Abstract
Human-computer interfaces (HCIs) have become ubiquitous. Interfaces such as keyboards and mouses are used daily while interacting with computing devices (Ebrahimi et al., 2003). There is a developing need, however, for HCIs that can be used in situations where these typical interfaces are not viable. Direct brain-computer interfaces (BCI) is a developing field that has been adding this new dimension of functionality to HCI. BCI has created a novel communication channel, especially for those users who are unable to generate necessary muscular movements to use typical HCI devices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Annett, J., 1995, Motor imagery: Perception or action, Neuropsychologia 33(11):1395–1417.
Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Onorati, P., and Urbano, A., 1996, Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model, Electroencephalogr. Clin. Neurophysiol. 98(4):363–73.
Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Anello, C., Onarati, P., and Urbano, A., 1997, High resolution EEG: A new model-dependent spatial deblurring method using a realistically—shaped MR—constructed subject’s head model, Electroenceph. Clin. Neurophysiol. 102:69–80.
Babiloni, F., Carducci, F., Babiloni, C., and Urbano, A., 1998, Improved realistic Laplacian estimate of highly-sampled EEG potentials by regularization techniques, Electroencephalogr. Clin. Neurophysiol. 106(4):336–343.
Babiloni F., Cincotti, F., Bianchi, L., Pirri, G., Millan, J., Mourino, J., Salinari, S., and Marciani, M. G., 2001, Recognition of imagined hand movements with low resolution surface Laplacian and linear classifiers, Med. Eng. Phys. 23:323–328.
Babiloni, F., Cincotti, F., Lazzarini, L., Millán, J., Mouriño, J., Varsta, M., Heikkonen, J., Bianchi, L., and Marciani, M. G., 2000, Linear classification of low-resolution EEG patterns produced by imagined hand movements, IEEE Trans. Rehabil. Eng. 8(2):186–188.
Bianchi, L., and Babiloni, F., 2003, Comparison of different feature classifiers for brain computer inerfaces, Proc. 1st Int. IEEE Conf. Neural Eng. 645–647.
Birbaumer, N., 1999, Rain Man’s revelations, Nature 399(6733):211–212.
Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., and Flor, H., 1999, A spelling device for the paralysed, Nature 398(6725):297–298.
Birbaumer, N., Kübler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser, J., Iversen, I., Kotchoubey, B., Neumann, N., and Flor, H., 2000, The Thought Translation Device (TTD) for completely paralyzed patients, IEEE Trans. Rehabil. Eng. 8(2):190–193.
Birch, G. E., and Mason, S. G., 2000, Brain-computer interface research at the Neil Squire Foundation, IEEE Trans. Rehabil. Eng. 8(2):193–195.
Blankertz, B., Curio, G., and Müller, K., 2002, Classifying single trial EEG: Towards brain computer interfacing, Adv. Neural Inf. Proc. Systems 14:157–164.
Blum, A. L., and Langely, P., 1997, Selection of relevant features and examples in machine learning, Artif. Intell. 97:245–271.
Brouwer, B., and Hopkins-Rosseel, D., 1997, Motor cortical mapping of proximal upper extremity muscles following spinal cord injury, Spinal Cord 35:205–212.
Cincotti, F., Mattia, D., Babiloni, C., Carducci, F., Bianchi, L., Millan, J., Mourino, J., Salinari, S., Marciani, M., and Babiloni F., 2002, Classification of EEG mental patterns by using two scalp electrodes and Mahalanobis distance based classifiers, Method Inform. Med. 41:337–341.
Cincotti, F., Scipione, A., Timperi, A., Mattia, D., Marciani, M. G., Millan, J., Salimari, S., Bianchi, L., and Babiloni, F., 2003, Comparison of different feature classifiers for brain computer interfaces, Proc. 1st Int. IEEE EMBS Conf. Neural Eng. 645–647.
Curran, E. A., and Stokes, M. J., 2003, Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems, Brain Cognition 51:326–336.
Deng, J., and He, B., 2003, Classification of imaginary tasks from three channels of EEG by using an artificial neural network, Proc. 25th Ann. Int. Conf. IEEE EMBS. [CD-ROM]
Donchin, E., and Coles, M. G. H., 1988, Is the P300 component a manifestation of context updating? Behav. Brain Sci. 11:355–425.
Donchin, E., Spencer, K. M., and Wijesinghe, R., 2000, The mental prosthesis: Assessing the speed of a P300-based brain-computer interface, IEEE Trans. Rehabil. Eng. 8(2):174–179.
Donoghue, J., 2002, Connecting cortex to machines: Recent advances in brain interfaces, Nature Neurosci. Suppl:1085–1088.
Ebrahimi, T., Vesin, J., and Garcia, G., 2003, Brain-computer interface in multimedia communication, Signal Process. Mag. 20(1):14–24.
Farwell, L. A., and Donchin, E., 1988, Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials, Electroencephalogr. Clin. Neurophysiol. 70(6):510–523.
He, B., 1999, Brain electric source imaging: Scalp Laplacian mapping and cortical imaging, Crit. Rev. Biomed. Eng. 27:149–188.
He, B., and Cohen, R., 1992, Body surface Laplacian ECG mapping, IEEE Trans. Biomed. Eng. 39(11):1179–1191.
He, B., Lain, J., and Li, G., 2001, High-resolution EEG: A new realistic geometry spline Laplacian estimation technique, Clin. Neurophysiol. 112(5):845–852.
He, B., and Lian, J., 2002, Spatio-temporal Functional Neuroimaging of Brain Electric Activity, Critical Review of Biomedical Engineering, 30:283–306.
He, B., and Lian, J., 2005, Electrophysiological Neuroimaging, In He (Ed): Neural Engineering, Kluwer Academic Publishers.
He, B., Lian, J., Spencer, K. M., Dien, J., and Donchin, E., 2001, A Cortical Potential Imaging Analysis of the P300 and Novelty P3 Components, Human Brain Mapping, 12:120–130.
He, B., Zhang, X., Lian, J., Sasaki, H., Wu, S., and Towle, V. L., 2002a, Boundary Element Method Based Cortical Potential Imaging of Somatosensory Evoked Potentials Using Subjects’ Magnetic Resonance Images, NeuroImage 16:564–576.
He, B., Yao, D., Lian, J., and Wu, D., 2002b, An Equivalent Current Source Model and Laplacian Weighted Minimum Norm Current Estimates of Brain Electrical Activity, IEEE Trans. on Biomedical Engineering 49:277–288.
Hjorth, B., 1975, An on-line transformation of EEG scalp potentials into orthogonal source derivations, Electroencephalogr. Clin. Neurophysiol. 39(5):526–530.
Isaacs, R. E., Weber, D. J., and Schwartz, A. B., 2000, Work toward real-time control of a cortical neural prosthesis, IEEE Trans. Rehabil. Eng. 8(2):196–198.
Jeannerod, M., 1995, Mental imagery in the motor context, Neuropsychologia 33(11):1419–1432.
Kalcher, J., and Pfurtscheller, G., 1995, Discrimination between phase-locked and non-phase locked event-related EEG activity, Electroencephalogr. Clin. Neurophysiol. 94:381–384.
Keirn, Z. A., and Aunon, J. I., 1990, A new mode of communication between man and his surroundings, IEEE Trans. Biomed. Eng. 37(12):1209–1214.
Kelly, S., Burke, D., de Chazal, P., and Reilly, R., 2002, Parametric models and spectral analysis for classification in brain-computer interfaces, Proc. 14th Int. Conf. Digit. Sign. Process. 1:307–310.
Kennedy, P. R., and Bakay, R. A., 1998, Restoration of neural output from a paralyzed patient by a direct brain connection, NeuroReport 9:1707–1711.
Kennedy, P. R., Bakay, R. A. E., Moore, M. M., Adams, K., and Goldwaithe, J., 2000, Direct control of a computer from the human central nervous system, IEEE Trans. Rehabil. Eng. 8(2):198–202.
Kostov, A., and Polak, M., 2000, Parallel man-machine training in development of EEG-based cursor control, IEEE Trans. Rehabil. Eng. 8(2):203–205.
Kubler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J., and Birbaumer, N., 2001, Brain-computer communication: Unlocking the locked in, Psychol. Bull. 127(3):358–375.
Laubach, M., Wessberg, J., and Nicolelis, M. A. L., 2000, Cortical ensemble activity increasingly predicts behavior outcomes during learning of a motor task, Nature 405(6786):567–571.
Lauer, R. T., Peckham, P. H., Kilgore, K. L., and Heetderks, W. J., 2000, Applications of cortical signals to neuroprosthetic control: A critical review, IEEE Trans. Rehabil. Eng. 8(2):205–208.
Le, J., Menon, V., and Gevins, A., 1992, Local estimate of surface Laplacian derivation on a realistically shaped scalp surface and its performance on noisy data, Electroenceph. Clin. Neurophysiol. 92:433–441.
Levine, S. P., Huggins, J. E., BeMent, S. L., Kushwaha, R. K., Schuh, L. A., Rohde, M. M., Passaro, E. A., Ross, D. A., Elisevich, K. V., and Smith, B. J., 2000, A direct brain interface based on event-related potentials, IEEE Trans. Rehabil. Eng. 8(2):180–185.
Makeig, S., Enghoff, S., Jung, T. P., and Sejnowski, T. J., 2000, A natural basis for efficient brain-actuated control, IEEE Trans. Rehabil. Eng. 8(2):208–211.
Malmivuo, J., and Plonsey, R., 1995, Bioelectromagnetism—Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, New York.
Mason, S. G., and Birch, G. E., 2003, A general framework for brain-computer interface design, IEEE Trans. Neural Syst. Rehabil. Eng. 11(1):70–85.
Maynard, E., Nordhausen, C., and Normann, C., 1997, The Utah intracortical electrode array: A recording structure for potential brain-computer interfaces, Electrencephalogr. Clin. Neurophysiol. 102:228–239.
McFarland, D. J., McCane, L. M., David, S. V., and Wolpaw, J. R., 1997, Spatial filter selection for EEG-based communication, Electroencephalogr. Clin. Neurophysiol. 103:386–394.
Middendorf, M., McMillan, G., Calhoun, G., and Jones, K. S., 2000, Brain-computer interfaces based on steady-state visual evoked response, IEEE Trans. Rehabil. Eng. 8(2):211–214.
Mosher, J. C., Lewis, P. S., and Leahy, R. M., 1992, Multiple dipole modeling and localization from spatio-temporal MEG data, IEEE Trans. Biomed. Eng. 39:541–557.
Moxon, K. A., 2004, Neurorobotics, In: Neural Engineering (He, ed.), Kluwer Academic Publishers, 2005.
Müller, K., Kohlmorgen J., Ziehe, A., and Blankertz, B., 2000, Decomposition algorithms for analyzing brain signals, In: Adaptive Systems for Signal Processing, Communications and Control (S. Haykin, ed.), pp. 105–110.
Muller-Gerking, J., Pfurtscheller, G., and Flyvbjerg, H., 1999, Designing optimal spatial filters for single-trial EEG classification in a movement task, Clin. Neurophysiol. 110(5):787–798.
Mussa-Ivaldi, F. A., and Miller, L. E., 2003, Brain-machine interfaces: Computational demands and clinical needs meet basic neuroscience, Trends Neurosci. 26(6):329–334.
Nicolelis, M., 2001, Actions from thoughts, Nature 409:403–407.
Nicolelis, M., 2003, Brain-machine interfaces to restore motor function and probe neural circuits, Nat. Rev. Neurosci. 4(5):417–422.
Nicolelis, M., and Chapin, J., 2002, Controlling robots with mind, Sci. Am. 287(4):46–53.
Nunez, P., Silberstein, R., Cadusch, P., Wijesinghe, R., Westdorp, A., and Srinivasan, R., 1994, A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging, Electroencephalogr. Clin. Neurophysiol. 90(1):40–57.
Obermaier, B., Guger, C., Neuper, C., and Pfurthscheller, G., 2001, Hidden Markov models for online classification of single trial EEG data, Pattern Recogn. Lett. 22:1299–1309.
Osman, A., and Robert, A., 2001, Time-course of cortical activation during overt and imagined movements, in: Proceedings of the Cognitive Neuroscientists Annual Meetings, New York.
Papoulis, A., 1977, Signal Analysis, McGraw-Hill Book Company, New York.
Penny, W. D., and Roberts, S. J., 1998, Bayesian neural networks for detection of imagined finger movements from single-trial EEG, Neural Networks 12:877–892.
Penny, W. D., and Roberts, S. J., 1999, EEG-based communication via dynamic neural network models, Proc. Int. Joint Conf. Neural Networks. [CDROM]
Penny, W. D., Roberts, S. J., Curran, E. A., and Stokes, M. J., 2000, EEG-based communication: A pattern recognition approach, IEEE Trans. Rehabil. Eng. 8(2):214–215.
Perrin, F., Bertrand, O., and Pernier, J., 1987, Scalp current density mapping: value and estimation from potential data, IEEE Trans. Biomed. Eng. 34:283–288.
Peters, B. O., Pfurtscheller, G., and Flyvbjerg, H., 1998, Mining multi-channel EEG for its information content: An ANN-based method for a brain-computer interface, Neural Networks 11:1429–1433.
Pfurtscheller, G., and Neuper, C., 2001, Motor imagery and direct brain-computer communication, Proc. IEEE 89(7):1123–1134.
Pfurtscheller, G., Flotzinger, D., and Kallcher, J., 1993, Brain-computer interface: A new communication device for handicapped persons, J. Microcomp. App. 16:293–299.
Pfurtscheller, G., Flotzinger, D., and Neuper, C., 1994, Differentiation between finger, toe and tongue movement in man based on 40-Hz EEG, Electroencephalogr. Clin. Neurophysiol. 90(6):456–460.
Pfurtscheller, G., and Lopes da Silva, F. H., 1999, Event-related EEG/MEG synchronization and desynchronization: Basic principles, Clin. Neurophysiol. 110(11):1842–1847.
Pfurtscheller, G., Neuper, C., and Flotzinger, D., 1997, EEG-based discrimination between imagination of right and left hand movement, Electroencephalogr. Clin. Neurophysiol. 103(6):642–651.
Pfurtscheller, G., Neuper, C., Guger, C., Harkam, W., Ramoser, H., Schlögl, A., Obermaier, B., and Pregenzer, M., 2000, Current trends in Graz brain-computer interface (BCI) research, IEEE Trans. Rehabil. Eng. 8(2):216–219.
Qin, L., Ding, L., and He, B., 2004, Motor imagery classification by means of source analysis for brain computer interface applications, Journal of Neural Eng. 1:135–141.
Ramoser, H., Muller-Gerking, J., and Pfurtscheller, G., 2000, Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Trans. Rehabil. Eng. 8(4):441–446.
Robert, C., Gaudy, J., and Limoge, A., 2002, Electroencephalogram processing using neural networks, Clin. Neurophysiol. 113:694–701.
Sajda, P., Gerson, A., Muller, K., Blankertz, B., and Parra, L., 2003, A data analysis competition to evaluate machine learning algorithms for use in brain-computer interfaces, IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):184–185.
Sanchez, J. C., Carmena, J. M., Lebedev, M. A., Nicolelis, M. A., Harris, J. G., and Principe, J. C., 2004, Ascertaining the importance of neurons to develop better brain-machine interfaces, IEEE Trans. Biomed. Eng. 51(6):943–953.
Serruya, M., Hatsopoulos, N., Paninski, L., Fellows, M., and Donoghue, J., 2002, Instant neural control of a movement signal, Nature 416:141–142.
Serruya, M., Hatsopoulos, N., Paninski, L., Fellows, M., and Donoghue, J., 2003, Robustness of neuroprosthetic decoding algorithms, Biol. Cybern. 88(3):219–228.
Spencer, K. M., Dien, J., and Donchin, E., 2001, Spatiotemporal analysis of the late ERP responses to deviant stimuli, Psychophysiology 38(2):343–358.
Sutter, E. E., 1992, The brain response interface: Communication through visually-induced electrical brain responses, J. Microcomp. App. 15:31–45.
Vallabhaneni, A., and He, B., 2004, Motor imagery task classification for brain computer interface applications using spatio-temporal principle component analysis, Neurol. Res., 26(3):282–287.
Vial, J., 1977, Real-time detection of brain events in EEG, Proc. IEEE 65:633–664.
Wang, T., and He, B., 2004, An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in brain computer interface, J. Neural Eng. 1(1):1–7.
Wang, Y., Zhang, Z., Li, Y., Gao, X., Gao, S., and Yang, F., 2004, An algorithm based on CSSD and FDA for classifying single—trial EEG, IEEE Trans. Biomed. Eng. 51(6):1081–1086.
Weiskopf, N., Veit, R., Erb, M., Mathiak, K., Grodd, W., Goebel, R., and Birbaumer, N., 2003, Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): Methodology and exemplary data, Neuroimage 19(3):577–586.
Wessberg, J., Stambaugh, C., Kralik, J., Beck, P., Laubach, M., Chapin, J., Kim, J., Biggs, S., Srinivasan, M., and Nicolelis, M., 2000, Real-time prediction of hand trajectory by ensembles of cortical neurons in primates, Nature 408:361–365.
Wickelgren, I., 2003, Neuroscience: Tapping the mind, Science 299(5606):496–499.
Wolpaw, J. R., 2003, Brain-computer interfaces: Signals, methods, and goals, Proc. 1st Int. IEEE EMBS Conf. Neural Eng. 1:584–585.
Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan, T. M., 2002, Brain-computer interfaces for communication and control, Clin. Neurophysiol. 113(6):767–791.
Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., Donchin, E., Quatrano, L. A., Robinson, C. J., and Vaughan, T. M., 2000b, Brain-computer interface technology: A review of the first international meeting, IEEE Trans. Rehabil. Eng. 8(2):164–173.
Wolpaw J. R., and McFarland, D. J., 1994, Multichannel EEG-based brain-computer communication, Electroencephalogr. Clin. Neurophysiol. 90(6):444–449.
Wolpaw, J. R., McFarland, D. J., Neat, G. W., and Forneris, C. A., 1991, An EEG-based brain-computer interface for cursor control, Electroencephalogr. Clin. Neurophysiol 78(3):252–259.
Wolpaw, J. R., McFarland, D. J., and Vaughan, T. M., 2000a, Brain-computer interface research at the Wadsworth Center, IEEE Trans. Rehabil. Eng. 8(2):222–226.
Yom-Tov, E., and Inbar, G. F., 2002, Feature selection for the classification of movements from single movement-related potentials, IEEE Trans. Neural Syst. Rehabil. Eng. 10(3):170–176.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Kluwer Academic/Plenum Publishers
About this chapter
Cite this chapter
Vallabhaneni, A., Wang, T., He, B. (2005). Brain—Computer Interface. In: He, B. (eds) Neural Engineering. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48610-5_3
Download citation
DOI: https://doi.org/10.1007/0-306-48610-5_3
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-306-48609-8
Online ISBN: 978-0-306-48610-4
eBook Packages: EngineeringEngineering (R0)