Abstract
Future planetary exploration missions will use cooperative robots to explore and sample rough terrain. To succeed robots will need to cooperatively acquire and share data. Here a cooperative multi-agent sensing architecture is presented and applied to the mapping of a cliff surface. This algorithm efficiently repositions the systems’ sensing agents using an information theoretic approach and fuses sensory information using physical models to yield a geometrically consistent environment map. This map is then distributed among the agents using an information based relevant data reduction scheme. Experimental results for cliff face mapping using the JPL Sample Return Rover (SRR) are presented. The method is shown to significantly improve mapping efficiency over conventional methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sujan, V.A., Dubowsky, S., Huntsberger, T., Aghazarian, H., Cheng, Y., Schenker, P. (2005). A Multi Agent Distributed Sensing Architecture with Application to Planetary Cliff Exploration. In: Dario, P., Chatila, R. (eds) Robotics Research. The Eleventh International Symposium. Springer Tracts in Advanced Robotics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11008941_26
Download citation
DOI: https://doi.org/10.1007/11008941_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23214-8
Online ISBN: 978-3-540-31508-7
eBook Packages: EngineeringEngineering (R0)