Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Vertex-Disjoint Triangles Problem

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1517))

Included in the following conference series:

Abstract

The vertex-disjoint triangles (VDT) problem asks for a set of maximum number of pairwise vertex-disjoint triangles in a given graph G. The triangle cover problem asks for the existence of a perfect triangle packing in a graph G. It is known that the triangle cover problem is NP-complete on general graphs with clique number 3 [6]. The VDT problem is MAX SNP-hard on graphs with maximum degree four, while it can be approximated within 3/2+ε, for any ε > 0, in polynomial time [11].

We prove that the VDT problem is NP-complete even when the input graphs are chordal, planar, line or total graphs. We present an \(O(m \sqrt{n})\) algorithm for the VDT problem on split graphs and an O(n 3) algorithm for the VDT problem on cographs. A linear algorithm for the triangle cover problem on strongly chordal graphs is also presented. Finally, the notion of packing-hardness, which may be crucial to the understanding of the difficulty of generalized matching problems, is defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41, 153–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cornell, D.G., Perl, Y., Stewart, L.K.: A Linear recognition algorithm for cographs. SIAM Jl. on Computing 14, 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cornuejols, G., Hartvigsen, D., Pulleyblank, W.: Packing Subgraphs in a Graph. Operations Research Letters 1, 139–143 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dahlhaus, E., Karpinski, M.: Matching and Multidimensional Matching in Chordal and Strongly Chordal Graphs. Discerete Applied Math. (84), 79–91 (1998)

    Google Scholar 

  5. Edmonds, J.: Paths, trees and flowers. Canadian J. Math. 17, 449–469 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  7. Golumbic, M.C.: Algorithmic graph theory and Perfect graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  8. Harary, F.: Graph Theory. Addison- Wesley, Reading (1969)

    MATH  Google Scholar 

  9. Hell, P., Kirkpatrick, D.G.: On generalized matching problems. Info. Proc. Letters 12, 33–35 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: A unified approach to approximation schemes for NP- and PSPACE-hard problems for geometric graphs. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 424–435. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  11. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Mathematics 2, 68–72 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Information Processing Letters 37, 27–35 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirkpatrick, D.G., Hell, P.: On the complexity of general graph factor problems. SIAM JI. on Computing 12, 601–609 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Micali, S., Vazirani, V.V.: An O(\(\sqrt{|V|}{|E|}\)) algorithm for finding maximum matching in general graphs. In: Proc. 21st Annual Symposium on the foundation of Comp. Sci., pp. 17–27 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guruswami, V., Rangan, C.P., Chang, M.S., Chang, G.J., Wong, C.K. (1998). The Vertex-Disjoint Triangles Problem. In: Hromkovič, J., Sýkora, O. (eds) Graph-Theoretic Concepts in Computer Science. WG 1998. Lecture Notes in Computer Science, vol 1517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10692760_3

Download citation

  • DOI: https://doi.org/10.1007/10692760_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65195-6

  • Online ISBN: 978-3-540-49494-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics