Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gap Navigation Trees: Minimal Representation for Visibility-based Tasks

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics VI

Abstract

In this paper we present our advances in a data structure, the Gap Navigation Tree (GNT), useful for solving different visibility-based robotic tasks in unknown planar environments. We present its use for optimal robot navigation in simply-connected environments, locally optimal navigation in multiply-connected environments, pursuit-evasion, and robot localization. The guiding philosophy of this work is to avoid traditional problems such as complete map building and exact localization by constructing a minimal representation based entirely on critical events in online sensor measurements made by the robot. The data structure is introduced from an information space perspective, in which the information used among the different visibility-based tasks is essentially the same, and it is up to the robot strategy to use it accordingly for the completion of the particular task. This is done through a simple sensor abstraction that reports the discontinuities in depth information of the environment from the robot’s perspective (gaps), and without any kind of geometric measurements. The GNT framework was successfully implemented on a real robot platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Michael Erdmann Mark Overmars David Hsu Frank van der Stappen

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Tovar, B., Guilamo, L., LaValle, S.M. Gap Navigation Trees: Minimal Representation for Visibility-based Tasks. In: Erdmann, M., Overmars, M., Hsu, D., van der Stappen, F. (eds) Algorithmic Foundations of Robotics VI. Springer Tracts in Advanced Robotics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10991541_29

Download citation

  • DOI: https://doi.org/10.1007/10991541_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25728-8

  • Online ISBN: 978-3-540-31506-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics