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Introduction

A 2-way peg (2WP) protocol is a protocol that allows transfers of a cryptocurrency from a
main blockchain to a second blockchain and vice-versa requiring low third-party trust. This
article compares the existing 2WP methods for a blockchain: a Federation, a Sidechain and
Drivechain. We also investigate hybrid methods and try to evaluate them to choose which is
best suited for the 2WP of the RSK platform on each stage of adoption.

The so-called Sidechain method was created by Blockstream and is based on a peer-to-peer
token exchange method created by Sergio Demian Lerner (P2PTradeX) [2]. Drivechain is a
newer and simpler method developed by Paul Sztorc from Truthcoin [3].

Along this document we compare pros and cons of each method from different perspectives
(technical complexity, security, threat model, community acceptance, openness, legality).
We also propose improvements to drivechain and sidechain implementations, which we
believe are simpler and more secure.

We present some definitions that will facilitate the explanations along this document. In a
2WP, one of the blockchains is the “main chain” and the other is the “secondary chain”. For
our purposes, the “main chain” will always be Bitcoin. To differentiate between bitcoins living
in the Bitcoin blockchain from bitcoins living in the secondary chain, we will call the latter
“secoins”.

Any method for creating a 2WP requires bitcoins to be locked and secoins to be unlocked or
created. The other way around, secoins need to be locked or destroyed and bitcoins
unlocked. The distinction between creation and unlocking of secoins and destruction or
locking of secoins is mostly irrelevant. Either there are 21M secoins pre-created in a locked
state and unlocked when necessary, or there are no secoins pre-created and they are
minted on-the-fly when bitcoins are locked. Only in the improbable case that the upper cap
of 21M bitcoins is modified by a hard fork is that the distinction makes sense. If secoins are
unlocked, instead of created, then the total amount of secoins in existence will be capped to
21M no matter how many bitcoins exist.
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The 9 Kinds of Magic

We have researched 9 ways a 2WP can be implemented, in terms of the security of the
transferred funds and the threat model, specified by 2 orthogonal criteria:

Who has custody:
- External party or group (Secondary chain miners or stakeholders, a federation)
- Internal party or group (Bitcoin miners, Bitcoin stakeholders)
- A mixture of internal and external parties, in any voting structure.

What proof the custodians require to release funds:
- No proof
- Proof of Last transaction control (also known as SPV control)
- Proof of Full transaction history and last transaction control

Who Has Custody

The custody of locked bitcoins can be either external to the main chain or provided by
internal actors of the main chain, or any mixture of them, either by conjunction (both must
authorize) or by disjunction (any of them can authorize). There are many possible cases with
varied security, and we’ll explore the most evident ones.

External party or group has the custody

In a 2WP with an external custody, the funds are "locked” by sending them to an address of
an external party or to an address that can be spent if this external party provides an specific



proof of their authority. Whoever happens to authorize the unlocking of these funds is out of
the scope of the main chain and there is no protocol link between the main chain and the
external group in custody apart from scripting code in Bitcoin outputs that makes the
connection. We distinguish between two possible external custody cases:

- The miners of the secondary blockchain are custodians

- Stakeholders of secondary blockchain are are custodians

- A hybrid where miners of the secondary blockchain are custodians but also have
monetary bonds

In the first case scenario (secondary chain miners are in custody), we again make 4 new
options:

- The secondary chain is merge-mined

- The secondary chain uses the same PoW function but does not allow merged-mining
- The secondary chain uses a different PoW

- The secondary chain uses a private consensus method (e.g. PBFT)

Miners are custodians, the secondary chain is merge-mined

If the chain is merge-mined the external group is actually an internal group. Thus, this case
will be analyzed in the following section.

Miners are custodians, the secondary chain uses the same PoW function but does not
allow merged-mining

If the secondary chain uses the same PoW, but not merged-mining, then the hashing power
competition between chains goes against the security of both chains. Assuming enough
liquidity on both blockchains, and assuming the difficulty adjusting algorithms of both chains
prevent high frequency oscillations in hashing difficulty, miners will slowly move to the
blockchain having higher revenue, and the opposite blockchain will die with no security. In a
nutshell, because of this competition for security providers, there cannot be synergy between
both blockchains.

Miners are custodians, the secondary chain uses a different PoW

If the secondary chain uses a different PoW function, it will have to find ways to incentivise
mining (pay of the electricity consumption of mining). The only practically proven way to
incentivize non-merged-mined PoW mining is by creating a new native token and subsidizing
mining by minting tokens. Creating a new speculative token competes with Bitcoin, therefore
there will be little support by Bitcoin holders for this secondary blockchain. This would be the
case of Bitcoin-denominated tokens created in Ethereum using a sidechain or using “Bonded
Escrow Contracts”. Although this setting may work, we find that it do not fulfils the interests
of the Bitcoin community.

The secondary chain uses a private consensus method



In case the consensus is reached by other means, such as a federation, then the federation
can be liable for stealing secoins, so this setup is sound, although more centralized.
Proof-of-stake consensus cannot be securely bootstrapped for a secondary blockchain using
a 2WP, since the first party to transfer coins to the secondary chain would automatically get
the custody of most of the secoins, so the locked bitcoins become easy target for theft if the
first party to transfer is dishonest.

Stakeholders of secondary blockchain are are custodians

One interesting case is when the stakeholders of the secondary blockchain are in custody of
the secoins using proof-of-stake. This case deserves further analysis.

Hybrid where miners of the secondary chain are custodians but also have monetary
bonds

One variant is that secondary blockchain miners must lock a bond in secoins to be able to
have custody of the bitcoins. This will be studied in the sidechain section.

Bitcoin miners have the custody

In a 2WP it seems natural that the Bitcoin miners take custody of the funds moved to the
peg. The security implication of this setup is different from the scenario where the custody is
held by an external party: the trust in the main chain can deteriorate considerably if its own
consensus group is shown to be acting maliciously regarding the secondary chain. If more
than 50% of miners are merged-mining a secondary chain and they attempt to steal the
secondary chain funds, then the confidence they won’t to perform a 51% attack on Bitcoin
will quickly deteriorate. Bitcoin security against the 51% attack relies on economic
incentives. The strongest economic effect that protects Bitcoin from the 51% attack is a
mutual-assured-destruction (MAD) property: if a group of miners attempt to perform a 51%
attack, everyone, including the miners performing the attack, lose. It is difficult to benefit from
a Bitcoin price collapse, as nobody lend bitcoins at the scale of hundreds of millions of
dollars. It's very difficult to predict what will happen in the extreme case of a 51% attack, but
we can speculate that users will notice the attack attempt and switch to other memory-hard
mining PoW function or even users could revert the funds stolen. In the past, we’ve seen
successful last minute collaboration to solve consensus problems. So miners will lose all
their hardware investment and probably also their bitcoins used for double-spend. The
maturity period of coinbases provides some additional disincentive and strengthens MAD, as
the unmatured coins serve as bonds, but these coins are minimal compared to the bonds
created by miner’s investment in hashing hardware.

If a secondary chain fails (either by being attacked or by critical bugs) the consequences in
the main chain are limited, and only affect the funds locked for that specific secondary chain.
This is a desired property, and allows the users to extend the functionality of Bitcoin (the unit



of account) with low risk, and without increasing the attack surface. But at the same time the
damage control is the achilles heel of a 2WP in many situations. For example, in case of a
merge-mined setup where only a minority mines the secondary chain. If this minority
attempts to steal the secoins, the minority can be blamed for the attack, and the argument
that the majority is honest will still hold. Then, the desired delicate equilibrium for MAD is
never reached, so the security of the peg is substantially lower. Only when 51% of Bitcoin
total hashing engagement is merge-mining the peg is secure by the MAD property.

Bitcoin stakeholders have the custody

The group in custody of the secoins can be the Bitcoin stakeholders, using a proof-of-stake
scheme. The incentives for this group to protect the secoins is unclear, since Bitcoins can be
kept anonymously for long periods. It seems that the existence of a small percentage of
stolen bitcoins in circulation does not affect Bitcoin price. Only if a huge percentage of
bitcoins are stolen, such as the case of MtGox, there was a run to the currency. So the
bitcoin stakeholders having custody of secoin funds does not provide enough MAD tension.

What kind of Control Is Proven

There are three levels of proof the custodians can provide, from no control proof to the full
history of transactions moving the coins from unlocking to re-locking.

No proof of control

The easiest case to implement a 2WP is when the custody group can decide to unlock
locked coins without requiring any authorization from users. As a group, they are trusted. For
instance they can conform a federation where the majority of votes is required to unlock
funds. Truthcoin can be defined as a 2WP with internal custody and no proof of control, as
will be described in a following section.

Proof of Last Transaction Control

The main chain can request the custody group to provide a proof that a transaction that
commands secoins to be converted into bitcoins be buried in the secondary blockchain (e.g.
has 100 confirmations). This is done using an SPV proof. This requirement restricts when
and how much the custody group can unlock. Suppose that the custody group is the
consensus group of the secondary chain, and that the secondary chain is proof-of-work
mined. To perform an attack, the custody group has to create an alternate branch where
secoins are not locked (and therefore stealing both the bitcoins and the secoins). But that
has a cost in terms of electricity consumed to build the alternate branch, and under
assumptions about the available hardware for lease also requires a minimum amount of



time. Blockstream’s sidechain concept is based on Proof of Last Transaction. Proofs of last
transaction control are also adequate when the secondary chain was not conceived to
support a privileged pegged asset, such as Ethereum, and allows any user to build his own
2WP. However, this proof requires an SPV proof, which even if compacted, can be very
costly in terms of transaction size.

Proof of Full transaction history

A theoretical variant of the previous method is that the custodian must show a proof of the
full chain of transactions from the moment the secoins were unlocked to the moment they
are locked again for transfer. The straightforward implementation of this method for a
divisible cryptocurrency seems inefficient, if not impossible. The chain degenerates into a
tree with of near geometric growth. Soon almost the full secondary blockchain would need to
be shown as evidence. Only SNARKS-based approach may reduce the size of the proof, but
it will introduce a step of third party trust: the setup. For non-divisible tokens, the approach
may work. However the benefit is very limited, as the custody group can try to tap into the
transfer chain and perform the same attack.

2WP Designs

One of the properties of existing 2WP solutions is that they try to be symmetric, using the
same proof mechanism for one side of the peg and the other. Although this may simplify the
design, the best technical and security choice may not be a symmetric design. For instance,
the designers of a merge-mined secondary chain that uses Bitcoin as its main
cryptocurrency may assume that Bitcoin will always have higher mining engagement than
the secondary chain, and therefore rely on SPV proofs for the secondary chain side, but not
on SPV proofs for the mainchain side. This is the case of Rootstock.

Single Custodian

The simplest option to implement a 2WP is having a single custodian (e.g. and
cryptocurrency exchange) holding custody of the locked bitcoins and holding custody of
unlocked equivalent tokens. The exchange would manually enforce the promise of locking
bitcoins before unlocking secondary tokens either manually or by means of a protocol
executed in software. This setup is depicted here:
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The drawbacks are having a single point of failure and complete centralization in the control
of the funds.

Multi-sig federation

A better option to implement a 2WP is having an group of notaries control of a
multi-signature, where the majority of them has to approve the unlock of funds. This setup
better than having a single controller of the funds, but still centralizes control. To achieve
true decentralization, the notaries should be carefully selected to have at least the following
properties:

the number of notaries should not be low (e.g. at least 10).

the number of notaries should not be too high, so that users can verify the
authenticity and honesty of the notaries (e.g. below 30).

Notaries should be distributed across different legal jurisdictions and nations, to
prevent state attacks, coercion and censorship.

Notaries should be geographical distributed to prevent failure of the infrastructure on
natural disasters.

Notaries should be renown.

Notaries should not be controlled (or dependant on) a lower number of entities. For
example, notaries cannot be different branches of the same bank.

Notaries should be able to achieve and maintain a specified level of security through
physical and logical protections, together with required security procedures.

This setup is depicted here:
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Sidechain

The sidechain method is a symmetric 2WP based on each chain understanding how the
other chain creates consensus to lock or unlock coins for cross-transfer, and exchange short
proofs of last transaction control for locking/unlocking. To easily explain this concept first
suppose that the secondary chain has “settlement finality” and the consensus is reached
when a fixed number of parties (the consensus group) sign the block containing the
cross-chain transfer transaction (e.g. by using a Byzantine fault tolerant consensus). In this
example clearly the mainchain can be provided the signed block as the payload of a main
chain transaction, together with an SPV proof, and that's enough for the main chain to
unlock the equivalent amount bitcoins and send them to where the payload specifies. The
difference from this approach and a multi-sig of notaries receiving the funds for custody is
that the consensus group need not to be aware of the 2WP: by signing each block the
secondary blockchain consensus group members are providing enough proof for the main
chain to unlock the funds. The secondary chain consensus group has full power to unlock
the funds in the main chain and send them to whatever address they want (by creating an
alternate signed branch, for example). If the secondary consensus method is proof-of-work,
then an SPV proof containing confirmation headers must must be used, and the primary
blockchain requires more complex protocol to prevent being presented a fake SPV proof by
choosing the proof with higher accumulated work from all candidates presented. The setup
of a sidechain is depicted here:
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Rootstock plan to support sidechains

Rootstock aims to provide two ways for building and verifying SPV proofs. The 2WP smart
contract in Rootstock generates two different indicators announcing the wish to unlock
bitcoins. The contract emits a log entry containing the bitcoin unlock transaction and also
Rootstock can force the miner to add the hash of that transaction to a protected virtual
Bitcoin-like Merkle tree referred in a virtual Bitcoin-like header, so Bitcoin can easily
understand it, even if Rootstock internal transaction format and header is completely
different from Bitcoin format. The Rootstock block is valid if this virtual Merkle tree contains
the element which the log announces. The SPV proof validation code can check the the
spending transaction equals the transaction announced in this log entry (if it is smart
enough), or navigate the virtual Merkle tree and find it there (if it only accepts Bitcoin-like
secondary chains). The choice of the method Rootstock will ultimately use will depend on



the way the 2way is finally supported in Bitcoin. If the support is generic enough, then the
virtual Bitcoin-header will not be necessary.

Case study: Sidechain, secondary chain miners have custody, no
merged-mining

One way to provide higher security compared to using a multi-sig address is that an external
custody group has a high stake in the secondary chain: for example, if the custody group is
exactly the the secondary chain miners. For the custody group to have that high stake, we
must assume that collecting transactions fees in the secondary chain is a good business in
itself. Suppose that all Bitcoins in existence are transferred to a sidechain. Bitcoin fees are
not proportional to the money exchanged, and taking into account the measured velocity of
Bitcoin, and assuming the current transaction fees stay unchanged, it would take at least
1000 years for the miners to earn in fees the same amount of the total of Bitcoins minted.
Even if one assume that the sidechain will only hold the number of bitcoins active in the last
24 hours (about 4M) or the number of bitcoins transacted in the last 24 hours (about 400K),
the business of collecting fees is nothing compared to the “business” of stealing secoins (the
former only achieves the profits of the later in 30 years or more).

So the conclusion is that either the secondary chain has proportional transaction fees, such
as 0.5% or the custody group is exactly the Bitcoin miners, and more than 51% of the Bitcoin
miners are engaged in merged-mining the secondary chain. In a smart-contract platform
such as Rootstock or Ethereum achieving a proportional transaction fee is near impossible,
since miners are not aware of the meaning of each message, and it's easy to hide transfers
in arbitrary messages sent to a contract that takes custody of coins. It's also difficult in
blockchains that cryptographically hide the payment amount, such a zCash. The conclusion
is that the secondary chain miners are not good candidates of being in custody of the
bitcoins, if there is no merge-mining.

Case study: Sidechain Bitcoin miners have custody, merged-mining

Let's now assume that the secondary chain is based on proof-of-work and it is
merged-mined, as is the case in Rootstock. Let's also assume that 90% of the miners are
merged-mining. Now the network can detect if a large subset of miners are attacking the
secondary chain because the Bitcoin blocks will show there are two or more competing
chains being created. Also they can detect a sudden drop of support for merged-mining.
Since an engagement below 50% is dangerous, users should be able to detect if sidechain
miner engagement is below 50% compared to Bitcoin engagement, or Bitcoin all-time high. If
so, the sidechain node application must warn the user to immediately move the secoins back
into the Bitcoin blockchain, or move the funds in custody to another custody method, such as
a federation.

In terms of security, if the secoins miner engagement is below 50%, the majority of secoins
miners can try to steal secoins this way: they acquire secoins, and transfer them back to
bitcoin addresses owned by them using the peg, then they create a new blockchain branch



where the same secoins are not sent to the peg, but to an crypto-exchange where they
exchange the secoins for bitcoins.

Case study: Sidechain, hybrid custody group with insurance through
monetary bonds

A subgroup of secoins stakeholders (“bonders” from now on) can take part in the custody
group by holding insurance bonds that are locked for some time until a peg transaction
settles. The bitcoins that are locked must be also time-locked using CLTV so that the rate of
unlocking cannot be higher than what the bonds allow. In other words, a secondary chains
smart-contract only allow to unblock secoins if the bitcoins are time-locked at the desired
maximum unlock rate. The result is an hybrid model with the following properties:

Unlocking bitcoins require the approval of the bonders and the secondary chain
miners, by means of an multi-sig (bonders) and a SPV proof to an unlock transaction
(miners).

The unlock transaction is chosen by a smart-contract that hold the bonds of the
bonders. The unlock transaction is chosen carefully to unlock bitcoins whose
time-lock has expired.

Both the bonders and secondary chain miners must periodically approve spending
the locked bitcoins to new lock scripts with increasing CLTV time-locks for coins
whose time-locking time have elapsed but were not requested to be unlocked
(re-locking).

To steal the bitcoins in custody, the bonders require the help of 51% of the miners, to
build the longest SPV proof. Even in this case, they can only steal at a
pre-established rate.

The following diagram depicts how lock transactions are also time-locked:



Bitcoin

lock btc tx
L f._/ with time-lock
mined

no unlock required:
re-lock btc tx mined
= with new time-lock

period
from unlock tx to
next unlock tx

¥ unlock
“ bic tx
mined

B Affected blocks in secoins ->BTC transfer

Affected blocks in BTC-> secoins transfer

This hybrid model increases the MAD tension sacrificing the trade volume but without
sacrificing the time a single cross-chain transfer takes. The bitcoin locking scriptPub will look
as the concatenation between a federation using multi-signatures and a sidechain validation
script.

<expiry time> CHECKLOCKTIMEVERIFY DROP

<N> <N/2+1> <FedPubKeyl> <FedPubKeyN> CHECKMULTISIGVERIFY

<spv-chain-verification-code>

In the case of Rootstock, the spv-chain verification and cross-check is handled in a single
operation, because the 2WP smart contract emits a messages containing the exact copy of
the Bitcoin spending transaction of the locked bitcoins.

This method has the drawback that the federation can extort the secoin holders and refuse
to unlock bitcoins. However, as they have secoin bonds, they enter a deadlock where they
cannot recover the bonds nor can users transfer back bitcoins. The disincentive to this attack



would be much more legal (the federation is composed by known members) rather than
economical (the bonds could be substantially lower than the secoins unlocked).

Also this method has the drawback that the price of a secoin may drift from the 1:1 desired
exchange-rate because the rate limited peg reduces the chances secoins can turned into
bitcoins fast in case the secondary chain infrastructure (exchanges, miners, nodes) fails.

Optimizations, confirmation, contest and post-locking periods

Standard Proof-of-work consensus does not have settlement finality, and the probability a
best chain becomes immutable is based on an economic model, not on a cryptographic
hardness assumption, and of course not on a mathematical truth. Therefore the proof of last
transaction control must include a number of confirmation headers for cheating to be
expensive and evident by a decrease in apparent network hashing power. The contest
period gives us an new opportunity: we can turn the proof into an interactive proof and
reduce the amount of information as proof payload. The custody group can present a short
proof (providing proof for a lower proof-of-work, or a proof of work with lower confidence
factor) and expect anyone to contest it. If no one contest it, it is accepted by the main
blockchain. The blockchain should not accept proofs of too low proof-of-work, because in
that case mainchain users cannot differentiate between a contest period with a single
authentic proof having low proof-of-work and proof of a counterfeit transaction followed by
censorship to publish any contested proof by the miners. It turns out that using a previous
block skip-list embedded in the chain header, and a challenge-response protocol for
querying past headers turned non-interactive using the Fiat-Shamir heuristic a miner can
prove 90% of the work of a 1000 block long chain by providing only 20 headers (together
with the merge-mining proof). To improve the security of the system, any proof provided to
unlock bitcoins must be followed by a post-lock period where nothing happens, just to make
sure that if the miners try to steal, they cannot profit from the attack (MAD property). The
conjunction of confirmation, contest and post-lock periods is what makes sidechain a slow
system to move bitcoins between blockchains.

Sidechain implementation using Smart-contract in the secondary chain
side

Rootstock currently uses an asymmetric 2WP: the secondary chain can unlock secoins
when a privileged native smart contract (the Bridge) receives an SPV proof in a message.
The Bridge is also manages the creation of the Bitcoin transaction to release unlock bitcoins
by creating a proposal and expecting signatures from federators. Also it manages adding
and removing federators.

Sidechain implementation using specific opcodes in the Bitcoin side



The logic to validate a foreign blockchain consensus is difficult to generalize in a way a
single opcode can cover all cases. In cases where the secondary blockchain is a fork of
Bitcoin, the gamut is narrower. Elements uses OP_WITHDRAWPROOFVERIFY and
OP_REORGPROOFVERIFY opcodes to understand Bitcoin consensus and proof-of-work,
and similar opcodes could be used in Bitcoin to understand a secondary chain consensus.
However this opcodes do not easily generalize for Ethereum blockchain. Rootstock has the
capability to emulate a Bitcoin header and be compatible with such opcodes, but this is far
the generic solution Bitcoin requires.

Sidechain implementation using Turing-complete scripting in the Bitcoin
side

These are the operations Bitcoin scripting should be able to perform to evaluate a generic
foreign blockchain consensus:

Evaluate an SPV proof or a compact SPV proof
Manipulate and extract information from a byte array: OP_SUBSTR, OP_CAT
Compute proof of work: OP_HASHXxxx or all arithmetic and logic and table lookup
operations used in the construction of hash function.
Compute PoW difficulty: OP_DIV, OP_MULT
Postpone a change in state until a certain block timestamp or height.
Persist information to be able to switch from one state to another state. This can be
done using reflection by hashing the scriptPub of the first output of the spending
transaction and verifying that script hash corresponds to the script hash of the next
state script. The most generic opcodes to allow it are: OP_PUSH_SPENDING_TX,
OP_PUSH_SPENDING_INPUT_INDEX. The transaction parsing would be done in
the script. Another option is to be able to directly access spending transaction parts:
OP_PUSH_SCRIPTSIG, OP_PUSH_SPENDING_TX_OUTPUT,
OP_PUSH_SPENDING_TX_OUTPUT_COUNT.

e Persist the amount. This requires to be able to parse the spent transaction output
(OP_PUSH_PREVTX, OP_PUSH_PREVOUT _INDEX). Another simpler approach is
to be able to push the input amount using OP_PUSH_AMOUNT.

This is a example script pseudo-code to perform the withrawalproof and reorgproof:

Assume stack contains: <spv-proof>

push in altstack the work-of-best-spv-branch (or zero initially)

push in altstack the block height when last spv-proof was received (or zero initially)
Compute the work of the spv-branch passed as argument.

If the work is below the minimum work required for the SPV proof, abort.

If first element of altstack is zero, removed the two elements from the altstack, push
the spv-proof and push the block-height in the altstack, then goto step 11.

7. Parse the spending transaction, extract the nLockTime.

ok wd~



10.

11.

12.

13.

Use CHECKLOCKTIMEVERIFY to make sure the nLockTime is higher than the
block-height value existent in the altstack.

Verify that the amount of work computes is higher than the amount of work stored in
the first slot of the altstack. If not, abort.

Remove the two elements of the altstack. Store the nLockTime and the current
spv-proof amount of work in the altstack.

Read the first output of the spending transaction. Verify that the amount is equal to
the amount received in this input, and abort if not equal. The remaining inputs and
outputs can be used for fees.

Get the spending transaction input. Parse the scriptsig. Check that the two first
instructions corresponds to push ops on the altstack the contents of the current
altstack. If not abort.

Verify that the hash digest of the remaining of the scriptsig corresponds to the hash
digest of this script tail (the two initial push operations are excluded)

To summarize, the following opcodes need to be added to Bitcoin:

OP_SUBSTR

OP_JUMP
OP_CONDITIONAL_JUMP
OP_PUSH_SCRIPTSIG
OP_PUSH_AMOUNT
OP_PUSH_SPENDING_TX_OUTPUT

Drivechain

A drivechain is a 2WP with no proof of control and provided with internal custody. In a
nutshell, a drivechain gives custody of the locked btc to the Bitcoins miners, and allows
Bitcoin miners to vote when to unlock bitcoins and where to send them. The miners vote
using the bitcoin blockchain, and votes are cast in some part of the block (e.g. the coinbase).
If the proportion of miners who participate in voting is under 50%, then the remaining ones
can easily cheat by voting whatever transfer that let them steal the bitcoins. If the miners can
vote quickly to unlock the locked coins and spend them, they can cash out (in other
cryptocurrency or in fiat) before the community reacts and finds out the majority of Bitcoin
miners are dishonest. Therefore, as in a sidechain, post-lock period must also exist as MAD
disincentive. The following diagram depicts a drivechain:
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Drivechain implementation today

In the simplest possible implementation, the bitcoins transferred to a drivechain are sent to a
non-standard anyone-can-spend output. Therefore, only miners will be able to generate such
transactions. The output should also specify the secondary chain id and destination address.
As voting is done by miners, a soft-forking rule that only affects miners would stipulate when
these outputs can be spent, based on the previous votes. The non-standard nature of these
transactions would prevent miners not aware of the soft-forking rule to mine invalid
transactions send by malicious users that spend the outputs. Even if this could be
implemented by the miners without any support from the Bitcoin users, we believe than all
consensus rules the miners adhere should be public, and that is a key part of the open
nature of Bitcoin. Therefore, we propose several implementations using an explicit opcodes.



Drivechain implementation using PROP/VOTE Tags

A drivechain can be implemented in several ways and we propose one of such possibilities,
which is not the original one presented by Truthcoin. Miners that want to propose a
candidate embed the message “PROP”.

New coinbase tags:
e PROP: <secondary-chain-id> <poll-id> <proposed-spend-tx-hash>
e VOTE: <num-votes> <proposal-id(1)> .. <proposal-id(num-votes)>

The proposed-spend-tx-hash is the hash of the transaction that is proposed to be included in
a block. Note that the miner that proposes the transaction may have to pay higher fees
because of the block space consumed by the proposal (e.g. 70 additional bytes).

This is low, but the secondary chain protocol could compensate this miner allowing that the
spending transaction includes an output to a proponent miner's address, with a specific
pre-established fee. The proposal id can be the hash of the proposal message, or a
monotone increasing proposal counter. The poll-id is a blob that identifies the current poll, in
the secondary chain parallel polls for parallel unlocking. It is not used by the Bitcoin protocol,
but it can help miners track the poll. There can be many active proposals for the same
drivechain, and a miner can vote for many of them simultaneously. There is no way to vote
against a proposal. This is to prevent a rogue miner from creating too many proposals and
forcing the remaining miners to vote against all of them, consuming block space. The miners
can vote for any proposal by embedding the message “VOTE”, followed by proposal id, in
the coinbase.

The voting period has a hardcoded maximal value (max-voting-period). A practical value for
max-voting-period is 720 (approximately 5 days). Also there is a hardcoded limit on when a
unlock transaction can be spent after the corresponding voting is over (max-liveness-period).
A practical value for max-liveness-period is 864 (6 days).

The opcode OP_CHECK_POSITIVE_VOTES_VERIFY is added. This opcode receives the
stack arguments:

secondary-chain-id
voting-period (in blocks)
liveness-period (in blocks)
min-number-of-positive-votes

This opcode computes the most voted candidate. If a blockchain votes more than once for
the same poll id, only one vote is counted. The opcode invalidates the transaction if:

1. The liveness period is greater than the maximum liveness period (liveness-period >
max-liveness-period)



2. The voting period is greater than the maximum voting period (voting-period >
max-voting-period)

3. The transaction specified by the proposal hash does not match exactly the spending
transaction. If there is a match, then the remaining computations are related to the

4. The voting period has not passed since the proposal was made

5. Too little positive votes (positive-votes < min-number-of-positive-votes) from the time
the poll was created (poll-start) for voting-period blocks.

6. Too old poll (current-height > poll-start+liveness-period)

After voting-period-in-blocks blocks, no new positive vote is counted, but the poll results can
still be used until the liveness-period ends.

The liveness period allows Bitcoin to forget about polls that have been abandoned and
prevent them to consume ledger state space. Also the protocol should limit the maximum
value for liveness, to allow light clients and Bitcoin Core in prune mode to validate the poll. A
maximum value of 1440 (approximately 10 days) is suggested.

To be implemented as a soft-fork, the OP_CHECK_ POSITIVE_VOTES_VERIFY (CPVF)
should replace an OP_NOP opcode.

Example scriptPub: "ROOTSTOCK” 7 20 4 OP_CHECK POSITIVE VOTES VERIFY

Example blockchain that can spend the scriptPub:

Block | Coinbase tags Prop 1 | Prop 2
1 PROP: “ROOTSTOCK” 1 0x97f5cb1....86a8b8ec 1 0
2 {no votes} 1 0
3 PROP: “ROOTSTOCK” 2 0x4d5aef....16116cab3 1 1
4 VOTE: 0x01 0x01 2 1
5 VOTE: 0x01 0x01 3 1
6 VOTE: 0x01 0x01 0x02 4 2
7 Contains the transaction specified by hash 4 2
0x97f5cb1....86a8b8ec

Drivechain implementation using only the VOTE Tag

A drivechain can be implemented using only the VOTE tag, and this has both benefits
drawbacks. Miners that want to propose or vote for a candidate embedding the tag “VOTE”.



New coinbase tag:
e VOTE <proposed-spend-tx-hash>

One of the benefits of using a single idempotent tag is that the merge-mining module does
not need to know the state of the bitcoin blockchain. It can emit votes until the secondary
chain stops requesting it. An on-chain message containing the SPV proof that the bitcoin
unlock transaction has been confirmed can be sent to the peg smart-contract so secondary
chain can inform the voting has concluded. The drawback is that the VOTE tag requires
much more space and may be required to be embedded in coinbases even after the
proposed spend transaction has already been confirmed, until the secondary chain is
notified of such confirmations.

Block | Coinbase tags Prop 1 | Prop 2

1 VOTE: 0x97f5cb1....86a8b8ec 1 0

2 {no votes} 1 0

3 VOTE: 0x4d5aef....16116cab3 1 1

4 VOTE: 0x97f5cb1....86a8b8ec 2 1

5 VOTE: 0x97f5cb1....86a8b8ec 3 1

7 VOTE: 0x97f5cb1....86a8b8ec 4 2
VOTE: 0x4d5aef....16116cab3

8 Contains the transaction specified by hash 4 2
0x97f5cb1....86a8b8ec

Drivechain implementation allowing negative votes

The voting system described in the previous sections only count positive votes. This is to
prevent rogue miners from creating too many malicious proposals and force every other
miner to vote against. However, the CPVF opcodes proposed cannot tolerate correctly a
decrease in miner engagement, since the amount of positive votes required to unlock the
bitcoins is chosen when they are locked, which can happen any amount of time before
unlocking them. Therefore the CPVF opcode is only well suited to be used in conjunction
with a federation in a special script so that missing hashing power can be dynamically
replaced by federation votes, as we'll see in the following sections. If no federation will
provide the missing votes, it is desirable that the poll allows both positive and negative votes
to allow unlocking if the mining engagement drops. We assume that if a miner is monitoring
a certain secondary chain, it won’t ignore a proposal for it: either it will vote positively or
negatively. Therefore we can assign a boolean value (1 bit) to every proposal for a
drivechain. A positive vote is represented by 1. A maximum voting period



(max-voting-period) is hard coded, so that any proposal consumes 1 bit for miners that care
about that secondary chain until a maximum of max-voting-period blocks.

New coinbase tags:
e PROP <secondary-chain-id> <poll-id> <prop-liveness-period>
<proposed-spend-tx-hash>
e VOTE <secondary-chain-id> <vote-bin-value>

The new PROP tag adds the argument prop-liveness-period. This argument must be exactly
equal to the highest liveness-period specified in the proposed-spend-tx outputs. If
prop-liveness-period is higher than max-liveness-period, the proposal is invalid and no vote
is counted. The new proposed VOTE tag has completely different arguments. The
vote-bin-value is a binary value representing a big integer where each bit maps to a
proposal. Proposals whose voting period have elapsed (as specified by prop-voting-period)
are not counted in the bit vector, and the vector is shifted accordingly. As opposed to the
previous case, the new PROP does not vote for the proposal. The miner that proposes the
poll must therefore vote in the same coinbase using VOTE. We propose a new opcode
OP_CHECK_VOTES_VERIFY (CVV) that count both positive and negative votes.

This opcode receives the stack arguments:

secondary-chain-id
voting-period (in blocks)
liveness-period (in blocks)
min-number-of-positive-votes
max-number-of-negative-votes
positive-votes-difference

This opcode takes the spending transaction, computes its hash, and searches for the
corresponding proposal up to liveness-period of past blocks. If the same proposal is
re-proposed, the first proposal counts and the following proposals are considered invalid.
The CVV opcode computes all votes (positive-votes and negative-votes) and invalidates the
transaction if any of the properties 1-6 described in the preview section hold, and also in the
following cases:

1. Too many negative votes (negative-votes > max-negative-votes)
2. If the difference between positive votes and negative votes is lower than the given

value (positive-votes - negative-votes < positive-votes-difference)

After voting-period-in-blocks blocks, no new positive vote is counted, but the poll results can
still be used until the liveness-period ends.

Example scriptPub: “RSK” 7 20 1 10 1 OP_CHECK VOTES VERIFY

Example blockchain that can spend the scriptPub:
(Proposals show positive/negative votes)



Block | Coinbase tags Prop 1 | Prop 2
1 PROP: “RSK” 1 0x97f5cb1....86a8b8ec ~ VOTE: 0x01 1/0 0/0
2 PROP: “RSK” 2 Ox4d5aef....16116cab3  VOTE: 0x02 11 1/0
3 VOTE: “RSK” 0x01 2/1 11
4 {no votes} 21 1M
5 VOTE: “RSK” 0x01 3/1 1/2
7 VOTE: “RSK” 0x03 4/1 2/2
8 {no votes} 4/1 2/2
10 Contains the transaction specified by hash 4/1 2/2
0x97f5cb1....86a8b8ec

Case study: A hybrid drivechain and federation with secoin bonds

Similar to the hybrid model proposed for sidechains, a hybrid model can created with a
drivechain. In this setup the miners will vote on the unlock transaction which has already
been multi-signed by the federation (bonders). This is implemented with a smart contract on
the secondary chain that proposes a bitcoin unlock transaction, and collects federator
member’s signatures, and emits the final signed transaction only if the signers have enough
bonds. Example scriptPub:

“ROOTSTOCK” 144 288 10 1 144 OP CHECK VOTES VERIFY
<pubkey (0)> .. <pubkey (N-1)>

<N> <M> OP CHECKMULTISIGVERIFY

Case study: A hybrid drivechain and a federation (allowing
federation votes)

In this setup, only positive miner votes are counted, but missing positive miner votes can be
fulfilled by federation member votes. A new opcode
OP_CHECK VOTES_MULTISIG_VERIFY (CVMV) is created, with the following arguments:

e provided-signatures (M) (provided by scriptSig)
e sig(0) ... sig(M-1) (provided by scriptSig)
e number-of-public-keys (N)



pubkey(0) ... pubkey(N-1)
signature-votes
secondary-chain-id
voting-period (in blocks)
liveness-period (in blocks)
min-number-of-positive-votes
max-number-of-negative-votes
positive-votes-difference
min-number-of-sigs

The argument number-of-public-keys is similar to the CHECKMULTISIG opcode. The
argument present-signatures is the number of signatures that follows in the scriptSig.
Signature-votes is the number of votes that each signature adds. For example, if
signature-votes is 4, then each signature represents the votes of 4 blocks. The
min-number-of-sigs is the minimum number of signatures that must be present. It allows the
federation to have veto power for any proposal presented by the majority of the miners. The
enormous benefit of CVMV is that it allows to bootstrap a merged-mining cryptocurrency
from having no merge-mining engagement (all votes must be provided by a federation) to a
state where there is a high merge-mining engagement and the federation does not have any
control of the funds. There is no point in allowing the federation members to vote against a
proposal. This is because the 51% of the miners can censor such negative vote, so security
is not increased. If min-number-of-signs is set to zero, 51% of the miners have full control of
the locked funds and still can steal the funds, but the MAD tension is maximum. This hybrid
method is depicted in the following diagram:
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The transactions that unlock the btc can be created with a CLTV time-lock to increase the
MAD tension even more.

Implementation using reflection and Turing-complete scripting




The Bitcoin scripting system needs new opcodes and a new dynamic storage data structure
that allows easy lookup and computation of votes, as the altstack does not serve this
purpose well. This data structure can be a dictionary. Two new opcodes (OP_STORE and
OP_RETRIVE) are used to move data from the stack to the dictionary and the other way
round. To count votes, coinbase fields of the last N blocks must be examined to detect
voting tags, and parse them. A new opcode OP_PUSH_BLOCK_ COINBASE pops from the
stack the number of blocks to lookup (from the current block backwards) and pushes the
coinbase field. The opcodes OP_SUBSTR and OP_CAT are used to search for the tag. A
new opcode OP_PUSH_SPENDING_ TX is used to push the spending transaction and
compare it to the hash of a transaction specified in the candidate tag.

The following opcodes should be added to Bitcoin:

OP_PUSH_BLOCK_COINBASE
OP_SUBSTR

OP_CAT

OP_PUSH_AMOUNT
OP_PUSH_SPENDING_TX
OP_STORE

OP_RETRIEVE

OP_JUMP
OP_CONDITIONAL_JUMP

Comparison

A fair comparison between a sidechain and drivechain must span a number of orthogonal
views, since socio-political, business and economic incentives are at stake. Also the best
choice for a certain 2WP can be a mixture of methods, such as using a sidechain in one
direction of the peg, and a drivechain in the opposite direction.

Technical Complexity

A sidechain requires blockchains to be able to evaluate consensus rules from foreign
blockchains and therefore are much easier to implement when the blockchain has a
Turing-complete scripting language or VM. If it does not, as in Bitcoin, then implementing it
requires a burden of critical consensus code, which may end not being very generic.
However some Bitcoin developers are working on a roadmap to add such extension to
Bitcoin, and RSK Labs supports this effort: the project Bit2.

On the other side, drivechain requires Bitcoin miners to run full nodes of the secondary chain
(or at least special gateways), so their participation is a prerequisite. This limits the chances
a non-merge-mined drivechain created by small community gets accepted by the miners. On



the contrary, a merge-mined drivechain would provide some incentives though secondary
fees. In most cases, secondary chains supported by companies that are able to establish
long term contracts with Bitcoin miners will have higher chance of success. However, every
drivechain that adds features to Bitcoin benefits all the Bitcoin community, so this distinction
is not decisive.

Security

To compare the security of a sidechain and a drivechain, we assume both secondary chains
are using the same merge-mining system with Bitcoin. If the custody group comprises the
miners, then both methods, drivechain and sidechain, provide equal security. In drivechain, if
a subset of the miners try to steal secoins, they must vote contrary to the authentic
secondary best chain, therefore as soon as the voting begins, users running nodes of both
primary and secondary blockchains can detect the attempt to steal. However users in the
main chain do not see anything special. A special plug-in module for Bitcoin Core could
detect contested votings where there is a near 50/50 split between two candidates.
Notifications of cheating attempts increases the MAD effect. If a split is detected, individual
miners participating in mining pools can refrain from participating in dishonest mining pools,
and soon the voting will slide towards the authentic branch. In a sidechain, mainchain users
can also use a plug-in module to detect that a reorganization proof is presented, or that the
the SPV proof presented corresponds to merge-mined headers whose Bitcoin parent blocks
are not present in the Bitcoin blockchain. Most important, the unlock contract can test
against this property and reject proofs whose Bitcoin header parents referred by secondary
chain headers (or a large subset of them) do not belong to the Bitcoin best chain (this
functionality may need additional opcodes from blockchain introspection). Also nodes can
detect a secondary chain split by a small mainchain node plugin-module that follows the
chains of secondary chain headers embedded in Bitcoin headers when the secondary chain
headers contain a skip-list of previous block hashes. To summarize, both drivechain and
sidechain methods could allow Bitcoin nodes to detect contending unlocks in advance using
simple plug-in modules.

In conclusion, using a sidechain to support unlocking bitcoins when the secondary
blockchain is merged-mined is discouraged, as sidechains are conceptually and
programmatically more complex, they require unlock transactions that pay higher fees, and
they do not provide better security than a drivechain.

Also when the custody group are the merged-miners, we don’t see any crucial difference in
terms of security between a drivechain and a sidechain during the bootstrapping period,
when there is low engagement of miners in the merge-mining process. Only using a dynamic
hybrid federation/drivechain method brings more security during bootstrapping. In this case,
the security is higher. If the miners and/or federation must also hold secoin bonds and
unlocking bitcoins is rate limited by CLTV, then the security is even higher. In hybrid models,
both the federation and the miners need to collude to steal the bitcoins in custody. The
drawback is that the federation members can refuse to sign the transaction and therefore
extort the network, but this is highly improbable, as federation members have known



identities, reputation and legal liabilities. Rate limiting the unlocking of bitcoins using CLTV in
scripts increases the security, but can affect the 1:1 peg rate, because it may reduce
liquidity.

Openness

A drivechain requires active participation of the miners for each specific drivechain while a
sidechain does not require direct engagement. To support a drivechain Bitcoin requires a
soft-fork. It seems difficult to achieve consensus on a soft-fork that will benefit only the
drivechain creators who have the resources to convince the miners to join. However, as
every properly secured sidechain that adds capabilities to Bitcoin provides benefits to all
Bitcoin holders, once a the project shows good quality code and gains interest from the
Bitcoin community and Bitcoin miners, positive opinions can push the required soft-fork.

Acceptance

The sidechain concept had a widespread acceptance since Blockstream published its
foundational paper. Contrary, drivechain design did not popularize. However we believe
drivechains have greater potential for the Bitcoin side of the 2WP for the simplicity of the
model, and it will be supported by the community.

Legality

(This section presents only some ideas of our own which have not yet been validated by a
competent lawyer. Therefore the contents of this section should not be taken as legal
advice)

Two procedures in a 2WP can be a target of regulation. One is the unlocking of secondary
currency, which could be interpreted by regulators as the creation of currency, instead of a
transfer of currency. A superficial analysis may give this impression if the currency on the
secondary chain is pre-created in a locked state, and unlocked on transfer. If the secondary
chain supports smart-contracts and a sidechain contract is created, then the transfer from
bitcoin to secoins will be fully automatic, and a federation has no means to prevent it (even if
it holds the custody of transferred funds). This is similar as when a user receives a Bitcoin
payment: there is no way the user can prevent this, and therefore it cannot be liable for the
origin of the funds. This is the case of Rootstock.

The other procedure where regulation may apply is in transfers from secoins to bitcoins. In
case a federation is in custody or in case the miners vote in a drivechain, both groups can be
targeted by regulators as money transmitters. In the case of a federation, the legality of the
federation will depend on the jurisdiction each federation member is located in. In many
jurisdictions transferring cryptocurrency is unregulated. However, if cryptocurrency is treated
as money, it seems that federation members should perform KYC on the payments that they
authorize to go from the secondary chain to the main chain. In the case that a federation
member already hold custody of bitcoins in user accounts (such as the case of an Exchange
or online wallet), the payments can be restricted to addresses belonging to users of the
Exchange/Wallet, and therefore the standard Exchange/Wallet KYC procedures would apply



normally. If all federation members obey the KYC regulations, other federation members
can sign the unlock transaction if and only if one of the members announces it owns the exit
address and takes responsibility for the KYC. This case would not be very different from a
bank authorizing a normal wire transfer to an account belonging a client of another bank,
where the receiving bank has the greater responsibility to perform KYC on his own client,
and not the sender bank. An approach that simplifies (or maybe completely eliminates) the
need for KYC is to allow the peg for transfers that send bitcoins from an unspent output to an
address controlled by the same ECDSA private key that controlled the consumed output,
and vice-versa. This is possible in Rootstock, as it also uses ECDSA over the same elliptic
curve. Therefore, it is proved that the same party has control of the transferred funds in both
blockchains, and no transfer between different entities has occurred. Both systems could be
combined: free unrestricted transfers where the source and destination address correspond
to the same private key, while the remaining transfers require the authorization by a
federation member. This authorization could be either dynamic (a federation member must
approve each transfer by means of a message sent to the pegging system) or the pegging
system stores a whitelist of source and destination addresses, and the whitelist is
maintained by the members of the federation.

There exist the possibility that all participants in a drivechain poll for unlocking bitcoins
(federation members and miners in case of RSK hybrid design) were to be considered a
single entity and treated as such, but we see this highly improbable since Bitcoin miners are
not considered by US regulation as a single entity, even if they collectively enable
transactions between different parties.

Conclusion

The best choice for a 2WP design for Bitcoin depends on the properties and features of the
secondary blockchain. When the secondary blockchain is merged-mined, sidechains provide
no additional security and a drivechain seems to be the best choice. Also the merge-miners
must run secondary blockchain node and the cost of running an additional voting software
module is negligible.

If the secondary blockchain has a federated consensus, but the federation has no interest in
the peg, such as when the secondary chain is a private blockchain with smart-contract
support, then a sidechain is the best choice.

If the secondary blockchain is mined with a different proof-of-work function, then a
sidechain is the best choice, but it is highly improbable that this case be a leading force
pushing the implementation of sidechains in Bitcoin. If the secondary blockchain has its own
native speculative token, the Bitcoin community would hardly accept a fork that increases
the value of this token. If the secondary blockchain does not have a native speculative token,
then it is extremely difficult such a proof-of-work blockchain would be bootstrapped without
subsidy.



If the secondary blockchain has a federated consensus, but the secondary blockchain is
heavily related to the first blockchain, such in the case of Blockstream’s Liquid, then a simple
standard multi-signature custody is preferred.

In case of Rootstock, where openness and acceptance by the Bitcoin community is crucial,
following choices are preferred:

e A sidechain in the Rootstock side
e A hybrid drivechain+federation in the Bitcoin side combining miners and federation
votes.

The sidechain proposal in the Bitcoin side has higher probability to be contended by the
community or core developers than of a drivechain, as the complexity of the sidechain
implementation is significantly higher than of the drivechain. In the case of Rootstock, we
must opt for the simplest solution both conceptually and technically in order to maximizes the
chances of acceptance. RSK Labs also aim to provide a smooth upgrade path to a fully
decentralized solution, so Rootstock plans to start with a federation composed by renowned
Bitcoin parties having secoin bonds, and plans to add miner’s votes (a drivechain) when
available. Using federation votes in the drivechain the system can automatically decrease
the number of votes required by the federation and increase the number of votes required by
the miners as the amount of merge-miner engagement increases in relation to the amount of
bitcoin mining, until no federation votes are required. Once the merge-mining gets almost full
miner acceptance (such as 95%), the federation role in voting can be disabled, and only the
drivechain remains. The following diagram shows which votes would be required in an hybrid
model to unlock the btc at different stages of merge-mining engagement:
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Requiring federation bonds and rate-limiting the unlocking of btc adds more security, but
also adds more complexity, so these additional security methods are not currently adopted
by Rootstock. If Bitcoin soft-forks to provide sidechain functionality, then Rootstock can
easily adopt this standard using virtual Bitcoin-like Merkle trees. Therefore RSK Labs will
help push both drivechain and sidechain BIPs through the Bit2 project, and RSK will adapt
the Rootstock blockchain to the technology the Bitcoin community finally accepts.

Special thanks to Paul Sztorc and Gavin Andresen for reviewing this paper and sending
useful comments.
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