Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A New Approach to Robust Threshold RSA Signature Schemes

  • Conference paper
Information Security and Cryptology - ICISC’99 (ICISC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1787))

Included in the following conference series:

Abstract

In a threshold RSA signature scheme, dishonest participants can disrupt signature generation by submitting junk instead of their partial signatures. A threshold signature system is robust if it allows generation of correct signatures for a group of t honest participants, and in the presence of malicious participants. The purpose of this paper is two-fold. First we show that a robust (t, n) threshold RSA signature scheme, proposed by Rabin in Crypto’98, lacks an essential property of (t, n) threshold schemes and allows an adversary to forge signatures. Then we propose a new approach to the construction of t-robust (t, n) threshold RSA signature scheme which can be seen as the dual to Rabin’s approach. We discuss the efficiency of our system and show that when t is small (compared to n) our scheme is much more efficient than other existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Naor, M.: Derandomization. witnesses for Boolean matrix multiplication and construction of perfect hash functions (1996)

    Google Scholar 

  2. Atici, M., Magliveras, S.S., Stinson, D.R., Wei, W.D.: Some Recursive Constructions for Perfect Hash Families. Journal of Combinatorial l Designs 4, 353–363 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non cryptographic Fault-Tolerant Distributed Computations. In: Proc. 20th Annual Symp. on the Theory of Computing, pp. 1–10. ACM, New York (1988)

    Google Scholar 

  4. Blackburn, S.R.: Combinatorics and Threshold Cryptology, in Combinatorial Designs and their Applications(Pitman Research Notes in Mathematics) (to appear)

    Google Scholar 

  5. Blackburn, S.R., Blake-Wilson, S., Burmester, M., Galbraith, S.: Shared generation of shared RSA keys. Tech. Report CORR98-19, University of Waterloo

    Google Scholar 

  6. Blackburn, S.R., Burmester, M., Desmedt, Y., Wild, P.R.: Efficient multiplicative sharing schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 107–118. Springer, Heidelberg (1996)

    Google Scholar 

  7. Blum, M., Kannan, S.: Program correctness checking and the design of programs that check their work. In: Proc. of the 21st ACM Symposium on Theory of Computing (1989)

    Google Scholar 

  8. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997)

    Google Scholar 

  9. Boyd, C.: Digital multisignatures. In: Beker, Piper (eds.) Cryptography and coding, pp. 241–246. Clarendon Press (1989)

    Google Scholar 

  10. Brickell, E., Stinson, D.: The Detection of Cheaters in Threshold Schemes. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 564–577. Springer, Heidelberg (1990)

    Google Scholar 

  11. Czech, Z.J., Havas, G., Majewski, B.S.: Perfect Hasing. Theoretical Computer Science 182, 1–143 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Croft, R.A., Harris, S.P.: Public-key cryptography and re-usable shared secrets. In: Beker, Piper (eds.) Cryptography and coding, pp. 241–246. Clarendon Press (1989)

    Google Scholar 

  13. Desmedt, Y.: Society and group oriented cryptology: a new concept. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg (1988)

    Google Scholar 

  14. Desmedt, Y.: Threshold cryptography. European Trans. on Telecommunications 5(4), 449–457 (1994)

    Article  MathSciNet  Google Scholar 

  15. Desmedt, Y.: Some recent research aspects of threshold cryptography. In: Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 99–114. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. Desmedt, Y., Di Crescenzo, G., Burmester, M.: Multiplicative non-abelian sharing schemes and their application to threshold cryptography. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 21–32. Springer, Heidelberg (1990)

    Google Scholar 

  17. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely. In: Proc. 26th Annual Symp. on the Theory of Computing, pp. 522–533. ACM, New York (1994)

    Google Scholar 

  18. Desmedt, Y., Frankel, Y.: Homomorphic zero-knowledge threshold schemes over any finite group. SIAM J. Disc. Math. 7(4), 667–679 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Desmedt, Y., King, B., Kishimoto, W., Kurosawa, K.: A comment on the efficiency of secret sharing scheme over any finite abelian group. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 391–402. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: Proc. 28th Annual FOCS, pp. 437–437. IEEE Computer Society Press, Los Alamitos (1987)

    Google Scholar 

  21. Frankel, Y.: A practical protocol for large group oriented networks. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 56–61. Springer, Heidelberg (1990)

    Google Scholar 

  22. Frankel, Y., Gemmell, P., MacKenzie, P., Yung, M.: Optimal resilience proactive public-key cryptosystems. In: Proc. 38th FOCS, pp. 384–393. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  23. Frankel, Y., Gemmell, P., Yung, M.: Witness-based Cryptographic Program Checking and Robust Function Sharing. In: Proc. 28th STOC, pp. 499–508. ACM Press, New York (1996)

    Google Scholar 

  24. Frankel, Y., MacKenzie, P., Yung, M.: Robust efficient distributed RSA-key generation. In: Proc. 30th STOC, pp. 663–672. ACM Press, New York (1998)

    Google Scholar 

  25. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of RSA functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 157–172. Springer, Heidelberg (1996)

    Google Scholar 

  26. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield Nothing but the validity of the assertion, and a methodology of cryptographic protocol design. In: Proceeding 27th Annual Symposium on the Foundations of Computer Science, pp. 174–187. ACM Press, New York (1986)

    Google Scholar 

  27. Karnin, E., Greene, J., Hellman, M.: On Secret Sharing Systems. IEEE Transactions on Information Theory  IT-29, 35–41 (1983)

    Google Scholar 

  28. Mehlhorn, K.: Data Structures and Algorithms. Springer, Heidelberg (1984)

    Google Scholar 

  29. Miyazaki, S., Sakurai, K., Yung, M.: On threshold RSA-signing with no dealer. In: Song, J.S. (ed.) ICISC 1999. LNCS, vol. 1787, pp. 187–197. Springer, Heidelberg (1999) (see also this proceedings)

    Google Scholar 

  30. Rabin, T.: A simplified Approach to Threshold and Proactive RSA. In: CRYPTO 1996. LNCS, vol. 1109, pp. 89–104. Springer, Heidelberg (1998)

    Google Scholar 

  31. Shamir, A.: How to Share a Secret. Communications of the ACM 22, 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  32. Simmons, G., Jackson, W.-A., Martin, K.: The Geometry of Shared Secret Schemes. Bulletin of the Institute of Combinatorics and its Applications (ICA) 1, 71–88 (1991)

    MATH  MathSciNet  Google Scholar 

  33. Tompa, M., Woll, H.: How To Share a Secret with Cheaters. Journal of Cryptology 1(2), 133–138 (1988)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Safavi-Naini, R., Wang, H., Lam, KY. (2000). A New Approach to Robust Threshold RSA Signature Schemes. In: Song, J. (eds) Information Security and Cryptology - ICISC’99. ICISC 1999. Lecture Notes in Computer Science, vol 1787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719994_15

Download citation

  • DOI: https://doi.org/10.1007/10719994_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67380-4

  • Online ISBN: 978-3-540-45568-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics