payload Yes None

jobName Name of the job
Example: "Copy POV"

Payload Yes None

povDelimiter Delimiter used in POV values. The delimiter must be
enclosed in double quotation marks. Other than a
comma, only these delimiters are supported:
• _ (under score)
• # (hash)
• & (ampersand)
• ~ (tilde)
• % (percentage)
• ; (semicolon)
• : (colon)
• - (dash)
Example: "povDelimiter":":"
Note: When submitting multiple POVs for calculation, do
not use a comma as the delimiter to separate POV
members. Comma is reserved for separating POV groups
as shown in this example:
FY21:Jan:Actual:Working,FY21:Feb:Actual:Working
,FY21:Mar:Actual:Working

Payload Yes :: (Double
Colon)

sourcePOVName Name of the source POV
Example:
"sourcePOVName":"FY21:Jan:Actual:Working "

Payload Yes None

destPOVName Name of the destination POV
Example:
"destinationPOVName":"FY21:Feb:Actual:Working"

Payload Yes None

copyType (ALL_DATA|INPUT) specifies the data to copy from the
source
Example: "copyType":"ALL_DATA"

Payload Yes None

sourceCubeName Name of the source Oracle Essbase cube
Example: "sourceCubeName":"PCM_CLC"

Payload Yes None

destCubeName Name of the destination Essbase cube
Example: "destCubeName":"PCM_CLC"

Payload Yes None

Sample Payload

{
   "jobType":"Copy POV",
   "jobName":"Copy POV",
   "parameters":{
        "povDelimiter":":",
        "sourcePOVName":"FY21:Jan:Actual:Working",
        "destPOVName":"FY21:Feb:Actual:Working",
        "sourceCubeName":"PCM_CLC",
        "destCubeName":"PCM_CLC",
        "createDestPOV":"true",

Chapter 23
Copy Data by Point of View

23-11



       "copyType":"ALL_DATA"
   }
}

Response

Supported Media Types: application/json

Table 23-9    Parameters

Name Description

jobId ID of the job that is created

jobName Name of the job

details In case of errors, details are published with the error string

status See Migration Status Codes.

links Detailed information about the link

href Links to the API call

action HTTP call type

rel Can be self and/or Job-details. If set to Job Status, you can use the href
to get the status of the job.

data Parameters as key value pairs passed in the request

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
    "jobId": 26,
    "jobName": "Copy POV",
    "status": -1,
    "descriptiveStatus": "Processing",
    "details": null,
    "links": [
        {
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/26",
            "action": "GET",
            "rel": "self",
        },
        {
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/26/details",
",
            "action": "GET",
            "rel": "job-details "
        }
    ]
}

Chapter 23
Copy Data by Point of View

23-12



Example 2: Job Status with No Errors

{
    "jobId": 26,
    "jobName": " Copy POV",
    "status": 0,
    "descriptiveStatus": "Success",
    "details": null
    "links": [
        {
            "rel": "self"
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
jobs/26",
            "action": "GET",
        },
 {
            "rel": "job-details"
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
jobs/26/details",
            "action": "GET",
        }

Delete Point of View
Deletes the data associated with a point of view from the calculation cube.

This is an asynchronous call, so use the job status URI to determine whether the operation is
complete.

This API is version v3.

Required Roles

Service Administrators

REST Resource

POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request parameters specific to this job.

Chapter 23
Delete Point of View

23-13



Table 23-10    Parameters

Name Description Type Required Default

jobType Delete POV Payload Yes None

jobName Name of the job
Example: "Delete POV"

Payload Yes None

povDelimiter Delimiter used in POV values. The delimiter must be
enclosed in double quotation marks. Other than a
comma, only these delimiters are supported:
• _ (under score)
• # (hash)
• & (ampersand)
• ~ (tilde)
• % (percentage)
• ; (semicolon)
• : (colon)
• - (dash)
Example: "povDelimiter":":"
Note: When submitting multiple POVs for calculation, do
not use a comma as the delimiter to separate POV
members. Comma is reserved for separating POV groups
as shown in this example:
FY21:Jan:Actual:Working,FY21:Feb:Actual:Working
,FY21:Mar:Actual:Working

Payload Yes :: (Double
Colon)

povName Name of the POV to delete
Example: "povName":"FY21:Jan:Actual:Working"

Payload Yes None

Sample Payload

{
   "jobType":"Delete POV",
   "jobName":"Delete POV",
   "parameters":{
        "povDelimiter":":",
        "povName":"FY21:Jan:Actual:Working"
   }
}

Response

Supported Media Types: application/json

Table 23-11    Parameters

Name Description

jobId ID of the job that is created

jobName Name of the job

details In case of errors, details are published with the error string

status See Migration Status Codes.

Chapter 23
Delete Point of View

23-14



Table 23-11    (Cont.) Parameters

Name Description

links Detailed information about the link

href Links to the API call

action HTTP call type

rel Can be self and/or Job-details. If set to Job Status, you can use the href
to get the status of the job.

data Parameters as key value pairs passed in the request

Example of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
    "jobId": 26,
    "jobName": "Delete POV",
    "status": -1,
    "descriptiveStatus": "Processing",
    "details": null,
    "links": [
        {
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/26",
            "action": "GET",
            "rel": "self",
        },
        {
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/26/details",
",
            "action": "GET",
            "rel": "job-details "
        }
    ]
}

Example 2: Job Status with No Errors

{
    "jobId": 26,
    "jobName": " Delete POV",
    "status": 0,
    "descriptiveStatus": "Success",
    "details": null
    "links": [
        {
            "rel": "self"
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
jobs/26",
            "action": "GET",

Chapter 23
Delete Point of View

23-15



        },
 {
            "rel": "job-details"
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
jobs/26/details",
            "action": "GET",
        }

    ]
}

Generate Model Documentation Report
Generates an Enterprise Profitability and Cost Management Model Documentation report.

This is an asynchronous call, so use the job status URI to determine whether the operation is
complete.

Any validation failures are written to file with file name provided in the parameters, and can be
accessed from Inbox/Outbox Explorer.

This API is version v3.

Required Roles

Service Administrators

REST Resource

POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request parameters specific to this job.

Table 23-12    Parameters

Name Description Type Required Default

jobType Generate EPCM Report Payload Yes None

jobName User-specified name for this job execution
Example: "Model Documentation Report for 10
Actuals Allocation Process"

Payload Yes None

reportName "MODEL_DOC" Payload Yes None

Chapter 23
Generate Model Documentation Report

23-16



Table 23-12    (Cont.) Parameters

Name Description Type Required Default

outputFileName Name of the output file to which the report will be
generated
Example: "My_Model_Doc_Report_Output"

Payload Yes None

outputType (PDF | Word | Excel | HTML | XML) Format in which
the output will be generated
Example: "PDF"

Payload Yes None

modelName Name of model for which the report is generated
Example: "10 Actuals Allocation Process"

Payload Yes None

Sample Payload

{
   "jobType":"Generate EPCM Report",
   "jobName":"Model Documentation Report for 10 Actuals Allocation Process",
   "parameters":{
        "reportName":"MODEL_DOC",
        "outputFileName":"My_Model_Doc_Report_Output",
        "outputType":"PDF",
        "modelName":"10 Actuals Allocation Process"
  }
}

Response

Supported Media Types: application/json

Table 23-13    Parameters

Name Description

jobId ID of the job that is created

jobName Name of the job

details In case of errors, details are published with the error string

status See Migration Status Codes.

links Detailed information about the link

href Links to the API call

action HTTP call type

rel Can be self and/or Job-details. If set to Job Status, you can use the href
to get the status of the job.

data Parameters as key value pairs passed in the request

Example of Response Body

The following examples show the contents of the response body in JSON format:

Chapter 23
Generate Model Documentation Report

23-17



Example 1: Job is in Progress

{
    "jobId": 26,
    "jobName": "Generate Report",
    "status": -1,
    "descriptiveStatus": "Processing",
    "details": null,
    "links": [
         {
            "rel": "self",
            "href":http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/6,
            "action": "GET"
         },
         {
            "rel": "job-details",
            "href":http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/6/details,
            "action": "GET"
        }
    ]
}

Example 2: Job Status with No Errors

{
    "jobId": 26,
    "jobName": "Generate Report",
    "status": 0,
    "descriptiveStatus": "Success",
    "details": null
    "links": [
        {
            "rel": "self",
            "href":http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/6,
            "action": "GET"
        },
        {
            "rel": "job-details",
            "href":http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/6/details,
            "action": "GET"
        }
    ],
}

Validate Model
Automates the calculation process for validating a model.

This is an asynchronous call, so use the job status URI to determine whether the operation is
complete.

Chapter 23
Validate Model

23-18



Any validation failures are written to file with file name provided in the parameters, and can be
accessed from Inbox/Outbox Explorer.

This API is version v3.

Required Roles

Service Administrators

REST Resource

POST /HyperionPlanning/rest/v3/applications/{AppName}/jobs/

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request parameters specific to this job.

Table 23-14    Parameters

Name Description Type Required Default

jobType Validate Model Payload Yes None

jobName Name of the job
Example: "Validate Model"

Payload Yes None

modelName Name of the model to validate
Example: "modelName":"10 Actuals Allocation
Process"

Payload Yes None

fileName Name of the output file to which all the validations (if
any) will be written
Example: "fileName":"results.txt"

Payload Yes None

Sample Payload

{
   "jobType":"Validate Model", 
   "jobName":"Validate Model",
   "parameters":{
       "modelName":"10 Actuals Allocation Process",
       "fileName":"results.txt"
   }
}

Response

Supported Media Types: application/json

Chapter 23
Validate Model

23-19



Table 23-15    Parameters

Name Description

jobId ID of the job that is created

jobName Name of the job

details In case of errors, details are published with the error string

status See Migration Status Codes.

links Detailed information about the link

href Links to the API call

action HTTP call type

rel Can be self and/or Job-details. If set to Job Status, you can use the href
to get the status of the job.

data Parameters as key value pairs passed in the request

Examples of Response Body

The following examples show the contents of the response body in JSON format:

Example 1: Job is in Progress

{
    "jobId": 26,
    "jobName": "Validate Model",
    "status": -1,
    "descriptiveStatus": "Processing",
    "details": null,
    "links": [
        {
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/26",
            "action": "GET",
            "rel": "self",
        },
        {
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
BksML40/jobs/26/details",
",
            "action": "GET",
            "rel": "job-details "
        }
    ]
}

Example 2: Job Status with No Errors

{
    "jobId": 26,
    "jobName": "validate Model",
    "status": 0,
    "descriptiveStatus": "Success",
    "details": null

Chapter 23
Validate Model

23-20



    "links": [
        {
            "rel": "self"
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
jobs/26",
            "action": "GET",
        },
 {
            "rel": "job-details"
            "href": "http://<BASE-URL>/HyperionPlanning/rest/v3/applications/
jobs/26/details",
            "action": "GET",
        }

    ]
}

Chapter 23
Validate Model

23-21



24
Profitability and Cost Management REST APIs

Related Topics

• URL Structure for Profitability and Cost Management

• Get API Versions for Profitability and Cost Management REST APIs

• Get Information about a Specific API Version for Profitability and Cost Management

Table 24-1    REST APIs

Task Request REST Resource

Apply Data Grants POST /epm/rest/{api_version}/applications/{application}/jobs/
applyDataGrants

Copy ML POV Data POST /epm/rest/{api_version}/applications/{application}/povs/
{srcPOVMemberGroup}/jobs/copyPOVJob/{destPOVMemberGroup}

Create File-Based
Application

POST /epm/rest/{api_version}/fileApplications/{application}

Deploy ML Cube POST /epm/rest/{api_version}/applications/{application}/jobs/
ledgerDeployCubeJob

Enable File-Based
Application

POST /epm/rest/{api_version}/fileApplications/{application}/
enableApplication

Essbase Data Load
for Profitability and
Cost Management

POST /epm/rest/{api_version}/applications/{application}/jobs/
essbaseDataLoadJob

Export Query
Results

POST /epm/rest/{api_version}/applications/{application}/jobs/
exportQueryResultsJob

Export Template for
Profitability and
Cost Management

POST /epm/rest/{api_version}/applications/{application}/jobs/
templateExportJob?fileName={fileName}

Generate Program
Documentation
Report

GET epm/rest/{api_version}/applications/{application}/povs/
{POV}/programDocumentationReport

Generate Program
Documentation
Report - Run as a
Job

POST /epm/rest/{api_version}/applications/<applicationName>/
povs/<povName>/jobs/programDocReportJob

Import Template for
Profitability and
Cost Management

POST /epm/rest/{api_version}/applications/{application}/jobs/
templateImportJob

Merge Slices for
Profitability and
Cost Management

POST /epm/rest/{api_version}/applications/{application}/jobs/
mergeSlices

Optimize ASO
Cube

POST /epm/rest/v1/applications/{AppName}/jobs/optimizeASOCube

24-1



Table 24-1    (Cont.) REST APIs

Task Request REST Resource

Retrieve Task
Status for
Profitability and
Cost Management

GET /epm/rest/{api_version}/applications/jobs/
ChecktaskStatusJob/{processName}

Run ML
Calculations

POST /epm/rest/{api_version}/applications/{application}/povs/
{povGroupMember}/jobs/runLedgerCalculationJob

Run ML Clear POV POST /epm/rest/{api_version}/applications/{application}/povs/
{povGroupMember}/jobs/clearPOVJob

Run ML Rule
Balancing

GET /epm/rest/{api_version}/applications/{application}/povs/
{povGroupMember}/ruleBalance

Update Dimensions
As a Job

POST /epm/rest/{api_version}/fileApplications/{application}/
jobs/updateDimension

URL Structure for Profitability and Cost Management
Use the following URL structure to access the Profitability and Cost Management REST
resources:

https://<BASE-URL>/epm/rest/{api_version}/{path}

Where:

• <BASE-URL>: The first part of your service URL, before the context.

For example, if your service URL is https://epm-acme.epm.us-
phoenix-1.ocs.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm-
acme.epm.us-phoenix-1.ocs.oraclecloud.com. Similarly, if your service URL is https://
epm2-acme.epm.us6.oraclecloud.com/epmcloud, your <BASE-URL> is https://epm2-
acme.epm.us6.oraclecloud.com.

• api_version: API version you are developing with. The current REST API version for
Profitability and Cost Management is V1.

• path: Identifies the resource.

Note:

Oracle does not authorize or support the use of REST APIs with the path token "/
internal/" in the URL.

Get API Versions for Profitability and Cost Management REST
APIs

Returns information about which versions are available and supported. Multiple versions might
be supported simultaneously.

Chapter 24
URL Structure for Profitability and Cost Management

24-2



Note:

An API version is always supported even when deprecated.

Required Roles

Service Administrator, Power User, User, Viewer

REST Resource

GET /epm/rest/

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Response

Supported Media Types: application/json

Table 24-2    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

items Version of the API you are developing with

version The version, such as v1

lifecycle Possible values: active, deprecated

isLatest Whether this resource is the latest, true or false

Example of Response Body

The following shows an example of the response body in JSON format.

{
    "items": [{
        "isLatest": false,
        "lifecycle": "deprecated",
        "version": "11.1.2.4.000",
        "links": [{
            "href": "https://<BASE-URL>>/epm/rest/11.1.2.4.000",
            "rel": "canonical"
        }, {
            "href": "https://<BASE-URL>>/epm/rest/v1",
            "rel": "successor-version"
        }]
    }, {
        "isLatest": true,

Chapter 24
Get API Versions for Profitability and Cost Management REST APIs

24-3



        "lifecycle": "active",
        "version": "v1",
        "links": [{
            "href": "https://<BASE-URL>>/epm/rest/v1",
            "rel": "canonical"
        }, {
            "href": "https://<BASE-URL>>/epm/rest/11.1.2.4.000",
            "rel": "predecessor-version"
        }]
    }],
    "links": [{
        "href": "https://<BASE-URL>>/epm/rest/11.1.2.4.000",
        "rel": "canonical"
    }, {
        "href": "https://<BASE-URL>>/epm/rest/v1",
        "rel": "current"
    }]
}

Java Sample – GetRestAPIVersionsInfo.java for Profitability and Cost Management

Prerequisites: json.jar

Prerequisites: See Profitability and Cost Management Common Helper Functions for Java

     public void getRestAPIVersionsInfo() throws Exception {        
        String urlString = String.format("%s/epm/rest", serverUrl);
        String response = executeRequest(urlString, "GET", null, "application/
json");
        System.out.println("Response String : " + response);
        JSONObject jsonObj = new JSONObject(response);
        JSONArray itemsArray = jsonObj.getJSONArray("items");        
        System.out.println("Details : " + itemsArray.toString());
    }

cURL Sample – GetRestAPIVersionInfo.sh for Profitability and Cost Management

Common functions: See Profitability and Cost Management Common Helper Functions for
cURL

 funcGetRestAPIVersionInfo()
{
    url=$SERVER_URL/epm/rest/$API_VERSION
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"
    status=$?
    echo "status code :$status"
    output='cat response.txt'
    if [ $status == 200 ]; then
        echo "Version $API_VERSION details :"
        count='echo $output | jq '.links | length''
        i=0
        while [ $i -lt $count ]; do
            echo "Service : " 'echo $output | jq '.links['$i'].rel''
            echo "URL :" 'echo $output | jq '.links['$i'].href''
            echo "Action :" 'echo $output | jq '.links['$i'].action''
            echo ""

Chapter 24
Get API Versions for Profitability and Cost Management REST APIs

24-4



            i='expr $i + 1'
        done
    else
        error='echo $output'
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – GetRestAPIVersionsInfo.groovy for Profitability and Cost Management

Prerequisites: json.jar

Common functions: See Appendix C: Common Helper Functions for Groovy.

def getRestAPIVersionsInfo() {
                 def url;
                 def response;
    try {
                           url = new URL(serverUrl + "/epm/rest");
    } catch (MalformedURLException e) {
             println "Malformed URL. Please pass valid URL"
             System.exit(0);
    }
    response = executeRequest(url, "GET", null, "application/json");
    def object = new JsonSlurper().parseText(response)       
        
                 if(object != null) {
                      def items = object.items
                      println "Rest API Versions Info : " + items
    } else {
                      println "Error occurred while fetching rest api 
versions details"
    }
}

Get Information about a Specific API Version for Profitability and
Cost Management

Returns details for a specific REST API version for Profitability and Cost Management.

Required Roles

Service Administrator, Power User, User, Viewer

REST Resource

GET /epm/rest/

Chapter 24
Get Information about a Specific API Version for Profitability and Cost Management

24-5



Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the request parameters.

Table 24-3    Parameters

Name Description Type Require
d

Default

api_version Version of the API you are developing with, such as
V1

Path Yes None

Response

Supported Media Types: application/json

Table 24-4    Parameters

Name Description

version The version, such as v1

lifecycle Possible values: active, deprecated

isLatest Whether this resource is the latest, true or false

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "items": [{  
      "version": "v1",
      "lifecycle": "active",
      "isLatest": true,
      "links": [{
        "rel": "canonical",
        "href": "https://<BASE-URL>>/epm/rest/v1",
      }, {
         "rel": "predecessor-version",
         "href": "https://<BASE-URL>/epm/rest/v1",
     }]  
   }],
   "links": [{
      "rel": "current",
      "href": "https://<BASE-URL>/epm/rest/v1"
   }]
}

Chapter 24
Get Information about a Specific API Version for Profitability and Cost Management

24-6



Apply Data Grants
Applies data grants for a given Profitability and Cost Management application.

This API submits a job to remove all existing data grants in Oracle Essbase and recreate them
with the latest information from the application. It can also be used to repair data grants if there
are any issues.

Required Roles

Service Administrator, Power User

REST Resource

POST /epm/rest/{api_version}/applications/{application}/jobs/applyDataGrants

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-5    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with, such
as v1

Path Yes None

application Name of the application to create Path Yes None

Example URL

https://<BASE-URL>/epm/rest/v1/applications/BksML30/jobs/applyDataGrants

Response

Supported Media Types: application/json

Table 24-6    Parameters

Name Description

details Task ID, such as
BksML12_BksML12_LoadData_D20160118T051020_ba8_1

status See Migration Status Codes

statusMessage Message about the status, such as Success
type Profitability

Chapter 24
Apply Data Grants

24-7



Table 24-6    (Cont.) Parameters

Name Description

data Parameters as key value pairs

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_ApplyDataGrants_D20220511T114653_b85",
   "links":[
      {
         "href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_ApplyDataGrants_D20220511T114653_b85",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – applyDataGrants.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

    public void applyDataGrants() throws Exception {
        
        
        String urlString = "%s/epm/rest/%s/applications/%s/jobs/
applyDataGrants";
        executeJob(urlString, "POST", null);
    }

cURL Sample – ApplyDataGrants.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcApplyDataGrants() {
    
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/jobs/
applyDataGrants

Chapter 24
Apply Data Grants

24-8



    funcExecuteRequest "POST" $url "application/json"
        
    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started Data Grants successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
    
}

Groovy Sample – ApplyDataGrants.groovy for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

    def applyDataGrants() {
    String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
applications/" + appName +"/jobs/applyDataGrants";
    def url;
        
try {
     url = new URL(urlString)
       } catch (MalformedURLException e) {
     println "Malformed URL. Please pass valid URL"
     System.exit(0);
       }
        
    executeJob(url, "POST", null);
 }

Copy ML POV Data
Copies model artifacts and data from a Source POV combination to a Destination POV
combination for any application. Use with Management Ledger applications.

Required Roles

Service Administrator, Power User

REST Resource

POST /epm/rest/{api_version}/applications/{application}/povs/
{srcPOVMemberGroup}/jobs/copyPOVJob/{destPOVMemberGroup}

Chapter 24
Copy ML POV Data

24-9



Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-7    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application Name of the application for which to deploy the
cube

Path Yes None

srcPOVMemberGroup Source POV member group, such as
2014_January_Actual

Path Yes None

destPOVMemberGroup Destination POV member group, such as
2014_March_Actual

Path Yes None

isManageRule Whether to copy the program rule details Payload Yes None

isInputData Whether to copy input data

Note: Do not set the value of this parameter to
true if the value of isAllData or
isAllInputData is set to true.

Payload Yes None

modelViewName Whether to copy a slice of data from source POV
to destination POV

Payload No Nothing
copied

isAllInputData Whether to copy all input data at the NoRule
member, including AdjustmentIn/Out

Form No False

isAllData Whether to copy all POV data Form No False

createDestPOV Whether to create the destination POV if it does
not already exist

Payload Yes None

nonEmptyTupleEnabled Specifies whether to enable the Non Empty Tuple
(NET). Valid values are true and false. In some
cases, the default
nonEmptyTupleEnabled=true does not
perform well when copying the Oracle Essbase
data. In those cases, use
nonEmptyTupleEnabled=false to improve
performance.

Payload No True

stringDelimiter String delimiter for POV group members Payload Yes None

Example URL and Payload

https://<BASE-URL>/epm/rest/v1/applications/LM1T2/povs/2014_January_Actual/jobs/
copyPOVJob/2014_March_Actual
{"isManageRule":"true","isInputData":"true","modelViewName":"Operating
Expenses","createDestPOV":"true","nonEmptyTupleEnabled":"true","stringDelimiter":
"_"}

Chapter 24
Copy ML POV Data

24-10



Response

Supported Media Types: application/json

Table 24-8    Parameters

Name Description

details Task ID, such as
LM1T2_LM1T2_CopyMLPOV_D20160113T065943_75b_1

status See Migration Status Codes

statusMessage Message about the status, such as In Progress
type Profitability

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_CopyMLPOV_D20220511T114800_7ad",
   "links":[
      {
         "href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_CopyMLPOV_D20220511T114800_7ad",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – CopyPOV.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

  public void copyPOVData() throws Exception {
        
        JSONObject json = new JSONObject();                String 
modelViewName = "Operating Expenses";
        json.put("isManageRule", true);
        json.put("isInputData", true);
        json.put("modelViewName", modelViewName);        
        json.put("createDestPOV", true);
        json.put("stringDelimiter", "_");

Chapter 24
Copy ML POV Data

24-11



        
        String sourcePovGroupMember = "2014_January_Actual";
        String destPovGroupMember = "2014_December_Actual";
        
        String urlString = "%s/epm/rest/%s/applications/%s/povs/" + 
sourcePovGroupMember.trim().replaceAll(" ", "%20") 
                                       + "/jobs/copyPOVJob/"+  
destPovGroupMember.trim().replaceAll(" ", "%20");
        executeJob(urlString, "POST", json.toString()); 
    }

cURL Sample – CopyPOV.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcCopyPOVData() {
    stringDelimiter="_";    modelViewName="Operating Expenses";
    destPovGroupMember="2014_December_Actual";
    
param="{\"isManageRule\":\"true\",\"isInputData\":\"true\",\modelViewName\":\"
$modelViewName\",\"createDestPOV\":\"true\",\"stringDelimiter\":\"$stringDelim
iter\"}"
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/
povs/$POV_GROUP_MEMBER/jobs/copyPOVJob/$destPovGroupMember
    funcExecuteRequest "POST" $url "$param" "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started Copying POV successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Java Sample – CopyPOV.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

  public void copyPOVData() throws Exception {
        
        JSONObject json = new JSONObject();                String 
modelViewName = "Operating Expenses";
        json.put("isManageRule", true);
        json.put("isInputData", true);
        json.put("modelViewName", modelViewName);        
        json.put("createDestPOV", true);
        json.put("stringDelimiter", "_");
        

Chapter 24
Copy ML POV Data

24-12



        String sourcePovGroupMember = "2014_January_Actual";
        String destPovGroupMember = "2014_December_Actual";
        
        String urlString = "%s/epm/rest/%s/applications/%s/povs/" + 
sourcePovGroupMember.trim().replaceAll(" ", "%20") 
                                       + "/jobs/copyPOVJob/"+  
destPovGroupMember.trim().replaceAll(" ", "%20");
        executeJob(urlString, "POST", json.toString()); 
    }

Create File-Based Application
Creates an application using a flat file using a REST API.

Required Roles

Service Administrator

REST Resource

POST /epm/rest/{api_version}/fileApplications/{application}

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-9    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application Name of the application to create Path Yes None

description User comment for this application Payload Yes None

ruleDimensionName Rule dimension name Payload Yes None

balanceDimensionNa
me

Balance dimension name Payload Yes None

Example URL and Payload

https://<BASE-URL>/epm/rest/v1/fileApplications/BksML12
{"description":
"description","ruleDimensionName":"Rule","balanceDimensionName":"Balance"}

Chapter 24
Create File-Based Application

24-13



Response

Supported Media Types: application/json

Table 24-10    Parameters

Name Description

details Task ID, such as
BksML12_BksML12_LoadData_D20160118T051020_ba8_1

status See Migration Status Codes

statusMessage Message about the status, such as Success
type Profitability

data Parameters as key value pairs

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_UpdateDimensions_D20220513T062046_c61",
   "links":[
      {
         "href":"http://<<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_UpdateDimensions_D20220513T062046_c61",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – CreateFlatFileApplication.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

  public void createFlatFileApplication() throws Exception {
        
        JSONObject json = new JSONObject();
        json.put("description", "Flat file based application");
        json.put("ruleDimensionName", "Rule");
        json.put("balanceDimensionName", "Balance");       
        
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/

Chapter 24
Create File-Based Application

24-14



fileApplications/" + "BksML13";
        String response = executeRequest(urlString, "POST", json.toString(), 
"application/json");
        
        JSONObject jsonObj = new JSONObject(response);
        int resStatus = jsonObj.getInt("status");
        
        if(resStatus == 0) {
            System.out.println("Application created successfully");
        } else {
            System.out.println("Application creation failed");
        }   
  }

cURL Sample – CreateFlatFileApplication.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcCreateFlatFileApplication() {
    description="Flat file based application";
    ruleDimensionName="Rule"
    balanceDimensionName="Balance"
    
param="{\"description\":\"$description\",\"ruleDimensionName\":\"$ruleDimensio
nName\",\"balanceDimensionName\":\"$balanceDimensionName\"}"
    url=$SERVER_URL/epm/rest/$API_VERSION/fileApplications/BksML13
    funcExecuteRequest "POST" $url "$param" "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "Application created successfully"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – CreateFlatFileApplication.groovy for Profitability and Cost
Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

def createFlatFileApplication() {
        
        JSONObject json = new JSONObject();
        json.put("description", "Flat file based application");
        json.put("ruleDimensionName", "Rule");
        json.put("balanceDimensionName", "Balance");       
        
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
fileApplications/" + "BksML13";

Chapter 24
Create File-Based Application

24-15



        
        def url;
        
        try {
                url = new URL(urlString)
        } catch (MalformedURLException e) {
                println "Malformed URL. Please pass valid URL"
                System.exit(0);
        }
        
        String response = executeRequest(url, "POST", json.toString(), 
"application/json")
        
        JSONObject jsonObj = new JSONObject(response);
        int resStatus = jsonObj.getInt("status");
        
        if(resStatus == 0) {
            println "Application created successfully"
        } else {
            println "Application creation failed"
        }   
}

Deploy ML Cube
Deploys or redeploys the calculation cube for a selected Profitability and Cost Management
application.

Required Roles

Service Administrator, Power User

REST Resource

POST /epm/rest/{api_version}/applications/{application}/jobs/ledgerDeployCubeJob

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-11    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

Chapter 24
Deploy ML Cube

24-16



Table 24-11    (Cont.) Parameters

Name Description Type Required Default

application Name of the application for which to deploy the
cube

Path Yes None

isKeepData Specify whether to preserve existing data Payload Yes None

isReplaceCube Specifies whether to replace existing cube

Note: Both isKeepData and isReplaceCube
cannot be true at the same time.

Payload Yes None

isRunNow Run now or schedule for later. (Schedule for later is
not currently supported.)

Payload Yes None

comment Any user comments Payload Yes None

Example URL and Payload

https://<BASE-URL>/epm/rest/v1/applications/{applicationName}/jobs/
ledgerDeployCubeJob
{"isKeepData":"true","isRunNow":"true","comment":"Test Ml Deploy"}

Response

Supported Media Types: application/json

Table 24-12    Parameters

Name Description

details In case of errors, details are published with the error string

status See Migration Status Codes

statusMessage Message about the status, such as In Progress
type Profitability

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_DeployCube_D20220511T114550_da1",
   "links":[
      {
         "href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_DeployCube_D20220511T114550_da1",
         "action":"GET",
         "rel":"Job Status"

Chapter 24
Deploy ML Cube

24-17



      }
   ]
}

Java Sample – DeployCube.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

    public void deployCube() throws Exception {        
        JSONObject json = new JSONObject();
        json.put("isKeepData", true);
        json.put("isReplaceCube", false);
        json.put("isRunNow", true);
        json.put("comment", "Cube deployment");
        
        String urlString = "%s/epm/rest/%s/applications/%s/jobs/
ledgerDeployCubeJob";
        executeJob(urlString, "POST", json.toString());        
    }

cURL Sample – DeployCube.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcDeployCube() {
    comment="Cube deployment Curl"
    
param="{\"isKeepData\":\"false\",\"isReplaceCube\":\"true\",\"isRunNow\":\"tru
e\",\"comment\":\"$comment\"}"
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/jobs/
ledgerDeployCubeJob
    funcExecuteRequest "POST" $url "$param" "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started Deploying Cube successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – DeployCube.groovy for Profitability and Cost Management

Prerequisites: json.jar

Chapter 24
Deploy ML Cube

24-18



Common Functions: See Appendix C: Common Helper Functions for Groovy.

def deployCube() {
        
        JSONObject json = new JSONObject();
        json.put("isKeepData", true);
        json.put("isReplaceCube", false);
        json.put("isRunNow", true);
        json.put("comment", "Cube deployment");     
        
        def url;
        def response;
    
        try {
                 url = new URL(serverUrl + "/epm/rest/" + apiVersion + "/
applications/" + appName + "/jobs/ledgerDeployCubeJob")
        } catch (MalformedURLException e) {
                println "Malformed URL. Please pass valid URL"
                System.exit(0);
       }
        
        executeJob(url, "POST", json.toString());        
}

Enable File-Based Application
Enables an application using a flat file.

Required Roles

Service Administrator, Power User

REST Resource

POST /epm/rest/{api_version}/fileApplications/{application}/enableApplication

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-13    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

Chapter 24
Enable File-Based Application

24-19



Table 24-13    (Cont.) Parameters

Name Description Type Required Default

application Name of the application to enable Path Yes None

Example URL

https://<EPM-CLOUD-BASE-URL>/epm/rest/v1/fileApplications/BksML12/
enableApplication

Response

Supported Media Types: application/json

Table 24-14    Parameters

Name Description

details Task ID, such as
BksMl12_BksMl12_EnableApplication_D20160113T075011_53c_1

status See Migration Status Codes

statusMessage Message about the status, such as Success
type Profitability

data Parameters as key value pairs

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_EnableApplication_D20220511T114947_65c",
   "links":[
      {
         "href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_EnableApplication_D20220511T114947_65c",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – EnableApplication.java for Profitability and Cost Management

Prerequisites: json.jar

Chapter 24
Enable File-Based Application

24-20



Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

    public void enableApplication() throws Exception {
        String urlString = "%s/epm/rest/%s/fileApplications/%s" +"/
enableApplication";
        executeJob(urlString, "POST", null);
    }   

cURL Sample – EnableApplication.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcEnableApplication() {
    url=$SERVER_URL/epm/rest/$API_VERSION/fileApplications/$APP_NAME/
enableApplication
    funcExecuteRequest "POST" $url "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started Enabling Application successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – EnableApplication.groovy for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

def enableApplication() {
    
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
fileApplications/"+ appName +"/enableApplication";
        def url;
        
        try {
                 url = new URL(urlString)
        } catch (MalformedURLException e) {
                 println "Malformed URL. Please pass valid URL"
                 System.exit(0);
        }        
        executeJob(url, "POST", null);
}

Chapter 24
Enable File-Based Application

24-21



Essbase Data Load for Profitability and Cost Management
Loads input data to an Oracle Essbase application.

Required Roles

Service Administrator, Power User

REST Resource

POST /epm/rest/{api_version}/applications/{application}/jobs/essbaseDataLoadJob

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-15    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application Name of the application for which to load the data Path Yes None

clearAllDataFlag Whether to clear existing data (true) or not
(false)

Payload Yes None

dataLoadValue Possible values are ADD_EXISTING_VALUES or
OVERWRITE_EXISTING_VALUES

Payload Yes None

dataFileName Name of the data file already present in the inbox
folder

Payload Yes None

Example URL and Payload

https://<BASE-URL>/epm/rest/v1/applications/BksML12/jobs/essbaseDataLoadJob
{"clearAllDataFlag":"true","dataLoadValue":"OVERWRITE_EXISTING_VALUES","dataFileN
ame":"input.txt"}

Response

Supported Media Types: application/json

Chapter 24
Essbase Data Load for Profitability and Cost Management

24-22



Table 24-16    Parameters

Name Description

details Task ID, such as
BksML12_BksML12_LoadData_D20160118T051020_ba8_1

status See Migration Status Codes

statusMessage Message about the status, such as Success
type Profitability

data Parameters as key value pairs

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_LoadData_D20220511T114654_8bf",
   "links":[
      {
         "href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_LoadData_D20220511T114654_8bf",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – EssbaseDataLoad.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

    public void loadData() throws Exception {
        
        JSONObject json = new JSONObject();
        json.put("clearAllDataFlag", false);
        json.put("dataLoadValue", "ADD_EXISTING_VALUES");
        json.put("dataFileName", "BksML12C.txt");
        
        String urlString = "%s/epm/rest/%s/applications/%s/jobs/
essbaseDataLoadJob";
        executeJob(urlString, "POST", json.toString());

Chapter 24
Essbase Data Load for Profitability and Cost Management

24-23



        
    }

cURL Sample – EssbaseDataLoad.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcLoadData() {
    dataLoadValue="ADD_EXISTING_VALUES"
    dataFileName="BksML12C.txt"
    
param="{\"clearAllDataFlag\":\"false\",\"dataLoadValue\":\"$dataLoadValue\",\"
dataFileName\":\"$dataFileName\"}"
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/jobs/
essbaseDataLoadJob
    funcExecuteRequest "POST" $url "$param" "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started Loading Data successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – EssbaseDataLoad.groovy for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

def loadData() {
        
        JSONObject json = new JSONObject();
        json.put("clearAllDataFlag", false);
        json.put("dataLoadValue", "ADD_EXISTING_VALUES");
        json.put("dataFileName", "BksML12C.txt");
        
        def url;
        def response;
    
        try {
                 url = new URL(serverUrl + "/epm/rest/" + apiVersion + "/
applications/" + appName + "/jobs/essbaseDataLoadJob")
        } catch (MalformedURLException e) {
                 println "Malformed URL. Please pass valid URL"
                 System.exit(0);
        }         
        executeJob(url, "POST", json.toString());        
}

Chapter 24
Essbase Data Load for Profitability and Cost Management

24-24



Export Query Results
Exports query results for a given query or exports all Oracle Essbase data into a file in the
Outbox.

When exporting all Essbase data, there is an option for writing the output in columnar format,
and columnar-formatted data can be filtered by level-0 dimension members. This API triggers a
job that can be monitored in the Job Library.

Required Roles

Service Administrator, Power User, User, Viewer

REST Resource

POST /epm/rest/{api_version}/applications/{application}/jobs/
exportQueryResultsJob

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-17    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with, such
as v1

Path Yes None

application Name of the application Path Yes None

exportOnlyLevel0Fl
g

Whether to export only Level0 data; values are
true or false

Payload No false

fileName Name of the query output file to be exported into
the Outbox folder

Payload Yes None

fileOutputOptions File output options. Available options are:
• ZIP_ONLY
• ZIP_AND_TEXT
• TEXT_ONLY

Payload No ZIP_ONLY

Chapter 24
Export Query Results

24-25



Table 24-17    (Cont.) Parameters

Name Description Type Required Default

queryName Query name from the Profitability and Cost
Management application
When queryName has a value, results for the given
query are exported; exportOnlyLevel0Flg is
considered if it is included.

When queryName is blank or not included, data for
the entire application is exported. In this case,
exportOnlyLevel0Flg is ignored.

Payload No None

roundingPrecision The rounding precision (decimal places) for
exported data. (Note: Applies only if queryName is
also used.)

Payload No 2

dataFormat Select the output format as native Essbase format,
or as columnar format. Values are NATIVE or
COLUMNAR. With the COLUMNAR option, all Essbase
data is exported, so the queryName parameter is
ignored. Data can be filtered using the
memberFilters parameter.

Payload No NATIVE

The following parameters are only considered when dataFormat=COLUMNAR.

memberFilters Accepts a JSON formatted string for dimension
and respective level-0 member format. For
example:

{\"Dim1\":[\"Mem1\"],\"Dim2\":
[\"Mem21\",\"Mem22\"]}

Payload No None

includeHeader Adds dimension names as column headers.
Values are true or false.

Payload No true

delimiter Character used to separate dimension members in
the results file; must be enclosed in double quotes.

Payload No Space

keepDuplicateMembe
rFormat

When this parameter is set to true, prints member
names in Essbase duplicate member format, such
as [Account]@[Accoun1]. If set to false, only the
member name is printed.

Payload No true

Example URL and Payload

https://<BASE-URL>/epm/rest/v1/applications/Ex3F3/jobs/exportQueryResultsJob
{"queryName":"Profitability -
Product","fileName":"ProfitabilityProduct_03232016.txt","exportOnlyLevel0Flg":"tr
ue","roundingPrecision":"3"}

Response

Supported Media Types: application/json

Table 24-18    Parameters

Name Description

details Task ID, such as
BksML12_BksML12_ExportQueryResults_D20160323T024820_f73_
1

Chapter 24
Export Query Results

24-26



Table 24-18    (Cont.) Parameters

Name Description

status See Migration Status Codes

statusMessage Message about the status, such as In Progress
type Profitability

data Parameters as key value pairs

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_ExportQueryResults_D20220511T114843_935",
   "links":[
      {
         "href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_ExportQueryResults_D20220511T114843_935",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – ExportQueryResult.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

    public void exportTemplate() throws Exception {
        String fileName = applicationName + "_Template_Export_File";
        
        JSONObject json = new JSONObject();
        json.put("fileName", fileName);
        
        String urlString = "%s/epm/rest/%s/applications/%s/jobs/
templateExportJob";
        executeJob(urlString, "POST", json.toString());
        
    }

Chapter 24
Export Query Results

24-27



cURL Sample – ExportQueryResult.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcExportQueryResult() {
    queryName="Profitability - Product";
    fileName=$APP_NAME+"_"+$queryName+"_Query_Result"
    
param="{\"queryName\":\"$queryName\",\"fileName\":\"$fileName\",\"exportOnlyLe
vel0Flg\":\"false\"}"
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/jobs/
exportQueryResultsJob
    funcExecuteRequest "POST" $url "$param" "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started Exporting successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – ExportQueryResult.groovy for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

def exportQueryResult() {
        String queryName = "Profitability - Product";
        String fileName = appName +"_"+ queryName + "_Query_Result";
            
        JSONObject json = new JSONObject();
        json.put("queryName", queryName);
        json.put("fileName", fileName);
        json.put("exportOnlyLevel0Flg", false);
        
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
applications/" + appName + "/jobs/exportQueryResultsJob";
                
        def url;   
        
         try {
                 url = new URL(urlString)
         } catch (MalformedURLException e) {
                 println "Malformed URL. Please pass valid URL"
                 System.exit(0);
         }        
        executeJob(url, "POST", json.toString());
}

Chapter 24
Export Query Results

24-28



Export Template for Profitability and Cost Management
Exports Profitability and Cost Management applications as a template into the Outbox.

Required Roles

Service Administrator, Power User

REST Resource

POST/epm/rest/{api_version}/applications/{application}/jobs/templateExportJob?
fileName={fileName}

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-19    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application Name of the application Path Yes None

fileName Name of the template zip file to be exported to the
outbox folder

Query Yes None

Note:

If the file name is the same as an existing file name, this will override content in
existing file.

Example URL and Payload

https://<BASE-URL>/epm/rest/v1/applications/BksML30/jobs/
templateExportJob{"fileName":"testFile"}

Response

Supported Media Types: application/json

Chapter 24
Export Template for Profitability and Cost Management

24-29



Table 24-20    Parameters

Name Description

details Task ID, such as
BksML30_ExportTemplate_D20180201T210316_a80

status See Migration Status Codes

statusMessage Message about the status, such as In Progress
type Profitability

data Parameters as key value pairs

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_ExportTemplate_D20220511T114738_16e",
   "links":[
      {
         "href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_ExportTemplate_D20220511T114738_16e",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – ExportTemplate.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

    public void exportTemplate() throws Exception {
        String fileName = applicationName + "_Template_Export_File";
        
        JSONObject json = new JSONObject();
        json.put("fileName", fileName);
        
        String urlString = "%s/epm/rest/%s/applications/%s/jobs/
templateExportJob";
        executeJob(urlString, "POST", json.toString());
        

Chapter 24
Export Template for Profitability and Cost Management

24-30



    }
cURL Sample – ExportTemplate.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcExportTemplate() {
    fileName=$APP_NAME+"_Template_Export_File"
    param="{\"fileName\":\"$fileName\"}"
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/jobs/
templateExportJob
    funcExecuteRequest "POST" $url "$param" "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started Exporting successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – ExportTemplate.groovy for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

def exportTemplate() {
        String fileName = appName + "_Template_Export_File";
        
        JSONObject json = new JSONObject();
        json.put("fileName", fileName);
        
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
applications/" + appName + "/jobs/templateExportJob";
                
        def url;    
        
        try {
                url = new URL(urlString)
        } catch (MalformedURLException e) {
                println "Malformed URL. Please pass valid URL"
                System.exit(0);
        }        
        executeJob(url, "POST", json.toString());        
}

Chapter 24
Export Template for Profitability and Cost Management

24-31



Generate Program Documentation Report
Generates a Program Documentation report for a given Profitability and Cost Management
point of view.

The report is generated in the profitoutbox folder with the name
HPCMMLProgramDocumentationReport_{AppName)_{POV}.pdf. The file can be downloaded
using File Explorer.

Required Roles

Service Administrator, Power User, User, or Viewer

REST Resource

GET epm/rest/{api_version}/applications/{application}/povs/{POV}/
programDocumentationReport

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-21    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with, such
as v1

Path Yes None

application Name of the application for which to create the
report

Path Yes None

pov The POV for which to create the report, for
example, FY17_JUN_Actual_Working

Path Yes None

fileType The file format to use for the report, PDF, XML,
WORD, EXCEL, or HTML

Query No PDF

useAlias Boolean value to specify whether to use aliases in
the report, true or falset

Query No false

Example URL with fileType set to PDF and useAlias set to true:

https://<BASE-URL>/epm/rest/v1/applications/BksML30/povs/2016_January_Actual/
programDocumentationReport?queryParameter={"fileType":"PDF","useAlias":"true"}

Response

Supported Media Types: application/json

Chapter 24
Generate Program Documentation Report

24-32



Table 24-22    Parameters

Name Description

details Program Documentation report name, such as
HPCMMLProgramDocumentationReport_BksML30_2016_January_Ac
tual.pdf, and report status

status See Migration Status Codes

statusMessage Message about the status, such as Success
type Profitability

data Parameters as key value pairs

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":0,
   "statusMessage":"Success",
   "details":"Program Documentation report 
HPCMMLProgramDocumentationReport_BksML30_2016_January_Actual.pdf generated 
successfully in the Outbox folder."
}

Java Sample – GeneratePrgrmDocReport.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

    public void generatePrgrmDocReport() throws Exception {
        
        JSONObject json = new JSONObject();
        json.put("fileType", "PDF");
        json.put("useAlias", false);
        json.put("stringDelimter", "_");
        
        String povGroupMember = "2016_January_Actual";
        
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
applications/" + applicationName + "/povs/" + 
povGroupMember.trim().replaceAll(" ", "%20") + "/programDocumentationReport";
        urlString = urlString + "?" + "queryParameter=" + json.toString();
        
        String response = executeRequest(urlString, "GET", null, "application/
json");

Chapter 24
Generate Program Documentation Report

24-33



        JSONObject jsonObj = new JSONObject(response);
        int resStatus = jsonObj.getInt("status");
        
        if(resStatus == 0) {
            System.out.println("Program Documentation Report Generated 
Successfully");
        }
        String details = jsonObj.getString("details");
        System.out.println(details);
            
    }    

cURL Sample – GeneratePrgDocReport.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcGeneratePrgDocReport() {
        url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/
povs/$POV_GROUP_MEMBER1/programDocumentationReport
        echo $url
        curl -G "$url" --data-urlencode 
'queryParameter={"fileType":"PDF","stringDelimter":"_","useAlias":"false"}' -
u "$USERNAME:$PASSWORD" -o "response.txt" -D "respHeader.txt"
        output=`cat response.txt`
        status=`echo $output | jq '.status'`
        echo $status
    if [ $status == 0 ]; then
        echo "Program Documentation Report generated successfully"
        message=`echo $output | jq '.details'`
        echo $message
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"

}

Groovy Sample – GeneratePrgrmDocReport.groovy for Profitability and Cost
Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

def generateProgramDocReportJob() {
    JSONObject json = new JSONObject();
    json.put("fileName", "2016JanActual.pdf");
    json.put("fileType", "PDF");
    json.put("useAlias", false);
    json.put("stringDelimter", "_");

String povGroupMember = "2016_January_Actual";
String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/applications/"
+ appName + "/povs/" + povGroupMember.trim().replaceAll(" ", "%20") + "/

Chapter 24
Generate Program Documentation Report

24-34



jobs/programDocReportJob";

def url;
try {
    url = new URL(urlString)
} catch (MalformedURLException e) {
    println "Malformed URL. Please pass valid URL"
    System.exit(0);
}
executeJob(url, "POST", json.toString());
} 

Generate Program Documentation Report - Run as a Job
Submits a job to generate a Program Documentation report for a given Profitability and Cost
Management point of view.

The report is generated in the profitoutbox folder with the name as fileName parameter value
or HPCMMLProgramDocumentationReport_{AppName)_{POV}.pdf as default. The file can be
downloaded using File Explorer or by using the EPM Automate downloadfile command.

Required Roles

Service Administrator, Power User, User, or Viewer

REST Resource

POST

/epm/rest/{api_version}/applications/<applicationName>/povs/<povName>/jobs/
programDocReportJob

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-23    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with, such
as v1

Path Yes None

applicationName Name of the application for which to create the
report

Path Yes None

povName The POV for which to create the report, for
example, FY17_JUN_Actual_Working

Path Yes None

Chapter 24
Generate Program Documentation Report - Run as a Job

24-35



Table 24-23    (Cont.) Parameters

Name Description Type Required Default

fileType The file format to use for the report, PDF, XML,
WORD, EXCEL, or HTML

Request
Payload

No PDF

fileName Name of the output file Request
Payload

No HPCMMLProgr
amDocumenta
tionReport_
<AppName>_P
OV.pdf

subsetStart Rule set starting sequence number to specify a
range of rule sets to include in the report

Request
Payload

No None

subsetEnd Rule set ending sequence number to specify a
range of rule sets to include in the report

Request
Payload

No None

useAlias Boolean value to specify whether to use aliases in
the report, true or false

Request
Payload

No False

stringDelimiter POV Dimension members separator Request
Payload

No "_"

Example URL

https://<BASE-URL>/rest/v1/applications/<applicationName>/povs/<povName>/jobs/
programDocReportJob
Request Payload

{
     "fileName":"FY12ActualReport.pdf",
     "fileType": "PDF",
     "subsetStart":"1",
     "subsetEnd":"6",
     "useAlias": false,
     "stringDelimiter":"_"
}

Response

Supported Media Types: application/json

Table 24-24    Parameters

Name Description

details Program Documentation report name, such as
HPCMMLProgramDocumentationReport_BksML30_2016_January_Ac
tual.pdf, and report status

status See Migration Status Codes

statusMessage Message about the status, such as Success
type Profitability

data Parameters as key value pairs

links Detailed information about the link

href Links to API call

Chapter 24
Generate Program Documentation Report - Run as a Job

24-36



Table 24-24    (Cont.) Parameters

Name Description

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"Program Documentation report 2016JanActual1.pdf generated 
successfully in the Outbox folder.",
   "links":[
      {
         "href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_ProgramDocumentation_D20220511T115113_52a",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – GeneratePrgrmDocReport.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

public void generateProgramDocReportJob() throws Exception {  
    JSONObject json = new JSONObject();
    json.put("fileName", "2016JanActual1.pdf");
    json.put("fileType", "PDF");
    json.put("subsetStart", "1");
    json.put("subsetEnd", "6");
    json.put("useAlias", false);
    json.put("stringDelimiter", "_"); 
    String povGroupMember = "2016_January_Actual";   
    String urlString = serverUrl + "/epm/rest/"+ apiVersion + 
      "/applications/" + applicationName + "/povs/" + 
      povGroupMember.trim().replaceAll(" ", "%20") +
      "/jobs/programDocReportJob";  
    executeJob(urlString, "POST", json.toString());         
} 

Chapter 24
Generate Program Documentation Report - Run as a Job

24-37



cURL Sample – GeneratePrgDocReport.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcProgramDocReportJob() {
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/
povs/$POV_GROUP_MEMBER1/jobs/programDocReportJob
        stringDelimter="_";
        
param="{\"fileName\":\"2016JanActual.pdf\",\"fileType\":\"PDF\",\"subsetStart\
":\"1\",\"subsetEnd\":\"6\",
\"useAlias\":\"false\",\"stringDelimter\":\"$stringDelimiter\"}"
        
        echo $param
    funcExecuteRequest "POST" $url $param "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started program doc report generation"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – GeneratePrgrmDocReport.groovy for Profitability and Cost
Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

def generateProgramDocReportJob() {
    JSONObject json = new JSONObject();
    json.put("fileName", "2016JanActual");
    json.put("fileType", "PDF");
    json.put("subsetStart", "1");
    json.put("subsetEnd", "6");
    json.put("useAlias", false);
    json.put("stringDelimter", "_");
    String urlString = serverUrl + "/epm/rest/"+ apiVersion +
        "/applications/" + appName + "/povs/" + 
        povGroupMember.trim().replaceAll(" ", "%20") +
        "/jobs/programDocReportJob";
    def url;    
    try {
          url = new URL(urlString)
    } catch (MalformedURLException e) {
          println "Malformed URL. Please pass valid URL"
          System.exit(0);
    }    

Chapter 24
Generate Program Documentation Report - Run as a Job

24-38



    executeJob(url, "POST", json.toString());
}  

Import Template for Profitability and Cost Management
Imports a template zip file as an application from the inbox.

Required Roles

Service Administrator, Power User

REST Resource

POST /epm/rest/{api_version}/applications/{application}/jobs/templateImportJob

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-25    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application Name of the application Path Yes None

description User comment for the application Payload Yes None

fileName Name of the template zip file to be imported from
the inbox folder

Payload Yes None

isApplicationOverw
rite

Whether to override an application if one already
exists with same name. Values are true or false.

Payload Yes None

Example URL and Payload

https://<BASE-URL>/epm/rest/v1/applications/Ex3F3/jobs/templateImportJob
{"description":"description","fileName":"
testFile12345.zip","isApplicationOverwrite":"true"}

Response

Supported Media Types: application/json

Chapter 24
Import Template for Profitability and Cost Management

24-39



Table 24-26    Parameters

Name Description

details Task ID, such as TD_ae61e427d9ab4d6f99e3b87378fa1c94
status See Migration Status Codes

statusMessage Message about the status, such as In Progress
type Profitability

data Parameters as key value pairs

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_ImportTemplate_D20220511T114059_d3b",
   "links":[
      {
         "href":"http:// ://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_ImportTemplate_D20220511T114059_d3b",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – ImportTemplate.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

    public void importTemplate() throws Exception {
        
        JSONObject json = new JSONObject();
        json.put("description", "Import Template");
        json.put("instanceName", "PROFITABILITY_WEB_APP");
        json.put("essApplicationServer", "EssbaseCluster-1");
        json.put("sharedServicesProject", "EssbaseCluster-1");
        json.put("applicationType", "Management Ledger");
        json.put("fileName", "HPCM_BksML12_20160128_200053.zip");
        json.put("isApplicationOverwrite", true);
        
        String urlString = "%s/epm/rest/%s/applications/%s/jobs/

Chapter 24
Import Template for Profitability and Cost Management

24-40



templateImportJob";
        executeJob(urlString, "POST", json.toString());
        
    }  

cURL Sample – ImportTemplate.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcImportTemplate() {
    description="Import Template through Curl Sample"
    instance="PROFITABILITY_WEB_APP"
    essAppServer="EssbaseCluster-1"
    sharedServicesProject="EssbaseCluster-1"
    applicationType="Management Ledger"
    fileName="PCM_BksML12_20160413_042937.zip"
    isApplicationOverwrite="true"
    
param="{\"description\":\"$description\",\"instanceName\":\"$instance\",\"essA
pplicationServer\":\"$essAppServer\",\"sharedServicesProject\":\"$sharedServic
esProject\",\"applicationType\":\"$applicationType\",\"fileName\":\"$fileName\
",\"isApplicationOverwrite\":\"$isApplicationOverwrite\"}"
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/jobs/
templateImportJob
    funcExecuteRequest "POST" $url "$param" "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started importing successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – ImportTemplate.groovy for Profitability and Cost Management

Prerequisites: json.jar

Common unctions: See Appendix C: Common Helper Functions for Groovy.

def importTemplate() {
                
        JSONObject json = new JSONObject();
        json.put("description", "Import Template");
        json.put("instanceName", "PROFITABILITY_WEB_APP");
        json.put("essApplicationServer", "EssbaseCluster-1");
        json.put("sharedServicesProject", "EssbaseCluster-1");
        json.put("applicationType", "Management Ledger");
        json.put("fileName", "BksML12_Template.zip");
        json.put("isApplicationOverwrite", true);
        

Chapter 24
Import Template for Profitability and Cost Management

24-41



        def url;
        def response;
        
        try {
                 url = new URL(serverUrl + "/epm/rest/" + apiVersion + "/
applications/" + appName + "/jobs/templateImportJob")
        } catch (MalformedURLException e) {
                 println "Malformed URL. Please pass valid URL"
                 System.exit(0);
        }
        println "URL : " + url
        println "Payload : " + json.toString()
        executeJob(url, "POST", json.toString());

}  

Merge Slices for Profitability and Cost Management
Merges all incremental data slices into the main database slices.

Optionally, removes the Oracle Essbase cells with zero values to make the cube compact.

Required Roles

Service Administrator, Power User

REST Resource

POST /epm/rest/{api_version}/applications/{application}/jobs/mergeSlices

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-27    Parameters

Name Description Type Required Default

api_version Version of the API you are developing
with

Path Yes None

application Name of the Profitability and Cost
Management application

Path Yes None

removeZeroCells If "true", removes cells with zero values Path No "false"

Request URI Example

Chapter 24
Merge Slices for Profitability and Cost Management

24-42



https://<BASE-URL>/epm/rest/v1/applicaitions/BksML30/jobs/mergeSlices
Request Payload:

  {
   "removeZeroCells":"true"
   )

Response

Supported Media Types: application/json

Table 24-28    Parameters

Name Description

details In case of errors, details are published with the error string.

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use
the href to get the status of the import operation.

data Parameters as key value pairs passed in the request

Example of Response Body

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_MERGE_CUBE_D20220511T115052_771",
   "links":[
      {
"href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/ChecktaskStatusJob/
BksML30_MERGE_CUBE_D20220511T115052_771",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Optimize ASO Cube
Optimizes the performance of queries for data extraction by creating aggregate views in ASO
cubes for Profitability and Cost Management applications.

This command allows you to perform query optimization operations on ASO cubes in cases
where default aggregation is deemed insufficient to meet your data extraction or reporting
needs because of large data size. The typical optimzation process is as follows:

• Drop default and query-based aggregations.

• Start query tracking.

Chapter 24
Optimize ASO Cube

24-43



• Run sample queries from Profitability and Cost Management Query Manager, Oracle
Smart View for Office (Windows), or Data Management, and any other MDX queries
representative of the type of queries for which optimization is desired to train Oracle
Essbase.

• Create aggregation based on optimized or default queries.

Required Roles

Service Administrator, Power User

REST Resource

POST /epm/rest/v1/applications/{AppName}/jobs/optimizeASOCube

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-29    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

appName Name of the application used to run Optimize ASO Path Yes None

type Type of operation. Valid values are:
• clearAggregations removes default and

query-based views.
• createAggregations creates default

Essbase aggregate views. Use this option to
perform default aggregation instead of query-
based aggregation.

• startQueryTracking starts query tracking.
Use this option to allow Essbase to collect
optimization information for creating query-
based aggregations.

• stopQueryTracking stops query tracking.
Use this option to stop Essbase from
collecting optimization information. Essbase
continues to collect optimization information
until you stop query tracking or stop Essbase.)

• createQBOAggregations creates Essbase
aggregate views based on the optimized
queries that you run after enabling query
tracking.

Form Yes None

Chapter 24
Optimize ASO Cube

24-44



Response

Supported Media Types: application/json

Table 24-30    Parameters

Name Description

details In case of errors, details are published with the error string.

status See Migration Status Codes

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Can be self and/or Job Status. If set to Job Status, you can use
the href to get the status of the import operation.

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_OptimizeASOCube_D20220511T115135_55d",
   "links":[
      {
         "href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_OptimizeASOCube_D20220511T115135_55d",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – OptimizeASOCube.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

    public void optimizeASOCube() throws Exception {
        
        JSONObject json = new JSONObject();
        json.put("type", "createAggregations");
           
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
applications/" + applicationName+"/jobs/optimizeASOCube";
        executeJob(urlString, "POST", json.toString());
        
    }

Chapter 24
Optimize ASO Cube

24-45



cURL Sample – OptimizeASOCube.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcOptimizeASOCube() {
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/jobs/
optimizeASOCube
        param="{\"type\":\"createAggregations\"}"
                echo $param
     funcExecuteRequest "POST" $url $param "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started Optimize ASO Cube successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – OptimizeASOCube.groovy for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

def optimizeASOCube() {
        
        JSONObject json = new JSONObject();
        json.put("type", "createAggregations"); 
        
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
applications/" + appName +  "/jobs/optimizeASOCube";
                                    
        def url;
    try {
        url = new URL(urlString)
    } catch (MalformedURLException e) {
            println "Malformed URL. Please pass valid URL"
            System.exit(0);
        }
    
        executeJob(url, "POST", json.toString());
    }

Chapter 24
Optimize ASO Cube

24-46



Retrieve Task Status for Profitability and Cost Management
Displays the current status of the job process name.

Required Roles

Service Administrator, Power User

REST Resource

GET /epm/rest/{api_version}/applications/jobs/ChecktaskStatusJob/{processName}

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-31    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

applications Included in the path Path Yes None

processName The ID of the process or task flow for which
to check the task status

Path Yes None

Response

Supported Media Types: application/json
The following table summarizes the response parameters.

Table 24-32    Parameters

Name Description

processName The Process Name or TaskflowId, such as
RBkML1_ExportTemplate_D20160112T025419_836

task Task name, such as ExportTemplate
status Task status, such as Success

Example of Response Body

{
    "type": "Profitability",
    "links": [{

Chapter 24
Retrieve Task Status for Profitability and Cost Management

24-47



        "href": "https://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/RBkML1_ExportTemplate_D20160112T025419_836",
        "action": "GET",
        "rel": "self"
    }],
    "status": 0,
    "details": 
"ExportTemplate=Success,RBkML1_ExportTemplate_D20160112T025419_836=Done",
    "statusMessage": "Success"
}

Run ML Calculations
Runs or clears calculations for a selected application. You can run calculations using rules in a
model POV against data in a different data POV without copying rules.

Required Roles

Service Administrator, Power User

REST Resource

POST /epm/rest/{api_version}/applications/{application}/povs/{povGroupMember}/
jobs/runLedgerCalculationJob

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-33    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application Name of the application for which to run
calculations

Path Yes None

povGroupMember The model POV group member from which the
rules will be used for calculations, such as
2016_January_Actual
If dataPOVName is not passed, povGroupMember
is used as both model and data POV.

Path Yes None

dataPOVName The data POV group member for which to run
calculations, such as 2015_January_Actual
exeType=ALL_RULES is the valid combination
while using dataPOVName.

Payload No None

Chapter 24
Run ML Calculations

24-48



Table 24-33    (Cont.) Parameters

Name Description Type Required Default

isClearCalculated Whether to clear the calculation data, true or
false

Payload No None

isRunNow Whether to run now (true) or schedule for later
(false); schedule for later is not currently
supported

Payload Yes true

optimizeReporting Whether to optimize for reporting (true) or not
(false).

When optimizieReporting is used, Profitability and
Cost Management runs default aggregations on
the Essbase cube when the calculation is
complete. You can also run this setting by itself,
which improves performance for queries and
analytics.

If you don't pass this parameter, its setting is
assumed to be true ("About Optimizing for
Reporting" in Administering Profitability and Cost
Management).

Payload No true

subsetStart Rule Set Starting Sequence Number Payload No None

subsetEnd Rule Set Ending Sequence Number Payload No None

ruleName Rule Name for a SINGLE_RULE option Payload No None

ruleSetName Rule Set Name for a SINGLE_RULE option Payload No None

exeType The execution type specifies which rules to run;
possible values are ALL_RULES,
RULESET_SUBSET, SINGLE_RULE. Other
parameters are required based on the exeType
value:

• exeType = ALL_RULES overrides all other
options like subsetStart, subsetEnd,
ruleSetName, and ruleName.

• exeType = RULESET_SUBSET considers only
subsetStart and subsetEnd.

• exeType = SINGLE_RULE considers only
ruleSetName and ruleName.

Payload Yes None

comment Use comment text, such as "This is run by user1" Payload No None

stringDelimiter String delimiter for POV group members, such as _ Payload No None

Example URL and Payload without Passing Data POV

https://<BASE-URL>/epm/rest/{api_version}/applications/{application}/povs/
{povGroupMember}/jobs /runLedgerCalculationJob
{"isClearCalculated":"true","isExecuteCalculations":"true","isRunNow":"true","opt
imizeReporting":"false","comment":"This is run by
user1","exeType":"ALL_RULES","stringDelimiter":"_"}
Example URL and Payload with Data POV Passed

https://<BASE-URL>/epm/rest/{api_version}/applications/{application}/povs/
{povGroupMember}/jobs/runLedgerCalculationJob

Chapter 24
Run ML Calculations

24-49



{"dataPOVName":"2015_January_Actual","isClearCalculated":"true","isExecuteCalcula
tions":"true","isRunNow":"true","optimizeReporting":"false","comment":"This is
run by user1","exeType":"ALL_RULES","stringDelimiter":"_"}

Response

Supported Media Types: application/json

Table 24-34    Parameters

Name Description

details Task ID, such as
BksML1_BksML1_RunCalcs_D20160113T070358_1da_1

status See Migration Status Codes

statusMessage Message about the status, such as In Progress
type Profitability

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_RunCalcs_D20220511T114716_a14",
   "links":[
      {
         "href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_RunCalcs_D20220511T114716_a14",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – RunCalculation.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

public void runCalculation() throws Exception {
        
        String subsetStart = null;
        String subsetEnd = null;
        String ruleName = null;
        String ruleSetName = null;

Chapter 24
Run ML Calculations

24-50



        
        JSONObject json = new JSONObject();
        json.put("isClearCalculated", true);
        json.put("isExecuteCalculations", true);
        json.put("isRunNow", true);        
        json.put("comment", "Run Calculation");
        json.put("subsetStart", subsetStart);
        json.put("subsetEnd", subsetEnd);        
        json.put("ruleName", ruleName);
        json.put("ruleSetName", ruleSetName);
        json.put("exeType", "ALL_RULES");
        json.put("stringDelimiter", "_");
        
        String povGroupMember = "2014_January_Actual";
        
        String urlString = "%s/epm/rest/%s/applications/%s/povs/" + 
povGroupMember.trim().replaceAll(" ", "%20") 
                                       + "/jobs/runLedgerCalculationJob";
        executeJob(urlString, "POST", json.toString());
        
   }   

cURL Sample – RunCalculation.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcRunCalculation() {
    subsetStart=""
    subsetEnd=""
    ruleName=""
    ruleSetName=""
    comment="Run Calculation Curl"
    exeType="ALL_RULES"
    stringDelimiter="_"
    
param="{\"isClearCalculated\":\"true\",\"isExecuteCalculations\":\"true\",\"is
RunNow\":\"true\",\"comment\":\"$comment\",\"subsetStart\":\"$subsetStart\",\"
subsetEnd\":\"$subsetEnd\",\"ruleName\":\"$ruleName\",\"ruleSetName\":\"$ruleS
etName\",\"exeType\":\"$exeType\",\"stringDelimiter\":\"$stringDelimiter\"}"
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/
povs/$POV_GROUP_MEMBER/jobs/runLedgerCalculationJob
    funcExecuteRequest "POST" $url "$param" "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started Running Calc successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Chapter 24
Run ML Calculations

24-51



Groovy Sample – RunCalculation.groovy for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

def runCalculation() {
        
        String subsetStart = null;
        String subsetEnd = null;
        String ruleName = null;
        String ruleSetName = null;
        
        JSONObject json = new JSONObject();
        json.put("isClearCalculated", true);
        json.put("isExecuteCalculations", true);
        json.put("isRunNow", true);        
        json.put("comment", "Run Calculation");
        json.put("subsetStart", subsetStart);
        json.put("subsetEnd", subsetEnd);        
        json.put("ruleName", ruleName);
        json.put("ruleSetName", ruleSetName);
        json.put("exeType", "ALL_RULES");
        json.put("stringDelimiter", "_");
        
        String povGroupMember = "2014_January_Actual";        
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
applications/" + appName + "/povs/" 
                                       + povGroupMember.trim().replaceAll(" 
", "%20") + "/jobs/runLedgerCalculationJob";
                
        def url;
        
        try {
                url = new URL(urlString)
        } catch (MalformedURLException e) {
                println "Malformed URL. Please pass valid URL"
                System.exit(0);
        }        
        executeJob(url, "POST", json.toString());        
    }

Run ML Clear POV
Clears model artifacts and data from a POV combination for any application.

Required Roles

Service Administrator, Power User

REST Resource

POST /epm/rest/{api_version}/applications/{application}/povs/{povGroupMember}/
jobs/clearPOVJob

Chapter 24
Run ML Clear POV

24-52



Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-35    Parameters

Name Description Type Required Default

api_version Version of the API you are developing
with

Path Yes None

application Name of the application for which to
run calculations

Path Yes None

povGroupMembe
r

The POV group member for which to
clear model artifacts sand data, such
as 2015_January_Actual

Path Yes None

isManageRule To clear the program rule details or not;
true/false

Payload No None

isInputData To clear input data or not; true/false Payload No None

queryName A query name already existing within
the application; used to clear a region
within the given POV

Payload No None

isAllocatedVa
lues

To clear allocation values or not; true/
false

Payload No None

isAdjustmentV
alues

To clear adjustment values or not; true/
false

Payload No None

stringDelimit
er

String delimiter for POV group
members

Payload No "_"
(Undersco
re)

Note:

If queryName is used (is not null), then isManageRule, isAllocatedValues, and
isAdjustmentValues must be set to false.

If one of these parameters or isInputData is not passed, it is considered as false.

Example URL and payload to clear to a particular region within input data

https://<BASE-URL>/epm/rest/{api_version}/applications/{application}/povs/
{povGroupMember}/jobs/clearPOVJob
{"isInputData":"true","queryName":"myQueryName","stringDelimiter":"_"}

Chapter 24
Run ML Clear POV

24-53



Response

Supported Media Types: application/json

Table 24-36    Parameters

Name Description

details Task ID, such as
BksML1_BksML1_ClearMLPOV_D20160113T070358_1da_1

status See Migration Status Codes

statusMessage Message about the status, such as In Progress
type Profitability

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_ClearMLPOV_D20220511T114821_f4b",
   "links":[
      {
         "href":"http://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_ClearMLPOV_D20220511T114821_f4b",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – clearPOV.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

    public void clearPOVData() throws Exception {
        
        JSONObject json = new JSONObject();
        json.put("isManageRule", true);
        json.put("isInputData", true);
        json.put("stringDelimiter", "_");
        
        String povGroupMember = "2014_January_Actual";
        

Chapter 24
Run ML Clear POV

24-54



        String urlString = "%s/epm/rest/%s/applications/%s/povs/" + 
povGroupMember.trim().replaceAll(" ", "%20") 
                                        +  "/jobs/clearPOVJob";
        executeJob(urlString, "POST", json.toString());        
    }

cURL Sample – ClearPOV.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

uncClearPOVData() {
    stringDelimiter="_";
    
param="{\"isManageRule\":\"true\",\"isInputData\":\"true\",\"stringDelimiter\"
:\"$stringDelimiter\"}"
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/
povs/$POV_GROUP_MEMBER/jobs/clearPOVJob
    funcExecuteRequest "POST" $url "$param" "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started Clearing POV successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Groovy Sample – ClearPOV.groovy for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

def clearPOVData() {
        
        JSONObject json = new JSONObject();
        json.put("isManageRule", true);
        json.put("isInputData", true);
        json.put("stringDelimiter", "_");
        
        String povGroupMember = "2014_January_Actual";    
        
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
applications/" + appName + "/povs/" 
                                       + povGroupMember.trim().replaceAll(" 
", "%20") + "/jobs/clearPOVJob";
                
        def url;
        
         try {
                  url = new URL(urlString)

Chapter 24
Run ML Clear POV

24-55



         } catch (MalformedURLException e) {
                  println "Malformed URL. Please pass valid URL"
                  System.exit(0);
         }
        
        executeJob(url, "POST", json.toString());
    }

Run ML Rule Balancing
Retrieves Rule Balancing data for a particular POV for a given application.

Required Roles

Service Administrator, Power User

REST Resource

GET /epm/rest/{api_version}/applications/{application}/povs/{povGroupMember}/
ruleBalance

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-37    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application Name of the application for which to retrieve rule
balancing data

Path Yes None

povGroupMember POV name for which to retrieve the results, such as
2015_January_Actual

Path Yes None

modelViewName Model view name to filter the results within the
POV area

Query Yes None

stringDelimiter String delimiter for POV group members, such as
"_"

Query No Underscore,
"_"

Example URL and Sample Query Parameter

https://<BASE-URL>/epm/rest/{api_version}/applications/{application}/povs/
{povGroupMembers}/ruleBalance?queryParameter={"modelViewName":"modelViewName"}

Chapter 24
Run ML Rule Balancing

24-56



Response

Supported Media Types: application/json

Table 24-38    Parameters

Name Description

details Rule balancing output for the given POV

status See Migration Status Codes

statusMessage Message about the status, such as Success
type Profitability

data Parameters as key value pairs

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

"items": [{
      "ruleNumber": "",
      "rules": [],
      "balanceTypeRule": true,
      "scale": 2,
      "sequence": 0,
      "name": "NoRule",
      "description": null,
      "runningBalance": 49357098.03,
      "balance": 49357098.03,
      "allocationIn": null,
      "allocationOut": null,
      "adjustmentIn": null,
      "adjustmentOut": null,
      "input": 49357098.03,
      "runningRemainder": 49357098.03,
      "remainder": 49357098.03,
      "netChange": null,
      "offset": null,
      "inputAsString": "49,357,098.03",
      "adjInAsString": "-",
      "adjOutAsString": "-",
      "allocInAsString": "-",
      "allocOutAsString": "-",
      "balanceAsString": "49,357,098.03",
      "runningBalanceAsString": "49,357,098.03",
      "runningRemainderAsString": "49,357,098.03",
      "remainderAsString": "49,357,098.03",
      "netChangeAsString": "-",
      "offsetAsString": "-"

Chapter 24
Run ML Rule Balancing

24-57



    },    
  ],
  "type": "Profitability",
"status": 0,
  "details": "",
  "statusMessage": "Success"
}

Java Sample – RunRuleBalancing.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

public void runRuleBalancing() throws Exception {
        
        String modelViewName = null;
        
        JSONObject json = new JSONObject();        
        json.put("stringDelimiter", "_");        
        json.put("modelViewName", modelViewName);
        
        String povGroupMember = "2014_January_Actual";
        
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
applications/" + applicationName + "/povs/" 
                                       + povGroupMember.trim().replaceAll(" 
", "%20") + "/ruleBalance";
        urlString = urlString + "?" + "queryParameter=" + json.toString();
        
        String response = executeRequest(urlString, "GET", null, "application/
json");
        JSONObject jsonObj = new JSONObject(response);
        int resStatus = jsonObj.getInt("status");
        
        if(resStatus == 0) {
            System.out.println("Rule Balancing ran successfully");
            JSONArray itemsArray = jsonObj.getJSONArray("items");        
            System.out.println("Details : " + itemsArray.toString());
        } else {
            String details = jsonObj.getString("details");
            System.out.println("Rule Balancing failed. Details : " + details);
        }        
        
    }

cURL Sample – RunRuleBalancing.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcRunRuleBalancing() {
    url=$SERVER_URL/epm/rest/$API_VERSION/applications/$APP_NAME/
povs/$POV_GROUP_MEMBER/ruleBalance
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"

Chapter 24
Run ML Rule Balancing

24-58



    list=`cat response.txt | jq 'select(.items != null) | .items[].name'`
    if [[ ! -z $list ]]; then
        echo $list
    else
        echo "No Items found"
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"

}

Groovy Sample – RunRuleBalancing.groovy for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Appendix C: Common Helper Functions for Groovy.

def runRuleBalancing() {        
        
        String modelViewName = null;
        
        JSONObject json = new JSONObject();        
        json.put("stringDelimiter", "_");        
        json.put("modelViewName", modelViewName);
        
        String povGroupMember = "2014_January_Actual";       
        
        def url;
        def response;
        
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
applications/" + appName + "/povs/" 
                                       + povGroupMember.trim().replaceAll(" 
", "%20") + "/ruleBalance";
        urlString = urlString + "?" + "queryParameter=" + json.toString();
        
        try {
                url = new URL(urlString);
        } catch (MalformedURLException e) {
                println "Malformed URL. Please pass valid URL"
                System.exit(0);
        }       
        
        response = executeRequest(url, "GET", null, "application/json");
        JSONObject jsonObj = new JSONObject(response);
        int resStatus = jsonObj.getInt("status");
        
        if(resStatus == 0) {
            println "Rule Balancing ran successfully"
            JSONArray itemsArray = jsonObj.getJSONArray("items");        
            println "Details : " + itemsArray.toString()
        } else {
            String details = jsonObj.getString("details");
            println "Rule Balancing failed. Details : " + details
        }     
    }

Chapter 24
Run ML Rule Balancing

24-59



Update Dimensions As a Job
Updates one or more dimensions from a dimension text/csv file.

Update Dimensions As a Job runs asynchronously; it immediately returns the job ID and the
job status (Running or Failed).

Required Roles

Service Administrator, Power User

REST Resource

POST /epm/rest/{api_version}/fileApplications/{application}/jobs/updateDimension

Note:

Before using the REST resources, you must understand how to access the REST
resources and other important concepts. See Implementation Best Practices for EPM
Cloud REST APIs. Using this REST API requires prerequisites. See Prerequisites.

Request

Supported Media Types: application/json
The following table summarizes the client request.

Table 24-39    Parameters

Name Description Type Required Default

api_version Version of the API you are developing with Path Yes None

application Name of the application to update Path Yes None

dataFileName Dimension Metadata flat file name that has already
been uploaded to the Inbox folder; multiple file
names can be passed separated by comma or
other separator character listed in the
stringDelimiter parameter

Payload Yes None

stringDelimiter Separator character to use if different from
commas

Payload No Comma (,)

acceptableDecrease
Percentage

Specifies the percentage difference in member
count that is allowed for the operation.

If the new member count from the incoming file is
less than the existing member count, this
represents the percentage decrease that is
allowed. If the percentage is exceeded, then the
operation will fail.

Use this parameter to safeguard against data loss
that can happen during a subsequent cube deploy
if one or more dimensions did not get fully updated
due to missing data in the input file.

Payload No None

Chapter 24
Update Dimensions As a Job

24-60



Example URL and Payload

https://<BASE-URL>/epm/rest/<api_version>/fileApplications/BksML12/jobs/
updateDimension{"dataFileName":"input.txt","stringDelimiter":",","acceptableDec
reasePercentage":"5"} 

Response

Supported Media Types: application/json

Table 24-40    Parameters

Name Description

details Task ID, such as BksML12_BksML12_
UpdateDimension_D20160118T051020_bb8_1

status See Migration Status Codes

statusMessage Message about the status, such as In Progress
type Profitability

data Parameters as key value pairs

links Detailed information about the link

href Links to API call

action The HTTP call type

rel Relationship type

data Parameters as key value pairs passed in the request

Example of Response Body

The following shows an example of the response body in JSON format.

{
   "type":"Profitability",
   "status":-1,
   "statusMessage":"In Progress",
   "details":"BksML30_UpdateDimensions_D20220513T062046_c61",
   "links":[
      {
         "href":"http:// ://<BASE-URL>/epm/rest/v1/applications/jobs/
ChecktaskStatusJob/BksML30_UpdateDimensions_D20220513T062046_c61",
         "action":"GET",
         "rel":"Job Status"
      }
   ]
}

Java Sample – UpdateDimensionJob.java for Profitability and Cost Management

Prerequisites: json.jar

Common Functions: See Profitability and Cost Management Common Helper Functions for
Java

    public void updateDimensionJob() throws Exception {
        

Chapter 24
Update Dimensions As a Job

24-61



        JSONObject json = new JSONObject();
        json.put("dataFileName", "Accounts.txt,Activity.txt");
        
        String urlString = serverURL + "/epm/rest/" + apiVersion + "/
fileApplications/" + applicationName + "/updateDimensionJob";

        exe4cuteJob(urlString, "POST", json.toString(();
    }

Note:

In the main method, enter the following statement:

restSamplesObj.updateDimensionsJob();

cURL Sample – UpdateDimensionJob.sh for Profitability and Cost Management

Common Functions: See Profitability and Cost Management Common Helper Functions for
cURL.

funcUpdateDimensionJob() {
    dataFileName="Accounts.txt,Activity.txt"
    param="{\"dataFileName\":\"$dataFileName\"}"
    url=$SERVER_URL/epm/rest/$API_VERSION/fileApplications/$APP_NAME/
updateDimensionJob
    funcExecuteRequest "POST" $url "$param" "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [$status == -1 ]; then
        echo "Started Update Dimensions Job successfully"
             funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred." $error
    fi
             funcRemoveTempFiles "respHeader.txt" response.txt"
  }

Note:

At the end, call this statement along with other statements:

funcUpdateDimensionsJob

Groovy Sample – UpdateDimensionJob.groovy for Profitability and Cost Management

Prerequisites: json.jar

Chapter 24
Update Dimensions As a Job

24-62



Common functions: See Appendix C: Common Helper Functions for Groovy.

def updateDimensionsJob() {
        
        JSONObject json = new JSONObject();
        json.put("dataFileName", "Accounts.txt,Activity.txt");
        
        String urlString = serverUrl + "/epm/rest/"+ apiVersion + "/
fileApplications/"+ appName + "/updateDimensionJob";
        def url;
        
        try {
                url = new URL(urlString)
        } catch (MalformedURLException e) {
                println "Malformed URL. Please pass valid URL"
                System.exit(0);
        }
        
        executeJob(url,"POST",json.toString()); 
    }

Note:

In the main method, add the following statement:

restSamplesObj.updateDimensionJob();

Chapter 24
Update Dimensions As a Job

24-63



25
Narrative Reporting REST APIs

You can use the REST APIs for Narrative Reporting to work with Narrative Reporting artifacts,
report packages, report snapshots, and reports.

You can use the REST APIs for Narrative Reporting to execute these actions:

• Files

– Download a file from the temporary repository or to the Library.

– Upload a temporary file to the Narrative Reporting repository.

• Jobs

– Start a new Narrative Reporting job for asynchronous execution by the service.

– Get a Narrative Reporting job's status that provides links to the job results when the
job is complete.

• Reports

– You can get the corresponding Report information

– You can get the global point of view selections and member suggestions for the Report

– You can get the required member selection prompts for the Report

• Books

– You can get the corresponding Book information

– You can get the global point of view selections and member suggestions for Book

• Bursting Definitions

– You can view the Bursting Definitions and their content

– You can execute the Bursting Definition file

25-1

https://docs.oracle.com/en/cloud/saas/enterprise-performance-reporting-cloud/raepr/toc.htm
https://docs.oracle.com/en/cloud/saas/enterprise-performance-reporting-cloud/raepr/toc.htm


26
Enterprise Data Management Cloud REST
APIs

Use the REST APIs for Enterprise Data Management Cloud to work with applications, files,
jobs, requests, and views.

26-1

https://docs.oracle.com/en/cloud/saas/enterprise-data-management-cloud/edmra/index.html


A
Common Helper Functions for Java

This appendix shows the common helper functions for Java for the EPM REST APIs.

Note: The userName variable uses the format <domain>.<username>. See Authentication.

/*
    File: PbcsRestSamples.java - Created on Feb 19, 2015
    Copyright (c) 2015 Oracle Corporation. All Rights Reserved.
    This software is the proprietary information of Oracle.
 */
import java.io.BufferedInputStream;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.Scanner;

import org.json.JSONArray;
import org.json.JSONObject;

/*
 * PBCS Rest Samples.
 * The userName variable uses the format <domain>.<username>. 
 */
public class PbcsRestSamples{
    private String userName;        // PBCS user name
    private String password;        // PBCS user password
    private String serverUrl;       // PBCS server URL
    private String apiVersion;         // Version of the PBCS API that you 
are developing/compiling with.
    private String applicationName; // PBCS application used in this sample

    public static void main(String[] args) {
        try {
            PbcsRestSamples samples = new 
PbcsRestSamples("epm_default_cloud_admin", "epm_cloud", "https://
<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/", 
"11.1.2.3.600", "Vision");
            samples.integrationScenarioImportMetadataIntoApplication();
            samples.integrationScenarioImportDataRunCalcCopyToAso();
            
samples.integrationScenarioExportMetadataAndDataAndDownloadFiles();

A-1



            samples.integrationScenarioRemoveUnnecessaryFiles();
            samples.integrationScenarioExportDataAndDownloadFiles();    
            samples.integrationScenarioRefreshTheApplication();
        } catch (Throwable x) {
            System.err.println("Error: " + x.getMessage());
        }
    }
    
    public PbcsRestSamples(String userName, String password, String 
serverUrl, String apiVersion, String applicationName) throws Exception {
        this.userName = userName;
        this.password = password;
        this.serverUrl = serverUrl;
        this.apiVersion = apiVersion;
        this.applicationName = applicationName;    
    }
    
    //
    // BEGIN - Integration scenarios.
    //
    public void integrationScenarioImportMetadataIntoApplication() throws 
Exception {
        uploadFile("accounts.zip");
        executeJob("IMPORT_METADATA", "accountMetadata", 
"{importZipFileName:accounts.zip}");
        executeJob("CUBE_REFRESH", null, null);
    }
    
    public void integrationScenarioImportDataRunCalcCopyToAso() throws 
Exception {
        uploadFile("data.csv");
        executeJob("IMPORT_DATA", "loadingq1data", 
"{importFileName:data.csv}");
        executeJob("CUBE_REFRESH", null, null);
        executeJob("PLAN_TYPE_MAP", "CampaignToReporting", 
"{clearData:false}");
    }    
    
    public void integrationScenarioExportMetadataAndDataAndDownloadFiles() 
throws Exception {
        executeJob("EXPORT_METADATA", "exportentitymetadata", 
"{exportZipFileName:entitydata.zip}");
        executeJob("EXPORT_DATA", "Forecastdata", 
"{exportFileName:forecastdata.zip}");
        listFiles();
        downloadFile("entitydata.zip");
        downloadFile("forecastdata.zip");  
    }

    public void integrationScenarioRemoveUnnecessaryFiles() throws Exception {
        listFiles();
        deleteFile("entitymetadata.csv");
        deleteFile("forecastdata.csv");
    }
    
    public void integrationScenarioExportDataAndDownloadFiles() throws 

Appendix A

A-2



Exception {
        executeJob("EXPORT_DATA", "entitydata", 
"{exportFileName:entitydata.zip}");
        executeJob("EXPORT_DATA", "forecastdata", 
"{exportFileName:forecastdata.zip}");
        listFiles();
        downloadFile("entitydata.zip");
        downloadFile("forecastdata.zip");
    }
    
    public void integrationScenarioRefreshTheApplication() throws Exception {
        uploadFile("accounts.zip");
        executeJob("IMPORT_METADATA", "accountMetadata", 
"{importZipFileName:accounts.zip}");
        executeJob("CUBE_REFRESH", null, null);
    }
    
    public void integrationScenarioCloneServiceInstance() throws Exception {
        // Part 1 : Change serverUrl, username, password, apiVersion 
variables values to match those of first environment
        // Download file from source instance. 
        // Comment out all lines below Part 2
        // Uncomment the below line for the first step.
        // downloadFile("Artifact Snapshot"); 
        
        // Part 2 : Change serverUrl, username, password, apiVersion to match 
those of second environment.
        // Clone the service instance. 
        // Comment out code for download file.
        // Uncomment below lines
        recreateService("PBCS");
        deleteFile("Artifact Snapshot");
        uploadFile("Artifact Snapshot.zip");
        importSnapshot("Artifact Snapshot");
    }
    //
    // END - Integration scenarios.
    //
    
    //
    // BEGIN - Methods that invoke REST API
    //
    
    //
    // Common Helper Methods
    //
    private String getStringFromInputStream(InputStream is) {
        BufferedReader br = null;
        StringBuilder sb = new StringBuilder();
        String line;
        
        try {
            br = new BufferedReader(new InputStreamReader(is));
            while ((line = br.readLine()) != null) {
                sb.append(line);
            }

Appendix A

A-3



        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            if (br != null) {
                try {
                    br.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
        
        return sb.toString();
    }    

    private String executeRequest(String urlString, String requestMethod, 
String payload, String contentType) throws Exception {
        HttpURLConnection connection = null;
        try {
            URL url = new URL(urlString);
            connection = (HttpURLConnection) url.openConnection();
            connection.setRequestMethod(requestMethod);
            connection.setInstanceFollowRedirects(false);
            connection.setDoOutput(true);
            connection.setUseCaches(false);
            connection.setDoInput(true);
            connection.setRequestProperty("Authorization", "Basic " + new 
sun.misc.BASE64Encoder().encode((userName + ":" + password).getBytes()));
            connection.setRequestProperty("Content-Type", contentType);
            if (payload != null) {
                OutputStreamWriter writer = new 
OutputStreamWriter(connection.getOutputStream());
                writer.write(payload);
                writer.flush();
            }
            int status = connection.getResponseCode();
            if (status == 200 || status == 201) {
                return getStringFromInputStream(connection.getInputStream());
            }
            throw new Exception("Http status code: " + status);
        } finally {
            if (connection != null)
                connection.disconnect();
        }
    }
    
    private void getJobStatus(String pingUrlString, String methodType) throws 
Exception {
        boolean completed = false;
        while (!completed) {
            String pingResponse = executeRequest(pingUrlString, methodType, 
null, "application/x-www-form-urlencoded");
            JSONObject json = new JSONObject(pingResponse);
            int status = json.getInt("status");
            if (status == -1) {
                try {

Appendix A

A-4



                    System.out.println("Please wait...");
                    Thread.sleep(20000);
                } catch (InterruptedException e) {
                    completed = true;
                    throw e;
                }
            }
            else {
                if (status > 0) {
                    System.out.println("Error occurred: " + 
json.getString("details"));
                }
                else {
                    System.out.println("Completed");
                }
                completed = true;
            }
        }
    }
    
    private void getMigrationJobStatus(String pingUrlString, String 
methodType) throws Exception {
        boolean completed = false;
        while (!completed) {
            String pingResponse = executeRequest(pingUrlString, methodType, 
null, "application/x-www-form-urlencoded");
            JSONObject json = new JSONObject(pingResponse);
            int status = json.getInt("status");
            if (status == -1) {
                try {
                    System.out.println("Please wait...");
                    Thread.sleep(20000);
                } catch (InterruptedException e) {
                    completed = true;
                    throw e;
                }
            }
            else {
                if (status == 1){
                    System.out.println("Error occured");
                    JSONArray itemsArray = 
json.getJSONArray("items");            
                    JSONObject jObj = null;
                    if(itemsArray.length() <= 0){
                        System.out.println(json.getString("details"));
                    }else{
                    for (int i=0; i < itemsArray.length(); i++){
                        jObj = (JSONObject)itemsArray.get(i);
                        String source = jObj.getString("source");
                        String destination = jObj.getString("destination");
                        String taskURL = null;
                        JSONArray lArray = jObj.getJSONArray("links");
                        for (int j = 0; j < lArray.length(); j++) {
                            JSONObject arr = lArray.getJSONObject(j);
                            if (!JSONObject.NULL.equals(arr) && !
JSONObject.NULL.equals(arr.get("rel")) && arr.get("rel").equals("Job 

Appendix A

A-5



Details")) {
                                taskURL = (String) arr.get("href");
                                break;
                            }
                        }
                        System.out.println("Details:");
                        System.out.println("Source: " + source);
                        System.out.println("Destination: "+ destination);
                        boolean errorsCompleted = false;
                        String currentMessageCategory = "";
                        String nextPingURL = taskURL;
                        while(!errorsCompleted){
                            String nextPingResponse = 
executeRequest(nextPingURL, "GET", null, "application/x-www-form-urlencoded");
                            JSONObject jsonObj = new 
JSONObject(nextPingResponse);
                            int status1 = jsonObj.getInt("status");
                            if(status1 == 0){
                                JSONArray artifactArray = 
jsonObj.getJSONArray("items");
                                JSONObject jRes = null;
                                for(int k=0; k < artifactArray.length(); k++){
                                    jRes = (JSONObject)artifactArray.get(k);
                                    String artifact = 
jRes.getString("artifact").toString();
                                    String msgCategory = 
jRes.getString("msgCategory").toString();
                                    String msgText = 
jRes.getString("msgText").toString();
                                    if(currentMessageCategory.isEmpty() || !
currentMessageCategory.equals(msgCategory)){
                                        currentMessageCategory = msgCategory;
                                        
System.out.println(currentMessageCategory);
                                    }
                                    System.out.println(artifact +" - " + 
msgText);
                                }
                                nextPingURL = "";
                                JSONArray nextLinks = 
jsonObj.getJSONArray("links");
                                for (int j = 0; j < nextLinks.length(); j++) {
                                    JSONObject nextArray = 
nextLinks.getJSONObject(j);
                                    if (!JSONObject.NULL.equals(nextArray) 
&& !JSONObject.NULL.equals(nextArray.get("rel")) && 
nextArray.get("rel").equals("next")) {
                                        nextPingURL = (String) 
nextArray.get("href");
                                        break;
                                    }
                                }
                                if(nextPingURL.isEmpty())
                                    errorsCompleted = true;
                            }else if(status1 > 0){
                                System.out.println("Error occured while 

Appendix A

A-6



fetching error details: "+ jsonObj.getString("details"));
                                errorsCompleted = true;
                            }
                        }
                    }
                    }
                }else if(status == 0){
                    System.out.println("Completed");
                }
                completed = true;
            }
        }
    }
    
    public String fetchPingUrlFromResponse(String response, String retValue) 
throws Exception {
        String pingUrlString = null;
        JSONObject jsonObj = new JSONObject(response);
        int resStatus = jsonObj.getInt("status");
        if (resStatus == -1) {
            JSONArray lArray = jsonObj.getJSONArray("links");
            for (int i = 0; i < lArray.length(); i++) {
                JSONObject arr = lArray.getJSONObject(i);
                if (arr.get("rel").equals(relValue))
                    pingUrlString = (String) 
arr.get("href");                            
            }
        }
        return pingUrlString;
    }
    //
    // END - Common Helper Methods
    //
    
    //
    // BEGIN - List all the versions in PBCS
    //
    public void getLCMVersions() throws Exception {
        String urlString = String.format("%s/interop/rest", serverUrl);
        String response = executeRequest(urlString, "GET", null, 
"application/x-www-form-urlencoded");
        JSONObject json = new JSONObject(response);
        int resStatus = json.getInt("status");
        if (resStatus == 0) {
            JSONArray fileList = json.getJSONArray("items");
            System.out.println("List of files are :");
            JSONObject jObj = null;
            for(int i=0; i<fileList.length(); i++){0) {
                jObj = (JSONObject)fileList.get(i);
                System.out.println("Version :" + jObj.getString("version"));
                System.out.println("Lifecycle :" + 
jObj.getString("lifecycle"));
                System.out.println("Latest :" + jObj.getString("latest"));
                System.out.println("Link :" + ((JSONObject) ((JSONArray) 
jObj.getJSONArray("links")).get(0)).getString("href") + "\n");
            }

Appendix A

A-7



        }
    }
    //
    // END - List all the versions in PBCS
    //
    
    //
    // BEGIN - Get application snapshot details
    //
    public void getApplicationSnapshotDetails(String snapshotName) throws 
Exception {
        String urlString = String.format("%s/interop/rest/%s/
applicationsnapshots/%s", serverUrl, apiVersion, snapshotName);
        String response = executeRequest(urlString, "GET", null, 
"application/x-www-form-urlencoded");
        JSONObject json = new JSONObject(response);
        
        int resStatus = json.getInt("status");
        if (resStatus == 0) {
            System.out.println("Application details :");
            JSONArray itemsArray = json.getJSONArray("items");
            JSONObject item = (JSONObject) itemsArray.get(0);
            System.out.println("Application snapshot name : " + 
item.getString("name"));
            System.out.println("Application snapshot type : " + 
item.getString("type"));
            System.out.println("Can be exported flag : " + 
item.getString("canExport"));
            System.out.println("Can be imported flag : " + 
item.getString("canImport"));
            System.out.println("Can be uploaded flag : " + 
item.getString("canUpload"));
            System.out.println("Can be downloaded flag : " + 
item.getString("canDownload"));

            JSONArray linksArray = json.getJSONArray("links");
            JSONObject jObj = null;
            System.out.println("Services details :");
            for(int i=0; i < linksArray.length(); i++){
                jObj = (JSONObject)linksArray.get(i);
                System.out.println("Service :" + jObj.getString("rel"));
                System.out.println("URL :" + jObj.getString("href"));
                System.out.println("Action :" + jObj.getString("action") + 
"\n");
            }
        }
    }
    //
    // END - Get application snapshot details
    //
    
    //
    // BEGIN - List all the files in PBCS
    //
    public void listFiles() throws Exception {
        String urlString = String.format("%s/interop/rest/%s/

Appendix A

A-8



applicationsnapshots", serverUrl, apiVersion);
        String response = executeRequest(urlString, "GET", null, 
"application/x-www-form-urlencoded");
        JSONObject json = new JSONObject(response);
        int resStatus = json.getInt("status");
        if (resStatus == 0) {
            if (json.get("items").equals(JSONObject.NULL))
                System.out.println("No files found");
            else {
                System.out.println("List of files :");
                JSONArray itemsArray = json.getJSONArray("items");            
                JSONObject jObj = null;
                for (int i=0; i < itemsArray.length(); i++){
                    jObj = (JSONObject)itemsArray.get(i);
                    System.out.println(jObj.getString("name"));
                }
            }
        }
    }
    //
    // END - List all the files in PBCS
    //
    
    //
    // BEGIN - Delete a file in PBCS
    //
    public void deleteFile(String fileName) throws Exception {
        String urlString = String.format("%s/interop/rest/%s/
applicationsnapshots/%s", serverUrl, apiVersion, fileName);
        String response = executeRequest(urlString, "DELETE", null, 
"application/x-www-form-urlencoded");
        JSONObject json = new JSONObject(response);
        int resStatus = json.getInt("status");
        if (resStatus == 0)
            System.out.println("File deleted successfully");
        else
            System.out.println("Error deleting file : " + 
json.getString("details"));
    }
    //
    // END - Delete a file in PBCS
    //
    
    //
    // BEGIN - Download a file from PBCS
    //
    public void downloadFile(String fileName) throws Exception {    
        HttpURLConnection connection = null;
        InputStream inputStream = null;
        FileOutputStream outputStream = null;

        try {
            URL url = new URL(String.format("%s/interop/rest/%s/
applicationsnapshots/%s/contents", serverUrl, apiVersion, fileName));
            connection = (HttpURLConnection) url.openConnection();
            connection.setRequestMethod("GET");

Appendix A

A-9



            connection.setInstanceFollowRedirects(false);
            connection.setDoOutput(true);
            connection.setUseCaches(false);
            connection.setDoInput(true);
            connection.setRequestProperty("Authorization", "Basic " + new 
sun.misc.BASE64Encoder().encode((userName + ":" + password).getBytes()));
            connection.setRequestProperty("Content-Type", "application/x-www-
form-urlencoded");
            int status = connection.getResponseCode();
            if (status == 200) {
                if (connection.getContentType() != null && 
connection.getContentType().equals("application/json")) {
                    JSONObject json = new 
JSONObject(getStringFromInputStream(connection.getInputStream()));
                    System.out.println("Error downloading file : " + 
json.getString("details"));
                } else {
                    inputStream = connection.getInputStream();
                    outputStream = new FileOutputStream(new File(fileName));
                    int bytesRead = -1;
                    byte[] buffer = new byte[5 * 1024 * 1024];
                    while ((bytesRead = inputStream.read(buffer)) != -1) 
                        outputStream.write(buffer, 0, bytesRead);
                    System.out.println("File download completed.");
                }
            } else {
                throw new Exception("Http status code: " + status);
            }
        } finally {
            if (connection != null)
                connection.disconnect();
            if (outputStream != null)
                outputStream.close();
            if (inputStream != null)
                inputStream.close();
        }
    }    
    //
    // END - Download a file from PBCS
    //
    
    //
    // BEGIN - Upload a file to PBCS
    //
    public void uploadFile(String fileName) throws Exception {
        final int DEFAULT_CHUNK_SIZE = 50 * 1024 * 1024;
        InputStream fis = null;
        byte[] lastChunk = null;
        long totalFileSize = new File(fileName).length(), totalbytesRead = 0;
        boolean isLast = false, status = true;
        Boolean isFirst = true;
        int packetNo = 1, lastPacketNo = (int) (Math.ceil(totalFileSize / 
(double) DEFAULT_CHUNK_SIZE));

        try {
            fis = new BufferedInputStream(new FileInputStream(fileName));

Appendix A

A-10



            while (totalbytesRead < totalFileSize && status) {
                int nextChunkSize = (int) Math.min(DEFAULT_CHUNK_SIZE, 
totalFileSize - totalbytesRead);
                if (lastChunk == null) {
                    lastChunk = new byte[nextChunkSize];
                    totalbytesRead += fis.read(lastChunk);
                    if (packetNo == lastPacketNo) 
                        isLast = true;
                    status = sendFileContents(isFirst, isLast, lastChunk, 
fileName);
                    isFirst=false;
                    packetNo = packetNo + 1;
                    lastChunk = null;
                }
            }
            System.out.println("Uploaded successfully");
        } finally {
            if (fis != null)
                fis.close();
        }
    }
    
    private boolean sendFileContents(Boolean isFirst, boolean isLast, byte[] 
lastChunk, String fileName) throws Exception {    
        HttpURLConnection connection = null;

        try {
            URL url = new URL(String.format("%s/interop/rest/%s/
applicationsnapshots/%s/contents?q={chunkSize:%d,isFirst:%b,isLast:%b}", 
                    serverUrl, apiVersion, fileName, lastChunk.length, 
isFirst, isLast));
            connection = (HttpURLConnection) url.openConnection();
            connection.setRequestMethod("POST");
            connection.setInstanceFollowRedirects(false);
            connection.setDoOutput(true);
            connection.setUseCaches(false);
            connection.setDoInput(true);            
            connection.setRequestProperty("Authorization", "Basic " + new 
sun.misc.BASE64Encoder().encode((userName + ":" + password).getBytes()));
            connection.setRequestProperty("Content-Type", "application/octet-
stream");
            
            DataOutputStream wr = new 
DataOutputStream(connection.getOutputStream());
            wr.write(lastChunk);
            wr.flush();

            int statusCode = connection.getResponseCode();
            String status = 
getStringFromInputStream(connection.getInputStream());
            if (statusCode == 200 && status != null) {
                int commandStatus = getCommandStatus(status);
                if (commandStatus == 0) {
                    isFirst = false;
                    return true;
                }else if(commandStatus == -1 && isLast){

Appendix A

A-11



                    getJobStatus(fetchPingUrlFromResponse(status, "Job 
Status"), "GET");
                }
            }
            
            return false;
        } finally {
            if (connection != null) 
                connection.disconnect();
        }
    }
    
    public int getCommandStatus(String response) throws Exception {
        JSONObject json = new JSONObject(response);
        if (!JSONObject.NULL.equals(json.get("status")))
            return json.getInt("status");
        else
            return Integer.MIN_VALUE;
    }    
    //
    // END - Upload a file to PBCS
    //
    
    //
    // BEGIN - Import an application snapshot
    //
    public void importSnapshot(String applicationSnapshotName) throws 
Exception {
        JSONObject params = new JSONObject();
        params.put("type","import");
        String urlString = String.format("%s/interop/rest/%s/
applicationsnapshots/%s/migration?q=%s", serverUrl, apiVersion, 
applicationSnapshotName, params.toString());
        String response = executeRequest(urlString, "POST", null, 
"application/x-www-form-urlencoded");
        System.out.println("Import started successfully");
        getMigrationJobStatus(fetchPingUrlFromResponse(response, "Job 
Status"),"POST");        
    }
    //
    // END - Import an application snapshot
    //
    
    //
    // BEGIN - Export an application snapshot
    //
    public void exportSnapshot(String applicationSnapshotName) throws 
Exception {    
        JSONObject params = new JSONObject();
        params.put("type","export");
        String urlString = String.format("%s/interop/rest/%s/
applicationsnapshots/%s/migration?q=%s", serverUrl, apiVersion, 
applicationSnapshotName, params.toString());
        String response = executeRequest(urlString, "POST", null, 
"application/x-www-form-urlencoded");
        System.out.println("Export started successfully");

Appendix A

A-12



        getMigrationJobStatus(fetchPingUrlFromResponse(response, "Job 
Status"), "POST");        
    }
    //
    // END - Export an application snapshot
    //
    
    //
// BEGIN - Provide Feedback
    //
    public void provideFeedback(String description) throws Exception {
        JSONObject params = new JSONObject();
        JSONObject config = new JSONObject();
        config.put("URL",serverUrl);
        params.put("configuration",config);
        params.put("description",description);
    
        String urlString = String.format("%s/interop/rest/%s/feedback", 
serverUrl, apiVersion);
        String response = executeRequest(urlString, "POST", 
params.toString(), "application/json");
        JSONObject json = new JSONObject(response);
        int resStatus = json.getInt("status");
        if (resStatus == 0) {
            System.out.println("Feedback successful");    
        } else {
            System.out.println("Error occured: " + json.getString("details"));
        }
    }
    //
    // END - Provide Feedback
    //
    
    //
    // BEGIN - Reset services
    //
    public void hardReset(String comment) throws Exception {
        Scanner in = new Scanner(System.in);
        System.out.println("Are you sure you want to restart the service 
instance (yes/no): no ?[Press Enter]");
        String s = in.nextLine();
        if (!s.equals("yes")) {
            System.out.println("User cancelled the recreate command");
            System.exit(0);
        }
        
        JSONObject params = new JSONObject();
        params.put("comment",java.net.URLEncoder.encode(comment));
        
        String urlString = String.format("%s/interop/rest/%s/services/PBCS/
resetservice", serverUrl, apiVersion);
        String response = executeRequest(urlString, "POST", 
params.toString(), "application/x-www-form-urlencoded");
        waitForCompletion(fetchPingUrlFromResponse(response, "Job Status"));
    }
    //

Appendix A

A-13



    // END - Reset services
    //
    //
    // BEGIN - Execute a Job (EXPORT_DATA, EXPORT_METADATA, IMPORT_DATA, 
IMPORT_METADATA, CUBE_REFRESH, ...)
    //
    public void executeJob(String jobType, String jobName, String parameters) 
throws Exception {    
        String urlString = String.format("%s/HyperionPlanning/rest/%s/
applications/%s/jobs", serverUrl, apiVersion, applicationName);
        JSONObject payload = new JSONObject();
        payload.put("jobName",jobName);
        payload.put("jobType",jobType);
        payload.put("parameters",new JSONObject(parameters));
        String response = executeRequest(urlString, "POST", 
payload.toString(), "application/json");
        System.out.println("Job started successfully");
        getJobStatus(fetchPingUrlFromResponse(response, "self"), 
"GET");        
    }
    //
    // END - Execute a Job (EXPORT_DATA, EXPORT_METADATA, IMPORT_DATA, 
IMPORT_METADATA, CUBE_REFRESH, ...)
    //
}
  

Note:

Note on Proxy Setting: In case of proxies, set the proxy host and port as the system
arguments.

Appendix A

A-14



B
CSS Common Helper Functions for Java

This appendix shows the CSS common helper functions for Java for the EPM REST APIs.

Prerequisites: json.jar

Note on Proxy Setting: In case of proxies, set the proxy host and port as the system
arguments.

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.UnsupportedEncodingException;
import java.net.HttpURLConnection;
import java.net.URI;
import java.net.URLEncoder;
import java.nio.charset.Charset;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import javax.xml.bind.DatatypeConverter;

import org.json.JSONArray;
import org.json.JSONObject;

public class CSSRESTSamples {
    private static String userName;
    private static String password;
    private String serverUrl;
    private String apiVersion;

    public static void main(String[] args) {
        try {
CSSRESTSamples samples = new CSSRESTSamples("<DOMAINNAME.USERNAME>", 
"<PASSWORD>", "<SERVICE_URL>", "v1");
            // Call sample APIs.
            // samples.addUsers("AddUser2.csv", "test123$", false);
            // samples.removeUsers("test2.csv");
            // samples.assignRole("test3.csv", "Power User");
            // samples.unassignRole("test4.csv", "Viewer");
            // samples.addUsersToGroup("test5.csv", "TestGroup1");
            // samples.removeUsersFromGroup("test6.csv", "TestGroup2");
            // samples.generateRoleAssignmentReport("JavaSampleReport.csv", 
"ServiceUsers");
            // samples.generateUserGroupReport("UserGroupReport.csv");
            // samples.addUserToGroups("Group.csv", "user1");
            // samples.removeUserFromGroups("groups.csv", "joe");
            // samples.addGroups("Group1.csv");

B-1



            // samples.removeGroups("DeleteGroup1.csv");
            // samples.generateInvalidLoginReport("2021-06-01", 
"2021-06-10","invalidLoginReport141.csv");
            // samples.generateRoleAssignmentAuditReport("2021-06-01", 
"2021-06-10","roleAssignmentaudit_14778.csv");
            // samples.updateUsers("updateuser.csv");
        } catch (Throwable x) {
            System.err.println("Error: " + x.getMessage());
        }
    }

    public CSSRESTSamples(String userName, String password, String serverUrl, 
String apiVersion) throws Exception {
        this.userName = userName;
        this.password = password;
        this.serverUrl = serverUrl;
        this.apiVersion = apiVersion;
    }

    public void addUsers(String fileName, String userPassword, boolean 
resetPassword) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/users";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("userpassword", userPassword);
            reqParams.put("resetpassword", resetPassword + "");

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void removeUsers(String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/users";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);

Appendix B

B-2



            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "DELETE");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void assignRole(String fileName, String roleName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/users";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "ASSIGN_ROLE");
            reqParams.put("rolename", roleName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void unassignRole(String fileName, String roleName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/users";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "UNASSIGN_ROLE");
            reqParams.put("rolename", roleName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);

Appendix B

B-3



            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void addUsersToGroup(String fileName, String groupName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "ADD_USERS_TO_GROUP");
            reqParams.put("groupname", groupName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void removeUsersFromGroup(String fileName, String groupName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "REMOVE_USERS_FROM_GROUP");
            reqParams.put("groupname", groupName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    

Appendix B

B-4



    public void addUserToGroups(String fileName, String userName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "ADD_USER_TO_GROUPS");
            reqParams.put("username", userName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void removeUserFromGroups(String fileName, String userName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "REMOVE_USER_FROM_GROUPS");
            reqParams.put("username", userName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public void generateRoleAssignmentReport(String fileName, String 
userType) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/roleassignmentreport";
            Map<String, String> reqHeaders = new HashMap<String, String>();

Appendix B

B-5



            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
                    reqParams.put("usertype", userType);
        
            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public void generateUserGroupReport(String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/usergroupreport";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
        
            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void addGroups(String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,

Appendix B

B-6



                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public void removeGroups(String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "DELETE");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public void generateInvalidLoginReport(String fromDate, String 
toDate,String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/invalidloginreport";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("from_date", fromDate);
            reqParams.put("to_date", toDate);
            reqParams.put("filename", fileName);
        
            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }

Appendix B

B-7



    }
    
    public void generateRoleAssignmentAuditReport(String fromDate, String 
toDate,String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/roleassignmentauditreport";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("from_date", fromDate);
            reqParams.put("to_date", toDate);
            reqParams.put("filename", fileName);
        
            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public void updateUsers(String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/users";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "UPDATE_USERS");

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    private static class CSSRESTHelper {
        public static final String REST_CALL_STATUS = "REST_CALL_STATUS";
        public static final String REST_CALL_RESPONSE = "REST_CALL_RESPONSE";

Appendix B

B-8



        private static Map<String, String> callRestApi(Map context, String 
url, Map<String, String> requestHeaders,
                Map<String, String> requestParams, String methodType) {
            HttpURLConnection urlConnection = null;
            Map<String, String> restResult = new HashMap<String, String>();
            restResult.put(REST_CALL_STATUS, "-1");
            boolean isPostMethod = "POST".equalsIgnoreCase(methodType) || 
"PUT".equalsIgnoreCase(methodType);
            try {
                URI baseUri = new URI(url);
                URI uri = null;
                String reqParams = (requestParams != null ? 
buildRequestParams(context, requestParams, isPostMethod)
                        : null);
                if (isPostMethod) {
                    uri = new URI(baseUri.getScheme(), 
baseUri.getAuthority(), baseUri.getPath(), null, null);
                } else {
                    uri = new URI(baseUri.getScheme(), 
baseUri.getAuthority(), baseUri.getPath(), reqParams, null);
                }

                urlConnection = (HttpURLConnection) 
uri.toURL().openConnection();
                urlConnection.setRequestMethod(methodType);

                if (requestHeaders != null) {
                    Set<String> requestHeaderKeys = requestHeaders.keySet();
                    for (String requestHeaderKey : requestHeaderKeys) {
                        urlConnection.setRequestProperty(requestHeaderKey, 
requestHeaders.get(requestHeaderKey));
                    }
                }

                urlConnection.setUseCaches(false);
                urlConnection.setDoOutput(true);
                urlConnection.setDoInput(true);

                if (isPostMethod) {
                    OutputStreamWriter writer = new 
OutputStreamWriter(urlConnection.getOutputStream(),
                            Charset.defaultCharset());
                    writer.write(reqParams);
                    writer.flush();
                }

                if (!isPostMethod) {
                    urlConnection.connect();
                }

                int status = urlConnection.getResponseCode();
                restResult.put(REST_CALL_STATUS, String.valueOf(status));
                String response = readResponse(context,
                        (status >= 400 ? urlConnection.getErrorStream() : 
urlConnection.getInputStream()));
                restResult.put(REST_CALL_RESPONSE, response);

Appendix B

B-9



            } catch (Exception e) {
                restResult.put(REST_CALL_RESPONSE, e.getMessage());
            } finally {
                if (urlConnection != null) {
                    urlConnection.disconnect();
                }
            }
            return restResult;
        }

        private static String buildRequestParams(Map context, Map<String, 
String> requestParams, boolean isPostMethod) {
            String reqParams = null;
            try {
                StringBuilder result = new StringBuilder();
                Set<String> reqParamKeys = requestParams.keySet();
                boolean first = true;
                for (String reqParamKey : reqParamKeys) {
                    if (first)
                        first = false;
                    else
                        result.append("&");
                    String reqParamValue = requestParams.get(reqParamKey);
                    result.append((isPostMethod ? 
URLEncoder.encode(reqParamKey, "UTF-8") : reqParamKey));
                    result.append("=");
                    result.append((isPostMethod ? 
URLEncoder.encode(reqParamValue, "UTF-8") : reqParamValue));
                }
                reqParams = result.toString();
            } catch (UnsupportedEncodingException e) {
                e.printStackTrace();
            }
            return reqParams;
        }

        private static String readResponse(Map context, InputStream 
urlInStream) {
            BufferedReader br = null;
            String response = "";
            try {
                String line;
                br = new BufferedReader(new InputStreamReader(urlInStream, 
Charset.defaultCharset()));
                while ((line = br.readLine()) != null) {
                    response += line;
                }
            } catch (Exception e) {
                response += e.getMessage();
            } finally {
                if (br != null) {
                    try {
                        br.close();
                    } catch (IOException e) {
                        e.printStackTrace();
                    }

Appendix B

B-10



                }
            }
            return response;
        }

        private static String getCSSRESTJobUrlFromResponse(String response) {
            String jobUrl = "";
            try {
                JSONObject jsonResponse = new JSONObject(response);
                JSONArray links = (JSONArray) jsonResponse.get("links");
                JSONObject jobStatusLink = (JSONObject) links.get(1);
                jobUrl = jobStatusLink.get("href").toString();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            return jobUrl;
        }

        private static String getCSSRESTJobStatusFromResponse(String 
response) {
            String jobStatus = "";
            try {
                JSONObject jsonResponse = new JSONObject(response);
                jobStatus = jsonResponse.get("status").toString();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            return jobStatus;
        }

        private static String getCSSRESTJobCompletionStatus(Map<String, 
String> restResult, Map<String, String> reqHeader) {
            String completionStatus = "";
            try {
                String restStatus = 
restResult.get(CSSRESTHelper.REST_CALL_STATUS);
                if (restStatus.equalsIgnoreCase("200")) {
                    String jobUrl = 
getCSSRESTJobUrlFromResponse(restResult.get(CSSRESTHelper.REST_CALL_RESPONSE))
;
                    String restJobStatus = "-1";
                    Map<String, String> jobStatusResult = null;
                    while (restJobStatus.equalsIgnoreCase("-1")) {
                        jobStatusResult = CSSRESTHelper.callRestApi(new 
HashMap(), jobUrl, reqHeader, null, "GET");
                        String jobStatusStatus = 
jobStatusResult.get(CSSRESTHelper.REST_CALL_STATUS);
                        if (jobStatusStatus.equalsIgnoreCase("200")) {
                            restJobStatus = getCSSRESTJobStatusFromResponse(
                                    
jobStatusResult.get(CSSRESTHelper.REST_CALL_RESPONSE));
                        }
                        Thread.sleep(1000);
                    }
                    completionStatus = 
jobStatusResult.get(CSSRESTHelper.REST_CALL_RESPONSE);

Appendix B

B-11



                }
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            return completionStatus;
        }
    };
}

Appendix B

B-12



C
Common Helper Functions for cURL

This appendix shows the common helper functions for cURL for the EPM Cloud REST APIs.

Note: the USERNAME variable is <domain>.<username>. See Authentication.

#!/bin/sh

SERVER_URL="https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/"
USERNAME=<username>
PASSWORD=<password>
APP_NAME="Vision"
API_VERSION="11.1.2.3.600"

funcRemoveTempFiles() {
    for var in "$@"
    do
        if [ -f $var ]; then
            rm $var
        fi
    done
}

funcPrintErrorDetails() {
    contentType=`echo $(grep 'Content-Type:' respHeader.txt) | tr -d 
[:space:]`
    if [ ! -z $contentType ] && [[ $contentType = *"application/json"* ]]; 
then
        output=`cat $1`
        error=`echo $output | jq '.details'`
        echo "Error details: " $error
    fi
}

funcExecuteRequest() {
    if [ ! -z "$4" ]; then
        statusCode=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" -
o "response.txt" -D "respHeader.txt" -H "Content-Type: $4" -d $3 $2`
    else
        statusCode=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" -
o "response.txt" -D "respHeader.txt" -H "Content-Type: $3" $2`
    fi
    if [ $statusCode != 200 ]; then
        echo "Error executing request"
        if [ $statusCode != 000 ]; then
            echo "Response error code : " $statusCode
            funcPrintErrorDetails "response.txt"
            funcRemoveTempFiles "respHeader.txt" "response.txt"
        fi
        exit 0

C-1



    fi
}

funcGetStatus() {
    output=`cat response.txt`
    count=`echo $output | jq '.links | length'`
    i=0
    pingUrl=""
    while [ $i -lt $count ]; do
        rel=`echo $output | jq '.links['$i'].rel'`
        rel=`echo "$rel" | tr -d "\""`
        if [ "$rel" == "Job Status" ]; then
                pingUrl=`echo $output | jq '.links['$i'].href'`
                pingUrl=`echo "$pingUrl" | tr -d "\""`
        fi
        i=`expr $i + 1`
    done
    echo $pingUrl
    completed="false"
    while [ $completed != "true" ]; do
        statusCode2=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" 
-o "pingResponse.txt"  -H "Content-Type: application/x-www-form-urlencoded" 
"$pingUrl"`
        if [ $statusCode2 == 200 ]; then
            status2=`jq '.status' pingResponse.txt`
            if [ $status2 != -1 ]; then
                completed="true"
                echo "Job completed"
            else
                echo "Please wait..."
                sleep 20
            fi
            
        else
            echo "Please wait..."
            sleep 20
        fi
        funcRemoveTempFiles "pingResponse.txt"
    done
}

funcGetMigrationStatus() {
    output=`cat response.txt`
    count=`echo $output | jq '.links | length'`
    i=0
    pingUrl=""
    while [ $i -lt $count ]; do
        rel=`echo $output | jq '.links['$i'].rel'`
        rel=`echo "$rel" | tr -d "\""`
        if [ "$rel" == "Job Status" ]; then
                pingUrl=`echo $output | jq '.links['$i'].href'`
                pingUrl=`echo "$pingUrl" | tr -d "\""`
        fi
        i=`expr $i + 1`
    done
    echo $pingUrl

Appendix C

C-2



    completed="false"
    while [ $completed != "true" ]; do
        statusCode2=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" 
-o "pingResponse.txt"  -H "Content-Type: application/x-www-form-urlencoded" 
"$pingUrl"`
        if [ $statusCode2 == 200 ]; then
            status2=`jq '.status' pingResponse.txt`
            if [ $status2 == 0 ]; then
                completed="true"
                echo "Job completed"
            elif [ $status2 == 1 ]; then
                output1=`cat pingResponse.txt`
                echo "Error occurred"
                count=`echo $output1 | jq '.items | length'`
                if [ $count == 0 ]; then
                    echo `echo $output1 | jq '.details'`
                else 
                    i=0
                    while [ $i -lt $count ]; do
                        echo "Source : " `echo $output1 | jq 
'.items['$i'].source'`
                        echo "Destination :" `echo $output1 | jq 
'.items['$i'].destination'`
                        firstPing=`echo $output1 | jq 
'.items['$i'].links[0].href'`
                        echo ""
                        taskCompleted="false"
                        while [ $taskCompleted != "true" ]; do
                            statusCode3=`curl -X "GET" -s -w "%{http_code}" -
u "$USERNAME:$PASSWORD" -o "taskpingResponse.txt"  -H "Content-Type: 
application/x-www-form-urlencoded" "$firstPing"`
                            echo $statusCode3
                            output2=`cat taskpingResponse.txt`
                            count1=`echo $output2 | jq '.items | length'`
                            j=0
                            currentMessageCategory=""
                            while [ $j -lt $count1 ]; do
                                msgCategory=`echo $output1 | jq 
'.items['$i'].msgCategory'`
                                if [ !-z $currentMessageCategory ] || 
[ $currentMessageCategory != $msgCategory ]; then
                                    currentMessageCategory=msgCategory
                                    echo $currentMessageCategory
                                fi
                                echo `echo $output2 | jq 
'.items['$i'].artifact'` " - " `echo $output2 | jq '.items['$i'].msgText'`
                                count2=`echo $output | jq '.links | length'`
                                k=0
                                firstPing=""
                                while [ $k -lt $count ]; do
                                    rel=`echo $output2 | jq 
'.links['$i'].rel'`
                                    rel=`echo "$rel" | tr -d "\""`
                                    if [ "$rel" == "next" ]; then
                                            firstPing=`echo $output2 | jq 
'.links['$i'].href'`

Appendix C

C-3



                                            firstPing=`echo "$firstPing" | tr 
-d "\""`
                                    fi
                                    k=`expr $k + 1`
                                done
                                if [ -z $firstPing ]; then
                                    taskCompleted="true"
                                fi
                                j=`expr $j + 1`
                            done
                        done
                        i=`expr $i + 1`
                    done
                fi
            else
                echo "Please wait..."
                sleep 20
            fi
            
        else
            echo "Please wait..."
            sleep 20
        fi
        funcRemoveTempFiles "pingResponse.txt" "taskpingResponse.txt"
    done
}    
        

funcGetLCMVersions() {
    url=$SERVER_URL/interop/rest
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "List of versions :"
        count=`echo $output | jq '.items | length'`
        i=0
        while [ $i -lt $count ]; do
            echo "Version : " `echo $output | jq '.items['$i'].version'`
            echo "Lifecycle :" `echo $output | jq '.items['$i'].lifecycle'`
            echo "Latest :" `echo $output | jq '.items['$i'].latest'`
            echo "Link :" `echo $output | jq '.items['$i'].links[0].href'`
            echo ""
            i=`expr $i + 1`
        done
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcGetLCMVersionDetails() {
    url=$SERVER_URL/interop/rest/$API_VERSION
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"

Appendix C

C-4



    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "Version $API_VERSION details :"
        count=`echo $output | jq '.links | length'`
        i=0
        while [ $i -lt $count ]; do
            echo "Service : " `echo $output | jq '.links['$i'].rel'`
            echo "URL :" `echo $output | jq '.links['$i'].href'`
            echo "Action :" `echo $output | jq '.links['$i'].action'`
            echo ""
            i=`expr $i + 1`
        done
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcGetServices() {
    url=$SERVER_URL/interop/rest/$API_VERSION/services
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "Services list :"
        count=`echo $output | jq '.links | length'`
        i=0
        while [ $i -lt $count ]; do
            rel=`echo $output | jq '.links['$i'].rel'`
            rel=`echo "$rel" | tr -d "\""`
            if [ "$rel" != "self" ]; then
                echo "Service : " `echo $output | jq '.links['$i'].rel'`
                echo "URL :" `echo $output | jq '.links['$i'].href'`
                echo "Action :" `echo $output | jq '.links['$i'].action'`
                echo ""
            fi
            i=`expr $i + 1`
        done
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcRecreateService() {
    echo "Are you sure you want to recreate the EPM environment (yes/no): no ?
[Press Enter]"
    read toCreate
    if [ $toCreate != "yes" ]; then
        echo "User cancelled the recreate command"
        exit 0

Appendix C

C-5



    fi
    
    url=$SERVER_URL/interop/rest/$API_VERSION/services/$1/recreate
    funcExecuteRequest "POST" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started recreating the environment successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcGetApplicationSnapshotDetails() {
    encodedFileName=$(echo $1 | sed -f urlencode.sed)
    url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "Application details :"
        echo "Application snapshot name : " `echo $output | jq 
'.items[0].name'`
        echo "Application snapshot type : " `echo $output | jq 
'.items[0].type'`
        echo "Can be exported flag : " `echo $output | jq 
'.items[0].canExport'`
        echo "Can be imported flag : " `echo $output | jq 
'.items[0].canImport'`
        echo "Can be uploaded flag : " `echo $output | jq 
'.items[0].canUpload'`
        echo "Can be downloaded flag : " `echo $output | jq 
'.items[0].canDownload'`
        count=`echo $output | jq '.links | length'`
        i=0
        echo "Services details :"
        while [ $i -lt $count ]; do
            echo "Service : " `echo $output | jq '.links['$i'].rel'`
            echo "URL :" `echo $output | jq '.links['$i'].href'`
            echo "Action :" `echo $output | jq '.links['$i'].action'`
            echo ""
            i=`expr $i + 1`
        done
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

Appendix C

C-6



funcListFiles() {
    url=$SERVER_URL/interop/rest/$API_VERSION/applicationsnapshots
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"

    list=`cat response.txt | jq 'select(.items != null) | .items[].name'`
    if [[ ! -z $list ]]; then
        echo $list
    else
        echo "No files found"
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcDeleteFile() {
    encodedFileName=$(echo $1 | sed -f urlencode.sed)
    url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName
    funcExecuteRequest "DELETE" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "Deleted successfully"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcUploadFile() {
    infile=$1
    if [ ! -f $infile ]; then
        echo "File does not exist"
        exit 0
    fi
    encodedFileName=$(echo $infile | sed -f urlencode.sed)
    url="$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName/contents?q="
    filename=$( basename $infile)
    filesize=$( stat -c %s $infile)
    bs=52428800
    noOfPackets=$(($((filesize / bs)) + 1))
    uploadedsize=0
    isFirst=true
    count=1
    isLast="false"
    if [ $noOfPackets = 1 ]; then
      isLast="true"
    fi
    tempFile=/u01/temp/$filename

    if [ ! -d "/u01/temp" ]; then
        mkdir /u01/temp
    fi

Appendix C

C-7



    while [ $uploadedsize -ne $filesize ]
    do
        skip=$uploadedsize
        temp=$((filesize - uploadedsize))
        if [ $temp -le $bs ]; then
            length=$temp
        else
            length=$bs
        fi
        echo "Skip : $skip"
        echo "Length : $length"
        
        (
            dd bs=1 skip=$skip count=0 &> /dev/null
            dd bs=$length count=1 of=$tempFile &> /dev/null
        ) < "$infile"
        
        param=$(echo "{chunkSize=$length,isFirst=$isFirst,isLast=$isLast}" | 
sed -f urlencode.sed)
        urlwithparam="$url$param"
        echo $urlwithparam
        statusCode=`curl -X POST -s -w "%{http_code}" -T $tempFile -u 
"$USERNAME:$PASSWORD" -o "response.txt" -D "respHeader.txt" -H "Content-Type: 
application/octet-stream" "$urlwithparam"`

        funcRemoveTempFiles $tempFile

        if [ $statusCode == 200 ]; then
            output=`cat response.txt`
            status=`echo $output | jq '.status'`
            if [ $status -gt 0 ]; then
                error=`echo $output | jq '.details'`
                echo "Error occurred. " $error
                funcRemoveTempFiles "respHeader.txt" "response.txt"
                exit 0
            else if [ $status == -1 ] || [ $isLast == "true" ]; then
                    funcGetStatus "GET"
                fi
            fi
        else
            echo "Error executing request"
            if [ $statusCode != 000 ]; then
                echo "Response error code : " $statusCode
                funcPrintErrorDetails "response.txt"
                funcRemoveTempFiles "respHeader.txt" "response.txt"
            fi
            exit 0
        fi
        funcRemoveTempFiles "respHeader.txt" "response.txt"
        uploadedsize=$((uploadedsize + length))
        isFirst="false"
        echo "isFirst : $isFirst"
        count=$((count + 1))
        if [ $count = $noOfPackets ]; then
            isLast="true"

Appendix C

C-8



        fi
        echo "Uploaded Size : $uploadedsize"
        echo "isLast : $isLast"
    done

    echo "Uploaded File Successfully"
}

funcDownloadFile() {
    filepath="/u01/$1"
    encodedFileName=$(echo $1 | sed -f urlencode.sed)
    url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName/contents
    statusCode=`curl -X GET -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" -
o $filepath -H "Content-Type: application/x-www-form-urlencoded" -D 
respHeader.txt $url`

    if [ $statusCode == 200 ]; then
        contentType=`echo $(grep 'Content-Type:' respHeader.txt) | tr -d 
[:space:]`
        if [ ! -z $contentType ] && [[ $contentType = *"application/
json"* ]]; then
            output=`cat $filepath`
            error=`echo $output | jq '.details'`
            echo "Error occurred. " $error
            funcRemoveTempFiles $filepath
        else
            fileExtension=`echo $(grep -r "fileExtension: " respHeader.txt | 
awk  '{print ($2)}') | tr -d [:space:]`
            if [ ! -z $fileExtension ]; then
                if [[ ! $filepath =~ \.$fileExtension$ ]]; then
                    mv $filepath $filepath.$fileExtension
                fi
            fi
            echo "Downloaded file successfully"
        fi
    else
        echo "Error listing files. "
        if [ $statusCode != 000 ]; then
            echo "Response error code : " $statusCode
            funcPrintErrorDetails $filepath
            funcRemoveTempFiles $filepath
        fi
    fi
    funcRemoveTempFiles "respHeader.txt"
}

funcImportSnapshot() {
    param=$(echo "{type:import}" | sed -f urlencode.sed)
    encodedFileName=$(echo $1 | sed -f urlencode.sed)
    url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName/migration?q=$param
    funcExecuteRequest "POST" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`

Appendix C

C-9



    if [ $status == -1 ]; then
        echo "Started importing successfully"
        funcGetMigrationStatus "POST"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcExportSnapshot() {
    param=$(echo "{type:export}" | sed -f urlencode.sed)
    encodedFileName=$(echo $1 | sed -f urlencode.sed)
    url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName/migration?q=$param
    funcExecuteRequest "POST" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started exporting succesfully"
        funcGetMigrationStatus "POST"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcProvideFeedback() {
    url=$SERVER_URL/interop/rest/$LCM_VERSION/feedback
    description=$(echo $1 | sed -f urlencode.sed)
    param="{\"configuration\":
{\"URL\":\"$SERVER_URL\"},\"description\":\"$description\"}"
    funcExecuteRequest "POST" $url $param "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "Feedback successful"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcHardReset() {
    echo "Are you sure you want to restart the service instance (yes/no): no ?
[Press Enter] "
    read toCreate
    if [ $toCreate != "yes" ]; then
        echo "User cancelled the recreate command"
        exit 0
    fi
    

Appendix C

C-10



    url=$SERVER_URL/interop/rest/$LCM_VERSION/services/PBCS/resetservice
    comment=$(echo $1 | sed -f urlencode.sed)
    param="{\"comment\":\"$comment\"}"
    funcExecuteRequest "POST" $url $param "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started hard reset succesfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcGenerateAuditReport(){
    param=$(echo "{type:userauditreport,fileName:$1,since:$2,until:$3}" | sed 
-f urlencode.sed)
    url=$SERVER_URL/interop/rest/$API_VERSION/reports?q=$param
    funcExecuteRequest "POST" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started generating report successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcGenerateProvisionReport(){
    param=$(echo "{type:provisionreport,fileName:$1}" | sed -f urlencode.sed)
    url=$SERVER_URL/interop/rest/$API_VERSION/reports?q=$param
    funcExecuteRequest "POST" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started generating report successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcExecuteJob() {
    url="$SERVER_URL/HyperionPlanning/rest/$API_VERSION/
applications/$APP_NAME/jobs"

Appendix C

C-11



    encodedJobName=$(echo $2 | sed -f urlencode.sed)
    if [ ! -z "$3" ]; then
        param="jobType=$1&jobName=$encodedJobName&parameters=$3"
    else
        param="jobType=$1&jobName=$encodedJobName"
    fi
    funcExecuteRequest "POST" $url $param "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started executing job successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcIntegrationScenarioImportMetadataIntoApplication() {
    funcUploadFile "DemoApplication_HSS_Vision.zip"
    funcExecuteJob "IMPORT_METADATA" "accountMetadata" 
"{importZipFileName=accounts.zip}"
    funcExecuteJob "CUBE_REFRESH" "cubeRefresh"
}

funcIntegrationScenarioImportDataRunCalcCopyToAso() {
    funcUploadFile "data.csv"
    funcExecuteJob "IMPORT_DATA" "loadingq1data" "{importFileName=data.csv}"
    funcExecuteJob "CUBE_REFRESH","cubeRefresh"
    funcExecuteJob "PLAN_TYPE_MAP" "CampaignToReporting" "{clearData=false}"
}

funcIntegrationScenarioExportMetadataAndDataAndDownloadFiles() {
    funcExecuteJob "EXPORT_METADATA" "exportentitymetadata" 
"{exportZipFileName=entitydata.zip}"
    funcExecuteJob "EXPORT_DATA" "Forecastdata" 
"{exportFileName=forecastdata.zip}"
    funcListFiles      
    funcDownloadFile "entitydata.zip"
    funcDownloadFile "forecastdata.zip"
}

funcIntegrationScenarioRemoveUnnecessaryFiles() {
    funcListFiles
    funcDeleteFile "entitymetadata.csv"
    funcDeleteFile "forecastdata.csv"
}

funcIntegrationScenarioExportDataAndDownloadFiles() {
    funcExecuteJob "EXPORT_DATA" "entitydata" 
"{exportFileName:entitydata.zip}"
    funcExecuteJob "EXPORT_DATA" "forecastdata" 
"{exportFileName:forecastdata.zip}"
    funcListFiles

Appendix C

C-12



    funcDownloadFile "entitydata.zip"
    funcDownloadFile "forecastdata.zip"
}

funcIntegrationScenarioRefreshTheApplication() {
    funcUploadFile "accounts.zip"
    funcExecuteJob "IMPORT_METADATA" "accountMetadata" 
"{importZipFileName:accounts.zip}"
    funcExecuteJob "CUBE_REFRESH" "cubeRefresh"
}

funcIntegrationScenarioCloneServiceInstance() {
    # Part 1 : Change SERVER_URL, USERNAME, PASSWORD, API_VERSION variables 
values to match those of first environment
    # Download file from source instance. 
    # Comment out all lines below Part 2
    # Uncomment the below line for the first step.
    # funcDownloadFile "Artifact Snapshot" 
    
    # Part 2 : Change SERVER_URL, USERNAME, PASSWORD, API_VERSION to match 
those of second environment.
    # Clone the service instance. 
    # Comment out code for download file.
    # Uncomment below lines
    funcRecreateService "PBCS"
    funcDeleteFile "Artifact Snapshot"
    funcUploadFile "Artifact Snapshot.zip"
    funcImportSnapshot "Artifact Snapshot"
}

funcIntegrationScenarioImportMetadataIntoApplication
funcIntegrationScenarioImportDataRunCalcCopyToAso
funcIntegrationScenarioExportMetadataAndDataAndDownloadFiles
funcIntegrationScenarioRemoveUnnecessaryFiles
funcIntegrationScenarioExportDataAndDownloadFiles
funcIntegrationScenarioRefreshTheApplication#!/bin/sh

SERVER_URL="https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/"
USERNAME="epm_default_cloud_admin"
PASSWORD="epm_cloud"
APP_NAME="Vision"
API_VERSION="11.1.2.3.600"

funcRemoveTempFiles() {
    for var in "$@"
    do
        if [ -f $var ]; then
            rm $var
        fi
    done
}

funcPrintErrorDetails() {
    contentType=`echo $(grep 'Content-Type:' respHeader.txt) | tr -d 
[:space:]`

Appendix C

C-13



    if [ ! -z $contentType ] && [[ $contentType = *"application/json"* ]]; 
then
        output=`cat $1`
        error=`echo $output | jq '.details'`
        echo "Error details: " $error
    fi
}

funcExecuteRequest() {
    if [ ! -z "$4" ]; then
        statusCode=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" -
o "response.txt" -D "respHeader.txt" -H "Content-Type: $4" -d $3 $2`
    else
        statusCode=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" -
o "response.txt" -D "respHeader.txt" -H "Content-Type: $3" $2`
    fi
    if [ $statusCode != 200 ]; then
        echo "Error executing request"
        if [ $statusCode != 000 ]; then
            echo "Response error code : " $statusCode
            funcPrintErrorDetails "response.txt"
            funcRemoveTempFiles "respHeader.txt" "response.txt"
        fi
        exit 0
    fi
}

funcGetStatus() {
    output=`cat response.txt`
    count=`echo $output | jq '.links | length'`
    i=0
    pingUrl=""
    while [ $i -lt $count ]; do
        rel=`echo $output | jq '.links['$i'].rel'`
        rel=`echo "$rel" | tr -d "\""`
        if [ "$rel" == "Job Status" ]; then
                pingUrl=`echo $output | jq '.links['$i'].href'`
                pingUrl=`echo "$pingUrl" | tr -d "\""`
        fi
        i=`expr $i + 1`
    done
    echo $pingUrl
    completed="false"
    while [ $completed != "true" ]; do
        statusCode2=`curl -X $1 -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" 
-o "pingResponse.txt"  -H "Content-Type: application/x-www-form-urlencoded" 
"$pingUrl"`
        if [ $statusCode2 == 200 ]; then
            status2=`jq '.status' pingResponse.txt`
            if [ $status2 != -1 ]; then
                completed="true"
                echo "Job completed"
            else
                echo "Please wait..."
                sleep 20
            fi

Appendix C

C-14



            
        else
            echo "Please wait..."
            sleep 20
        fi
        funcRemoveTempFiles "pingResponse.txt"
    done
}

funcGetLCMVersions() {
    url=$SERVER_URL/interop/rest
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "List of versions :"
        count=`echo $output | jq '.items | length'`
        i=0
        while [ $i -lt $count ]; do
            echo "Version : " `echo $output | jq '.items['$i'].version'`
            echo "Lifecycle :" `echo $output | jq '.items['$i'].lifecycle'`
            echo "Latest :" `echo $output | jq '.items['$i'].latest'`
            echo "Link :" `echo $output | jq '.items['$i'].links[0].href'`
            echo ""
            i=`expr $i + 1`
        done
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcGetLCMVersionDetails() {
    url=$SERVER_URL/interop/rest/$API_VERSION
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "Version $API_VERSION details :"
        count=`echo $output | jq '.links | length'`
        i=0
        while [ $i -lt $count ]; do
            echo "Service : " `echo $output | jq '.links['$i'].rel'`
            echo "URL :" `echo $output | jq '.links['$i'].href'`
            echo "Action :" `echo $output | jq '.links['$i'].action'`
            echo ""
            i=`expr $i + 1`
        done
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"

Appendix C

C-15



}

funcGetServices() {
    url=$SERVER_URL/interop/rest/$API_VERSION/services
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "Services list :"
        count=`echo $output | jq '.links | length'`
        i=0
        while [ $i -lt $count ]; do
            rel=`echo $output | jq '.links['$i'].rel'`
            rel=`echo "$rel" | tr -d "\""`
            if [ "$rel" != "self" ]; then
                echo "Service : " `echo $output | jq '.links['$i'].rel'`
                echo "URL :" `echo $output | jq '.links['$i'].href'`
                echo "Action :" `echo $output | jq '.links['$i'].action'`
                echo ""
            fi
            i=`expr $i + 1`
        done
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcRecreateService() {
    echo "Are you sure you want to recreate the EPM environment (yes/no): no ?
[Press Enter]"
    read toCreate
    if [ $toCreate != "yes" ]; then
        echo "User cancelled the recreate command"
        exit 0
    fi
    
    url=$SERVER_URL/interop/rest/$API_VERSION/services/$1/recreate
    funcExecuteRequest "POST" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started recreating the environment successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcGetApplicationSnapshotDetails() {
    encodedFileName=$(echo $1 | sed -f urlencode.sed)

Appendix C

C-16



    url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "Application details :"
        echo "Application snapshot name : " `echo $output | jq 
'.items[0].name'`
        echo "Application snapshot type : " `echo $output | jq 
'.items[0].type'`
        echo "Can be exported flag : " `echo $output | jq 
'.items[0].canExport'`
        echo "Can be imported flag : " `echo $output | jq 
'.items[0].canImport'`
        echo "Can be uploaded flag : " `echo $output | jq 
'.items[0].canUpload'`
        echo "Can be downloaded flag : " `echo $output | jq 
'.items[0].canDownload'`
        count=`echo $output | jq '.links | length'`
        i=0
        echo "Services details :"
        while [ $i -lt $count ]; do
            echo "Service : " `echo $output | jq '.links['$i'].rel'`
            echo "URL :" `echo $output | jq '.links['$i'].href'`
            echo "Action :" `echo $output | jq '.links['$i'].action'`
            echo ""
            i=`expr $i + 1`
        done
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcListFiles() {
    url=$SERVER_URL/interop/rest/$API_VERSION/applicationsnapshots
    funcExecuteRequest "GET" $url "application/x-www-form-urlencoded"

    list=`cat response.txt | jq 'select(.items != null) | .items[].name'`
    if [[ ! -z $list ]]; then
        echo $list
    else
        echo "No files found"
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcDeleteFile() {
    encodedFileName=$(echo $1 | sed -f urlencode.sed)
    url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName
    funcExecuteRequest "DELETE" $url "application/x-www-form-urlencoded"

Appendix C

C-17



    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == 0 ]; then
        echo "Deleted successfully"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcUploadFile() {
    infile=$1
    if [ ! -f $infile ]; then
        echo "File does not exist"
        exit 0
    fi
    encodedFileName=$(echo $infile | sed -f urlencode.sed)
    url="$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName/contents?q="
    filename=$( basename $infile)
    filesize=$( stat -c %s $infile)
    bs=52428800
    noOfPackets=$(($((filesize / bs)) + 1))
    uploadedsize=0
    isFirst=true
    count=1
    isLast="false"
    if [ $noOfPackets = 1 ]; then
      isLast="true"
    fi
    tempFile=/u01/temp/$filename

    if [ ! -d "/u01/temp" ]; then
        mkdir /u01/temp
    fi

    while [ $uploadedsize -ne $filesize ]
    do
        skip=$uploadedsize
        temp=$((filesize - uploadedsize))
        if [ $temp -le $bs ]; then
            length=$temp
        else
            length=$bs
        fi
        echo "Skip : $skip"
        echo "Length : $length"
        
        (
            dd bs=1 skip=$skip count=0 &> /dev/null
            dd bs=$length count=1 of=$tempFile &> /dev/null
        ) < "$infile"
        
        param=$(echo "{chunkSize=$length,isFirst=$isFirst,isLast=$isLast}" | 

Appendix C

C-18



sed -f urlencode.sed)
        urlwithparam="$url$param"
        echo $urlwithparam
        statusCode=`curl -X POST -s -w "%{http_code}" -T $tempFile -u 
"$USERNAME:$PASSWORD" -o "response.txt" -D "respHeader.txt" -H "Content-Type: 
application/octet-stream" "$urlwithparam"`

        funcRemoveTempFiles $tempFile

        if [ $statusCode == 200 ]; then
            output=`cat response.txt`
            status=`echo $output | jq '.status'`
            if [ $status != 0 ]; then
                error=`echo $output | jq '.details'`
                echo "Error occurred. " $error
                funcRemoveTempFiles "respHeader.txt" "response.txt"
                exit 0
            fi
        else
            echo "Error executing request"
            if [ $statusCode != 000 ]; then
                echo "Response error code : " $statusCode
                funcPrintErrorDetails "response.txt"
                funcRemoveTempFiles "respHeader.txt" "response.txt"
            fi
            exit 0
        fi
        funcRemoveTempFiles "respHeader.txt" "response.txt"
        uploadedsize=$((uploadedsize + length))
        isFirst="false"
        echo "isFirst : $isFirst"
        count=$((count + 1))
        if [ $count = $noOfPackets ]; then
            isLast="true"
        fi
        echo "Uploaded Size : $uploadedsize"
        echo "isLast : $isLast"
    done

    echo "Uploaded File Successfully"
}

funcDownloadFile() {
    filepath="/u01/$1"
    encodedFileName=$(echo $1 | sed -f urlencode.sed)
    url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName/contents
    statusCode=`curl -X GET -s -w "%{http_code}" -u "$USERNAME:$PASSWORD" -
o $filepath -H "Content-Type: application/x-www-form-urlencoded" -D 
respHeader.txt $url`

    if [ $statusCode == 200 ]; then
        contentType=`echo $(grep 'Content-Type:' respHeader.txt) | tr -d 
[:space:]`
        if [ ! -z $contentType ] && [[ $contentType = *"application/
json"* ]]; then

Appendix C

C-19



            output=`cat $filepath`
            error=`echo $output | jq '.details'`
            echo "Error occurred. " $error
            funcRemoveTempFiles $filepath
        else
            fileExtension=`echo $(grep -r "fileExtension: " respHeader.txt | 
awk  '{print ($2)}') | tr -d [:space:]`
            if [ ! -z $fileExtension ]; then
                if [[ ! $filepath =~ \.$fileExtension$ ]]; then
                    mv $filepath $filepath.$fileExtension
                fi
            fi
            echo "Downloaded file successfully"
        fi
    else
        echo "Error listing files. "
        if [ $statusCode != 000 ]; then
            echo "Response error code : " $statusCode
            funcPrintErrorDetails $filepath
            funcRemoveTempFiles $filepath
        fi
    fi
    funcRemoveTempFiles "respHeader.txt"
}

funcImportSnapshot() {
    param=$(echo "{type:import}" | sed -f urlencode.sed)
    encodedFileName=$(echo $1 | sed -f urlencode.sed)
    url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName/migration?q=$param
    funcExecuteRequest "POST" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started importing successfully"
        funcGetStatus "POST"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcExportSnapshot() {
    param=$(echo "{type:export}" | sed -f urlencode.sed)
    encodedFileName=$(echo $1 | sed -f urlencode.sed)
    url=$SERVER_URL/interop/rest/$API_VERSION/
applicationsnapshots/$encodedFileName/migration?q=$param
    funcExecuteRequest "POST" $url "application/x-www-form-urlencoded"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started exporting successfully"
        funcGetStatus "POST"

Appendix C

C-20



    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcExecuteJob() {
    url="$SERVER_URL/HyperionPlanning/rest/$API_VERSION/
applications/$APP_NAME/jobs"
    encodedJobName=$(echo $2 | sed -f urlencode.sed)
    if [ ! -z "$3" ]; then
        param="jobType=$1&jobName=$encodedJobName&parameters=$3"
    else
        param="jobType=$1&jobName=$encodedJobName"
    fi
    funcExecuteRequest "POST" $url $param "application/json"

    output=`cat response.txt`
    status=`echo $output | jq '.status'`
    if [ $status == -1 ]; then
        echo "Started executing job successfully"
        funcGetStatus "GET"
    else
        error=`echo $output | jq '.details'`
        echo "Error occurred. " $error
    fi
    funcRemoveTempFiles "respHeader.txt" "response.txt"
}

funcIntegrationScenarioImportMetadataIntoApplication() {
    funcUploadFile "DemoApplication_HSS_Vision.zip"
    funcExecuteJob "IMPORT_METADATA" "accountMetadata" 
"{importZipFileName=accounts.zip}"
    funcExecuteJob "CUBE_REFRESH" "cubeRefresh"
}

funcIntegrationScenarioImportDataRunCalcCopyToAso() {
    funcUploadFile "data.csv"
    funcExecuteJob "IMPORT_DATA" "loadingq1data" "{importFileName=data.csv}"
    funcExecuteJob "CUBE_REFRESH","cubeRefresh"
    funcExecuteJob "PLAN_TYPE_MAP" "CampaignToReporting" "{clearData=false}"
}

funcIntegrationScenarioExportMetadataAndDataAndDownloadFiles() {
    funcExecuteJob "EXPORT_METADATA" "exportentitymetadata" 
"{exportZipFileName=entitydata.zip}"
    funcExecuteJob "EXPORT_DATA" "Forecastdata" 
"{exportFileName=forecastdata.zip}"
    funcListFiles      
    funcDownloadFile "entitydata.zip"
    funcDownloadFile "forecastdata.zip"
}

funcIntegrationScenarioRemoveUnnecessaryFiles() {
    funcListFiles

Appendix C

C-21



    funcDeleteFile "entitymetadata.csv"
    funcDeleteFile "forecastdata.csv"
}

funcIntegrationScenarioExportDataAndDownloadFiles() {
    funcExecuteJob "EXPORT_DATA" "entitydata" 
"{exportFileName:entitydata.zip}"
    funcExecuteJob "EXPORT_DATA" "forecastdata" 
"{exportFileName:forecastdata.zip}"
    funcListFiles
    funcDownloadFile "entitydata.zip"
    funcDownloadFile "forecastdata.zip"
}

funcIntegrationScenarioRefreshTheApplication() {
    funcUploadFile "accounts.zip"
    funcExecuteJob "IMPORT_METADATA" "accountMetadata" 
"{importZipFileName:accounts.zip}"
    funcExecuteJob "CUBE_REFRESH" "cubeRefresh"
}

funcIntegrationScenarioCloneServiceInstance() {
    # Part 1 : Change SERVER_URL, USERNAME, PASSWORD, API_VERSION variables 
values to match those of first environment
    # Download file from source instance. 
    # Comment out all lines below Part 2
    # Uncomment the below line for the first step.
    # funcDownloadFile "Artifact Snapshot" 
    
    # Part 2 : Change SERVER_URL, USERNAME, PASSWORD, API_VERSION to match 
those of second environment.
    # Clone the service instance. 
    # Comment out code for download file.
    # Uncomment below lines
    funcRecreateService "PBCS"
    funcDeleteFile "Artifact Snapshot"
    funcUploadFile "Artifact Snapshot.zip"
    funcImportSnapshot "Artifact Snapshot"
}

funcIntegrationScenarioImportMetadataIntoApplication
funcIntegrationScenarioImportDataRunCalcCopyToAso
funcIntegrationScenarioExportMetadataAndDataAndDownloadFiles
funcIntegrationScenarioRemoveUnnecessaryFiles
funcIntegrationScenarioExportDataAndDownloadFiles
funcIntegrationScenarioRefreshTheApplication

Note on Proxy Setting: In case of proxies, set the proxy host and port as the system
arguments.

Appendix C

C-22



D
CSS Common Helper Functions for cURL

This appendix shows the CSS common helper functions for cURL for the EPM Cloud REST
APIs.

Note on Proxy Setting: In case of proxies, set the proxy host and port as the system
arguments.

#!/bin/sh
#set -x
export PATH=$PATH:<PATH_TO_JQ_BINARY>
SERVER_URL="<SERVICE_URL>"
USERNAME="<USERNAME>"
PASSWORD="<PASSWORD>"
API_VERSION="v1"

# To avoid SSL connection issue in the environment please add -k option for 
below curl commands.
funcCallRESTAPI() {
    if [ "$1" == "GET" ] || [ "$1" == "DELETE" ]; then
        if [ "$6" != "" ]; then
            echo `curl -s -u $4:$5 -H "$3" --request $1 -G $2 -d "$6"`
        else
            echo `curl -s -u $4:$5 -H "$3" --request $1 -G $2`
        fi
    else
                if [ "$6" != "" ]; then
                        echo `curl -s -u $4:$5 -H "$3" --request $1 $2 -d 
"$6"`
                else
                        echo `curl -s -u $4:$5 -H "$3" --request $1 $2`
                fi
    fi
}

funcCSSRESTHelper() {
        jobOutput=$(funcCallRESTAPI "$1" "$2" "$3" "$4" "$5" "$6")
        jobUrl=`echo $jobOutput | jq '.links[1].href'`
        if [ $jobUrl != null ]; then
                jobUrl="${jobUrl%\"}"
                jobUrl="${jobUrl#\"}"
                jobStatus=-1
                while [ $jobStatus == -1 ]; do
                        jobOutput=$(funcCallRESTAPI "GET" "$jobUrl" "$header" 
"$USERNAME" "$PASSWORD")
                        jobStatus=`echo $jobOutput | jq '.status'`
                done
                restStatus=`echo $jobOutput | jq '.details'`
                restStatus="${restStatus%\"}"
                restStatus="${restStatus#\"}"
                statusMessage=""

D-1



                if [ $jobStatus == 0 ]; then
                        statusMessage="$7 completed successfully." 
#"$restStatus"
                else
                        statusMessage=$restStatus
                fi
                   echo "$statusMessage"
        else
                failedMessage=`echo $jobOutput | jq '.details'`
        failedMessage="${failedMessage%\"}"
                failedMessage="${failedMessage#\"}"
                echo $failedMessage
        fi
}

funcAddUsers() {
    url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
    params="filename=$1&userpassword=$2&resetpassword=$3"
    header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
    cssRESTAPI="AddUsers"
    statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
    echo $statusMessage
}

funcRemoveUsers() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
        params="filename=$1"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="RemoveUsers"
        statusMessage=$(funcCSSRESTHelper "DELETE" "$url" "$header" 
"$USERNAME" "$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcAssignRole() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
        params="filename=$1&jobtype=ASSIGN_ROLE&rolename=$2"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="AssignRole"
        statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcUnassignRole() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
        params="filename=$1&jobtype=UNASSIGN_ROLE&rolename=$2"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="UnassignRole"
        statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcAddUsersToGroup() {

Appendix D

D-2



    url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
    params="filename=$1&jobtype=ADD_USERS_TO_GROUP&groupname=$2"
    header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
    cssRESTAPI="AddUsersToGroup"
    statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
    echo $statusMessage
}

funcRemoveUsersFromGroup() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
        params="filename=$1&jobtype=REMOVE_USERS_FROM_GROUP&groupname=$2"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="RemoveUsersFromGroup"
        statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcAddUserToGroups() {
    url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
    params="filename=$1&jobtype=ADD_USER_TO_GROUPS&username=$2"
    header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
    cssRESTAPI="AddUserToGroups"
    statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
    echo $statusMessage
}

funcRemoveUserFromGroups() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
        params="filename=$1&jobtype=REMOVE_USER_FROM_GROUPS&username=$2"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="RemoveUserFromGroups"
        statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcGenerateRoleAssignmentReport() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/
roleassignmentreport"
        params="filename=$1&usertype=$2"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="generateRoleAssignmentReport"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcGenerateUserGroupReport() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/usergroupreport"
        params="filename=$1"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="generateUserGroupReport"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 

Appendix D

D-3



"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcAddGroups() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
        params="filename=$1"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="addGroups"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcRemoveGroups() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
        params="filename=$1"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="removeGroups"
        statusMessage=$(funcCSSRESTHelper "DELETE" "$url" "$header" 
"$USERNAME" "$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcGenerateInvalidLoginReport() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/
invalidloginreport"
     params="from_date=$1&to_date=$2&filename=$3"     
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="generateInvalidLoginReport"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcGenerateRoleAssignmentAuditReport() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/
roleassignmentauditreport"
      params="from_date=$1&to_date=$2&filename=$3"     
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="generateRoleAssignmentAuditReport"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcUpdateUsers() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
        params="filename=$1&jobtype=UPDATE_USERS"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="UpdateUsers"
        statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

Appendix D

D-4



#funcAddUsers test1.csv password false
#funcRemoveUsers test2.csv
#funcAssignRole test3.csv "Power User"
#funcUnAssignRole test4.csv Viewer
#funcAddUsersToGroup test5.csv TestNativeGroup1
#funcRemoveUsersFromGroup test6.csv TestNativeGroup2
#funcGenerateRoleAssignmentReport RoleAssignmentReport.csv ServiceUsers
#funcGenerateUserGroupReport UserGroupReport.csv
#funcAddUserToGroups groups.csv joe
#funcRemoveUserFromGroups groups.csv joe
#funcAddGroups CreateGroup1.csv
#funcRemoveGroups DeleteGroup1.csv
#funcGenerateInvalidLoginReport 2021-06-01 2021-06-10 invalidLoginReport.csv
#funcGenerateRoleAssignmentAuditReport 2021-06-01 2021-06-10 
roleAssignmentAuditReport.csv
#funcUpdateUsers updateuser.csv

Appendix D

D-5



E
CSS Common Helper Functions for Groovy

This appendix shows the CSS common helper functions for Groovy for the EPM Cloud REST
APIs.

Note:

• Proxy setting: In case of proxies, set the proxy host and port as the system arguments.

• Username: The username variable uses the format <domain>.<username>. 
Authentication.

import java.nio.charset.StandardCharsets

import groovy.json.JsonSlurper

serverUrl="<SERVICE_URL>"
username="<DOMAINNAME.USERNAME>"
password="<PASSWORD>"

apiVersion = "v1";
userCredentials = username + ":" + password;
basicAuth = "Basic " + 
javax.xml.bind.DatatypeConverter.printBase64Binary(userCredentials.getBytes())

def getResponse(is) {
    BufferedReader br = new BufferedReader(new InputStreamReader(is));
    StringBuilder sb = new StringBuilder();
    String line;
    while ((line = br.readLine()) != null) {
        sb.append(line+"\n");
    }
    br.close();
    return sb.toString();
}

def getUrlFromResponse(scenario, response, relValue) {
    def object = new JsonSlurper().parseText(response)
    def pingUrlStr
    if (object.status == -1) {
        println "Started - " + scenario
        def links = object.links
        links.each{
            if (it.rel.equals(relValue)) {
                pingUrlStr=it.href
            }
        }
    } else {
        println "Error details: " + object.details
        System.exit(0);
    }
    return pingUrlStr

E-1



}

def getJobStatus(pingUrlString, methodType) {

    def pingUrl = new URL(pingUrlString);
    def completed = false;
    while (!completed) {
        pingResponse = executeRequest(pingUrl, methodType, null, 
"application/x-www-form-urlencoded");
        status = getJobStatusFromResponse(pingResponse);
        if (status == "Processing") {
            try {
                println "Processing. Please wait..."
                Thread.sleep(5000);
            } catch (InterruptedException e) {
                completed = true
            }
        } else {
            println status
            completed = true
        }
    }
}

def getJobStatusFromResponse(response) {
    def object = new JsonSlurper().parseText(response)
    def status = object.status
    if (status == -1)
        return "Processing"
    else if (status == 0)
        return "Completed"
    else
        return object.details
}

def getJobDetailsFromResponse(response) {
    def object = new JsonSlurper().parseText(response)
    def details = object.details
    if (details != null)
        return object.details
    else
        return null
}

def executeRequest(url, requestType, payload, contentType) {
    HttpURLConnection connection = (HttpURLConnection) url.openConnection();
    connection.setDoOutput(true);
    connection.setInstanceFollowRedirects(false);
    connection.setRequestMethod(requestType);
    connection.setRequestProperty("Content-Type", contentType);
    //           connection.setRequestProperty("charset", 
StandardCharsets.UTF_8);
    connection.setRequestProperty("Authorization", basicAuth);
    connection.setUseCaches(false);

    if (payload != null) {

Appendix E

E-2



        OutputStreamWriter writer = new 
OutputStreamWriter(connection.getOutputStream());
        writer.write(payload);
        writer.flush();
    }

    int statusCode
    try {
        statusCode = connection.responseCode;
    } catch (all) {
        println "Error connecting to the URL"
        System.exit(0);
    }

    def response
    if (statusCode == 200 || statusCode == 201) {
        if (connection.getContentType() != null && !
connection.getContentType().startsWith("application/json")) {
            println "Error occurred in server"
            System.exit(0)
        }
        InputStream is = connection.getInputStream();
        if (is != null)
            response = getResponse(is)
    } else {
        println "Error occurred while executing request"
        println "Response error code : " + statusCode
        InputStream is = connection.getErrorStream();
        if (is != null && connection.getContentType() != null && 
connection.getContentType().startsWith("application/json"))
            println getJobStatusFromResponse(getResponse(is))
        System.exit(0);
    }
    connection.disconnect();
    return response;
}

def addUsersToGroup(fileName, groupName) {

    String scenario = "Adding users in " + fileName + " to group " + 
groupName;
    String params = "jobtype=ADD_USERS_TO_GROUP&filename="+ fileName 
+"&groupname="+ groupName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 

Appendix E

E-3



"GET");
    }
}

def removeUsersFromGroup(fileName, groupName) {

    String scenario = "Removing users in " + fileName + " from group " + 
groupName;
    String params = "jobtype=REMOVE_USERS_FROM_GROUP&filename="+ fileName 
+"&groupname="+ groupName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def addUserToGroups(fileName, userName) {

    String scenario = "Adding users in " + fileName + " to group " + userName;
    String params = "jobtype=ADD_USER_TO_GROUPS&filename="+ fileName 
+"&username="+ userName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def removeUserFromGroups(fileName, userName) {

    String scenario = "Removing users in " + fileName + " from group " + 
userName;
    String params = "jobtype=REMOVE_USER_FROM_GROUPS&filename="+ fileName 
+"&username="+ userName;
    def url = null;

Appendix E

E-4



    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def addUsers(fileName, resetPassword, userPassword) {

    String scenario = "Creating users in " + fileName;
    String params = "jobtype=ADD_USERS&filename="+ fileName 
+"&resetpassword="+ resetPassword +"&userpassword="+ userPassword;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def addUsers(fileName) {
    addUsers(fileName, null, null);
}

def deleteUsers(fileName) {

    String scenario = "Deleting users in " + fileName;
    String params = null;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users?filename=" + fileName);
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "DELETE", null, "application/x-www-form-

Appendix E

E-5



urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def assignUsersRoles(fileName, roleName) {

    String scenario = "Assigning users in " + fileName + " with role " + 
roleName;
    String params = "jobtype=ASSIGN_ROLE&filename="+ fileName +"&rolename="+ 
roleName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def unassignUsersRoles(fileName, roleName) {

    String scenario = "Un-assigning users in " + fileName + " with role " + 
roleName;
    String params = "jobtype=UNASSIGN_ROLE&filename="+ fileName 
+"&rolename="+ roleName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def generateRoleAssignmentReport(fileName, userType) {

    String scenario = "Generating Role assignment report in " + fileName + " 

Appendix E

E-6



with usertype as " + userType;
    String params = "jobtype=GENERATE_ROLE_ASSIGNMENT_REPORT&filename="+ 
fileName + "&usertype=" + userType;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
roleassignmentreport");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def generateUserGroupReport(fileName) {

    String scenario = "Generating User Group Report in " + fileName;
    String params = "jobtype=GENERATE_USER_GROUP_REPORT&filename="+ fileName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
usergroupreport");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def addGroups(fileName) {
    println "addgroups"
    String scenario = "Creating Groups in " + fileName;
    String params = "filename="+ fileName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");

Appendix E

E-7



    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def removeGroups(fileName) {

    String scenario = "Deleting Groups in " + fileName;
    String params = null;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups?filename=" + fileName);
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "DELETE", null, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def generateRoleAssignmentAuditReport(from_date,to_date,fileName) {

    String scenario = "Generating Role assignment audit report in " + 
fileName;
    String params = 
"jobtype=GENERATE_ROLE_ASSIGNMENT_AUDIT_REPORT&from_date="+from_date+"&to_date
="+to_date+"&filename="+ fileName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
roleassignmentauditreport");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def generateInvalidLoginReport(from_date,to_date,fileName) {

    String scenario = "Generating Invalid Login report in " + fileName;
    String params = 
"jobtype=GENERATE_INVALID_LOGIN_REPORT&from_date="+from_date+"&to_date="+to_da

Appendix E

E-8



te+"&filename="+ fileName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
invalidloginreport");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def updateUsers(fileName) {

    String scenario = "Updating users from " + fileName ;
    String params = "jobtype=UPDATE_USERS&filename="+ fileName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

//Execute commands here
//addUsersToGroup("Users.csv", 
"G1");                                                                        
                   //PUT
//removeUsersFromGroup("Users.csv", 
"G1");                                                                        
    //PUT
//addUsers("AddUsers123.csv", "false", 
"newPassword");                                        //POST
//
addUsers("AddUsers456.csv");                                                  
                                                                              
 //POST
//
deleteUsers("RemoveUsers.csv");                                               
                                                              //DELETE
//assignUsersRoles("Users.csv", "Service 

Appendix E

E-9



Administrator");                           //PUT
//assignUsersRoles("users.csv", 
"viewer");                                                          //PUT
//unassignUsersRoles("Users.csv", "Drill 
Through");                                                   //PUT
//
generateRoleAssignmentReport("GroovySampleReport3.csv,"ServiceUsers");        
                        // POST
//
generateUserGroupReport("UserGroupReportGroovy.csv");                         
           // POST
//addUserToGroups("Group.csv", 
"user1");                                               //PUT
//removeUserFromGroups("groups.csv", 
"joe");                                          //PUT
//
addGroups("CreateGroup1.csv");                                                
// POST
//
removeGroups("DeleteGroup1.csv");                                             
   // DELETE
//generateInvalidLoginReport("2020-06-01", "2021-06-10", 
"report12345.csv"); //POST
//updateUsers("updateuser.csv");                                 // PUT

Appendix E

E-10



F
REST API Examples with Postman

This appendix provides examples of how to run selected REST APIs using a web client called
Postman.

• Example: Using REST APIs to Upload with Postman

• Example: Using REST APIs to Upload to an External Directory with Postman

• Example: Using REST APIs to Upload a Snapshot with Postman

Example: Using REST APIs to Upload with Postman
In this example, we upload a file named users.csv to our environment, https://
<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>. oraclecloud.com/.

For an example of coding parameters, scroll down to the end of this topic.

Notes:

• This example uses the 11.1.2.3.600 Upload API, which is a simpler non-chunked version.

• The name of the file is passed in the URL itself, for example, https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.oraclecloud.com/interop/rest/11.1.2.3.600/
applicationsnapshots/users.csv/contents

• If the filename contains special characters or has whitespace, it should be encoded using
any online resource, such as urlencode.org.

1. Example of Upload parameters.
 

 

2. Example of Upload authorization.
 

F-1



 

3. Example of Upload headers.
 

 

4. Example of Upload body.
 

 

5. Example of Upload response on success.
 

 

Appendix F
Example: Using REST APIs to Upload with Postman

F-2



Example: Using REST APIs to Upload to an External Directory
with Postman

In this example, we upload a file named data.txt to the inbox directory in our environment,
https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>. oraclecloud.com/.

Notes:

• This example uses the 11.1.2.3.600 Upload API, which is a simpler non-chunked version.

• The name of the file is passed in the URL itself, for example, https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>. oraclecloud.com/interop/rest/11.1.2.3.600/
applicationsnapshots/data.txt/contents?extDirPath=inbox

• If the filename contains special characters or has white space, it must be encoded using
any online resource, such as urlencode.org . (See an example at the bottom of this topic: 
Example: Using REST APIs to Upload with Postman .)

1. Example of parameters for Upload to external directory.
 

 

2. Example of authorization for Upload to external directory.
 

 

3. Example of Upload to external directory headers.
 

 

4. Example of Upload to external directory body.

Appendix F
Example: Using REST APIs to Upload to an External Directory with Postman

F-3



 

 

5. Example of Upload to external directory response on success.
 

 

Example: Using REST APIs to Upload a Snapshot with Postman
In this example, we upload a snapshot named Artifact Snapshot.zip to our
environment , https://<SERVICE_NAME>-<TENANT_NAME>.<SERVICE_TYPE>.<dcX>.
oraclecloud.com/.

Notes:

• We are using the 11.1.2.3.600 Upload API, which is a simpler non-chunked version.

• The name of the file is passed in the URL itself, for example, https://<SERVICE_NAME>-
<TENANT_NAME>.<SERVICE_TYPE>.<dcX>. oraclecloud.com/interop/rest/11.1.2.3.600/
applicationsnapshots/Artifact%20Snapshot.zip/contents

• If the filename contains special characters or has white space, it must be encoded using
any online resource, such as urlencode.org

1. Example of Upload snapshot parameters.
 

 

2. Example of Upload Snapshot authorization.
 

Appendix F
Example: Using REST APIs to Upload a Snapshot with Postman

F-4



 

3. Example of Upload Snapshot headers.
 

 

4. Example of Upload Snapshot body.
 

 

5. Example of Upload Snapshot response on success.
 

 

6. Example of checking status for Upload Snapshot .
 

Appendix F
Example: Using REST APIs to Upload a Snapshot with Postman

F-5



 

Appendix F
Example: Using REST APIs to Upload a Snapshot with Postman

F-6



G
Profitability and Cost Management Common
Helper Functions

Use the Profitability and Cost Management common helper functions as you work with
Profitability and Cost Management REST APIs..

Profitability and Cost Management Common Helper Functions for
Java

Common Helper Functions for Java

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.UnsupportedEncodingException;
import java.net.HttpURLConnection;
import java.net.URI;
import java.net.URLEncoder;
import java.nio.charset.Charset;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import javax.xml.bind.DatatypeConverter;

import org.json.JSONArray;
import org.json.JSONObject;

public class CSSRESTSamples {
    private static String userName;
    private static String password;
    private String serverUrl;
    private String apiVersion;

    public static void main(String[] args) {
        try {
CSSRESTSamples samples = new CSSRESTSamples("<DOMAINNAME.USERNAME>", 
"<PASSWORD>", "<SERVICE_URL>", "v1");
            // Call sample APIs.
            // samples.addUsers("AddUser2.csv", "test123$", false);
            // samples.removeUsers("test2.csv");
            // samples.assignRole("test3.csv", "Power User");
            // samples.unassignRole("test4.csv", "Viewer");
            // samples.addUsersToGroup("test5.csv", "TestGroup1");
            // samples.removeUsersFromGroup("test6.csv", "TestGroup2");

G-1



            // samples.generateRoleAssignmentReport("JavaSampleReport.csv");
            // samples.generateUserGroupReport("UserGroupReport.csv");
            // samples.addUserToGroups("Group.csv", "user1");
            // samples.removeUserFromGroups("groups.csv", "joe");
            // samples.addGroups("Group1.csv");
            // samples.removeGroups("DeleteGroup1.csv");
            // samples.generateInvalidLoginReport("2021-06-01", 
"2021-06-10","invalidLoginReport141.csv");
            // samples.generateRoleAssignmentAuditReport("2021-06-01", 
"2021-06-10","roleAssignmentaudit_14778.csv");
        } catch (Throwable x) {
            System.err.println("Error: " + x.getMessage());
        }
    }

    public CSSRESTSamples(String userName, String password, String serverUrl, 
String apiVersion) throws Exception {
        this.userName = userName;
        this.password = password;
        this.serverUrl = serverUrl;
        this.apiVersion = apiVersion;
    }

    public void addUsers(String fileName, String userPassword, boolean 
resetPassword) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/users";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("userpassword", userPassword);
            reqParams.put("resetpassword", resetPassword + "");

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void removeUsers(String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/users";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 

Appendix G
Profitability and Cost Management Common Helper Functions for Java

G-2



this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "DELETE");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void assignRole(String fileName, String roleName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/users";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "ASSIGN_ROLE");
            reqParams.put("rolename", roleName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void unassignRole(String fileName, String roleName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/users";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "UNASSIGN_ROLE");
            reqParams.put("rolename", roleName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 

Appendix G
Profitability and Cost Management Common Helper Functions for Java

G-3



HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void addUsersToGroup(String fileName, String groupName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "ADD_USERS_TO_GROUP");
            reqParams.put("groupname", groupName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void removeUsersFromGroup(String fileName, String groupName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "REMOVE_USERS_FROM_GROUP");
            reqParams.put("groupname", groupName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {

Appendix G
Profitability and Cost Management Common Helper Functions for Java

G-4



            e.printStackTrace();
        }
    }
    
    public void addUserToGroups(String fileName, String userName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "ADD_USER_TO_GROUPS");
            reqParams.put("username", userName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void removeUserFromGroups(String fileName, String userName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
            reqParams.put("jobtype", "REMOVE_USER_FROM_GROUPS");
            reqParams.put("username", userName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "PUT");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public void generateRoleAssignmentReport(String fileName) {
        try {

Appendix G
Profitability and Cost Management Common Helper Functions for Java

G-5



            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/roleassignmentreport";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
        
            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public void generateUserGroupReport(String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/usergroupreport";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);
        
            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public void addGroups(String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);

Appendix G
Profitability and Cost Management Common Helper Functions for Java

G-6



            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public void removeGroups(String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/groups";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("filename", fileName);

            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "DELETE");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public void generateInvalidLoginReport(String fromDate, String 
toDate,String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/invalidloginreport";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("from_date", fromDate);
            reqParams.put("to_date", toDate);
            reqParams.put("filename", fileName);
        
            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {

Appendix G
Profitability and Cost Management Common Helper Functions for Java

G-7



            e.printStackTrace();
        }
    }
    
    public void generateRoleAssignmentAuditReport(String fromDate, String 
toDate,String fileName) {
        try {
            String url = this.serverUrl + "/interop/rest/security/" + 
apiVersion + "/roleassignmentauditreport";
            Map<String, String> reqHeaders = new HashMap<String, String>();
            reqHeaders.put("Authorization", "Basic " + DatatypeConverter
                    .printBase64Binary((this.userName + ":" + 
this.password).getBytes(Charset.defaultCharset())));

            Map<String, String> reqParams = new HashMap<String, String>();
            reqParams.put("from_date", fromDate);
            reqParams.put("to_date", toDate);
            reqParams.put("filename", fileName);
        
            Map<String, String> restResult = CSSRESTHelper.callRestApi(new 
HashMap(), url, reqHeaders, reqParams,
                    "POST");
            String jobStatus = 
CSSRESTHelper.getCSSRESTJobCompletionStatus(restResult, reqHeaders);
            System.out.println(jobStatus);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    private static class CSSRESTHelper {
        public static final String REST_CALL_STATUS = "REST_CALL_STATUS";
        public static final String REST_CALL_RESPONSE = "REST_CALL_RESPONSE";

        private static Map<String, String> callRestApi(Map context, String 
url, Map<String, String> requestHeaders,
                Map<String, String> requestParams, String methodType) {
            HttpURLConnection urlConnection = null;
            Map<String, String> restResult = new HashMap<String, String>();
            restResult.put(REST_CALL_STATUS, "-1");
            boolean isPostMethod = "POST".equalsIgnoreCase(methodType) || 
"PUT".equalsIgnoreCase(methodType);
            try {
                URI baseUri = new URI(url);
                URI uri = null;
                String reqParams = (requestParams != null ? 
buildRequestParams(context, requestParams, isPostMethod)
                        : null);
                if (isPostMethod) {
                    uri = new URI(baseUri.getScheme(), 
baseUri.getAuthority(), baseUri.getPath(), null, null);
                } else {
                    uri = new URI(baseUri.getScheme(), 
baseUri.getAuthority(), baseUri.getPath(), reqParams, null);
                }

                urlConnection = (HttpURLConnection) 

Appendix G
Profitability and Cost Management Common Helper Functions for Java

G-8



uri.toURL().openConnection();
                urlConnection.setRequestMethod(methodType);

                if (requestHeaders != null) {
                    Set<String> requestHeaderKeys = requestHeaders.keySet();
                    for (String requestHeaderKey : requestHeaderKeys) {
                        urlConnection.setRequestProperty(requestHeaderKey, 
requestHeaders.get(requestHeaderKey));
                    }
                }

                urlConnection.setUseCaches(false);
                urlConnection.setDoOutput(true);
                urlConnection.setDoInput(true);

                if (isPostMethod) {
                    OutputStreamWriter writer = new 
OutputStreamWriter(urlConnection.getOutputStream(),
                            Charset.defaultCharset());
                    writer.write(reqParams);
                    writer.flush();
                }

                if (!isPostMethod) {
                    urlConnection.connect();
                }

                int status = urlConnection.getResponseCode();
                restResult.put(REST_CALL_STATUS, String.valueOf(status));
                String response = readResponse(context,
                        (status >= 400 ? urlConnection.getErrorStream() : 
urlConnection.getInputStream()));
                restResult.put(REST_CALL_RESPONSE, response);
            } catch (Exception e) {
                restResult.put(REST_CALL_RESPONSE, e.getMessage());
            } finally {
                if (urlConnection != null) {
                    urlConnection.disconnect();
                }
            }
            return restResult;
        }

        private static String buildRequestParams(Map context, Map<String, 
String> requestParams, boolean isPostMethod) {
            String reqParams = null;
            try {
                StringBuilder result = new StringBuilder();
                Set<String> reqParamKeys = requestParams.keySet();
                boolean first = true;
                for (String reqParamKey : reqParamKeys) {
                    if (first)
                        first = false;
                    else
                        result.append("&");
                    String reqParamValue = requestParams.get(reqParamKey);

Appendix G
Profitability and Cost Management Common Helper Functions for Java

G-9



                    result.append((isPostMethod ? 
URLEncoder.encode(reqParamKey, "UTF-8") : reqParamKey));
                    result.append("=");
                    result.append((isPostMethod ? 
URLEncoder.encode(reqParamValue, "UTF-8") : reqParamValue));
                }
                reqParams = result.toString();
            } catch (UnsupportedEncodingException e) {
                e.printStackTrace();
            }
            return reqParams;
        }

        private static String readResponse(Map context, InputStream 
urlInStream) {
            BufferedReader br = null;
            String response = "";
            try {
                String line;
                br = new BufferedReader(new InputStreamReader(urlInStream, 
Charset.defaultCharset()));
                while ((line = br.readLine()) != null) {
                    response += line;
                }
            } catch (Exception e) {
                response += e.getMessage();
            } finally {
                if (br != null) {
                    try {
                        br.close();
                    } catch (IOException e) {
                        e.printStackTrace();
                    }
                }
            }
            return response;
        }

        private static String getCSSRESTJobUrlFromResponse(String response) {
            String jobUrl = "";
            try {
                JSONObject jsonResponse = new JSONObject(response);
                JSONArray links = (JSONArray) jsonResponse.get("links");
                JSONObject jobStatusLink = (JSONObject) links.get(1);
                jobUrl = jobStatusLink.get("href").toString();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            return jobUrl;
        }

        private static String getCSSRESTJobStatusFromResponse(String 
response) {
            String jobStatus = "";
            try {
                JSONObject jsonResponse = new JSONObject(response);

Appendix G
Profitability and Cost Management Common Helper Functions for Java

G-10



                jobStatus = jsonResponse.get("status").toString();
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            return jobStatus;
        }

        private static String getCSSRESTJobCompletionStatus(Map<String, 
String> restResult, Map<String, String> reqHeader) {
            String completionStatus = "";
            try {
                String restStatus = 
restResult.get(CSSRESTHelper.REST_CALL_STATUS);
                if (restStatus.equalsIgnoreCase("200")) {
                    String jobUrl = 
getCSSRESTJobUrlFromResponse(restResult.get(CSSRESTHelper.REST_CALL_RESPONSE))
;
                    String restJobStatus = "-1";
                    Map<String, String> jobStatusResult = null;
                    while (restJobStatus.equalsIgnoreCase("-1")) {
                        jobStatusResult = CSSRESTHelper.callRestApi(new 
HashMap(), jobUrl, reqHeader, null, "GET");
                        String jobStatusStatus = 
jobStatusResult.get(CSSRESTHelper.REST_CALL_STATUS);
                        if (jobStatusStatus.equalsIgnoreCase("200")) {
                            restJobStatus = getCSSRESTJobStatusFromResponse(
                                    
jobStatusResult.get(CSSRESTHelper.REST_CALL_RESPONSE));
                        }
                        Thread.sleep(1000);
                    }
                    completionStatus = 
jobStatusResult.get(CSSRESTHelper.REST_CALL_RESPONSE);
                }
            } catch (Exception ex) {
                ex.printStackTrace();
            }
            return completionStatus;
        }
    };
}

Profitability and Cost Management Common Helper Functions for
cURL

Common Helper Functions for cURL

#!/bin/sh
#set -x
export PATH=$PATH:<PATH_TO_JQ_BINARY>
SERVER_URL="<SERVICE_URL>"
USERNAME="<USERNAME>"
PASSWORD="<PASSWORD>"
API_VERSION="v1"

Appendix G
Profitability and Cost Management Common Helper Functions for cURL

G-11



# To avoid SSL connection issue in the environment please add -k option for 
below curl commands.
funcCallRESTAPI() {
    if [ "$1" == "GET" ] || [ "$1" == "DELETE" ]; then
        if [ "$6" != "" ]; then
            echo `curl -s -u $4:$5 -H "$3" --request $1 -G $2 -d "$6"`
        else
            echo `curl -s -u $4:$5 -H "$3" --request $1 -G $2`
        fi
    else
                if [ "$6" != "" ]; then
                        echo `curl -s -u $4:$5 -H "$3" --request $1 $2 -d 
"$6"`
                else
                        echo `curl -s -u $4:$5 -H "$3" --request $1 $2`
                fi
    fi
}

funcCSSRESTHelper() {
        jobOutput=$(funcCallRESTAPI "$1" "$2" "$3" "$4" "$5" "$6")
        jobUrl=`echo $jobOutput | jq '.links[1].href'`
        if [ $jobUrl != null ]; then
                jobUrl="${jobUrl%\"}"
                jobUrl="${jobUrl#\"}"
                jobStatus=-1
                while [ $jobStatus == -1 ]; do
                        jobOutput=$(funcCallRESTAPI "GET" "$jobUrl" "$header" 
"$USERNAME" "$PASSWORD")
                        jobStatus=`echo $jobOutput | jq '.status'`
                done
                restStatus=`echo $jobOutput | jq '.details'`
                restStatus="${restStatus%\"}"
                restStatus="${restStatus#\"}"
                statusMessage=""
                if [ $jobStatus == 0 ]; then
                        statusMessage="$7 completed successfully." 
#"$restStatus"
                else
                        statusMessage=$restStatus
                fi
                   echo "$statusMessage"
        else
                failedMessage=`echo $jobOutput | jq '.details'`
        failedMessage="${failedMessage%\"}"
                failedMessage="${failedMessage#\"}"
                echo $failedMessage
        fi
}

funcAddUsers() {
    url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
    params="filename=$1&userpassword=$2&resetpassword=$3"
    header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
    cssRESTAPI="AddUsers"

Appendix G
Profitability and Cost Management Common Helper Functions for cURL

G-12



    statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
    echo $statusMessage
}

funcRemoveUsers() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
        params="filename=$1"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="RemoveUsers"
        statusMessage=$(funcCSSRESTHelper "DELETE" "$url" "$header" 
"$USERNAME" "$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcAssignRole() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
        params="filename=$1&jobtype=ASSIGN_ROLE&rolename=$2"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="AssignRole"
        statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcUnassignRole() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/users"
        params="filename=$1&jobtype=UNASSIGN_ROLE&rolename=$2"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="UnassignRole"
        statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcAddUsersToGroup() {
    url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
    params="filename=$1&jobtype=ADD_USERS_TO_GROUP&groupname=$2"
    header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
    cssRESTAPI="AddUsersToGroup"
    statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
    echo $statusMessage
}

funcRemoveUsersFromGroup() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
        params="filename=$1&jobtype=REMOVE_USERS_FROM_GROUP&groupname=$2"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="RemoveUsersFromGroup"
        statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcAddUserToGroups() {

Appendix G
Profitability and Cost Management Common Helper Functions for cURL

G-13



    url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
    params="filename=$1&jobtype=ADD_USER_TO_GROUPS&username=$2"
    header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
    cssRESTAPI="AddUserToGroups"
    statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
    echo $statusMessage
}

funcRemoveUserFromGroups() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
        params="filename=$1&jobtype=REMOVE_USER_FROM_GROUPS&username=$2"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="RemoveUserFromGroups"
        statusMessage=$(funcCSSRESTHelper "PUT" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcGenerateRoleAssignmentReport() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/
roleassignmentreport"
        params="filename=$1"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="generateRoleAssignmentReport"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcGenerateUserGroupReport() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/usergroupreport"
        params="filename=$1"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="generateUserGroupReport"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcAddGroups() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
        params="filename=$1"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="addGroups"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcRemoveGroups() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/groups"
        params="filename=$1"
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="removeGroups"
        statusMessage=$(funcCSSRESTHelper "DELETE" "$url" "$header" 

Appendix G
Profitability and Cost Management Common Helper Functions for cURL

G-14



"$USERNAME" "$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcGenerateInvalidLoginReport() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/
invalidloginreport"
     params="from_date=$1&to_date=$2&filename=$3"     
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="generateInvalidLoginReport"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

funcGenerateRoleAssignmentAuditReport() {
        url="$SERVER_URL/interop/rest/security/$API_VERSION/
roleassignmentauditreport"
      params="from_date=$1&to_date=$2&filename=$3"     
        header="Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
        cssRESTAPI="generateRoleAssignmentAuditReport"
        statusMessage=$(funcCSSRESTHelper "POST" "$url" "$header" "$USERNAME" 
"$PASSWORD" "$params" "$cssRESTAPI")
        echo $statusMessage
}

#funcAddUsers test1.csv password false
#funcRemoveUsers test2.csv
#funcAssignRole test3.csv "Power User"
#funcUnAssignRole test4.csv Viewer
#funcAddUsersToGroup test5.csv TestNativeGroup1
#funcRemoveUsersFromGroup test6.csv TestNativeGroup2
#funcGenerateRoleAssignmentReport RoleAssignmentReport.csv
#funcGenerateUserGroupReport UserGroupReport.csv
#funcAddUserToGroups groups.csv joe
#funcRemoveUserFromGroups groups.csv joe
#funcAddGroups CreateGroup1.csv
#funcRemoveGroups DeleteGroup1.csv
#funcGenerateInvalidLoginReport 2021-06-01 2021-06-10 invalidLoginReport.csv
#funcGenerateRoleAssignmentAuditReport 2021-06-01 2021-06-10 
roleAssignmentAuditReport.csv

Profitability and Cost Management Common Helper Functions for
Groovy

Common Helper Functions for Groovy

import java.nio.charset.StandardCharsets

import groovy.json.JsonSlurper

serverUrl="<SERVICE_URL>"
username="<DOMAINNAME.USERNAME>"
password="<PASSWORD>"

Appendix G
Profitability and Cost Management Common Helper Functions for Groovy

G-15



apiVersion = "v1";
userCredentials = username + ":" + password;
basicAuth = "Basic " + 
javax.xml.bind.DatatypeConverter.printBase64Binary(userCredentials.getBytes())

def getResponse(is) {
    BufferedReader br = new BufferedReader(new InputStreamReader(is));
    StringBuilder sb = new StringBuilder();
    String line;
    while ((line = br.readLine()) != null) {
        sb.append(line+"\n");
    }
    br.close();
    return sb.toString();
}

def getUrlFromResponse(scenario, response, relValue) {
    def object = new JsonSlurper().parseText(response)
    def pingUrlStr
    if (object.status == -1) {
        println "Started - " + scenario
        def links = object.links
        links.each{
            if (it.rel.equals(relValue)) {
                pingUrlStr=it.href
            }
        }
    } else {
        println "Error details: " + object.details
        System.exit(0);
    }
    return pingUrlStr
}

def getJobStatus(pingUrlString, methodType) {

    def pingUrl = new URL(pingUrlString);
    def completed = false;
    while (!completed) {
        pingResponse = executeRequest(pingUrl, methodType, null, 
"application/x-www-form-urlencoded");
        status = getJobStatusFromResponse(pingResponse);
        if (status == "Processing") {
            try {
                println "Processing. Please wait..."
                Thread.sleep(5000);
            } catch (InterruptedException e) {
                completed = true
            }
        } else {
            println status
            completed = true
        }
    }
}

Appendix G
Profitability and Cost Management Common Helper Functions for Groovy

G-16



def getJobStatusFromResponse(response) {
    def object = new JsonSlurper().parseText(response)
    def status = object.status
    if (status == -1)
        return "Processing"
    else if (status == 0)
        return "Completed"
    else
        return object.details
}

def getJobDetailsFromResponse(response) {
    def object = new JsonSlurper().parseText(response)
    def details = object.details
    if (details != null)
        return object.details
    else
        return null
}

def executeRequest(url, requestType, payload, contentType) {
    HttpURLConnection connection = (HttpURLConnection) url.openConnection();
    connection.setDoOutput(true);
    connection.setInstanceFollowRedirects(false);
    connection.setRequestMethod(requestType);
    connection.setRequestProperty("Content-Type", contentType);
    //           connection.setRequestProperty("charset", 
StandardCharsets.UTF_8);
    connection.setRequestProperty("Authorization", basicAuth);
    connection.setUseCaches(false);

    if (payload != null) {
        OutputStreamWriter writer = new 
OutputStreamWriter(connection.getOutputStream());
        writer.write(payload);
        writer.flush();
    }

    int statusCode
    try {
        statusCode = connection.responseCode;
    } catch (all) {
        println "Error connecting to the URL"
        System.exit(0);
    }

    def response
    if (statusCode == 200 || statusCode == 201) {
        if (connection.getContentType() != null && !
connection.getContentType().startsWith("application/json")) {
            println "Error occurred in server"
            System.exit(0)
        }
        InputStream is = connection.getInputStream();
        if (is != null)

Appendix G
Profitability and Cost Management Common Helper Functions for Groovy

G-17



            response = getResponse(is)
    } else {
        println "Error occurred while executing request"
        println "Response error code : " + statusCode
        InputStream is = connection.getErrorStream();
        if (is != null && connection.getContentType() != null && 
connection.getContentType().startsWith("application/json"))
            println getJobStatusFromResponse(getResponse(is))
        System.exit(0);
    }
    connection.disconnect();
    return response;
}

def addUsersToGroup(fileName, groupName) {

    String scenario = "Adding users in " + fileName + " to group " + 
groupName;
    String params = "jobtype=ADD_USERS_TO_GROUP&filename="+ fileName 
+"&groupname="+ groupName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def removeUsersFromGroup(fileName, groupName) {

    String scenario = "Removing users in " + fileName + " from group " + 
groupName;
    String params = "jobtype=REMOVE_USERS_FROM_GROUP&filename="+ fileName 
+"&groupname="+ groupName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 

Appendix G
Profitability and Cost Management Common Helper Functions for Groovy

G-18



"GET");
    }
}

def addUserToGroups(fileName, userName) {

    String scenario = "Adding users in " + fileName + " to group " + userName;
    String params = "jobtype=ADD_USER_TO_GROUPS&filename="+ fileName 
+"&username="+ userName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def removeUserFromGroups(fileName, userName) {

    String scenario = "Removing users in " + fileName + " from group " + 
userName;
    String params = "jobtype=REMOVE_USER_FROM_GROUPS&filename="+ fileName 
+"&username="+ userName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def addUsers(fileName, resetPassword, userPassword) {

    String scenario = "Creating users in " + fileName;
    String params = "jobtype=ADD_USERS&filename="+ fileName 
+"&resetpassword="+ resetPassword +"&userpassword="+ userPassword;
    def url = null;
    def response = null;

Appendix G
Profitability and Cost Management Common Helper Functions for Groovy

G-19



    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def addUsers(fileName) {
    addUsers(fileName, null, null);
}

def deleteUsers(fileName) {

    String scenario = "Deleting users in " + fileName;
    String params = null;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users?filename=" + fileName);
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "DELETE", null, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def assignUsersRoles(fileName, roleName) {

    String scenario = "Assigning users in " + fileName + " with role " + 
roleName;
    String params = "jobtype=ASSIGN_ROLE&filename="+ fileName +"&rolename="+ 
roleName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-

Appendix G
Profitability and Cost Management Common Helper Functions for Groovy

G-20



urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def unassignUsersRoles(fileName, roleName) {

    String scenario = "Un-assigning users in " + fileName + " with role " + 
roleName;
    String params = "jobtype=UNASSIGN_ROLE&filename="+ fileName 
+"&rolename="+ roleName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
users");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "PUT", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def generateRoleAssignmentReport(fileName) {

    String scenario = "Generating Role assignment report in " + fileName;
    String params = "jobtype=GENERATE_ROLE_ASSIGNMENT_REPORT&filename="+ 
fileName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
roleassignmentreport");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def generateUserGroupReport(fileName) {

    String scenario = "Generating User Group Report in " + fileName;
    String params = "jobtype=GENERATE_USER_GROUP_REPORT&filename="+ fileName;

Appendix G
Profitability and Cost Management Common Helper Functions for Groovy

G-21



    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
usergroupreport");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def addGroups(fileName) {
    println "addgroups"
    String scenario = "Creating Groups in " + fileName;
    String params = "filename="+ fileName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def removeGroups(fileName) {

    String scenario = "Deleting Groups in " + fileName;
    String params = null;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
groups?filename=" + fileName);
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "DELETE", null, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");

Appendix G
Profitability and Cost Management Common Helper Functions for Groovy

G-22



    }
}

def generateRoleAssignmentAuditReport(from_date,to_date,fileName) {

    String scenario = "Generating Role assignment audit report in " + 
fileName;
    String params = 
"jobtype=GENERATE_ROLE_ASSIGNMENT_AUDIT_REPORT&from_date="+from_date+"&to_date
="+to_date+"&filename="+ fileName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
roleassignmentauditreport");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

def generateInvalidLoginReport(from_date,to_date,fileName) {

    String scenario = "Generating Invalid Login report in " + fileName;
    String params = 
"jobtype=GENERATE_INVALID_LOGIN_REPORT&from_date="+from_date+"&to_date="+to_da
te+"&filename="+ fileName;
    def url = null;
    def response = null;
    try {
        url = new URL(serverUrl + "/interop/rest/security/" + apiVersion + "/
invalidloginreport");
    } catch (MalformedURLException e) {
        println "Please enter a valid URL"
        System.exit(0);
    }
    response = executeRequest(url, "POST", params, "application/x-www-form-
urlencoded");
    if (response != null) {
        getJobStatus(getUrlFromResponse(scenario, response, "Job Status"), 
"GET");
    }
}

//Execute commands here
//addUsersToGroup("Users.csv", 
"G1");                                                                        
                   //PUT
//removeUsersFromGroup("Users.csv", 
"G1");                                                                        

Appendix G
Profitability and Cost Management Common Helper Functions for Groovy

G-23



    //PUT
//addUsers("AddUsers123.csv", "false", 
"newPassword");                                        //POST
//
addUsers("AddUsers456.csv");                                                  
                                                                              
 //POST
//
deleteUsers("RemoveUsers.csv");                                               
                                                              //DELETE
//assignUsersRoles("Users.csv", "Service 
Administrator");                           //PUT
//assignUsersRoles("users.csv", 
"viewer");                                                          //PUT
//unassignUsersRoles("Users.csv", "Drill 
Through");                                                   //PUT
//
generateRoleAssignmentReport("GroovySampleReport3.csv");                      
          // POST
//
generateUserGroupReport("UserGroupReportGroovy.csv");                         
           // POST
//addUserToGroups("Group.csv", 
"user1");                                               //PUT
//removeUserFromGroups("groups.csv", 
"joe");                                          //PUT
//
addGroups("CreateGroup1.csv");                                                
// POST
//
removeGroups("DeleteGroup1.csv");                                             
   // DELETE
//generateInvalidLoginReport("2020-06-01", "2021-06-10", 
"report12345.csv"); //POST

Appendix G
Profitability and Cost Management Common Helper Functions for Groovy

G-24



H
Sample Starter Kit for Consultants - Integration
with Business Intelligence Cloud Service

This topic describes a sample starter kit that can be used by infrastructure consultants to plan
integration for Planning with Business Intelligence Cloud Service.

Prerequisites

• You have accounts for Business Intelligence Cloud Service, Planning, and Oracle
Application Express.

• You have considerable technical and functional expertise with Business Intelligence Cloud
Service, Planning, Oracle Application Express, REST, Groovy, and scripting.

These are the basic tasks for the sample starter kit for consultants:

• Export data and metadata from Planning using the Planning REST API.

• Download data and metadata to an on-premise server using the Planning REST API.

• Use the metadata to create schema/tables in Business Intelligence Cloud Service using
the Business Intelligence Cloud Service REST API.

• Populate the tables in Business Intelligence Cloud Service using the data imported from
Planning by using the Business Intelligence Cloud Service REST API.

Note:

If you are using DBaaS, the target reporting database can optionally be accessed by

standard tools like SQL Developer and Toad.

Note:

The DataSync tool (available from OTN) can also be used to create tables and load
and update data in the tables. Data uploads can be scheduled using the DataSync
jobs and native scheduler. This approach will work for Database Schema Service and
DBaaS used as reporting database for BICS.

These are the basic steps for the sample starter kit for consultants:

1. Install the scripting engine and deploy demo scripts.

2. Use the SQL APEX REST API client to call a client sample that calls a SQL query with a
bind variable passed on the URL.

3. Use the Business Intelligence REST API client to provide methods as necessary for your
use case.

4. Use the Planning REST API client to provide methods as necessary for your use case.

H-1



5. Incorporate helper functions.

6. Integrate Planning with Business Intelligence Cloud Service using a demo script.

Planning, Business Intelligence Cloud Service, and SQL Web REST services expose functions
available in EPM Automate, DataSync, and for direct database SQL/PLSQL calls. The REST
APIs can be scripted using any language. This appendix describes a sample starter kit to show
how this can be implemented using Groovy for demonstration purposes. For information on
REST APIs for Business Intelligence Cloud Service and Application Express, see:

• Business Intelligence REST APIs

• Application Express REST APIs

Installing the Scripting Engine and Deploying Demo Scripts
For reference, demo scripts are described here: Integration of Planning to Business
Intelligence Cloud Service.

1. Install the Groovy engine, http://www.groovy-lang.org/install.html

Select the binary release (https://bintray.com/artifact/download/groovy/maven/apache-
groovy-binary-2.4.5.zip).

2. Create the files as shown in Integration of Planning to Business Intelligence Cloud Service,
and put them in a folder structure similar to the following:

pbcsbics
   PBCSBICSAutomation.properties
   com
       oracle
      ceal
        <groovy files>

3. Open a shell:

cd <yourrootfolder>\pbcsbics

On a single line, type:

<yourrootfolder>\apache-groovy-binary-2.4.5\groovy-2.4.5\bin\groovy -
classpath
<yourrootfolder>\pbcsbics
<yourrootfolder>\pbcsbics\com\oracle\ceal\PBCSBICSIntegration.groovy

SQL Application Express REST API client
The Application Express REST API client sample demonstrates calling an SQL query with a
bind variable passed on the URL.

• Client creation using com.oracle.ceal.ApexRestClient

apexClient=new ApexRestClient(apexRestUrl, proxy Host, proxy Port,cloud  
identityDomain, cloud username, cloud password, 
ignoreSSLCertificationPathErrors)

Appendix H
Installing the Scripting Engine and Deploying Demo Scripts

H-2

https://docs.oracle.com/en/cloud/paas/bi-cloud/bicap/index.html
https://docs.oracle.com/cd/E21611_01/doc.11/e21058/rest_api.htm#AELIG711


– Apex REST URL in the format: https://server

Example: https://<SERVER>.oraclecloud.com/apex

– proxy host:

* Leave empty if not using a proxy

* If using a tool like Fiddler for HTTP captures, specify localhost.

* If you need to go through a proxy to connect to Oracle cloud services, specify the
proxy host.

– proxy port:

* Leave empty if not using a proxy

* If using Fiddler, use 8888.

* Otherwise, enter your proxy port.

– Cloud identity domain: this is provided with your cloud login. You can also find this in
the APEX URL.

– ignoreSSLCertificationPathErrors (true or false): Set this to true if connecting
through a proxy like Fiddler.

• Calling an SQL Query defined in APEX / SQL Workshop / RESTful web services

The REST web service must be created first. For more information, read this Oracle By
Example: http://www.oracle.com/webfolder/technetwork/tutorials/obe/cloud/13_2/dbservice/
restfulws/restfulws.html

apexClient.launchSQLQueryUsingGETAndVariableOnUrl("<module name>/<uri>", 
"<bind variable>")

Example:

apexClient.launchSQLQueryUsingGETAndVariableOnUrl("bics/test", "7839")

This example uses the following definition of the REST service in APEX:

RESTful Service Module: bics/ URI Template: test/{ID} Method: GET Source Type: Query
Format: JSON Requires Secure Access: YES Source: Select
EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO from EMP where EMPNO = :ID
The URL call will be in the following format:

https://<SERVER>.oraclecloudapps.com/apex/bics/test/7839
The response will be in the following format:

Response Content-Type:application/json

{"next":{"$ref":"https://<SERVER>.oraclecloudapps.com/apex/bics/test/7839?
page=1"},"items":
[{"empno":7839,"ename":"KING","job":"PRESIDENT","hiredate":"1981-11-17T00:0
0:00Z","sal":5000,"deptno":10}]}

• Calling a PL/SQL defined in APEX / SQL Workshop / RESTful web services

A method is available, but all the configuration work must be done in APEX.

apexClient.launchProcUsingGET("<module name>/<uri>")

Appendix H
SQL Application Express REST API client

H-3



The definition of the REST service in APEX is for this example:

RESTful Service Module: bics/ URI Template: plsql/ Method: GET Source Type: PL/SQL
Requires Secure Access: YES Source:

DECLARE
        prevdeptno   number;
        deptloc      varchar2(30);
        deptname     varchar2(30);
        CURSOR getemps IS select * from emp 
                where ((select job from emp where ename = :empname)  IN 
('PRESIDENT', 'MANAGER')) 
                         or deptno = (select deptno from emp where ename 
= :empname) 
                         order by deptno, ename;
        BEGIN
            sys.htp.htmlopen;
            sys.htp.headopen;
            sys.htp.title('Departments');
            sys.htp.headclose;
            sys.htp.bodyopen;
             for emprecs in getemps
            loop
            if emprecs.deptno != prevdeptno or prevdeptno is null then
                            select dname, loc into deptname, deptloc 
                                from dept where deptno = (select deptno 
from emp where ename = emprecs.ename);
                      if prevdeptno is not null then
                             sys.htp.print('</ul>');
          end if;
                      sys.htp.print('Department ' || deptname || ' located 
in ' || deptloc || '<p/>');
                      sys.htp.print('<ul>');
          end if;
            sys.htp.print('<li>' || emprecs.ename || ', ' || emprecs.job 
|| ', ' || emprecs.sal || '</li>');
            prevdeptno := emprecs.deptno;
            end loop;
            sys.htp.print('</ul>');
            sys.htp.bodyclose;
            sys.htp.htmlclose;
        END;

        URL call will be in the form: https://<SERVER>.oraclecloudapps.com/
apex/bics/plsql/
        Response will be in following format for this specific plsql 
example
                Response Content-Type:text/html; charset=UTF-8
                <HTML>
                <HEAD>
                <TITLE>Departments</TITLE>
                </HEAD>
                <BODY>
                </ul>
                </BODY>
                    </HTML>

Appendix H
SQL Application Express REST API client

H-4



Business Intelligence REST API Client
The Business Intelligence REST API client provides the following methods:

• Client creation using com.oracle.ceal.BicsRestClient

(BicsClientRestClient.groovy)bicsClient=new BicsRestClient(bics Rest Url, 
proxy Host, proxy Port,cloud  identityDomain, cloud username, cloud 
password, ignoreSSLCertificationPathErrors)

– Business Intelligence REST URL in the format: https://servername

Example: https://<SERVER>.oraclecloud.com

– proxy host:

* Leave empty if not using a proxy

* If using a tool like Fiddler for HTTP captures, specify localhost.

* If you need to go through a proxy to connect to Oracle cloud services, specify the
proxy host.

– proxy port:

* Leave empty if not using a proxy

* If using Fiddler, use 8888.

* Otherwise, enter your proxy port.

– Cloud identity domain: this is provided with your cloud login. You can also find this in
the BI URL.

– ignoreSSLCertificationPathErrors (true or false): Set this to true if connecting
through a proxy like Fiddler.

• About bics

bicsClient.aboutBics()
• List all tables

bicsClient.listAllTables()
• Get table info

bicsClient.getTableInfo(table name)
• Delete table

bicsClient.deleteTable(table name)
• Create a table with X columns and a specific column name prefix

bicsClient.createTableToLoadCSV(table name, number of columns , column prefix)
Example:

bicsClient.createTableToLoadCSV("ceal_4", 3 ,"MYCOL")

This creates a table called CEAL_4 with three columns named: MYCOL1, MYCOL2, MYCOL3

Appendix H
Business Intelligence REST API Client

H-5



By default the columns have the following properties:

"dataType":"VARCHAR" // creates a VARCHAR2 column in database
        "length":300,
        "precision":0,
        "nullable":true, 
       "defaultValue":null,

These values can be modified in BicsRestClient.groovy in the createTableToLoadCSV
method

• Delete data from table

bicsClient.deleteDataFromTable(table name)
• Load data in table

loadDataInTableUsingCSV(tableName, localCsvFilePath, localCsvFileName,
delimiterInCsv,numberOfColumnsInCsv,numberOfLinesToSkip,columnPrefixInTable,is
Zipped)
Example:

bicsClient.loadDataInTableUsingCSV("ceal_4","d:\
\temp","export.csv",",",3,0,"MYCOL",false)

• Create a table with a specific column name

bicsClient.createTableToLoadCSVWithHeaderNames("ceal_8", listHeaders )
• Load data in table using mappings to specific column names

loadDataInTableUsingCSVAndHeader(tableName, localCsvFilePath,
localCsvFileName, delimiterInCsv,numberOfLinesToSkip,listHeaders,isZipped)
Example:

bicsClient.loadDataInTableUsingCSVAndHeader("ceal_8","d:\
\temp",fileNameInZip,",",1,listHeaders,false)

Planning REST API Client
The Planning REST API client provides the following methods:

• Client creation using com.oracle.ceal.PbcsRestClient
(PbcsClientRestClient.groovy)

PbcsRestClient pbcsClient=new 
PbcsRestClient(pbcsParams.planningRestUrl,pbcsParams.interopRestUrl,pbcsPar
ams.proxyHost,pbcsParams.proxyPort,pbcsParams.identityDomain,pbcsParams.use
rname, pbcsParams.password, pbcsParams.ignoreSSLCertificationPathErrors)

• List all files

pbcsClient.listFiles()
• Delete a file

pbcsClient.deleteFile(fileName)
• Export data

Appendix H
Planning REST API Client

H-6



response=pbcsClient.exportData(appName, Job name for export, export filename
on server)

• Get job status

pbcsClient.getJobStatus(appName,jobId)
• Download file

pbcsClient.downloadFile(server file name, local destination folder)
• Export metadata

pbcsClient.exportMetaData(appName,job name for metadata export, Export
filename on server)

• Execute LCM Export

pbcsClient.executeLCMExport(snapshot name)
• Run business rule

pbcsClient.runBusinessRule(appname,business rule,runtime prompts)
Example:

pbcsClient.runBusinessRule("Vision","AggOliv","{Period:Q1,Entity:USA}")
• Cube refresh

pbcsClient.cubeRefresh(appname,jobname)
Example:

pbcsClient.cubeRefresh("Vision","RefreshOliv")
• Run plantype map

pbcsClient.runPlanTypeMap(appname, jobname, cleardata true/false)
Example:

pbcsClient.cubeRefresh("Vision","RefreshOliv")pbcsClient.runPlanTypeMap("Visio
n","MapOliv","false")

• Run Ruleset

pbcsClient.runRuleSet(appname, ruleset)
• Import data

pbcsClient.importData(appname, jobname, export filename)
Last parameter (export filename) defaults to jobname if no server import filename is
specified

• Import metadata

pbcsClient.importMetaData(appname, jobname, export metadata filename)
Last parameter defaults to jobname if no server import filename is specified

Example:

pbcsClient.importMetaData("Vision","ImportMetaOliv","ExportMetadataOliv.zip")
• Execute LCM import

pbcsClient.executeLCMImport(snapshot name)
• Upload file

Appendix H
Planning REST API Client

H-7



pbcsClient.uploadFile(Local folder containing file to upload to server,file to
upload)
Example:

//local folder, and filename as parameters
pbcsClient.uploadFile("d:\\temp","ExportOliv.zip")

Helper Functions
• The properties file containing connection parameters can also be accessed using this

class:

com.oracle.ceal.BICSAutomationParameters or

com.oracle.ceal.PBCSAutomationParameters or

com.oracle.ceal.APEXAutomationParameters
The Properties file must contain for BICS:

proxyHost=
proxyPort=
ignoreSSLCertificationPathErrors=true or false
bicsRestUrl=https://biserverurl
bicsIdentityDomain=
bicsUsername=
bicsPassword=

// this loads a file named PBCSBICSAutomation.properties 
PbcsRestClient pbcsClient
    
PBCSAutomationParameters pbcsParams=new 
PBCSAutomationParameters(‘PBCSBICSAutomation.properties’)

pbcsClient=new 
PbcsRestClient(pbcsParams.planningRestUrl,pbcsParams.interopRestUrl,pbcsPar
ams.proxyHost,pbcsParams.proxyPort,pbcsParams.identityDomain,pbcsParams.use
rname, pbcsParams.password, pbcsParams.ignoreSSLCertificationPathErrors)

Properties file must contain for Planning:

pbcsPlanningRestUrl=https://<SERVER>/rest/11.1.2.3.600
pbcsInteropRestUrl=https://<SERVER>/interop/rest/11.1.2.3.600
pbcsIdentityDomain=
pbcsUsername=
pbcsPassword=
proxyHost=
 proxyPort=
ignoreSSLCertificationPathErrors=true or false

// this loads a file named PBCSBICSAutomation.properties 
ApexRestClient apexClient

APEXAutomationParameters apexParams=new 
APEXAutomationParameters('PBCSBICSAutomation.properties')

Appendix H
Helper Functions

H-8



apexClient=new 
ApexRestClient(apexParams.apexRestUrl,apexParams.proxyHost,apexParams.proxy
Port,apexParams.identityDomain,apexParams.username, apexParams.password, 
apexParams.ignoreSSLCertificationPathErrors)

The properties file must contain for Planning:

apexRestUrl=https://apexserver/apex    
apexIdentityDomain=
apexUsername=
apexPassword=
proxyHost=
proxyPort=
ignoreSSLCertificationPathErrors=true or false

• The Planning REST client also contains helper functions for dealing with CSV files:

– Finding the number of columns in a .csv file

Example:

nbColsInCsv=pbcsClient.findNbOfColsInCSV("d:\\temp\\", "export.csv", ",")
– Finding header names in a .csv file (first line):

listHeaders=pbcsClient.getHeadersInCSVAsList(folder containing csv file,
csv filename, delimiter)
Example:

listHeaders=pbcsClient.getHeadersInCSVAsList("d:\\temp\\", fileName, ",")
• The Planning REST client also contains helpers functions for dealing with asynchronous

calls:

Class WaitForCode
                  Method retry(sleep time, nb of retries) { code to run }

Example:

// Looping to get jobId status while it s being processed on server
    // In this example waiting 6 secs each time, and trying 100 times to 
get a valid status (not processing)
    WaitForCode.retry(6000,100){
    // second parameter is jobid (is obtained from json response from 
server)
        def responseJobStatus
        responseJobStatus=pbcsClient.getJobStatus("Vision",jobId)
if (responseJobStatus.contains("Processing")) throw new Exception("Job not 
finished")
                                
}

• The Business Intelligence Cloud Service REST client also contains helpers functions for
trimming lists:

def truncateList(listName, truncateLength)

Appendix H
Helper Functions

H-9



Example to truncate headers for columns to 30 characters:

def listHeaders
listHeaders=pbcsClient.getHeadersInCSVAsList("d:\\temp\\", fileNameInZip, 
",")
                listHeaders=bicsClient.truncateList(listHeaders, 30)

Integration of Planning to Business Intelligence Cloud Service
The demo scripts in the following topics show Groovy examples of integration for Planning and
Business Intelligence Cloud Service.
Review these topics to see Groovy examples.

Groovy Sample – PBCSBICSIntegration.groovy

package com.oracle.ceal

class PBCSBICSIntegration {
    static main(args) {
        def pbcsExportfiles
        
        PbcsRestClient pbcsClient
        BicsRestClient bicsClient
        ApexRestClient apexClient
        
        PBCSAutomationParameters pbcsParams=new 
PBCSAutomationParameters('PBCSBICSAutomation.properties')
        if (pbcsParams.isConfigValid() == true) {
            pbcsClient=new 
PbcsRestClient(pbcsParams.planningRestUrl,pbcsParams.interopRestUrl,pbcsParams
.proxyHost,pbcsParams.proxyPort,pbcsParams.identityDomain,pbcsParams.username,
 pbcsParams.password, pbcsParams.ignoreSSLCertificationPathErrors)
            
            pbcsClient.listFiles()
            
            pbcsClient.deleteFile("ExportOliv.zip")
            pbcsClient.deleteFile("ExportMetadataOliv.zip")
            
            def response
            //last parameter is server filename for export. If not set, this 
defaults to jobname as filename
            
response=pbcsClient.exportData("Vision","JobOliv","ExportOliv.zip")
            String jobId = "";
            jobId=pbcsClient.getJobIdFromJSONResponse(response)
            if (jobId!="") println "Export running with jobid:"+jobId
            
            // Looping to get jobId status while it s being processed on 
server
            // In this example waiting 6 secs each time, and trying 100 times 
to get a valid status (not processing)
            WaitForCode.retry(6000,100){
                // second parameter is jobid (is obtained from json response 
from server)

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-10



                def responseJobStatus
                responseJobStatus=pbcsClient.getJobStatus("Vision",jobId)
                if (responseJobStatus.contains("Processing")) throw new 
Exception("Job not finished"                    
            }    
            
            //download server file name to local folder
            pbcsClient.downloadFile("ExportOliv.zip","d:\\temp")
            
            //last parameter is server filename for export. If not set, this 
defaults to jobname as filename
            
pbcsClient.exportMetaData("Vision","JobOlivMeta","ExportMetadataOliv.zip")
            
            pbcsClient.downloadFile("ExportMetadataOliv.zip","d:\\temp")
            
            pbcsExportfiles=pbcsClient.unZip("d:\\temp\\ExportOliv.zip","d:\
\temp\\")
            pbcsExportfiles.each { fileNameInZip ->
                println "-->"+fileNameInZip
                println "Nb of cols in csv:"+pbcsClient.findNbOfColsInCSV("d:\
\temp\\", fileNameInZip, ",")
                def headers
                headers=pbcsClient.getHeadersInCSVAsList("d:\\temp\\", 
fileNameInZip, ",")
                headers.each { header -> 
                    println "header --"+header+"--"
                }
                println "<--"
            } 
            
        } else {
            println "Configuration for PBCS is invalid. Please check 
PBCSBICSAutomation.properties"
        }    
            
        BICSAutomationParameters bicsParams=new 
BICSAutomationParameters('PBCSBICSAutomation.properties')
        if (bicsParams.isConfigValid() == true) {
            
            // load to bics
        
            bicsClient=new 
BicsRestClient(bicsParams.bicsRestUrl,bicsParams.proxyHost,bicsParams.proxyPor
t,bicsParams.identityDomain,bicsParams.username, bicsParams.password, 
bicsParams.ignoreSSLCertificationPathErrors)
            bicsClient.aboutBics()
            bicsClient.listAllTables()
            bicsClient.getTableInfo("ceal_4")
            bicsClient.deleteTable("ceal_4")
            // this creates a table with x columns MYCOL1 MYCOL2 MYCOL3
            bicsClient.createTableToLoadCSV("ceal_4", 3 ,"MYCOL")
            bicsClient.deleteDataFromTable("ceal_4")
            //loadDataInTableUsingCSV(tableName, localCsvFilePath, 
localCsvFileName, 
delimiterInCsv,numberOfColumnsInCsv,numberOfLinesToSkip,columnPrefixInTable,is

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-11



Zipped) 
            bicsClient.loadDataInTableUsingCSV("ceal_4", "d:\
\temp","export.csv",",",3,0,"MYCOL",false)
            
            println "**Uploading each file from zip**"
            pbcsExportfiles.each { fileNameInZip ->
                println "-->"+fileNameInZip
                def nbColsInCsv
                nbColsInCsv=pbcsClient.findNbOfColsInCSV("d:\\temp\\", 
fileNameInZip, ",")
                println "Nb of cols in csv:"+nbColsInCsv
                
                def listHeaders
                listHeaders=pbcsClient.getHeadersInCSVAsList("d:\\temp\\", 
fileNameInZip, ",")
                listHeaders=bicsClient.truncateList(listHeaders, 30)
                bicsClient.deleteTable("ceal_8")
                
                bicsClient.createTableToLoadCSVWithHeaderNames("ceal_8", 
listHeaders )
                //loadDataInTableUsingCSVAndHeader(tableName, 
localCsvFilePath, localCsvFileName, 
delimiterInCsv,numberOfLinesToSkip,listHeaders,isZipped)
                bicsClient.loadDataInTableUsingCSVAndHeader("ceal_8", "d:\
\temp",fileNameInZip,",",1,listHeaders,false)
                println "<--"
            }
            println "****"
            
        }  else {
            println "Configuration for BICS is invalid. Please check 
PBCSBICSAutomation.properties"
        }
        
        
        APEXAutomationParameters apexParams=new 
APEXAutomationParameters('PBCSBICSAutomation.properties')
        if (apexParams.isConfigValid() == true) {
            
            // load to bics
        
            apexClient=new 
ApexRestClient(apexParams.apexRestUrl,apexParams.proxyHost,apexParams.proxyPor
t,apexParams.identityDomain,apexParams.username, apexParams.password, 
apexParams.ignoreSSLCertificationPathErrors)
            // see ApexRestClient.groovy method def 
launchProcUsingGETAndParameterOnUrl(apexUri, parameter) for info on the rest 
configuration on server
            apexClient.launchSQLQueryUsingGETAndVariableOnUrl("bics/test", 
"7839")
            apexClient.launchProcUsingGET("bics/plsql/")
        }  else {
            println "Configuration for Apex is invalid. Please check 
PBCSBICSAutomation.properties"
        }

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-12



    }
}

With PBCSBICSAutomation.properties like the following:

pbcsPlanningRestUrl=https://<SERVER>/HyperionPlanning/rest/11.1.2.3.600
pbcsInteropRestUrl=https://<SERVER>/interop/rest/11.1.2.3.600
pbcsIdentityDomain=
pbcsUsername=
pbcsPassword=
proxyHost=
proxyPort=
ignoreSSLCertificationPathErrors=false
bicsRestUrl=https://bicsserver
bicsIdentityDomain=
bicsUsername=
bicsPassword=
apexRestUrl=https://dbserver/apex
apexIdentityDomain=
apexUsername=
apexPassword=

Groovy Sample – PbcsRestClient.groovy

package com.oracle.ceal

import javax.net.ssl.HostnameVerifier
import javax.net.ssl.HttpsURLConnection
import javax.net.ssl.SSLContext
import javax.net.ssl.SSLSession
import javax.net.ssl.TrustManager
import javax.net.ssl.X509TrustManager

import java.net.HttpURLConnection

import java.util.regex.Pattern
import java.util.regex.Matcher
import java.util.zip.ZipEntry
import java.util.zip.ZipFile

class PbcsRestClient {
    private HttpURLConnection connection
    private def planningUrl
    private def interopUrl
    private def proxyHost
    private def proxyPort
    private def user
    private def pwd
    private def domain
    private def ignoreSSLCertsErrors
    
    public PbcsRestClient(planningServerUrl, interopServerUrl,httpProxyHost, 
httpProxyPort, identityDomain,username, password, 
ignoreSSLCertificationPathErrors) {

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-13



        planningUrl=planningServerUrl
        interopUrl=interopServerUrl
        proxyHost=httpProxyHost
        proxyPort=httpProxyPort
        domain=identityDomain
        user=username
        pwd=password
        ignoreSSLCertsErrors=ignoreSSLCertificationPathErrors
        
    }
    
    def setProxyParams() {
        Properties systemProperties = System.getProperties()
        systemProperties.setProperty("http.proxyHost",proxyHost)
        systemProperties.setProperty("http.proxyPort",proxyPort)
        systemProperties.setProperty("https.proxyHost",proxyHost)
        systemProperties.setProperty("https.proxyPort",proxyPort)
    
    }
    
    def setSSLParams() {
        if (ignoreSSLCertsErrors !=null && 
ignoreSSLCertsErrors.toUpperCase()=="TRUE") {
            println "Ignoring SSL certification path errors"
            // Disable SSL cert validation
            
            def hostnameVerifier = [
                verify: { hostname, session -> true }
            ]
            def trustManager = [
                    checkServerTrusted: { chain, authType -> },
                    checkClientTrusted: { chain, authType -> },
                    getAcceptedIssuers: { null }
            ]
                
            HttpsURLConnection.setDefaultHostnameVerifier(hostnameVerifier as 
HostnameVerifier)
            
HttpsURLConnection.setDefaultSSLSocketFactory(context.getSocketFactory())
            
            SSLContext context = SSLContext.getInstance("SSL")
            context.init(null, [trustManager as X509TrustManager] as 
TrustManager[], null)
            
        }
    }
    
    def openConnection(restUrl,method,localFileNameWithPathForStorage) {
        println "Opening connection to $restUrl with method:$method"
        int statusCode
    
        setProxyParams()
        setSSLParams()
            
        URL newUrl
        newUrl=new URL(restUrl)

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-14



            
        connection = (HttpURLConnection) newUrl.openConnection()
        
        connection.setDoOutput(true)
        connection.setDoInput(true)
        connection.setUseCaches(false)
        if (method=="") 
            connection.setRequestMethod("GET")
        else
            connection.setRequestMethod(method)
            
        connection.setRequestProperty("Content-Type","application/x-www-form-
urlencoded")
        
        String userCredentials = domain +"."+user + ":" + pwd
        String basicAuth = "Basic " + 
javax.xml.bind.DatatypeConverter.printBase64Binary(userCredentials.getBytes())
        connection.setRequestProperty("Authorization", basicAuth)
    
        String response=""
        try {
            statusCode = connection.responseCode
            println "Connection status code: $statusCode "
            if (statusCode==401) {
                println "Not authorized"
            }
            if (statusCode==200) {
                println "Authentication succeeded"
                println "Server response:"
                println "-----"
                
response=displayServerResponse(connection,localFileNameWithPathForStorage)
                println "-----"
            }
            if (statusCode==400) {
                println "Bad request"
                println "Server response:"
                println "-----"
                response=displayServerResponse(connection,"")
                println "-----"
            }
        } catch (Exception e) {
            println "Error connecting to the URL"
            println e.getMessage()
        } finally {
            if (connection != null) {
                connection.disconnect();
            }
        }
        
        return response
    }
    
    def displayServerResponse(connection,localFileNameWithPathForStorage) {
        InputStream is;
        if (connection.getResponseCode()==200) {

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-15



            is=connection.getInputStream();
        } else {
            is=connection.getErrorStream();
        } 
        println "Response Content-Type:"+connection.getContentType()
        if (connection.getContentType().contains("application/json")) {
            BufferedReader br = new BufferedReader(new InputStreamReader(is));
            StringBuilder sb = new StringBuilder();
            String line;
            while ((line = br.readLine()) != null) {
                sb.append(line+"\n");
            }
            br.close();
            println sb
            return sb.toString()
        } else {
        if (connection.getResponseCode()==200) {
        //storing content
            final int BUFFER_SIZE = 5 * 1024 * 1024;
            def fileExt = connection.getHeaderField("fileExtension");
            println "Downloading file with fileExtension header:"+fileExt
            if (fileExt!=null) {
                def saveFilePath = localFileNameWithPathForStorage;
                File f = new File(saveFilePath);
                is = connection.getInputStream();
                FileOutputStream outputStream = new FileOutputStream(f);
                int bytesRead = -1;
                byte[] buffer = new byte[BUFFER_SIZE];
                while ((bytesRead = is.read(buffer)) != -1) {
                    outputStream.write(buffer, 0, bytesRead);
                }
                println "Downloaded file to $localFileNameWithPathForStorage"
                return localFileNameWithPathForStorage
            } else {
                println "Could not find fileExtension header"
            
            }
        }
        }
        
        return ""
    }     
    
    def listFiles() {
        println "**Listing files**"
        def restUrl=interopUrl+"/applicationsnapshots"
        def response
        
        response=openConnection(restUrl,"GET","")
        println "****"
    }
    
    def deleteFile(serverFileName) {
        println "**deleting file**"
        def restUrl=interopUrl+"/applicationsnapshots/"+serverFileName
        def response

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-16



        
        response=openConnection(restUrl,"DELETE","")
        println "****"
    }    

    def getJobStatus(appName,jobId) {
        println "**get Job status**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs/" + jobId
        
        def response
        response=openConnection(restUrl,"GET","")
        println "****"
        return response    
    }
    
    def exportData(appName,jobName, exportServerFileName) {
        println "**Exporting data**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=EXPORT_DATA"
        if (exportServerFileName!="") {
            def exportFileJSON="{exportFileName:$exportServerFileName}"
            restUrl=restUrl+"&parameters=" + exportFileJSON
        }
        
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
        return response
    }
    
    def getJobIdFromJSONResponse(response) {
        def jobId=""
        try {
            Pattern regex = Pattern.compile("\"jobId\":\\d+");
            Matcher matcher = regex.matcher(response);
            while (matcher.find()) {
                jobId = matcher.group(0).replace("\"jobId\":","");
            }
        
        } catch (Exception e) {
            println "No jobId found in server response"
        }
        return jobId
    }
    
    def downloadFile(serverFileName,localFolderForStorage) {
        println "**Downloading file**"
        def restUrl=interopUrl+"/applicationsnapshots/"+serverFileName+ "/
contents"
        def response
        
response=openConnection(restUrl,"GET",localFolderForStorage+"/"+serverFileName
)
        println "****"
    }
    

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-17



    def exportMetaData(appName,jobName, exportServerFileName) {
        println "**Exporting metadata**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=EXPORT_METADATA"
        if (exportServerFileName!="") {
            def exportFileJSON="{exportZipFileName:$exportServerFileName}"
            restUrl=restUrl+"&parameters=" + exportFileJSON
        }
        
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
        
    def executeLCMExport(snapshotName) {
        println "**Exporting snapshot**"
        def typeExport="{type:export}"
        def restUrl=interopUrl+"/applicationsnapshots/"+snapshotName+ "/
migration?q="+typeExport 
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
    
    def executeLCMImport(snapshotName) {
        println "**Importing snapshot**"
        def typeImport="{type:import}"
        def restUrl=interopUrl+"/applicationsnapshots/"+snapshotName+ "/
migration?q="+typeImport
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
    
    def runBusinessRule(appName,jobName, JSONRuntimePrompt) {
        println "**Running business rule**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=RULES"
        if (JSONRuntimePrompt!="") {
            // Example for JSONRuntimePrompt {Period:Q1,Entity:USA}
            restUrl=restUrl+"&parameters=" + JSONRuntimePrompt
        }

        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }

    def runRuleSet(appName,jobName) {
        println "**Running rule set**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=RULESET"
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-18



        
    def cubeRefresh(appName,jobName) {
        println "**Refreshing cube**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=CUBE_REFRESH"
        
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
    
    def runPlanTypeMap(appName,jobName, clearData) {
        println "**Running map (job of type plan_type_map)**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=PLAN_TYPE_MAP"
        if (clearData!=null && clearData.toUpperCase()=="FALSE") {
            restUrl=restUrl+"&parameters={clearData:false}" 
        } else {
            println "Clear data is set to true (default)"
        }
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
    
    def importData(appName,jobName, importFileName) {
        println "**Importing data**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=IMPORT_DATA"
        if (importFileName!="") {
            def exportFileJSON="{importFileName:$importFileName}"
            restUrl=restUrl+"&parameters=" + exportFileJSON
        }
        
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
    
    def importMetaData(appName,jobName, importZipFileName) {
        println "**Importing metadata**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=IMPORT_METADATA"
        if (importZipFileName!="") {
            def exportFileJSON="{importZipFileName:$importZipFileName}"
            restUrl=restUrl+"&parameters=" + exportFileJSON
        }
        
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
    
    def uploadFile(localPath,fileName) {
        println "**Uploading file**"

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-19



        def restUrl=interopUrl+"/applicationsnapshots/"+fileName
        
        final int DEFAULT_CHUNK_SIZE = 50 * 1024 * 1024;
        int packetNo = 1;
        boolean status = true;
        byte[] lastChunk = null;
        File f = new File(localPath+"/"+fileName);
        InputStream fis = null;
        long totalFileSize = f.length();
        boolean isLast = false;
        Boolean isFirst = true;
        boolean firstRetry = true;
        int lastPacketNo = (int) (Math.ceil(totalFileSize/ (double) 
DEFAULT_CHUNK_SIZE));
        long totalbytesRead = 0;
        try {
            fis = new BufferedInputStream(new 
FileInputStream(localPath+"/"+fileName));
            while (totalbytesRead < totalFileSize && status) {
                int nextChunkSize = (int) Math.min(DEFAULT_CHUNK_SIZE, 
totalFileSize - totalbytesRead);
                if (lastChunk == null) {
                    lastChunk = new byte[nextChunkSize];
                    int bytesRead = fis.read(lastChunk);
                    totalbytesRead += bytesRead;
                    if (packetNo == lastPacketNo) {
                        isLast = true;
                    }
                    status = sendRequestToRestForUpload(restUrl,isFirst, 
isLast,lastChunk);
                    isFirst=false;
                    if (status) {
                        println "\r" + ((100 * totalbytesRead)/ 
totalFileSize) + "% completed";
                    } else {
                break;
                }
                    packetNo = packetNo + 1;
                    lastChunk = null;
            }
            }
        } catch (Exception e) {
            println "Exception occurred while uploading file";
            println e.getMessage()
        } finally {
            if (null != fis) {
            }
        }
        println "****"
    }
    
    def sendRequestToRestForUpload(restUrl,isFirst, isLast,lastChunk) {
        
        def url=restUrl+"/contents?
q={isLast:$isLast,chunkSize:"+lastChunk.length+",isFirst:$isLast}"
        println "Opening connection for upload to $url"

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-20



        int statusCode
    
        setProxyParams()
        setSSLParams()
            
        URL newUrl
        newUrl=new URL(url)
            
        connection = (HttpURLConnection) newUrl.openConnection()
        
        connection.setDoOutput(true)
        connection.setDoInput(true)
        connection.setUseCaches(false)
        connection.setRequestMethod("POST")
            
        connection.setRequestProperty("Content-Type","application/octet-
stream")
        
        String userCredentials = domain +"."+user + ":" + pwd
        String basicAuth = "Basic " + 
javax.xml.bind.DatatypeConverter.printBase64Binary(userCredentials.getBytes())
        connection.setRequestProperty("Authorization", basicAuth)
        DataOutputStream wr = new 
DataOutputStream(connection.getOutputStream());
        wr.write(lastChunk);
        wr.flush();
    
        boolean status = false
        int execStatus
        try {
            execStatus = connection.getResponseCode();
            InputStream is = connection.getInputStream();
            BufferedReader br = new BufferedReader(new InputStreamReader(is));
            StringBuilder sb = new StringBuilder();
            String line;
            while ((line = br.readLine()) != null) {
                sb.append(line+"\n");
            }
            br.close();
            String stat = sb.toString();
            if (null == stat || stat.isEmpty()) {
                return status;
            } else {
                if (200 == execStatus) {
                    println stat
                }
            }
            
        } catch (Exception e) {
            println "Exception occurred while uploading file";
            println e.getMessage()
        } finally {
            if (connection != null) {
                connection.disconnect();
            }
        }

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-21



    }
    
    // Helper functions
    
     def unZip(fileName, destinationFolder) {
        // code from http://www.oracle.com/technetwork/articles/java/
compress-1565076.html
         println ("**Unzipping "+fileName+"**")
         def fileList=[]
        int BUFFER = 2048;
        try {
            BufferedOutputStream dest = null;
            BufferedInputStream is = null;
            ZipEntry entry;
            ZipFile zipfile = new ZipFile(fileName);
            Enumeration e = zipfile.entries();
            while(e.hasMoreElements()) {
               entry = (ZipEntry) e.nextElement();
               //println("Extracting: " +entry);
               is = new BufferedInputStream(zipfile.getInputStream(entry));
               int count;
               byte[] data;
               data = new byte[BUFFER];
               FileOutputStream fos = new 
FileOutputStream(destinationFolder+"/"+entry.getName());
               fileList.push(entry.getName())
               dest = new BufferedOutputStream(fos, BUFFER);
               while ((count = is.read(data, 0, BUFFER)) != -1) {
                  dest.write(data, 0, count);
               }
               dest.flush();
               dest.close();
               is.close();
            }
         } catch (FileNotFoundException fnfe) {
             println "Make sure there is not folder in the zip . Zip not 
processed"
             //fnfe.printStackTrace();
         } catch(Exception e) {
             println "An error occurred while unzipping."
             println e.getMessage()
            
         }
         return fileList
         println "****"
    }
     
     def findNbOfColsInCSV(filePath, fileName, delimiter) {
        File csvFile=new File (filePath+"/"+fileName);
        Scanner scanner = new Scanner(csvFile);
        scanner.useDelimiter(delimiter);
    
 
        def nbCols
        nbCols=0
        if (scanner.hasNextLine()) {

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-22



            String[] vals = scanner.nextLine().split(delimiter);
            nbCols=vals.size()
        }
        scanner.close();
        
        return nbCols                 
        }

     
     def getHeadersInCSVAsList(filePath, fileName, delimiter) {
         String[] headers =[]
         
         BufferedReader br = new BufferedReader(new 
FileReader(filePath+"/"+fileName));
         String firstLine = br .readLine();
         println "First line is : " + firstLine
         println "Removing all non ascii chars from line"
         firstLine = firstLine.replaceAll("[^ -~]", "");
         firstLine = firstLine.replaceAll(" ", "");
        // firstLine = firstLine.replaceAll("\"", "");
         headers = firstLine.split(delimiter);
         
         def headersList = headers as List
         headersList = headersList.collect { it.trim() }
         
         return headersList
         }
    
}

class WaitForCode {
    
static retry( sleepTime, nbOfRetries, Closure logicToRun){
  Throwable catched = null
  for(int i=0; i<nbOfRetries; i++){
      try {
          return logicToRun.call()
      } catch(Throwable t){
          catched = t
          println ("Retrying...")
          Thread.sleep(sleepTime)
      }
  }
  println ("Retry count limit exceeded. Stopping check.")
  throw catched
}
}    

Groovy Sample – PbcsRestClient.groovy

package com.oracle.ceal

import javax.net.ssl.HostnameVerifier
import javax.net.ssl.HttpsURLConnection
import javax.net.ssl.SSLContext

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-23



import javax.net.ssl.SSLSession
import javax.net.ssl.TrustManager
import javax.net.ssl.X509TrustManager

import java.net.HttpURLConnection

import java.util.regex.Pattern
import java.util.regex.Matcher
import java.util.zip.ZipEntry
import java.util.zip.ZipFile

class PbcsRestClient {
    private HttpURLConnection connection
    private def planningUrl
    private def interopUrl
    private def proxyHost
    private def proxyPort
    private def user
    private def pwd
    private def domain
    private def ignoreSSLCertsErrors
    
    public PbcsRestClient(planningServerUrl, interopServerUrl,httpProxyHost, 
httpProxyPort, identityDomain,username, password, 
ignoreSSLCertificationPathErrors) {
        planningUrl=planningServerUrl
        interopUrl=interopServerUrl
        proxyHost=httpProxyHost
        proxyPort=httpProxyPort
        domain=identityDomain
        user=username
        pwd=password
        ignoreSSLCertsErrors=ignoreSSLCertificationPathErrors
        
    }
    
    def setProxyParams() {
        Properties systemProperties = System.getProperties()
        systemProperties.setProperty("http.proxyHost",proxyHost)
        systemProperties.setProperty("http.proxyPort",proxyPort)
        systemProperties.setProperty("https.proxyHost",proxyHost)
        systemProperties.setProperty("https.proxyPort",proxyPort)
    
    }
    
    def setSSLParams() {
        if (ignoreSSLCertsErrors !=null && 
ignoreSSLCertsErrors.toUpperCase()=="TRUE") {
            println "Ignoring SSL certification path errors"
            // Disable SSL cert validation
            
            def hostnameVerifier = [
                verify: { hostname, session -> true }
            ]
            def trustManager = [
                    checkServerTrusted: { chain, authType -> },

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-24



                    checkClientTrusted: { chain, authType -> },
                    getAcceptedIssuers: { null }
            ]
                
            HttpsURLConnection.setDefaultHostnameVerifier(hostnameVerifier as 
HostnameVerifier)
            
HttpsURLConnection.setDefaultSSLSocketFactory(context.getSocketFactory())
            
            SSLContext context = SSLContext.getInstance("SSL")
            context.init(null, [trustManager as X509TrustManager] as 
TrustManager[], null)
            
        }
    }
    
    def openConnection(restUrl,method,localFileNameWithPathForStorage) {
        println "Opening connection to $restUrl with method:$method"
        int statusCode
    
        setProxyParams()
        setSSLParams()
            
        URL newUrl
        newUrl=new URL(restUrl)
            
        connection = (HttpURLConnection) newUrl.openConnection()
        
        connection.setDoOutput(true)
        connection.setDoInput(true)
        connection.setUseCaches(false)
        if (method=="") 
            connection.setRequestMethod("GET")
        else
            connection.setRequestMethod(method)
            
        connection.setRequestProperty("Content-Type","application/x-www-form-
urlencoded")
        
        String userCredentials = domain +"."+user + ":" + pwd
        String basicAuth = "Basic " + 
javax.xml.bind.DatatypeConverter.printBase64Binary(userCredentials.getBytes())
        connection.setRequestProperty("Authorization", basicAuth)
    
        String response=""
        try {
            statusCode = connection.responseCode
            println "Connection status code: $statusCode "
            if (statusCode==401) {
                println "Not authorized"
            }
            if (statusCode==200) {
                println "Authentication succeeded"
                println "Server response:"
                println "-----"
                

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-25



response=displayServerResponse(connection,localFileNameWithPathForStorage)
                println "-----"
            }
            if (statusCode==400) {
                println "Bad request"
                println "Server response:"
                println "-----"
                response=displayServerResponse(connection,"")
                println "-----"
            }
        } catch (Exception e) {
            println "Error connecting to the URL"
            println e.getMessage()
        } finally {
            if (connection != null) {
                connection.disconnect();
            }
        }
        
        return response
    }
    
    def displayServerResponse(connection,localFileNameWithPathForStorage) {
        InputStream is;
        if (connection.getResponseCode()==200) {
            is=connection.getInputStream();
        } else {
            is=connection.getErrorStream();
        } 
        println "Response Content-Type:"+connection.getContentType()
        if (connection.getContentType().contains("application/json")) {
            BufferedReader br = new BufferedReader(new InputStreamReader(is));
            StringBuilder sb = new StringBuilder();
            String line;
            while ((line = br.readLine()) != null) {
                sb.append(line+"\n");
            }
            br.close();
            println sb
            return sb.toString()
        } else {
        if (connection.getResponseCode()==200) {
        //storing content
            final int BUFFER_SIZE = 5 * 1024 * 1024;
            def fileExt = connection.getHeaderField("fileExtension");
            println "Downloading file with fileExtension header:"+fileExt
            if (fileExt!=null) {
                def saveFilePath = localFileNameWithPathForStorage;
                File f = new File(saveFilePath);
                is = connection.getInputStream();
                FileOutputStream outputStream = new FileOutputStream(f);
                int bytesRead = -1;
                byte[] buffer = new byte[BUFFER_SIZE];
                while ((bytesRead = is.read(buffer)) != -1) {
                    outputStream.write(buffer, 0, bytesRead);
                }

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-26



                println "Downloaded file to $localFileNameWithPathForStorage"
                return localFileNameWithPathForStorage
            } else {
                println "Could not find fileExtension header"
            
            }
        }
        }
        
        return ""
    }     
    
    def listFiles() {
        println "**Listing files**"
        def restUrl=interopUrl+"/applicationsnapshots"
        def response
        
        response=openConnection(restUrl,"GET","")
        println "****"
    }
    
    def deleteFile(serverFileName) {
        println "**deleting file**"
        def restUrl=interopUrl+"/applicationsnapshots/"+serverFileName
        def response
        
        response=openConnection(restUrl,"DELETE","")
        println "****"
    }    

    def getJobStatus(appName,jobId) {
        println "**get Job status**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs/" + jobId
        
        def response
        response=openConnection(restUrl,"GET","")
        println "****"
        return response    
    }
    
    def exportData(appName,jobName, exportServerFileName) {
        println "**Exporting data**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=EXPORT_DATA"
        if (exportServerFileName!="") {
            def exportFileJSON="{exportFileName:$exportServerFileName}"
            restUrl=restUrl+"&parameters=" + exportFileJSON
        }
        
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
        return response
    }
    
    def getJobIdFromJSONResponse(response) {

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-27



        def jobId=""
        try {
            Pattern regex = Pattern.compile("\"jobId\":\\d+");
            Matcher matcher = regex.matcher(response);
            while (matcher.find()) {
                jobId = matcher.group(0).replace("\"jobId\":","");
            }
        
        } catch (Exception e) {
            println "No jobId found in server response"
        }
        return jobId
    }
    
    def downloadFile(serverFileName,localFolderForStorage) {
        println "**Downloading file**"
        def restUrl=interopUrl+"/applicationsnapshots/"+serverFileName+ "/
contents"
        def response
        
response=openConnection(restUrl,"GET",localFolderForStorage+"/"+serverFileName
)
        println "****"
    }
    
    def exportMetaData(appName,jobName, exportServerFileName) {
        println "**Exporting metadata**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=EXPORT_METADATA"
        if (exportServerFileName!="") {
            def exportFileJSON="{exportZipFileName:$exportServerFileName}"
            restUrl=restUrl+"&parameters=" + exportFileJSON
        }
        
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
        
    def executeLCMExport(snapshotName) {
        println "**Exporting snapshot**"
        def typeExport="{type:export}"
        def restUrl=interopUrl+"/applicationsnapshots/"+snapshotName+ "/
migration?q="+typeExport 
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
    
    def executeLCMImport(snapshotName) {
        println "**Importing snapshot**"
        def typeImport="{type:import}"
        def restUrl=interopUrl+"/applicationsnapshots/"+snapshotName+ "/
migration?q="+typeImport
        def response
        response=openConnection(restUrl,"POST","")

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-28



        println "****"
    }
    
    def runBusinessRule(appName,jobName, JSONRuntimePrompt) {
        println "**Running business rule**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=RULES"
        if (JSONRuntimePrompt!="") {
            // Example for JSONRuntimePrompt {Period:Q1,Entity:USA}
            restUrl=restUrl+"&parameters=" + JSONRuntimePrompt
        }

        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }

    def runRuleSet(appName,jobName) {
        println "**Running rule set**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=RULESET"
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }

        
    def cubeRefresh(appName,jobName) {
        println "**Refreshing cube**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=CUBE_REFRESH"
        
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
    
    def runPlanTypeMap(appName,jobName, clearData) {
        println "**Running map (job of type plan_type_map)**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=PLAN_TYPE_MAP"
        if (clearData!=null && clearData.toUpperCase()=="FALSE") {
            restUrl=restUrl+"&parameters={clearData:false}" 
        } else {
            println "Clear data is set to true (default)"
        }
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
    
    def importData(appName,jobName, importFileName) {
        println "**Importing data**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=IMPORT_DATA"
        if (importFileName!="") {

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-29



            def exportFileJSON="{importFileName:$importFileName}"
            restUrl=restUrl+"&parameters=" + exportFileJSON
        }
        
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
    
    def importMetaData(appName,jobName, importZipFileName) {
        println "**Importing metadata**"
        def restUrl=planningUrl+"/applications/"+appName+"/jobs?jobName=" + 
jobName + "&jobType=IMPORT_METADATA"
        if (importZipFileName!="") {
            def exportFileJSON="{importZipFileName:$importZipFileName}"
            restUrl=restUrl+"&parameters=" + exportFileJSON
        }
        
        def response
        response=openConnection(restUrl,"POST","")
        println "****"
    }
    
    def uploadFile(localPath,fileName) {
        println "**Uploading file**"
        def restUrl=interopUrl+"/applicationsnapshots/"+fileName
        
        final int DEFAULT_CHUNK_SIZE = 50 * 1024 * 1024;
        int packetNo = 1;
        boolean status = true;
        byte[] lastChunk = null;
        File f = new File(localPath+"/"+fileName);
        InputStream fis = null;
        long totalFileSize = f.length();
        boolean isLast = false;
        Boolean isFirst = true;
        boolean firstRetry = true;
        int lastPacketNo = (int) (Math.ceil(totalFileSize/ (double) 
DEFAULT_CHUNK_SIZE));
        long totalbytesRead = 0;
        try {
            fis = new BufferedInputStream(new 
FileInputStream(localPath+"/"+fileName));
            while (totalbytesRead < totalFileSize && status) {
                int nextChunkSize = (int) Math.min(DEFAULT_CHUNK_SIZE, 
totalFileSize - totalbytesRead);
                if (lastChunk == null) {
                    lastChunk = new byte[nextChunkSize];
                    int bytesRead = fis.read(lastChunk);
                    totalbytesRead += bytesRead;
                    if (packetNo == lastPacketNo) {
                        isLast = true;
                    }
                    status = sendRequestToRestForUpload(restUrl,isFirst, 
isLast,lastChunk);
                    isFirst=false;

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-30



                    if (status) {
                        println "\r" + ((100 * totalbytesRead)/ 
totalFileSize) + "% completed";
                    } else {
                break;
                }
                    packetNo = packetNo + 1;
                    lastChunk = null;
            }
            }
        } catch (Exception e) {
            println "Exception occurred while uploading file";
            println e.getMessage()
        } finally {
            if (null != fis) {
            }
        }
        println "****"
    }
    
    def sendRequestToRestForUpload(restUrl,isFirst, isLast,lastChunk) {
        
        def url=restUrl+"/contents?
q={isLast:$isLast,chunkSize:"+lastChunk.length+",isFirst:$isLast}"
        println "Opening connection for upload to $url"
        int statusCode
    
        setProxyParams()
        setSSLParams()
            
        URL newUrl
        newUrl=new URL(url)
            
        connection = (HttpURLConnection) newUrl.openConnection()
        
        connection.setDoOutput(true)
        connection.setDoInput(true)
        connection.setUseCaches(false)
        connection.setRequestMethod("POST")
            
        connection.setRequestProperty("Content-Type","application/octet-
stream")
        
        String userCredentials = domain +"."+user + ":" + pwd
        String basicAuth = "Basic " + 
javax.xml.bind.DatatypeConverter.printBase64Binary(userCredentials.getBytes())
        connection.setRequestProperty("Authorization", basicAuth)
        DataOutputStream wr = new 
DataOutputStream(connection.getOutputStream());
        wr.write(lastChunk);
        wr.flush();
    
        boolean status = false
        int execStatus
        try {
            execStatus = connection.getResponseCode();

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-31



            InputStream is = connection.getInputStream();
            BufferedReader br = new BufferedReader(new InputStreamReader(is));
            StringBuilder sb = new StringBuilder();
            String line;
            while ((line = br.readLine()) != null) {
                sb.append(line+"\n");
            }
            br.close();
            String stat = sb.toString();
            if (null == stat || stat.isEmpty()) {
                return status;
            } else {
                if (200 == execStatus) {
                    println stat
                }
            }
            
        } catch (Exception e) {
            println "Exception occurred while uploading file";
            println e.getMessage()
        } finally {
            if (connection != null) {
                connection.disconnect();
            }
        }
    }
    
    // Helper functions
    
     def unZip(fileName, destinationFolder) {
        // code from http://www.oracle.com/technetwork/articles/java/
compress-1565076.html
         println ("**Unzipping "+fileName+"**")
         def fileList=[]
        int BUFFER = 2048;
        try {
            BufferedOutputStream dest = null;
            BufferedInputStream is = null;
            ZipEntry entry;
            ZipFile zipfile = new ZipFile(fileName);
            Enumeration e = zipfile.entries();
            while(e.hasMoreElements()) {
               entry = (ZipEntry) e.nextElement();
               //println("Extracting: " +entry);
               is = new BufferedInputStream(zipfile.getInputStream(entry));
               int count;
               byte[] data;
               data = new byte[BUFFER];
               FileOutputStream fos = new 
FileOutputStream(destinationFolder+"/"+entry.getName());
               fileList.push(entry.getName())
               dest = new BufferedOutputStream(fos, BUFFER);
               while ((count = is.read(data, 0, BUFFER)) != -1) {
                  dest.write(data, 0, count);
               }
               dest.flush();

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-32



               dest.close();
               is.close();
            }
         } catch (FileNotFoundException fnfe) {
             println "Make sure there is not folder in the zip . Zip not 
processed"
             //fnfe.printStackTrace();
         } catch(Exception e) {
             println "An error occurred while unzipping."
             println e.getMessage()
            
         }
         return fileList
         println "****"
    }
     
     def findNbOfColsInCSV(filePath, fileName, delimiter) {
        File csvFile=new File (filePath+"/"+fileName);
        Scanner scanner = new Scanner(csvFile);
        scanner.useDelimiter(delimiter);
    
 
        def nbCols
        nbCols=0
        if (scanner.hasNextLine()) {
            String[] vals = scanner.nextLine().split(delimiter);
            nbCols=vals.size()
        }
        scanner.close();
        
        return nbCols                 
        }

     
     def getHeadersInCSVAsList(filePath, fileName, delimiter) {
         String[] headers =[]
         
         BufferedReader br = new BufferedReader(new 
FileReader(filePath+"/"+fileName));
         String firstLine = br .readLine();
         println "First line is : " + firstLine
         println "Removing all non ascii chars from line"
         firstLine = firstLine.replaceAll("[^ -~]", "");
         firstLine = firstLine.replaceAll(" ", "");
        // firstLine = firstLine.replaceAll("\"", "");
         headers = firstLine.split(delimiter);
         
         def headersList = headers as List
         headersList = headersList.collect { it.trim() }
         
         return headersList
         }
    
}

class WaitForCode {

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-33



    
static retry( sleepTime, nbOfRetries, Closure logicToRun){
  Throwable catched = null
  for(int i=0; i<nbOfRetries; i++){
      try {
          return logicToRun.call()
      } catch(Throwable t){
          catched = t
          println ("Retrying...")
          Thread.sleep(sleepTime)
      }
  }
  println ("Retry count limit exceeded. Stopping check.")
  throw catched
}
}

Groovy Sample – BicsRestClient.groovy

package com.oracle.ceal

import java.net.HttpURLConnection;
import javax.net.ssl.HostnameVerifier
import javax.net.ssl.HttpsURLConnection
import javax.net.ssl.SSLContext
import javax.net.ssl.SSLSession
import javax.net.ssl.TrustManager
import javax.net.ssl.X509TrustManager

class BicsRestClient {
    private HttpURLConnection connection
    private bicsUrl
    private def proxyHost
    private def proxyPort
    private def user
    private def pwd
    private def domain
    private def ignoreSSLCertsErrors
    
    public BicsRestClient(bicsServerUrl,httpProxyHost, httpProxyPort, 
identityDomain,username, password, ignoreSSLCertificationPathErrors) {
        bicsUrl=bicsServerUrl
        proxyHost=httpProxyHost
        proxyPort=httpProxyPort
        domain=identityDomain
        user=username
        pwd=password
        ignoreSSLCertsErrors=ignoreSSLCertificationPathErrors
        
    }
    
    def setProxyParams() {
        Properties systemProperties = System.getProperties()
        systemProperties.setProperty("http.proxyHost",proxyHost)
        systemProperties.setProperty("http.proxyPort",proxyPort)

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-34



        systemProperties.setProperty("https.proxyHost",proxyHost)
        systemProperties.setProperty("https.proxyPort",proxyPort)
    
    }
    
    def setSSLParams() {
        if (ignoreSSLCertsErrors !=null && 
ignoreSSLCertsErrors.toUpperCase()=="TRUE") {
            println "Ignoring SSL certification path errors"
            // Disable SSL cert validation
            
            def hostnameVerifier = [
                verify: { hostname, session -> true }
            ]
            def trustManager = [
                    checkServerTrusted: { chain, authType -> },
                    checkClientTrusted: { chain, authType -> },
                    getAcceptedIssuers: { null }
            ]
            
            
            
            HttpsURLConnection.setDefaultHostnameVerifier(hostnameVerifier as 
HostnameVerifier)
            
HttpsURLConnection.setDefaultSSLSocketFactory(context.getSocketFactory())
            
            SSLContext context = SSLContext.getInstance("SSL")
            context.init(null, [trustManager as X509TrustManager] as 
TrustManager[], null)
            
        }
    }
    
    def openConnection(restUrl,method,contentType, body) {
        println "Opening connection to bics $restUrl with method:$method"
    
    
        int statusCode
        
        setProxyParams()
        setSSLParams()
            
        URL newUrl
        newUrl=new URL(restUrl)
            
        connection = (HttpURLConnection) newUrl.openConnection()
        
        connection.setDoOutput(true)
        connection.setDoInput(true)
        connection.setUseCaches(false)
        if (method=="")
            connection.setRequestMethod("GET")
        else
            connection.setRequestMethod(method)
            

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-35



        //adding X-ID-TENANT-NAME <identity_domain>
        //connection.setRequestProperty("X-ID-TENANT-NAME",domain)
        
        if (contentType.toUpperCase()=="FORM") {
            connection.setRequestProperty("Content-Type","application/x-www-
form-urlencoded")
        }
        if (contentType.toUpperCase()=="JSON") {
            connection.setRequestProperty("Content-Type","application/json")
        }
        if (contentType.toUpperCase()=="") {
            // add no content type
        }
        
        String userCredentials = domain +"."+user + ":" + pwd
        String basicAuth = "Basic " + 
javax.xml.bind.DatatypeConverter.printBase64Binary(userCredentials.getBytes())
        connection.setRequestProperty("Authorization", basicAuth)
        
        if (body!=null && body!="") {
            DataOutputStream wr = new DataOutputStream 
(connection.getOutputStream ());
            wr.writeBytes (body);
            wr.flush ();
            wr.close ();
        }
        
        
        String response=""
        try {
            statusCode = connection.responseCode
            println "Connection status code: $statusCode "
            if (statusCode==401 || statusCode==403) {
                println "Not authorized"
            }
            if (statusCode==200) {
                println "Authentication succeeded"
                println "Server response:"
                println "-----"
                response=displayServerResponse(connection)
                println "-----"
            }
            if (statusCode==400 || statusCode==500) {
                println "Bad request"
                println "Server response:"
                println "-----"
                response=displayServerResponse(connection)
                println "-----"
            }
        } catch (Exception e) {
            println "Error connecting to the URL"
            println e.getMessage()
        } finally {
            if (connection != null) {
                connection.disconnect();
            }

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-36



        }
            
        return response
    }
    
    def displayServerResponse(connection) {
        InputStream is;
        if (connection.getResponseCode()==200) {
            is=connection.getInputStream();
        } else {
            is=connection.getErrorStream();
        }
        println "Response Content-Type:"+connection.getContentType()
        BufferedReader br = new BufferedReader(new InputStreamReader(is));
        StringBuilder sb = new StringBuilder();
        String line;
        while ((line = br.readLine()) != null) {
            sb.append(line+"\n");
        }
        br.close();
        println sb
        return sb.toString()
        
    }
    
    def aboutBics() {
        println "**About bics**"
        def restUrl=bicsUrl+"/dataload/v1/about"
        
        def response
        response=openConnection(restUrl,"GET","FORM","")
        println "****"
    }
    
    def listAllTables() {
        //<URL>/dataload/v1/tables
        
        println "**List tables**"
        def restUrl=bicsUrl+"/dataload/v1/tables"
        
        def response
        response=openConnection(restUrl,"GET","FORM","")
        println "****"
    }
    
    def getTableInfo(tableName) {
        println "**Get table info**"
        def restUrl=bicsUrl+"/dataload/v1/tables?
name="+tableName.toUpperCase()
        
        def response
        response=openConnection(restUrl,"GET","","")
        println "****"
        
    }
    

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-37



    def createTableToLoadCSV(tableName, numberOfVarCharCols, columnPrefix ) {
        println "**Create table**"
        // create json manually for X columns
        
        /*
         {
        "columnName":"COL_1",
        "dataType":"VARCHAR",
        "length":300,
        "precision":0,
        "nullable":true, 
        "defaultValue":null,
        },
 
         * */

        def restUrl=bicsUrl+"/dataload/v1/tables/"+tableName.toUpperCase()
        
        def JSONColumns
        
        JSONColumns="["
        def i
        for (i = 1; i <=numberOfVarCharCols; i++) {
            if (i==numberOfVarCharCols) {
                
JSONColumns=JSONColumns+"{\"columnName\":\""+columnPrefix.toUpperCase()
+""+i+"\",\"dataType\":\"VARCHAR\",\"length\":300,\"precision\":0,\"nullable\"
:true,\"defaultValue\":null}"
            } else {
                
JSONColumns=JSONColumns+"{\"columnName\":\""+columnPrefix.toUpperCase()
+""+i+"\",\"dataType\":\"VARCHAR\",\"length\":300,\"precision\":0,\"nullable\"
:true,\"defaultValue\":null},"
            }
         }
        JSONColumns=JSONColumns+"]"
        
        println "JSON columns:"+JSONColumns
        def response
        response=openConnection(restUrl,"PUT","JSON",JSONColumns)
        println "****"
    }
    
    def createTableToLoadCSVWithHeaderNames(tableName, listHeaders ) {
        println "**Create table**"
        // create json manually for X columns with headers in list
        
        /*
         {
        "columnName":"COL_1",
        "dataType":"VARCHAR",
        "length":300,
        "precision":0,
        "nullable":true,
        "defaultValue":null,
        },

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-38



 
         * */

        def restUrl=bicsUrl+"/dataload/v1/tables/"+tableName.toUpperCase()
        
        def JSONColumns
        
        JSONColumns="["
        
        listHeaders.each { headerName ->
            if(headerName == listHeaders.last()) {
                
JSONColumns=JSONColumns+"{\"columnName\":\""+headerName.toUpperCase()
+"\",\"dataType\":\"VARCHAR\",\"length\":300,\"precision\":0,\"nullable\":true
,\"defaultValue\":null}"
            } else {
                
JSONColumns=JSONColumns+"{\"columnName\":\""+headerName.toUpperCase()
+"\",\"dataType\":\"VARCHAR\",\"length\":300,\"precision\":0,\"nullable\":true
,\"defaultValue\":null},"
            }
        }
        
        JSONColumns=JSONColumns+"]"
        
        println "JSON columns:"+JSONColumns
        def response
        response=openConnection(restUrl,"PUT","JSON",JSONColumns)
        println "****"

    }
    
    def loadDataInTableUsingCSV(tableName, localCsvFilePath, 
localCsvFileName, 
delimiterInCsv,numberOfColumnsInCsv,numberOfLinesToSkip,columnPrefixInTable,is
Zipped) {
        println "**Load csv file in table**"
        println "Processing:"+localCsvFilePath+"/"+localCsvFileName
        
        if (isZipped==true) println "Upload of zip not supported at this 
time. Ignoring isZipped parameter"

        File localCsv=new File(localCsvFilePath+"/"+localCsvFileName)
        if(!localCsv.exists() || localCsv.isDirectory()) {
            println "File does not exist"
            println "****"
            return
        }
                
        def restUrl=bicsUrl+"/dataload/v1/tables/"+tableName.toUpperCase()+"/
data"
        
        setProxyParams()
        setSSLParams()
    
        URL newUrl

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-39



        newUrl=new URL(restUrl)
            
        connection = (HttpURLConnection) newUrl.openConnection()
        
        connection.setDoOutput(true)
        connection.setDoInput(true)
        connection.setUseCaches(false)
        connection.setRequestMethod("PUT")
        //connection.setRequestProperty("X-ID-TENANT-NAME",domain)
        String userCredentials = domain +"."+user + ":" + pwd
        String basicAuth = "Basic " + 
javax.xml.bind.DatatypeConverter.printBase64Binary(userCredentials.getBytes())
        connection.setRequestProperty("Authorization", basicAuth)    
        
        /*
         * The first part is a JSON descriptor (Content-Type: application/
json) 
         * of the data load. The second part is an input stream
         *  (Content-Type: application/octet-stream). 
         *  Data in the stream can be text data read 
         *  from comma-separated values (CSV)
         * */    
        
        def boundary =  System.currentTimeMillis() ;
        connection.setRequestProperty("Content-Type","multipart/mixed; 
boundary=" + boundary);
        OutputStream outputStream = connection.getOutputStream();
        PrintWriter writer = new PrintWriter(new 
OutputStreamWriter(outputStream, "UTF-8"),true);

        // JSON
        /*
         * {
        "columnMaps":[
                {
                    "column":{
                        "name":"NAME",
                        "optionalJavaSqlType":null,
                        "partOfUniqueKey":true,
                    },
                    "position":1,
                },
                {...
                }
        ],
        "optionalMaximumErrors":null,
        "removeDuplicates":true
        "optionalWriteMode":"Insert all",
        "delimiter":"," 
        "timestampFormat":"yyyy-MM-dd",
        "numberOfLinesToSkip":0
        },
         * 
         * 
         */
        def i

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-40



        def JSONDataLoad
        JSONDataLoad="{\"columnMaps\":["
        for (i =1; i <=numberOfColumnsInCsv; i++) {
            if (i==numberOfColumnsInCsv) {
                JSONDataLoad=JSONDataLoad+"{\"column\":
{\"name\":\""+columnPrefixInTable.toUpperCase()
+""+i+"\","+"\"optionalJavaSqlType\":null,\"partOfUniqueKey\":false},"+"\"posi
tion\":"+i+"}"
            } else {
                JSONDataLoad=JSONDataLoad+"{\"column\":
{\"name\":\""+columnPrefixInTable.toUpperCase()
+""+i+"\","+"\"optionalJavaSqlType\":null,\"partOfUniqueKey\":false},"+"\"posi
tion\":"+i+"},"
            }
         }
        JSONDataLoad=JSONDataLoad+'''],
        "optionalMaximumErrors":null,
        "removeDuplicates":false,
        "optionalWriteMode":"Insert all",
        "delimiter":"'''+delimiterInCsv+"\","+''' 
        "timestampFormat":"",
        "numberOfLinesToSkip":''' + numberOfLinesToSkip +'''}
        '''
        
        writer.append("--" + boundary).append("\r\n");
        writer.append("Content-Type: application/json").append("\r\n");
        writer.append("\r\n");
        writer.flush();
        writer.append(JSONDataLoad)
        writer.append("\r\n");
        writer.flush();
        writer.append("\r\n").flush();
        //writer.append("--" + boundary ).append("\r\n");

        // CSV or ZIP file content                
        writer.append("--" + boundary).append("\r\n");    
        writer.append("Content-Type: application/octet-
stream").append("\r\n");
        writer.append("\r\n");
        writer.flush();

        FileInputStream inputStream = new FileInputStream(new 
File(localCsvFilePath+"/"+localCsvFileName));
        byte[] buffer = new byte[4096];
        int bytesRead = -1;
        while ((bytesRead = inputStream.read(buffer)) != -1) {
            outputStream.write(buffer, 0, bytesRead);
        }
        outputStream.flush();
        inputStream.close();
     
        writer.append("\r\n");
        writer.flush();
        
        writer.append("\r\n").flush();
        writer.append("--" + boundary + "--").append("\r\n");

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-41



        writer.close();
        
        String response=""
        def statusCode
        try {
            statusCode = connection.responseCode
            println "Connection status code: $statusCode "
            if (statusCode==401 || statusCode==403) {
                println "Not authorized"
            }
            if (statusCode==200) {
                println "Authentication succeeded"
                println "Server response:"
                println "-----"
                response=displayServerResponse(connection)
                println "-----"
            }
            if (statusCode==400 || statusCode==500) {
                println "Bad request"
                println "Server response:"
                println "-----"
                response=displayServerResponse(connection)
                println "-----"
            }
        } catch (Exception e) {
            println "Error connecting to the URL"
            println e.getMessage()
        } finally {
            if (connection != null) {
                connection.disconnect();
            }
        }
        
        println "****"
    }
    
    def loadDataInTableUsingCSVAndHeader(tableName, localCsvFilePath, 
localCsvFileName, delimiterInCsv,numberOfLinesToSkip,listHeaders,isZipped) {
        println "**Load csv file in table using headers**"
        println "Processing:"+localCsvFilePath+"/"+localCsvFileName
        
        if (isZipped==true) println "Upload of zip not supported at this 
time. Ignoring isZipped parameter"
        
        File localCsv=new File(localCsvFilePath+"/"+localCsvFileName)
        if(!localCsv.exists() || localCsv.isDirectory()) {
            println "File does not exist"
            println "****"
            return
        }
        
        def restUrl=bicsUrl+"/dataload/v1/tables/"+tableName.toUpperCase()+"/
data"
        
        setProxyParams()
        setSSLParams()

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-42



    
        URL newUrl
        newUrl=new URL(restUrl)
            
        connection = (HttpURLConnection) newUrl.openConnection()
        
        connection.setDoOutput(true)
        connection.setDoInput(true)
        connection.setUseCaches(false)
        connection.setRequestMethod("PUT")
        //connection.setRequestProperty("X-ID-TENANT-NAME",domain)
        String userCredentials = domain +"."+user + ":" + pwd
        String basicAuth = "Basic " + 
javax.xml.bind.DatatypeConverter.printBase64Binary(userCredentials.getBytes())
        connection.setRequestProperty("Authorization", basicAuth)    
        
        /*
         * The first part is a JSON descriptor (Content-Type: application/
json)
         * of the data load. The second part is an input stream
         *  (Content-Type: application/octet-stream).
         *  Data in the stream can be text data read
         *  from comma-separated values (CSV)
         * */
        
        
        def boundary =  System.currentTimeMillis() ;
        connection.setRequestProperty("Content-Type","multipart/mixed; 
boundary=" + boundary);
        OutputStream outputStream = connection.getOutputStream();
        PrintWriter writer = new PrintWriter(new 
OutputStreamWriter(outputStream, "UTF-8"),true);

        // JSON
        /*
         * {
        "columnMaps":[
                {
                    "column":{
                        "name":"NAME",
                        "optionalJavaSqlType":null,
                        "partOfUniqueKey":true,
                    },
                    "position":1,
                },
                {...
                }
        ],
        "optionalMaximumErrors":null,
        "removeDuplicates":true
        "optionalWriteMode":"Insert all",
        "delimiter":","
        "timestampFormat":"yyyy-MM-dd",
        "numberOfLinesToSkip":0
        },
         *

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-43



         *
         */
        
        int i
        i=1
        def JSONDataLoad
        JSONDataLoad="{\"columnMaps\":["
        
        listHeaders.each { headerName ->
            if(headerName == listHeaders.last()) {
                    JSONDataLoad=JSONDataLoad+"{\"column\":
{\"name\":\""+headerName.toUpperCase()
+"\","+"\"optionalJavaSqlType\":null,\"partOfUniqueKey\":false},"+"\"position\
":"+i+"}"
            } else {
                    JSONDataLoad=JSONDataLoad+"{\"column\":
{\"name\":\""+headerName.toUpperCase()
+"\","+"\"optionalJavaSqlType\":null,\"partOfUniqueKey\":false},"+"\"position\
":"+i+"},"
            }
            i=i+1
        }
        
        
        JSONDataLoad=JSONDataLoad+'''],
        "optionalMaximumErrors":null,
        "removeDuplicates":false,
        "optionalWriteMode":"Insert all",
        "delimiter":"'''+delimiterInCsv+"\","+''' 
        "timestampFormat":"",
        "numberOfLinesToSkip":''' + numberOfLinesToSkip +'''}
        '''
        
        writer.append("--" + boundary).append("\r\n");
        writer.append("Content-Type: application/json").append("\r\n");
        writer.append("\r\n");
        writer.flush();
        writer.append(JSONDataLoad)
        writer.append("\r\n");
        writer.flush();
        writer.append("\r\n").flush();
        //writer.append("--" + boundary ).append("\r\n");

        // CSV or ZIP file content                
        writer.append("--" + boundary).append("\r\n");    
        writer.append("Content-Type: application/octet-
stream").append("\r\n");
        writer.append("\r\n");
        writer.flush();

        FileInputStream inputStream = new FileInputStream(new 
File(localCsvFilePath+"/"+localCsvFileName));
        byte[] buffer = new byte[4096];
        int bytesRead = -1;
        while ((bytesRead = inputStream.read(buffer)) != -1) {
            outputStream.write(buffer, 0, bytesRead);

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-44



        }
        outputStream.flush();
        inputStream.close();
     
        writer.append("\r\n");
        writer.flush();
        
        writer.append("\r\n").flush();
        writer.append("--" + boundary + "--").append("\r\n");
        writer.close();
        
        String response=""
        def statusCode
        try {
            statusCode = connection.responseCode
            println "Connection status code: $statusCode "
            if (statusCode==401 || statusCode==403) {
                println "Not authorized"
            }
            if (statusCode==200) {
                println "Authentication succeeded"
                println "Server response:"
                println "-----"
                response=displayServerResponse(connection)
                println "-----"
            }
            if (statusCode==400 || statusCode==500) {
                println "Bad request"
                println "Server response:"
                println "-----"
                response=displayServerResponse(connection)
                println "-----"
            }
        } catch (Exception e) {
            println "Error connecting to the URL"
            println e.getMessage()
        } finally {
            if (connection != null) {
                connection.disconnect();
            }
        }
        
        println "****"
    }
        
    def deleteTable(tableName) {
        println "**Delete table**"
        def restUrl=bicsUrl+"/dataload/v1/tables/"+tableName.toUpperCase()
        
        def response
        response=openConnection(restUrl,"DELETE","","")
        println "****"
    }
    
    def deleteDataFromTable(tableName) {
        println "**Delete all data from table**"

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-45



        def restUrl=bicsUrl+"/dataload/v1/tables/"+tableName.toUpperCase()+"/
data"
        
        def response
        response=openConnection(restUrl,"DELETE","","")
        println "****"
    }
    
    def truncateList(listName, truncateLength) {
        println "**Truncating list**"
        def trimmedList
        listName=listName*.trim()
        trimmedList=listName*.take(truncateLength)
        
        println ("New list:"+trimmedList)
        println "****"
        return trimmedList
    }
}

Groovy Sample – ApexRestClient.groovy

package com.oracle.ceal

import java.net.HttpURLConnection;
import javax.net.ssl.HostnameVerifier
import javax.net.ssl.HttpsURLConnection
import javax.net.ssl.SSLContext    
import javax.net.ssl.SSLSession
import javax.net.ssl.TrustManager
import javax.net.ssl.X509TrustManager

class ApexRestClient {

    private HttpURLConnection connection
    private apexUrl
    private def proxyHost
    private def proxyPort
    private def user
    private def pwd
    private def domain
    private def ignoreSSLCertsErrors
    
    public ApexRestClient(apexServerUrl,httpProxyHost, httpProxyPort, 
identityDomain,username, password, ignoreSSLCertificationPathErrors) {
        apexUrl=apexServerUrl
        proxyHost=httpProxyHost
        proxyPort=httpProxyPort
        domain=identityDomain
        user=username
        pwd=password
        ignoreSSLCertsErrors=ignoreSSLCertificationPathErrors
        
    }
    

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-46



    def setProxyParams() {
        Properties systemProperties = System.getProperties()
        systemProperties.setProperty("http.proxyHost",proxyHost)
        systemProperties.setProperty("http.proxyPort",proxyPort)
        systemProperties.setProperty("https.proxyHost",proxyHost)
        systemProperties.setProperty("https.proxyPort",proxyPort)
    
    }
    
    def setSSLParams() {
        if (ignoreSSLCertsErrors !=null && 
ignoreSSLCertsErrors.toUpperCase()=="TRUE") {
            println "Ignoring SSL certification path errors"
            // Disable SSL cert validation
            
            def hostnameVerifier = [
                verify: { hostname, session -> true }
            ]
            def trustManager = [
                    checkServerTrusted: { chain, authType -> },
                    checkClientTrusted: { chain, authType -> },
                    getAcceptedIssuers: { null }
            ]
            
            
            
            HttpsURLConnection.setDefaultHostnameVerifier(hostnameVerifier as 
HostnameVerifier)
            
HttpsURLConnection.setDefaultSSLSocketFactory(context.getSocketFactory())
            
            SSLContext context = SSLContext.getInstance("SSL")
            context.init(null, [trustManager as X509TrustManager] as 
TrustManager[], null)
            
        }
    }
    
    def openConnection(restUrl,method,contentType, body) {
        println "Opening connection to apex $restUrl with method:$method"
    
    
        int statusCode
        
        setProxyParams()
        setSSLParams()
            
        URL newUrl
        newUrl=new URL(restUrl)
            
        connection = (HttpURLConnection) newUrl.openConnection()
        
        connection.setDoOutput(true)
        connection.setDoInput(true)
        connection.setUseCaches(false)
        if (method=="")

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-47



            connection.setRequestMethod("GET")
        else
            connection.setRequestMethod(method)
            
                
        if (contentType.toUpperCase()=="FORM") {
            connection.setRequestProperty("Content-Type","application/x-www-
form-urlencoded")
        }
        if (contentType.toUpperCase()=="JSON") {
            connection.setRequestProperty("Content-Type","application/json")
        }
        if (contentType.toUpperCase()=="") {
            // add no content type
        }
        
        String userCredentials = domain +"."+user + ":" + pwd
        String basicAuth = "Basic " + 
javax.xml.bind.DatatypeConverter.printBase64Binary(userCredentials.getBytes())
        connection.setRequestProperty("Authorization", basicAuth)
        
        if (body!=null && body!="") {
            DataOutputStream wr = new DataOutputStream 
(connection.getOutputStream ());
            wr.writeBytes (body);
            wr.flush ();
            wr.close ();
        }
        
        
        String response=""
        try {
            statusCode = connection.responseCode
            println "Connection status code: $statusCode "
            if (statusCode==401 || statusCode==403) {
                println "Not authorized"
            }
            if (statusCode==200) {
                println "Authentication succeeded"
                println "Server response:"
                println "-----"
                response=displayServerResponse(connection)
                println "-----"
            }
            if (statusCode==400 || statusCode==500) {
                println "Bad request"
                println "Server response:"
                println "-----"
                response=displayServerResponse(connection)
                println "-----"
            }
        } catch (Exception e) {
            println "Error connecting to the URL"
            println e.getMessage()
        } finally {
            if (connection != null) {

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-48



                connection.disconnect();
            }
        }
            
        return response
    }
    
    def displayServerResponse(connection) {
        InputStream is;
        if (connection.getResponseCode()==200) {
            is=connection.getInputStream();
        } else {
            is=connection.getErrorStream();
        }
        println "Response Content-Type:"+connection.getContentType()
        BufferedReader br = new BufferedReader(new InputStreamReader(is));
        StringBuilder sb = new StringBuilder();
        String line;
        while ((line = br.readLine()) != null) {
            sb.append(line+"\n");
        }
        br.close();
        println sb
        return sb.toString()
        
    }
    def launchProcUsingGET(apexUri) {
        println "**Launching PL/SQL in apex**"
        
        def restUrl=apexUrl+"/"+apexUri
        
        /*
         * Procedure in apex is defined this way
         *  RESTful Service Module: bics/
            URI Template: plsql/
            Method: GET
            Source Type: PL/SQL
            Requires Secure Access: YES
            Source: 
            
                DECLARE
                    prevdeptno   number;
                    deptloc      varchar2(30);
                    deptname     varchar2(30);
                    CURSOR getemps IS select * from emp 
                                        where ((select job from emp where 
ename = :empname)  IN ('PRESIDENT', 'MANAGER')) 
                                        or deptno = (select deptno from emp 
where ename = :empname) 
                                         order by deptno, ename;
                BEGIN
                    sys.htp.htmlopen;
                    sys.htp.headopen;
                    sys.htp.title('Departments');
                    sys.htp.headclose;
                    sys.htp.bodyopen;

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-49



 
                    for emprecs in getemps
                    loop
                        if emprecs.deptno != prevdeptno or prevdeptno is null 
then
                              select dname, loc into deptname, deptloc 
                            from dept where deptno = (select deptno from emp 
where ename = emprecs.ename);
                          if prevdeptno is not null then
                              sys.htp.print('</ul>');
                          end if;
                          sys.htp.print('Department ' || deptname || ' 
located in ' || deptloc || '<p/>');
                          sys.htp.print('<ul>');
            end if;
            sys.htp.print('<li>');

            prevdeptno := emprecs.deptno;
            end loop;
            sys.htp.print('</ul>');
            sys.htp.bodyclose;
            sys.htp.htmlclose;
        END;
            
            URL call will be in the form: https://
<SERVER>.oraclecloudapps.com/apex/bics/plsql/
            Response will be in following format for this specific plsql 
example
            Response Content-Type:text/html; charset=UTF-8
            <HTML>
            <HEAD>
            <TITLE>Departments</TITLE>
            </HEAD>
            <BODY>
            </ul>
            </BODY>
            </HTML>

        */
        def response
        response=openConnection(restUrl,"GET","FORM","")
        println "****"
        
        println "****"
    }
    def launchSQLQueryUsingGETAndVariableOnUrl(apexUri, parameter) {
        println "**Launching Sql query in apex**"
        
        /*
         * Procedure in apex is defined this way
         *  RESTful Service Module: bics/
            URI Template: test/{ID}
            Method: GET
            Source Type: Query 
            Format: JSON  
            Requires Secure Access: YES

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-50



            Source: select 
EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO                 
                        from EMP where EMPNO = :ID
            
            URL call will be in the form: https://
<SERVER>.oraclecloudapps.com/apex/bics/test/7839
            Response will be in following format:
            Response Content-Type:application/json
                {"next":{"$ref":"https://<SERVER>.oraclecloudapps.com/apex/
bics/test/7839?page=1"},"items":
[{"empno":7839,"ename":"KING","job":"PRESIDENT","hiredate":"1981-11-17T00:00:0
0Z","sal":5000,"deptno":10}]}

         * 
         */
        
        def restUrl=apexUrl+"/"+apexUri+"/"+parameter
        
        def response
        response=openConnection(restUrl,"GET","FORM","")
        println "****"
    }        
}

Groovy Sample — APEXAutomationParameters.groovy

package com.oracle.ceal

import java.io.File;
import java.util.Properties;

class APEXAutomationParameters {
    private Properties props = new Properties()
    
    def apexRestUrl
    def APEX_REST_URL='apexRestUrl'
    def identityDomain
    def APEX_IDENTITY_DOMAIN='apexIdentityDomain'
    def username
    def APEX_USERNAME='apexUsername'
    def password
    def APEX_PASSWORD='apexPassword'
    def proxyHost
    def PROXY_HOST='proxyHost'
    def proxyPort
    def PROXY_PORT='proxyPort'
    def ignoreSSLCertificationPathErrors
    def IGNORE_CERT_PATH_ERRORS='ignoreSSLCertificationPathErrors'
    
    public APEXAutomationParameters(propertiesFile) {
        def propsFileName=propertiesFile
        File propsFile = new File(propsFileName)
        try {
            props.load(propsFile.newDataInputStream())
        } catch ( FileNotFoundException fnfe) {

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-51



            println "$propsFileName APEX properties file not found in the 
current directory. Exiting."
            System.exit(1);
        }
        apexRestUrl=props.getProperty(APEX_REST_URL)
        identityDomain=props.getProperty(APEX_IDENTITY_DOMAIN)
        username=props.getProperty(APEX_USERNAME)
        password=props.getProperty(APEX_PASSWORD)
        proxyHost=props.getProperty(PROXY_HOST)
        proxyPort=props.getProperty(PROXY_PORT)
        
ignoreSSLCertificationPathErrors=props.getProperty(IGNORE_CERT_PATH_ERRORS)
                    
    }
    
    def isConfigValid() {
        try {
            // Required parameters check
            assert apexRestUrl != '' : "$APEX_REST_URL is empty"
            assert identityDomain != '' : "$APEX_IDENTITY_DOMAIN is empty"
            assert username != '' : "$APEX_USERNAME is empty"
            assert password != '' : "$APEX_PASSWORD is empty"
        
            // validate url is correct
            URL apexUrl=new URL(apexRestUrl)
            // connection test
            
            
            // ssl check
            
            println "$APEX_REST_URL = $apexRestUrl"
            println "$APEX_IDENTITY_DOMAIN = $identityDomain"
            println "$APEX_USERNAME = $username"
            println "$APEX_PASSWORD = ******"
            
        } catch(AssertionError e) {
            println e.getMessage()
            return false
        } catch (MalformedURLException e) {
            println "APEX Rest url is incorrect. Current value:$apexRestUrl , 
expected format http|https://"
            println e.getMessage()
            return false
        }
        return true
    }
    
}

Groovy Sample — BICSAutomationParameters.groovy

package com.oracle.ceal

import java.io.File;
import java.util.Properties;

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-52



class BICSAutomationParameters {

    private Properties props = new Properties()
        
    def bicsRestUrl
    def BICS_REST_URL='bicsRestUrl'
    def identityDomain
    def BICS_IDENTITY_DOMAIN='bicsIdentityDomain'
    def username
    def BICS_USERNAME='bicsUsername'
    def password
    def BICS_PASSWORD='bicsPassword'
    def proxyHost
    def PROXY_HOST='proxyHost'
    def proxyPort
    def PROXY_PORT='proxyPort'
    def ignoreSSLCertificationPathErrors
    def IGNORE_CERT_PATH_ERRORS='ignoreSSLCertificationPathErrors'
        
    public BICSAutomationParameters(propertiesFile) {
        def propsFileName=propertiesFile
        File propsFile = new File(propsFileName)
        try {
            props.load(propsFile.newDataInputStream())
        } catch ( FileNotFoundException fnfe) {
            println "$propsFileName BICS properties file not found in the 
current directory. Exiting."
            System.exit(1);
        }
        bicsRestUrl=props.getProperty(BICS_REST_URL)
        identityDomain=props.getProperty(BICS_IDENTITY_DOMAIN)
        username=props.getProperty(BICS_USERNAME)
        password=props.getProperty(BICS_PASSWORD)
        proxyHost=props.getProperty(PROXY_HOST)
        proxyPort=props.getProperty(PROXY_PORT)
        
ignoreSSLCertificationPathErrors=props.getProperty(IGNORE_CERT_PATH_ERRORS)
                    
    }
        
    def isConfigValid() {
        try {
            // Required parameters check
            assert bicsRestUrl != '' : "$BICS_REST_URL is empty"
            assert identityDomain != '' : "$BICS_IDENTITY_DOMAIN is empty"
            assert username != '' : "$BICS_USERNAME is empty"
            assert password != '' : "$BICS_PASSWORD is empty"
        
            // validate url is correct
            URL bicsUrl=new URL(bicsRestUrl)
            // connection test
            
            
            // ssl check
            

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-53



            println "$BICS_REST_URL = $bicsRestUrl"
            println "$BICS_IDENTITY_DOMAIN = $identityDomain"
            println "$BICS_USERNAME = $username"
            println "$BICS_PASSWORD = ******"
            
        } catch(AssertionError e) {
            println e.getMessage()
            return false
        } catch (MalformedURLException e) {
            println "BICS Rest url is incorrect. Current value:$bicsRestUrl , 
expected format http|https://"
            println e.getMessage()
            return false
        }
        return true
    }
        
    
}

Groovy Sample — PBCSAutomationParameters.groovy

package com.oracle.ceal

class PBCSAutomationParameters {
    private Properties props = new Properties()
        
    def planningRestUrl
    def PBCS_PLANNING_REST_URL='pbcsPlanningRestUrl'
    def interopRestUrl
    def PBCS_INTEROP_REST_URL='pbcsInteropRestUrl'
    def identityDomain
    def PBCS_IDENTITY_DOMAIN='pbcsIdentityDomain'
    def username
    def PBCS_USERNAME='pbcsUsername'
    def password
    def PBCS_PASSWORD='pbcsPassword'
    def proxyHost
    def PROXY_HOST='proxyHost'
    def proxyPort 
    def PROXY_PORT='proxyPort'
    def ignoreSSLCertificationPathErrors
    def IGNORE_CERT_PATH_ERRORS='ignoreSSLCertificationPathErrors'
    
    
    public PBCSAutomationParameters(propertiesFile) {
        def propsFileName=propertiesFile
        File propsFile = new File(propsFileName)
        try {
            props.load(propsFile.newDataInputStream())
        } catch ( FileNotFoundException fnfe) {
            println "$propsFileName PBCS properties file not found in the 
current directory. Exiting."
            System.exit(1);
        }

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-54



        planningRestUrl=props.getProperty(PBCS_PLANNING_REST_URL)
        interopRestUrl=props.getProperty(PBCS_INTEROP_REST_URL)
        identityDomain=props.getProperty(PBCS_IDENTITY_DOMAIN)
        username=props.getProperty(PBCS_USERNAME)
        password=props.getProperty(PBCS_PASSWORD)
        proxyHost=props.getProperty(PROXY_HOST)
        proxyPort=props.getProperty(PROXY_PORT)
        
ignoreSSLCertificationPathErrors=props.getProperty(IGNORE_CERT_PATH_ERRORS)
    
        
    }
    
    def isConfigValid() {    
        try {
            // Required parameters check
            assert planningRestUrl != '' : "$PBCS_PLANNING_REST_URL is empty"
            assert interopRestUrl != '' : "$PBCS_INTEROP_REST_URL is empty"
            assert identityDomain != '' : "$PBCS_IDENTITY_DOMAIN is empty"
            assert username != '' : "$PBCS_USERNAME is empty"
            assert password != '' : "$PBCS_PASSWORD is empty"
            
            // validate url is correct
            URL planningUrl=new URL(planningRestUrl)
            URL interopUrl=new URL(interopRestUrl)
            // connection test
            
            
            // ssl check
            
            println "$PBCS_PLANNING_REST_URL = $planningRestUrl"
            println "$PBCS_INTEROP_REST_URL = $interopRestUrl"
            println "$PBCS_IDENTITY_DOMAIN = $identityDomain"
            println "$PBCS_USERNAME = $username"
            println "$PBCS_PASSWORD = ******"
            
        } catch(AssertionError e) {
            println e.getMessage()
            return false
        } catch (MalformedURLException e) {
            println "PBCS Rest urls are incorrect. Current 
value:$planningRestUrl and $interopRestUrl, expected format http|https://
<SERVER>/HyperionPlanning/rest/11.1.2.3.xyz http|https://<SERVER>/interop/
rest/11.1.2.3.xyz"
            println e.getMessage()
            return false
        }    
        return true
    }
    
    
}

Appendix H
Integration of Planning to Business Intelligence Cloud Service

H-55



Troubleshooting the Integration
Use an HTTP proxy such as Fiddler to trace HTTP calls

• In this case, set proxyHost / proxyPort to localhost 8888 in your properties file defining
the configuration

• Also set ignoreSSLCertificationPathErrors=true

Appendix H
Troubleshooting the Integration

H-56


	Contents
	Documentation Accessibility
	Documentation Feedback
	1 Creating and Running an EPM Center of Excellence
	2 Implementation Best Practices for EPM Cloud REST APIs
	3 About the REST APIs for EPM Cloud
	About REST API for Oracle Enterprise Performance Management Cloud
	EPM Cloud REST API Compatibility
	About the Samples
	Audience
	Prerequisites
	URL Structure

	4 OAuth 2 and Basic Authentication for EPM Cloud REST APIs
	Authentication with OAuth 2 - Only for OCI (Gen 2) Environments
	Basic Authentication - for Classic and OCI (Gen 2) Environments

	5 Sample Integration Scenarios
	Scenario 1: Import Metadata into Applications
	Scenario 2: Import Data, Run a Calculation Script, and Copy Data from a Block Storage Database to an Aggregate Storage Database
	Scenario 3: Export and Download Metadata and Data
	Scenario 4: Remove Unnecessary Files from a Service Instance
	Scenario 5: Archive Backups from the Service to Onpremise
	Scenario 6: Refreshing the Application
	Scenario 7: Cloning an Instance
	Scenario 8: Sample Starter Kit for Consultants - Business Intelligence Cloud Integration
	Scenario 9: Using Groovy Business Rules to Call REST APIs from Oracle and Other Companies

	6 Quick Reference Table – REST API Resource View
	7 REST Resources and Methods
	Supported REST Methods
	REST API Methods
	Error Handling
	Versioning
	Current REST API Version
	Status Codes

	8 Planning REST APIs
	URL Structure for Planning
	Resources and Available Actions
	Getting API Versions for Planning
	Get REST API Versions for Planning
	Get Information about a Specific REST API Version for Planning

	Manage Jobs
	Get Job Definitions
	Execute a Job
	Rules
	Ruleset
	Plan Type Map
	Import Data
	Export Data
	Import Metadata
	Export Metadata
	Cube Refresh
	Clear Cube
	Administration Mode
	Compact Cube
	Restructure Cube
	Merge Data Slices
	Optimize Aggregation
	Import Security
	Export Security
	Export Audit
	Export Job Console
	Sort Members
	Import Exchange Rates
	Auto Predict
	Import Cell-Level Security
	Export Cell-Level Security
	Import Valid Intersections
	Export Valid Intersections
	Execute a Report Bursting Definition
	Export Library Documents
	Execute Job Code Samples

	Retrieve Job Status
	Retrieve Job Status Details
	Retrieve Child Job Status Details

	Working with Members
	Add Member
	Get Member

	Get Applications
	Manage Planning Units
	List All Planning Units
	Get Planning Unit History and Annotations
	Get a Planning Unit Owner Photo
	Get Planning Unit Promotional Path
	Get Available Planning Unit Actions
	Get Filters with All Possible Values
	Change Planning Unit Status

	Get User Preferences
	Working with Data Slices
	Import Data Slices
	Export Data Slices
	Clear Data Slices

	Getting and Setting Substitution Variables
	Get All Substitution Variables Defined for the Application
	Get a Substitution Variable Defined for the Application
	Create or Update All Substitution Variables Defined for the Application
	Get Substitution Variables Defined at the Plan Type Level
	Get Derived Substitution Variables at the Plan Type Level
	Get a Substitution Variable Defined at the Plan Type Level
	Get a Derived Substitution Variable Defined at the Plan Type Level
	Create and Update Substitution Variables at the Plan Type Level

	Deleting Substitution Variables
	Delete a Substitution Variable at the Plan Type Level
	Delete a Substitution Variable for the Application
	Delete Substitution Variables at the Plan Type Level
	Delete Substitution Variables for the Application

	Working with Connections
	View a Connection
	View All Connections
	Update a Connection


	9 Migration REST APIs
	URL Structure for Migration
	Migration Status Codes
	Getting API Versions for Migration APIs
	Get REST API Versions for Migration
	Get Information About a Specific REST API Version for Migration

	Import and Export Files
	LCM Import (v1)
	LCM Import (v2)
	LCM Export (v1)
	LCM Export (v2)

	Upload and Download Files
	Upload
	Download

	View and Delete Files
	List Files (v11.1.2.3.600)
	List Files (v2)
	Delete Files (v11.1.2.3.600)
	Delete Files (v2)
	Delete Files (v3)

	Manage Services
	Get Information About All Services
	Get Idle Session Timeout
	Set Idle Session Timeout
	Restart the Service Instance (v1)
	Restart the Service Instance (v2)
	Run Recreate on a Service (11.1.2.3.600)
	Run Recreate on a Service (v2)

	Manage Application Snapshots
	Get Information About All Application Snapshots
	Get Information About a Specific Application Snapshot
	Upload Application Snapshot (v1)
	Upload Application Snapshot (v2)
	Download Application Snapshot (v1)
	Download Application Snapshot (v2)
	Copy Application Snapshot (v1)
	Copy Application Snapshot (v2)
	Rename Application Snapshot (v1)
	Rename Application Snapshot (v2)

	Copy to and from the Object Store
	Copy from Object Store (v1)
	Copy from Object Store (v2)
	Copy to Object Store (v1)
	Copy to Object Store (v2)

	Working with Essbase
	Export Essbase Data (v2)
	Essbase Block Analysis Report
	Get Essbase Query Governor Execution Time
	Set Essbase Query Governor Execution Time

	Copy a File Between Instances (v1)
	Copy a File Between Instances (v2)
	Clone an Environment
	Provide Feedback (v11.1.2.3.600)
	Provide Feedback (v2)
	Send Email (v1)
	Send Email (v2)
	Skip Updates (v1)
	Skip Updates (v2)
	List or Restore Backups - Only for OCI (Gen2) Environments
	List Backups - Only for OCI (Gen 2) Environments
	Restore Backup - Only for OCI (Gen 2) Environments


	10 Security REST APIs
	Get Restricted Data Access
	Set Restricted Data Access
	Get Virus Scan on File Upload
	Set Virus Scan on File Upload
	Manage Permission for Manual Access to Database (v1)
	Manage Permission for Manual Access to Database (v2)
	Set Encryption Key (v1)
	Set Encryption Key (v2)
	View or Update the IP Allowlist - Only for OCI (Gen 2) Environments
	View the IP Allowlist - Only for OCI (Gen 2) Environments
	Update the IP Allowlist - Only for OCI (Gen 2) Environments


	11 Viewing and Setting the Daily Maintenance Window Time
	Get the Build Version and Daily Maintenance Time (v1)
	Get the Build Version and Daily Maintenance Window Time (v2)
	Setting the Daily Maintenance Time (v1)
	Setting the Daily Maintenance Time (v2)
	Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v1)
	Running Daily Maintenance While Skipping the Scheduled Daily Maintenance (v2)

	12 Managing Users
	Add Users to an Identity Domain (v1)
	Add Users to an Identity Domain (v2)
	Remove Users from an Identity Domain (v1)
	Remove Users from an Identity Domain (v2)
	Assign Users to a Predefined Role or Application Role (v1)
	Assign Users to a Predefined Role or Application Role (v2)
	Remove Users' Role Assignment (v1)
	Remove Users' Role Assignment (v2)
	Add Users to a Group (v1)
	Add Users to a Group (v2)
	Remove Users from a Group (v1)
	Remove Users from a Group (v2)
	Update Users
	Add a User to a Batch of Groups
	Remove a User from a Batch of Groups
	Add Groups (v1)
	Add Groups (v2)
	Remove Groups (v1)
	Remove Groups (v2)
	User Group Report (v1)
	User Group Report (v2)
	User Access Report (v1)
	User Access Report (v2)
	User Audit Report (v1)
	User Audit Report (v2)
	Role Assignment Report (v1)
	Role Assignment Report for Users (v2)
	Role Assignment Report for Groups (v2)
	Get Available Roles
	Role Assignment Audit Report for OCI (Gen 2) Environments
	Invalid Login Report for OCI (Gen 2) Environments
	Group Assignment Audit Report
	Adding Users to a Team for Account Reconciliation
	Adding Users to a Team for Financial Consolidation and Close and Tax Reporting
	Removing Users from a Team for Account Reconciliation
	Removing Users from a Team for Financial Consolidation and Close and Tax Reporting

	13 Usage Simulation REST APIs
	Simulate Concurrent Usage

	14 Reporting REST APIs
	Generate Report for Account Reconciliation
	Generate Report for Financial Consolidation and Close and Tax Reporting
	Generate User Details Report for Account Reconciliation
	Generate User Details Report for Financial Consolidation and Close and Tax Reporting
	Retrieve Job Status for a Report
	Execute Reports for Data Management

	15 Data Integration REST APIs
	URL Structure for Data Integration
	Getting API Versions for Data Integration APIs
	Get API Versions for Data Integration APIs
	Get Information about a Specific API Version for Data Integration APIs

	Lock and Unlock POV
	Running Integrations
	Running a Pipeline
	Import Data Mapping
	Export Data Mapping
	Export Data Integration
	Import Data Integration
	Retrieve Job Status

	16 Data Management REST APIs
	URL Structure for Data Management
	Getting API Versions for Data Management APIs
	Get API Versions for Data Management APIs
	Get Information about a Specific API Version for Data Management APIs

	Running Data Rules in Data Management
	Running Batch Rules
	Retrieve Job Status

	17 Account Reconciliation APIs
	URL Structure for Account Reconciliation
	Getting API Versions for Account Reconciliation REST APIs
	Get API Versions for Account Reconciliation REST APIs
	Get Information about a Specific API Version for Account Reconciliation REST APIs

	Execute a Job in Account Reconciliation
	Retrieve Periods with a Specific Status
	Change Period Status (Reconciliation Compliance)
	Create Reconciliation (Reconciliation Compliance)
	Import Pre-Mapped Balances (Reconciliation Compliance)
	Import Pre-Mapped Transactions (Reconciliation Compliance)
	Import Balances (Reconciliation Compliance)
	Import Profiles (Reconciliation Compliance)
	Import Rates (Reconciliation Compliance)
	Import Pre-Mapped Transactions (Transaction Matching)
	Import Attribute Values
	Monitor Reconciliations (Reconciliation Compliance)
	Import Reconciliation Attributes (Reconciliation Compliance)
	Run Auto Match (Transaction Matching)
	Purge Transactions (Transaction Matching)
	Retrieve Job Status (Reconciliation Compliance)
	Retrieve Job Status (Transaction Matching)
	Export Application Properties
	Import Application Properties
	Export Background Image
	Import Background Image
	Export Logo Image
	Import Logo Image
	Working with Connections in Account Reconciliation
	Create a Connection
	View All Connections
	Update a Connection
	Delete a Connection

	Set Application Access Level
	Retrieve Application Access Level
	View Reconciliation Comments
	Archive Matched Transactions (Transaction Matching)
	Purge Archived Transactions (Transaction Matching)
	Unmatch Matched Transactions (Transaction Matching)
	Update Unmatched Transactions (Transaction Matching)

	18 Financial Consolidation and Close REST APIs
	Getting API Versions for Financial Consolidation and Close APIs
	Get Information about a Specific API Version for Financial Consolidation and Close APIs

	Perform Journal Actions for Financial Consolidation and Close
	Perform Journal Period Updates for Financial Consolidation and Close
	Retrieve Journals for Financial Consolidation and Close
	Retrieve Journal Details for Financial Consolidation and Close
	Export Consolidation Journals
	Import Consolidation Journals
	Copy Data
	Clear Data
	Validate Metadata
	Generate an Intercompany Matching Report

	19 Task Manager REST APIs
	Getting API Versions for Task Manager APIs
	Deploy Task Manager Templates
	Update Task Status for Event Monitoring
	Working with Connections in Task Manager
	Create a Connection
	View All Connections
	Update a Connection
	Delete a Connection


	20 Supplemental Data Manager REST APIs
	Getting API Versions for Supplemental Data Manager APIs
	Import Supplemental Collection Data for Financial Consolidation and Close
	Deploy Form Templates

	21 Enterprise Journal REST APIs
	Getting API Versions for Enterprise Journal APIs
	Monitor Enterprise Journals for Financial Consolidation and Close
	Execute an Enterprise Journals Job
	Retrieve Enterprise Journals for Financial Consolidation and Close
	Retrieve Enterprise Journal Content for Financial Consolidation and Close
	Retrieve Enterprise Journal Content by Year and Period for Financial Consolidation and Close
	Update Enterprise Journal Posting Status for Financial Consolidation and Close
	Update Validation Status of Enterprise Journals for Financial Consolidation and Close

	22 Tax Reporting REST APIs
	URL Structure for Tax Reporting
	Getting API Versions for Tax Reporting APIs
	Get Information about a Specific API Version for Tax Reporting

	Copy Data
	Clear Data

	23 Enterprise Profitability and Cost Management REST APIs
	URL Structure for Enterprise Profitability and Cost Management
	Getting API Versions for Enterprise Profitability and Cost Management
	Getting Information About a Specific REST API Version for Enterprise Profitability and Cost Management
	Calculate Model
	Clear Data By Point of View
	Copy Data by Point of View
	Delete Point of View
	Generate Model Documentation Report
	Validate Model

	24 Profitability and Cost Management REST APIs
	URL Structure for Profitability and Cost Management
	Get API Versions for Profitability and Cost Management REST APIs
	Get Information about a Specific API Version for Profitability and Cost Management
	Apply Data Grants
	Copy ML POV Data
	Create File-Based Application
	Deploy ML Cube
	Enable File-Based Application
	Essbase Data Load for Profitability and Cost Management
	Export Query Results
	Export Template for Profitability and Cost Management
	Generate Program Documentation Report
	Generate Program Documentation Report - Run as a Job
	Import Template for Profitability and Cost Management
	Merge Slices for Profitability and Cost Management
	Optimize ASO Cube
	Retrieve Task Status for Profitability and Cost Management
	Run ML Calculations
	Run ML Clear POV
	Run ML Rule Balancing
	Update Dimensions As a Job

	25 Narrative Reporting REST APIs
	26 Enterprise Data Management Cloud REST APIs
	A Common Helper Functions for Java
	B CSS Common Helper Functions for Java
	C Common Helper Functions for cURL
	D CSS Common Helper Functions for cURL
	E CSS Common Helper Functions for Groovy
	F REST API Examples with Postman
	Example: Using REST APIs to Upload with Postman
	Example: Using REST APIs to Upload to an External Directory with Postman
	Example: Using REST APIs to Upload a Snapshot with Postman

	G Profitability and Cost Management Common Helper Functions
	Profitability and Cost Management Common Helper Functions for Java
	Profitability and Cost Management Common Helper Functions for cURL
	Profitability and Cost Management Common Helper Functions for Groovy

	H Sample Starter Kit for Consultants - Integration with Business Intelligence Cloud Service
	Installing the Scripting Engine and Deploying Demo Scripts
	SQL Application Express REST API client
	Business Intelligence REST API Client
	Planning REST API Client
	Helper Functions
	Integration of Planning to Business Intelligence Cloud Service
	Groovy Sample – PBCSBICSIntegration.groovy
	Groovy Sample – PbcsRestClient.groovy
	Groovy Sample – PbcsRestClient.groovy
	Groovy Sample – BicsRestClient.groovy
	Groovy Sample – ApexRestClient.groovy

	Troubleshooting the Integration


