Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Linear Image Reconstruction Framework Based on Sobolev Type Inner Products

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

Abstract

Exploration of information content of features that are present in images has led to the development of several reconstruction algorithms. These algorithms aim for a reconstruction from the features that is visually close to the image from which the features are extracted. Degrees of freedom that are not fixed by the constraints are disambiguated with the help of a so-called prior (i.e. a user defined model). We propose a linear reconstruction framework that generalises a previously proposed scheme. As an example we propose a specific prior and apply it to the reconstruction from singular point s. The reconstruction is visually more attractive and has a smaller \(\mathbb{L}_{\rm 2}\)-error than the previously proposed linear methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Damon, J.: Local Morse theory for solutions to the heat equation and Gaussian blurring. Journal of Differential Equations 115(2), 368–401 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Duits, R., Florack, L., ter Haar Romeny, B., de Graaf, J.: On the axioms of scale space theory. Journal of Mathematical Imaging and Vision 20, 267–298 (2004)

    Article  MathSciNet  Google Scholar 

  3. Florack, L., Duits, R., Bierkens, J.: Tikhonov regularization versus scale space: A new result. In: Proceedings of the 11th International Conference on Image Processing, Singapore, October 24–27, pp. 271–274 (2004)

    Google Scholar 

  4. Florack, L., Kuijper, A.: The topological structure of scale-space images. Journal of Mathematical Imaging and Vision 12(1), 65–79 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gilmore, R.: Catastrophe Theory for Scientists and Engineers. Dover Publications, Inc., New York (1993); Originally published by John Wiley & Sons, New York (1981)

    Google Scholar 

  6. Johansen, P., Nielsen, M., Olsen, O.F.: Branch points in one-dimensional gaussian scale space. Journal of Mathematical Imaging and Vision 13(3), 193–203 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Johansen, P., Skelboe, S., Grue, K., Andersen, J.D.: Representing signals by their top points in scale-space. In: Proceedings of the 8th International Conference on Pattern Recognition, Paris, France, October 1986, pp. 215–217. IEEE Computer Society Press, Los Alamitos (1986)

    Google Scholar 

  8. Kanters, F.M.W.: Scalespaceviz (2004), http://www.bmi2.bmt.tue.nl/image-analysis/people/FKanters/Software/ScaleSpaceViz.html

  9. Kanters, F.M.W., Platel, B., Florack, L.M.J., ter Haar Romeny, B.M.: Image reconstruction from multiscale critical points. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 464–478. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Lillholm, M., Nielsen, M., Griffin, L.D.: Feature-based image analysis. International Journal of Computer Vision 52(2/3), 73–95 (2003)

    Article  Google Scholar 

  11. Nielsen, M., Lillholm, M.: What do features tell about images? In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 39–50. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Platel, B., Kanters, F.M.W., Florack, L.M.J., Balmachnova, E.G.: Using multiscale top points in image matching. In: Proceedings of the 11th international conference on Image Processing, Singapore (October 2004)

    Google Scholar 

  13. Tikhonov, A., Arseninn, V.Y.: Solution of Ill-Posed Problems. John Wiley & Sons, New York (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janssen, B., Kanters, F., Duits, R., Florack, L., ter Haar Romeny, B. (2005). A Linear Image Reconstruction Framework Based on Sobolev Type Inner Products. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_8

Download citation

  • DOI: https://doi.org/10.1007/11408031_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics