Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Replication and Data Reuse to Efficiently Schedule Data-Intensive Applications on Grids

  • Conference paper
Job Scheduling Strategies for Parallel Processing (JSSPP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3277))

Included in the following conference series:

Abstract

Data-intensive applications executing over a computational grid demand large data transfers. These are costly operations. Therefore, taking them into account is mandatory to achieve efficient scheduling of data-intensive applications on grids. Further, within a heterogeneous and ever changing environment such as a grid, better schedules are typically attained by heuristics that use dynamic information about the grid and the applications. However, this information is often difficult to be accurately obtained. On the other hand, although there are schedulers that attain good performance without requiring dynamic information, they were not designed to take data transfer into account. This paper presents Storage Affinity, a novel scheduling heuristic for bag-of-tasks data-intensive applications running on grid environments. Storage Affinity exploits a data reuse pattern, common on many data-intensive applications, that allows it to take data transfer delays into account and reduce the makespan of the application. Further, it uses a replication strategy that yields efficient schedules without relying upon dynamic information that is difficult to obtain. Our results show that Storage Affinity may attain better performance than the state-of-the-art knowledge-dependent schedulers. This is achieved at the expense of consuming more CPU cycles and network bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lyman, P.: Hal R. Varian, J. Dunn, A. Strygin and K. Swearingen. How much information ? (October 2003), http://www.sims.berkeley.edu/research/projects/how-muchinfo-2003

  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 1(215), 403–410 (1990)

    Google Scholar 

  3. GriPhyN Group, http://www.GriPhyN.org (2002), http://www.GriPhyN.org

  4. Santos-Neto, E.L., Tenório, L.E.F., Fonseca, E.J.S., Cavalcanti, S.B., Hickmann, J.M.: Parallel Visualization of the optical pulse through a doped optical fiber. In: Proceedings of Annual Meeting of the Division of Computational Physics (abstract) (June 2001)

    Google Scholar 

  5. Cirne, W., Paranhos, D., Costa, L., Santos-Neto, E., Brasileiro, F., Sauvé, J., da Silva, F.A.B., Barros, C.O., Silveira, C.: Running Bag-of-Tasks Applications on Computational Grids: The MyGrid Approach. In: Proceedings of the ICCP 2003 - International Conference on Parallel Processing (October 2003)

    Google Scholar 

  6. Smith, J., Shrivastava, S.K.: A System for Fault-Tolerant Execution of Data and Compute Intensive Programs over a Network of Workstations. In: Fraigniaud, P., Mignotte, A., Bougé, L., Robert, Y. (eds.) Euro-Par 1996. LNCS, vol. 1123, pp. 487–495. Springer, Heidelberg (1996)

    Google Scholar 

  7. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a Future Computing Infrastructure (1999)

    Google Scholar 

  8. Beaumont, O., Carter, L., Ferrante, J., Robert, Y.: Bandwidth-centric Allocation of Independent Task on Heterogeneous Plataforms. In: Proceedings of the Internetional Parallel and Distributed Processing Symposium (April 2002)

    Google Scholar 

  9. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for Scheduling Parameter Sweep Applications in Grid environments. In: Proceedings of the 9th Heterogeneous Computing Workshop (May 2000)

    Google Scholar 

  10. Faerman, M., Su, A., Wolski, R., Berman, F.: Adaptive Performance Prediction for Distributed Data-Intensive Applications. In: Proceedings of the ACM/IEEE SC 1999 Conference on High Performance Networking and Computing (1999)

    Google Scholar 

  11. Marzullo, K., Ogg, M., Ricciardi, A., Amoroso, A., Calkins, A., Rothfus, E.: NILE: Wide-Area Computing for High Energy Physics. In: Proceedings 7th ACM European Operating Systems Principles Conference. System Support for Worldwide Applications (September 1996)

    Google Scholar 

  12. Paranhos, D., Cirne, W., Brasileiro, F.: Trading Cycles for Information: Using Replication to Schedule Bag-of-Tasks Applications on Computational Grids. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 169–180. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Kedem, Z.M., Palem, K.V., Spirakis, P.G.: Efficient Robust Parallel Computations (Extended Abstract). In: Proceedings of ACM Symposium on Theory of Computing (1990)

    Google Scholar 

  14. Pinedo, M.: Scheduling: Theory, Algorithms and Systems, 2nd edn. (August 2001)

    Google Scholar 

  15. Downey, A.: Predicting queue times on space-sharing parallel computers. In: Proceedings of 11th International Parallel Processing Symposium (IPPS 1997) (April 1997)

    Google Scholar 

  16. Gibbons, R.: A Historical Application Profiler for Use by Parallel Schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 58–77. Springer, Heidelberg (1997)

    Google Scholar 

  17. Smith, W., Foster, I., Taylor, V.: Predicting Application Run Times Using Historical Information. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 122–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Wolski, R., Spring, N., Hayes, J.: Predicting the CPU Availability of Time-shared Unix Systems on the Computational Grid. In: Proceedings of 8th International Symposium on High Performance Distributed Computing (HPDC 1999) (August 1999)

    Google Scholar 

  19. Francis, P., Jamin, S., Paxson, V., Zhang, L., Gryniewicz, D.F., Jim, Y.: An Architecture for a Global Internet Host Distance Estimation Service. In: Proceedings of IEEE INFOCOM (1999)

    Google Scholar 

  20. Ibarra, O.H., Kim, C.E.: Heuristic Algorithms for Scheduling Independent Tasks on Nonidentical Processors. Journal of the ACM (JACM) 24(2), 280–289 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  21. Feitelson, D., Rudolph, L.: Metrics and Benchmarking for Parallel Job Scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 1–24. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Feitelson, D.G.: Metric and workload effects on computer systems evaluation. Computer 36(9), 18–25 (2003)

    Article  Google Scholar 

  23. Lo, V., Mache, J., Windisch, K.: A Comparative Study of Real Workload Traces and Synthetic Workload Models for Parallel Job Scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 25–46. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Wolski, R., Spring, N.T., Hayes, J.: The network weather service: a distributed resource performance forecasting service for metacomputing. Future Generation Computer Systems 15(5-6), 757–768 (1999)

    Article  Google Scholar 

  25. Casanova, H.: Simgrid: A Toolkit for the Simulation of Application Scheduling. In: Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the Grid (May 2001)

    Google Scholar 

  26. Devore, J.L.: Probability and Statistics for Engineering and The Sciences, vol. 1 (2000)

    Google Scholar 

  27. MyGrid Site (2004), http://www.ourgrid.org/mygrid

  28. BLAST Webpage, http://www.ncbi.nlm.nih.giv/BLAST

  29. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: OceanStore: An Architecture for Global-Scale Persistent Storage. In: Proceedings of the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems (November 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santos-Neto, E., Cirne, W., Brasileiro, F., Lima, A. (2005). Exploiting Replication and Data Reuse to Efficiently Schedule Data-Intensive Applications on Grids. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2004. Lecture Notes in Computer Science, vol 3277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11407522_12

Download citation

  • DOI: https://doi.org/10.1007/11407522_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25330-3

  • Online ISBN: 978-3-540-31795-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics