Abstract
We present a novel computational method, MultiBind, for recognition of binding patterns common to a set of protein structures. It is the first method which performs a multiple alignment between protein binding sites in the absence of overall sequence, fold or binding partner similarity. MultiBind recognizes common spatial arrangements of physico-chemical properties in the binding sites. These should be important for recognition of function, prediction of binding and drug design. We discuss the theoretical aspects of the computational problem of multiple structure alignment. This problem involves solving a 3D k-partite matching problem, which we show to be NP-Hard. The MultiBind method, applies an efficient Geometric Hashing technique to detect a potential set of multiple alignments of the given binding sites. To overcome the exponential number of possible multiple combinations it applies a very efficient filtering procedure which is heavily based on the selected scoring function. Our method guarantees detection of an approximate solution in terms of pattern proximity as well as cardinality of multiple alignment. We show applications of MultiBind to several biological targets. The method recognizes patterns which are responsible for binding small molecules such as estradiol, ATP/ANP and transition state analogues. The presented computational results agree with the available biological ones.
Availability: http://bioinfo3d.cs.tau.ac.il/MultiBind/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C.J., Hofmann, K., Bairoch, A.: The PROSITE database, its status in 2002. Nucleic Acids Res. 30, 235–238 (2002)
Wallace, A.C., Laskowski, R.A., Thornton, J.M.: Derivation of 3D coordinate templates for searching structural databases: application to Ser-His-Asp catalytic triads in the serine proteinases and lipases. Protein Science 5, 1001–1013 (1996)
Russell, R.: Detection of protein three-dimensional side-chain patterns: new examples of convergent evolution. J. Mol. Biol. 279(5), 1211–1227 (1998)
Artymiuk, P.J., Poirrette, A.R., Grindley, H.M., Rice, D.W., Willett, P.: A graph-theoretic approach to the identification of three-dimensional patterns of amino acid side-chains in protein structures. J. Mol. Biol. 243, 327–344 (1994)
Moodie, S.L., Mitchell, J.B.O., Thornton, J.M.: Protein recognition of adenylate: An example of a fuzzy recognition template. J. Mol. Biol. 263, 486–500 (1996)
Denessiouk, K.A., Rantanen, V., Johnson, M.: Adenine Recognition: A motif present in ATP-,CoA-,NAD-,NADP-, and FAD-dependent proteins. PROTEINS: Structure, Function and Genetics 44, 282–291 (2001)
Shulman-Peleg, A., Nussinov, R., Wolfson, H.J.: Recognition of functional sites in protein structures. J. Mol. Biol. 339(3), 607–633 (2004), http://bioinfo3d.cs.tau.ac.il/SiteEngine/
Russell, R., Barton, G.: Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. PROTEINS: Structure, Function and Genetics 14, 309–323 (1992)
Taylor, W.R., Flores, T., Orengo, C.: Multiple protein structure alignment. Protein Science 3, 1858–1870 (1994)
Leibowitz, N., Nussinov, R., Wolfson, H.: MUSTA-a general, efficient, automated method for multiple structure alignment and detection of common motifs: application to proteins. J. Comput. Biol. 8, 93–121 (2001)
Shatsky, M., Nussinov, R., Wolfson, H.: A method for simultaneous alignment of multiple protein structures. Proteins: Structure, Function, and Genetics 56(1), 143–156 (2004), http://bioinfo3d.cs.tau.ac.il/MultiProt/
Dror, O., Benyamini, H., Nussinov, R., Wolfson, H.J.: MASS: multiple structural alignment by secondary structures. Bioinformatics 19(suppl. 1), 95–104 (2003), http://bioinfo3d.cs.tau.ac.il/MASS
Lemmen, C., Lengauer, T.: Computational methods for the structural alignment of molecules. J. of Computer-Aided Mol. Design 14, 215–232 (2000)
Dror, O., Shulman-Peleg, A., Nussinov, R., Wolfson, H.J.: Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications for drug design. Curr. Med. Chem. 11, 71–90 (2004)
Kuttner, Y.Y., Sobolev, V., Raskind, A., Edelman, M.: A consensus-binding structure for adenine at the atomic level permits searching for the ligand site in a wide spectrum of adenine-containing complexes. PROTEINS: Structure, Function and Genetics 52, 400–411 (2003)
Kinoshita, K., Nakamura, H.: Identification of protein biochemical functions by similarity search using the molecular surface database ef-site. Protein Science 12, 1589–1595 (2003)
Schmitt, S., Kuhn, D., Klebe, G.: A new method to detect related function among proteins independent of sequence or fold homology. J. Mol. Biol. 323, 387–406 (2002)
Akutsu, T., Halldorson, M.M.: On the approximation of largest common subtrees and largest common point sets. Theoretical Computer Science 233, 33–50 (2000)
Akutsu, T.: Protein structure alignment using dynamic programming and iterative improvement. IEICE Trans. Information and Systems E79-D, 1629–1636 (1996)
Efrat, A., Itai, A., Katz, M.J.: Geometry helps in bottleneck matching and related problems. Algorithmica 31, 1–28 (2001)
Ambuhl, C., Chakraborty, S., Gartner, B.: Computing largest common point sets under approximate congruence. In: Proc. of the 8th Ann. European Symp. on Alg., pp. 52–63. Springer, Heidelberg (2000)
Huttenlocher, D., Ullman, S.: Recognizing solid objects by alignment with an image. International Journal of Computer Vision 5(2), 195–212 (1990)
Goodrich, M.T., Mitchell, J.S.B., Orletsky, M.W.: Practical methods for approximate geometric pattern matching under rigid motions (preliminary version). In: Proc. of the 10th Ann. Symp. on Comp. Geom., pp. 103–112. ACM Press, New York (1994)
Chakraborty, S., Biswas, S.: Approximation algorithms for 3-d commom substructure identification in drug and protein molecules. In: Proc. 6th Int. Workshop on Algorithms and Data Structures, Vancouver, Can., pp. 253–264. Springer, Heidelberg (1999)
Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman, San Francisco (1979)
Hazan, E., Safra, S., Schwartz, O.: On the Complexity of Approximating k-Dimensional Matching. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 83–97. Springer, Heidelberg (2003)
Wolfson, H.J.: Model-Based Object Recognition by Geometric Hashing. In: Proc. of the 1st European Conf. on Comp. Vision (ECCV). LNCS, pp. 526–536. Springer, Heidelberg (1990)
Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Cryst. 16, 548–558 (1983)
Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an sdr, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discret. Math. 2, 68–72 (1989)
Heffernan, P.J., Schirra, S.: Approximate decision algorithms for point set congruence. Comput. Geom. Theory Appl. 4, 137–156 (1994)
Gavrilov, M., Indyk, P., Motwani, R., Venkatasubramanian, S.: Combinatorial and experimental methods for approximate point pattern matching. Algorithmica 38, 59–90 (2004)
Mintz, S., Shulman-Peleg, A., Wolfson, H.J., Nussinov, R.: Generation and analysis of a protein-protein interface dataset with similar chemical and spatial patterns of interactions (2004) (submitted)
Connolly, M.L.: Measurement of protein surfaces shape by solid angles. J. Mol. Graph. 4, 3–6 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shatsky, M., Shulman-Peleg, A., Nussinov, R., Wolfson, H.J. (2005). Recognition of Binding Patterns Common to a Set of Protein Structures. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2005. Lecture Notes in Computer Science(), vol 3500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11415770_33
Download citation
DOI: https://doi.org/10.1007/11415770_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25866-7
Online ISBN: 978-3-540-31950-4
eBook Packages: Computer ScienceComputer Science (R0)